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ABSTRACT

Model merging has emerged as an effective approach to combine multiple single-
task models into a multitask model. This process typically involves computing a
weighted average of the model parameters without any additional training. Existing
model-merging methods focus on enhancing average task accuracy. However, inter-
ference and conflicts between the objectives of different tasks can lead to trade-offs
during the merging process. In real-world applications, a set of solutions with
various trade-offs can be more informative, helping practitioners make decisions
based on diverse preferences. In this paper, we introduce a novel and low-compute
algorithm, Model Merging with Amortized Pareto Front (LocMAP). LocMAP
efficiently identifies a Pareto set of scaling coefficients for merging multiple mod-
els, reflecting the trade-offs involved. It amortizes the substantial computational
cost of evaluations needed to estimate the Pareto front by using quadratic approx-
imation surrogate models derived from a pre-selected set of scaling coefficients.
Experimental results on vision and natural language processing tasks demonstrate
that LocMAP can accurately identify the Pareto front, providing practitioners with
flexible solutions to balance competing task objectives. We also introduce Bayesian
LocMAP for scenarios with a relatively low number of tasks and Nested LocMAP
for situations with a high number of tasks, further reducing the computational cost
of evaluation.

1 INTRODUCTION

Large pre-trained foundation models have become available in many real-world applications Wornow
et al. (2023); Thirunavukarasu et al. (2023); Cui et al. (2024). This increasing availability has led to
a popular practice of fine-tuning these pre-trained models to adapt to a wide range of downstream
tasks. Practitioners can independently fine-tune the same pre-trained model, such as CLIP style
models Radford et al. (2021); Wu et al. (2023); Zhai et al. (2023), large language models Brown
et al. (2020); Rozière et al. (2023); Touvron et al. (2023); Jiang et al. (2024), etc., and then release
the fine-tuned models without releasing the training data. As the deployment of such fine-tuned
models increases, combining models with identical architectures and initializations has emerged as a
promising approach to combine their respective capabilities. This is useful, especially in scenarios
where the training data for each task is private and cannot be shared, such as individual-level patient
data in a hospital and behavior data in social media recommendation systems.

Existing methods for merging models typically involve calculating a weighted average of the pa-
rameters from multiple models to enhance performance uniformly across various tasks. However,
this approach often overlooks the conflicts among the diverse objectives of these tasks, which can
lead to trade-offs in terms of model performance on various tasks. In real-world applications, it is
often useful to obtain a set of Pareto optimal solutions rather than a single model. Such solutions
allow practitioners to choose among different trade-offs, depending on their specific needs. For
example, hospitals specializing in certain areas might prefer a model that excels in tasks relevant to
their specialty while maintaining adequate performance across a broader spectrum of diseases.

In this paper, we introduce a novel method that identifies the Pareto front without retraining the
models to be merged. Our algorithm utilizes a quadratic approximation of the evaluation metric.
Furthermore, we enhance it with a Bayesian adaptive sampling method and a nested merging scheme,
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Figure 1: Illustration of the overall process of LocMAP for the case of two tasks. Step 1: Select
2 tasks and compute their corresponding task vectors. Step 2: Sample a few scaling coefficients c
and query the evaluation metrics for each task, respectively. Step 3: Use the quadratic model as a
surrogate model to approximate the mapping c→ metrics. Step 4: Use the NSGA-III algorithm with
the surrogate objective functions to find amortized Pareto fronts. Subfigure (a) shows a contour plot
of the actual accuracy landscape for the ViT-B/32 model Dosovitskiy et al. (2020) obtained from 100
scaling coefficients (sampled uniformly) evaluated on the SUN397 Xiao et al. (2016) and Cars Krause
et al. (2013) datasets. Subfigure (b) shows a contour plot of the fitted quadratic functions. Red lines
represent the Pareto front in the decision variable (c1, c2) space. Subfigure (c) shows an example of
the resulting Pareto fronts. The Pareto front (Grid search) is regarded as the ground truth given the
sufficient number of grid points evaluated. The Pareto front (MAP, predicted) is the amortized Pareto
front. The Pareto front (MAP, real) is the Pareto front involving the same {(c1, c2)} but re-evaluated
to obtain the ground truth metrics for comparison. The yellow lines are the fine-tuned single-task
models’ evaluated performance.

which further bring down the computational cost. We validate our method across a diverse set of
tasks, spanning from vision to natural language processing, and demonstrate its applicability to a
variety of architectures, including ResNets He et al. (2016), ViT Dosovitskiy et al. (2020), and large
language models Brown et al. (2020); Rozière et al. (2023); Touvron et al. (2023); Jiang et al. (2024).
Our results confirm that this novel approach supports the seamless integration of diverse model
capabilities and aligns more closely with various real-world preference by providing a set of optimal
fronts across the tasks.

Contributions The main contributions of this paper are:

C1 We propose the LocMAP algorithm that utilizes quadratic surrogate models to approximate
the evaluation metric functions, which amortize the computation of Pareto fronts;

C2 We demonstrate the effectiveness of LocMAP across a diverse set of architectures, including
vision models (e.g., ResNet, ViT) and large language models, showing its generalizability
and flexibility for different domains.

C3 We introduce two variants of MAP: the nested-merging MAP, which decreases computational
complexity from O(N ·2N ) to O(N logN2 ), and the Bayesian MAP, which efficiently queries
the computationally expensive evaluations according to loss information.

C4 To our best knowledge, this paper is the first work, that estimates the Pareto front for
task-vector-based model-merging methods with low compute, and without relying on gra-
dient descent for deep neural networks. Our code is available at https://anonymous.
4open.science/r/MAP_Anonymize.

In Figure 2, we compare our method to direct search. It is important to note that evaluating models in
our problem setting is computationally expensive; as a result, our proposed method can only query the
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Figure 2: Subfigure (a) Comparison of our method with direct search for merged ViT-B/32 mod-
els Dosovitskiy et al. (2020), based on evaluation results of 250 combinations of scaling coefficients.
Our method identifies a more diverse set of solutions across eight tasks within the same computational
budget. Both methods aim to maximize the performance of one task while ensuring that all other
tasks meet a minimum threshold of 40%. The bar plot displays the maximized accuracy for each task.
Subfigure (b) When the threshold is increased to 65% of the single-task model’s performance, the
brute-force direct search method fails to find any feasible solutions within the same computational
budget.

evaluation pipeline a limited number of times. We choose to compare with direct brute-force search
within the scaling coefficient spaces. When the number of tasks is low, the Pareto fronts obtained
through direct brute-force search can be considered ground truth because the scaling coefficient
spaces have been sufficiently explored. However, when the number of tasks is high, we may not be
able to derive reasonable ground truth Pareto fronts using direct brute-force search. Nonetheless, we
can still demonstrate the efficiency of our method by comparing the winning ratio of LocMAP and
direct brute-force search.

2 BACKGROUND

2.1 MODEL MERGING

Model merging aims to combine two or more trained models into a single model to leverage the
strengths of each and improve overall performance. A recent work by Ilharco et al. (2022) introduced
task arithmetic as a simple and effective way to perform model merging. The task vector for task n is
defined as vn = θn

ft − θpre, which is the element-wise difference between the pre-trained weights
and the fine-tuned weights for task n. To perform model merging with task vectors, we can compute
the merged model as θm = θpre +

∑N
n=1 cnvn, where cn are the scaling coefficients that have been

shown to be essential to the performance of the merged model Yadav et al. (2024); Yang et al. (2023).

Denoting the metric of task n as Mn, most of the existing approaches for model merging aim to
improve an equal weight average metric 1

N

∑N
n=1 Mn. This target implies that user of the algorithm

has no preferences between tasks. However, in real-world applications, users might have biased
preferences for the importance of tasks, necessitating trade-offs. In such cases, the goal of model
merging is no longer the simple average metric. Instead, we need to answer a broader question:

Given any preferences over the set of tasks, what is the best way to merge the models?

2.2 PARETO FRONTS

Definition 1 (Pareto dominance). Let X be a set representing the solution space, where each element
x ∈ X is a possible solution to the multi-objective optimization problem. Let there be n objectives,
and define an evaluation loss function fi : X → R, where i ∈ {1, 2, . . . , n}.
Given two solutions x, y ∈ X , we define that x Pareto dominates y, denoted by x ≻P y, if and only
if:

∀i ∈ {1, 2, . . . , n}, fi(x) ≤ fi(y) and ∃j ∈ {1, 2, . . . , n}, fj(x) < fj(y)

3
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Definition 2 (Pareto optimal solutions). The Pareto front is the set of solutions in the solution space
X that are not Pareto dominated by any other solutions in X . The Pareto front is given by:

PF = {x ∈ X |̸ ∃y ∈ X s.t. y ≻P x} (1)

Pareto optimal solutions have been studied in multi-task (multi-objective) learning (MTL) Sener &
Koltun (2018); Lin et al. (2019). However, in most of the studies, approximating the Pareto front is
computationally expensive and data inefficient. We introduce our method, MAP, a computationally
efficient method to find the Pareto front for model merging.

3 METHODS

In this section, we discuss the proposed LocMAP method in detail. To enhance readability, we present
a table of notations in Table 5.

3.1 QUADRATIC APPROXIMATION OF EVALUATION METRIC

Given the task vectors {vn}{n=1,...,N} and the initialization θpre ∈ Rd, we denote the merged model
parameters as θm(c) = θpre +Vc = θpre +

∑N
n=1 cnvn, where V = concat(v1, ...,vN ) ∈ Rd×N is

the task matrix and c = [c1, ..., cN ]⊤ ∈ RN is the vector of scaling coefficients for the task vectors.

Let Mn(c) = Mn(θm(c)) denote the evaluation metric for task n of the merged model. We aim to
optimize the evaluation metric for each task via the multi-objective optimization (MOOP)1:

min
c1,...,cN

M1(c), . . . ,MN (c) (2)

This problem has N variables and N objectives, and we seek the Pareto optimal solutions.

Motivated by the observation that the finetuned models tend to have parameters close to the pretrained
model (as shown in Table 1), we put forward the following assumption.
Assumption 1. The task vectors vn have small norms relative to the pretrained model parameters
θpre, i.e., |vn| ≪ |θpre| for n = 1, . . . , N . Additionally, the evaluation metrics Mn(θ) are sufficiently
smooth around θpre, such that higher-order terms in their Taylor expansions are negligible within the
region defined by the task vectors.

Denote p as the number of parameters in the pre-trained model and also the number of parameters in
each task vector. N is the number of tasks.

To derive our algorithm, MAP, we utilize the second-order Taylor expansion to approximate Mn:

Mn(c) ≡Mn(θm(c)) = Mn(θpre) +∇Mn(θpre)
⊤(θm(c)− θpre)

+
1

2
(θm(c)− θpre)

⊤Hn(θpre)(θm(c)− θpre) +Rn(θm(c)− θpre)

= Mn(θpre)︸ ︷︷ ︸
∈R

+∇Mn(θpre)
⊤︸ ︷︷ ︸

∈R1×p

V︸︷︷︸
∈Rp×N

c︸︷︷︸
∈RN×1

+
1

2
(Vc)⊤︸ ︷︷ ︸
∈R1×p

Hn(θpre)︸ ︷︷ ︸
∈Rp×p

Vc︸︷︷︸
∈Rp×1

+ Rn︸︷︷︸
∈R

where Hn(θpre) = ∇2Mn(θpre) ∈ Rd×d is the Hessian matrix and Rn(θm(c)− θpre) = Rn(Vc) is
the third-order remainder, which in Assumption 1, is negligible when ||Vc||3 = ||θm(c)− θpre||3 is
small. Note that the second-order Taylor expansion is widely used McCandlish et al. (2018); Bu
et al. (2024); Kaplan et al. (2020); Hoffmann et al. (2022) and provides a close approximation (see
Figure 2 (a) and (b) and more discussion in Appendix 5).

Table 1: We compute the L1 norm of the weight matrices of the pretrained models and the task
vectors for each of the 8 tasks using the ViT-B/32 model, and compute the ratio.

Metric SUN397 Cars DTD SVHN RESISC45 MNIST GTSRB EuroSAT
||θpre||1 1,270,487 1,270,487 1,270,487 1,270,487 1,270,487 1,270,487 1,270,487 1,270,487
||vn||1 21,055 20,127 13,621 19,349 18,409 17,578 16,712 15,941
||vn||1/||θpre||1(%) 1.66% 1.58% 1.07% 1.52% 1.45% 1.38% 1.32% 1.25%

1The evaluation metric M can be differentiable (e.g., mean square loss or cross-entropy/perplexity) or not
necessarily (e.g., classification accuracy, F1 score, BLEU, or Rouge)

4
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To validate the approximation, we calculate the L1 norm of the parameters for the 8 task vectors and
their ratios relative to the L1 norm of the pretrained model. As shown in Table 1, the ratio between
the L1 norm of the task vectors and the L1 norm of the weight matrices of the pretrained model is
approximately 1% to 2% for each of the 8 tasks.

Figure 3: Density plot of the absolute values
of the weight matrices of the 8 task vectors.

We further examine the density plot of the absolute
values of the weight matrices of the 8 task vectors
(Figure 3). We find that the maximum magnitude of
the task vectors is 0.00859, while the mean is 1.57336
×10−4. These findings motivate and validate our key
assumption 1 of using a second-order Taylor expansion
to approximate the evaluation metrics.

Leveraging this quadratic approximation, we can define
surrogate models for each task N ,

M̃n(c;An,bn, en) ≡
1

2
c⊤Anc+ b⊤

n c+ en (3)

and optimize the proxy problem of Equation (2) via

min
c1,...,cN

M̃1(c), . . . , M̃N (c) (4)

where An ∈ RN×N is a parameterized matrix aiming to approximate V⊤Hn(θpre)V; bn ∈ RN

is a parameterized vector targeting to V⊤∇Mn(θpre); en is a parameter scalar which estimates
Mn(θpre) +Rn.

Importantly, Equation (4) is parameterized in contrast to Equation (2), with a total of (N+1)(N+2)
2

surrogate model parameters in (en, bn, An), i.e., 1 coefficient for en, N coefficients in bn and
N(N + 1)/2 coefficients in An due to its symmetry (1 +N + N(N+1)

2 = (N+1)(N+2)
2 ). We do not

calculate the gradient or Hessian to obtain the parameters An, bn, en. Instead, we estimate them by
minimizing the MSE between Mn and M̃n, n = 1, . . . , N :

A∗
n,b

∗
n, e

∗
n = arg min

An,bn,en

∑
c∈Ω

|Mn(θmerge(c))− M̃n(c;An,bn, en)|2 (5)

where Ω = {c(1), . . . , c(K)} is the set of c and Mn(θmerge(c)) is the corresponding evaluation metric.
Below we discuss 3 extensive cases of this problem.

Case 1: If the evaluation metric spans the whole real-number axis R, we use the vanilla form of
the surrogate model in Equation (3). As shown in Corollary 1, we have a closed-form solution for
Equation (5)

Corollary 1 (Closed-form Solution for Surrogate Model Parameters). Under Assumption 1, for each
task n = 1, . . . , N , the optimization problem 5 is equivalent to solving a linear regression where
the predictors include all quadratic, interaction, linear, and constant terms of c. The closed-form
solution for the parameters is given by(vec(A∗

n)
b∗
n

e∗n

)
=
(
C⊤

nCn

)−1
C⊤

nyn

where Cn(c) = (c21, c
2
2, . . . , c

2
N , c1c2, c1c3, . . . , cN−1cN , c1, c2, . . . , cN , 1), and yn is the vector of

observed metrics Mn(θm(c)) for all c ∈ Ω. Please refer to Corollary 3 for a more detailed corollary.

Case 2: When the evaluation metric is restricted to a specific range [l, u], e.g. accuracy is restricted
to [0, 1], we can warp the quadratic part using a sigmoid function, i.e.

M̃n(c;An,bn, en) ≡ (u− l)σ(en + b⊤
n c+

1

2
c⊤Anc) + l.

5
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Case 3: Similarly, if the evaluation metric is restricted to [l,+∞), a softplus function as a wrapper
would be beneficial:

M̃n(c;An,bn, en) ≡ softplus(en + b⊤
n c+

1

2
c⊤Anc) + l,

where softplus(x) = ln(1 + ex).

In Cases 2 and 3, please note that u and l mentioned here are not learnable parameters. They are
specific to the feasible area of the metric. Since the non-linear functions are introduced in the definition
of M̃n, there are no closed-form solutions. We use gradient descent to solve the optimization problem
5. This approach remains fast and computationally inexpensive, as the number of parameters in the
surrogate model is (N+1)(N+2)

2 . We emphasize that performing gradient descent on the surrogate
model remains computationally efficient. Compared to training full-scale deep learning models, it
requires significantly fewer computations, making it both faster and more resource-efficient. In the
case of merging 8 models, the number of parameters is 45 which is significantly less than the millions
of parameters typically found in deep learning models.

3.2 MODEL MERGING WITH AMORTIZED PARETO FRONTS

In this section, we introduce our generalized algorithm for estimating the amortized Pareto fronts.
As mentioned in Section 3.1, we approximate the evaluation metric Mn(·) by a surrogate quadratic
model M̃n(·). We then utilize M̃n(·) to compute the amortized Pareto fronts. Please see the detailed
experiments in Section 4 and the algorithm details in Algorithm 1. Different from other Pareto
multi-task learning algorithms, our algorithm does not require calculating the gradients or performing
gradient descent on the deep learning model parameters.

Algorithm 1 MAP
Input: Pretrained model θpre, fine-tuned models {θn

ft}Nn=1.
Compute task vectors {vn = θn

ft − θpre | n ∈ 1, . . . , N}.
Sample K vectors of c ∈ RN . Denote the set as Ω.
for n ∈ [N ] do

for c = [c1, ..., cN ] ∈ Ω do
Compute θ(c) = θpre + c1v1 + . . .+ cNvN .
Derive the evaluation metric Mn(θ(c)).

end
Fit the quadratic approximation surrogate model M̃n by learning A∗

n,b
∗
n, e

∗
n in Equation (5).

end
Apply MOOP algorithm (e.g. NSGA-III) to {M̃n} and get the Pareto front

3.3 FURTHER METHODS TO BRING DOWN THE COMPUTATION COST WHEN THE NUMBER OF
TASKS IS HIGH

In addition to MAP, we also introduce LocMAP variants, nested merging LocMAP (NMLocMAP)
and Bayesian LocMAP (BLocMAP). NMLocMAP and BLocMAP are LocMAP variants designed to
further reduce the computation of LocMAP.

For a small number of tasks (N ≤ 3), we use Bayesian adaptive sampling, inspired by Bayesian
optimization. Unlike the Plain LocMAP (Algorithm 1), which samples a single set of scaling weights
c and evaluates metrics Mn(θ(c)), Bayesian adaptive sampling iteratively samples c across multiple
rounds, with each round informed by prior evaluations.

The process starts with uniform sampling of scaling coefficients {(c1, . . . , cN )}, from [0, 1]N , evalu-
ating the merged models θm(ci) for tasks 1 to N , and calculating the L2 loss. We compute a posterior
distribution based on an acquisition function, like the upper confidence bound, for each bin.

We iteratively update surrogate models for each task, and after meeting the stopping criterion, generate
(c, {M̃n(θm(c))}Nn=1) samples. A MOOP algorithm (e.g., NSGA-III) is then applied to compute the
Pareto front from M̃n.

6
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As illustrated in Figure 4 (a), BMAP uses Bayesian optimization to determine the distribution of
scaling coefficients for task vectors when approximating the surrogate model in MAP. For more
details and experiments, please refer to Appendix E.3.

When the number of tasks N is high and computational resources are also limited, NMMAP reduces
the number of evaluations from O(TN2N ) to O(N logN). For example, tasks 1 to 8 are Cars,
GTSRB, DTD, SUN397, Resisc45, MNIST, EuroSAT, and SVHN.

With the nested merging, for the first round, we merge (θ1
ft,θ

2
ft) into θ1,2

merge. Similarly, we merge
(θ3

ft,θ
4
ft)into θ3,4

merge, and (θ5
ft,θ

6
ft) into θ5,6

merge. Next, we merge (θ1,2
merge,θ

3,4
merge) into θ1,2,3,4

merge , and
finally into θ1,2,3,4,5,6,7,8

merge .

It achieves a 250x speedup when the number of tasks is 8, while also outperforming direct search
methods. However, it can no longer output the entire Pareto front for all tasks, and the practitioners
need to be able to quantify their preferences during the merging since it merges models in pairs
in nested fashion, as shown in Figure 4 (b). For more details and experiments, please refer to
Appendix E.2.

(a) (b)

Figure 4: Subfigure (a) Utilize Bayesian optimization to guide the sampling of scaling coefficients
according to uncertainty distribution; Subfigure (b) An example of nested model merging for N = 8
models.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets and models We study multi-task model merging on eight normal zero-shot image classifi-
cation datasets following Ilharco et al. (2022): SUN397 Xiao et al. (2016), Cars Krause et al. (2013),
GTSRB Stallkamp et al. (2011), MNIST LeCun (1998), EuroSAT Helber et al. (2019), SHVN Netzer
et al. (2011), DTD Cimpoi et al. (2014), RESISC45 Cheng et al. (2017). We use the ViT-B/32
architecture in CLIP Radford et al. (2021) as the pre-trained model for the experiments on vision
tasks in the main text. We show the results of these experiments in the main pages.

The rest of the experiments are presented in the Appendix due to the page limits. The results of
the datasets and tasks we experimented on are as follows: a zero-shot medical chest X-ray image
classification task to show our model merging scheme also works in a real-world application in the
medical domain Wang et al. (2017) (Appendix D.3); 4 fine-tuned Llama3 models in different lan-
guages: French, Arabic, Chinese, and Japanese (Appendix D.4)2; 3 vision tasks on the ResNet18 He
et al. (2016) architecture: CIFAR-10 Krizhevsky et al. (2009), Flowers-102 Nilsback & Zisserman
(2008), and GTSRB Stallkamp et al. (2011) to show our model merging scheme also works on other
model architectures (Appendix D.5).

4.2 BASELINE AND METRICS

Pareto front-finding baselines Our baseline method for obtaining Pareto fronts is the brute-force
direct search, which can be regarded as the gold standard when the number of tasks is low (N < 4).

2All the fine-tuned language Llama3 models can be found on Hugging Face. The IDs of the models are:
French: jpacifico/French-Alpaca-Llama3-8B-Instruct-v1.0; Arabic: MohamedRashad/Arabic-Orpo-Llama-3-8B-
Instruct; Chinese: shenzhi-wang/Llama3-8B-Chinese-Chat; Japanese: haqishen/Llama-3-8B-Japanese-Instruct.

7
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This is because we can sample enough grid points of c and query the corresponding evaluation
metrics {Mn(θ(c))}Nn=1. We can then directly use the resulting evaluation metrics to find the Pareto
front by direct comparisons of each task’s performance of the merged model by ci ∈ c.

However, when the number of tasks grows, the required number of (c, {Mn(θ(c))}Nn=1) pairs grows
exponentially, which is much larger than the points we evaluated. Thus, when the number of tasks is
high (N ≥ 4), the results from the brute-force direct search can no longer be considered ground truth.

In Appendix E.2.2, we show an illustration of why the curse of dimensionality occurs when the
number of tasks increases.

Single merged model baselines In addition to the brute-force method, we compare with other
model merging methods including SLERP Shoemake (1985), TIES-merging Yadav et al. (2024),
Task Arithmetic with a single scalar Ilharco et al. (2022), Task Arithmetic with preferences as
scalars Ilharco et al. (2022), DARE combined with Task Arithmetic Yu et al. (2023); Ilharco et al.
(2022), and DARE combined with TIES-merging Yu et al. (2023); Yadav et al. (2024).

Win rate We used the win rate to measure how often the Pareto front found by LocMAP outperforms
the Pareto front found by the baseline in terms of multiple objectives. Let PFMAP and PFbaseline

represent the set of solutions in the Pareto fronts obtained from the LocMAP and the baseline methods,
respectively. Each solution in these sets is a vector in RN , where N is the number of objectives or
tasks. We sampled K = 100 points from the decision space of each of the two Pareto fronts, denoted
as cMAP

k and cbaselinek , k = 1, . . . ,K. Then, we compared Mn(θ(c
MAP
k )) and Mn(θ(c

baseline
k ))

pairwise for k = 1, . . . ,K and n = 1, . . . , N, resulting in K2N comparisons. The ratio of instances
where Mn(θ(c

MAP
k )) > Mn(θ(c

baseline
k )) is computed as the win rate of PFMAP :

Win Rate =
1

K2N

K∑
i=1

K∑
j=1

N∑
n=1

I
[
Mn(θ(c

MAP
i )) > Mn(θ(c

baseline
j ))

]
where K = 100, cMAP

i ∈ Decision Space of PFMAP, i = 1, . . . ,K, cbaseline
j ∈ Decision Space of

PFbaseline, j = 1, . . . ,K, I[·] is the indicator function.

4.3 WIN RATE OF LOCMAP OVER THE DIRECT SEARCH METHOD

Table 2 shows the results for the win rate of LocMAP over the brute force direct search method
when the number of tasks is small (N < 4). In such cases, the Pareto front can be regarded as the
ground truth Pareto front, and we can only query 30 and 50 scaling coefficients to achieve similar
performance with the ground truth Pareto front.

Table 3 shows the results for the win rate of LocMAP over the brute force direct search method when
the number of tasks is high (N ≥ 4). The Pareto front generated by the brute force method can no
longer be considered ground truth due to the limited number of points per dimension that is covered.
In this setting, LocMAP performs much better than the brute-force (not ground truth) Pareto solutions.

Table 2: Win rate of the amortized PF over the brute-force direct search PF, where the latter can
be regarded as the ground truth when N < 4. # c is the number of scaling coefficient vectors each
algorithm evaluated to find the Pareto front. # c per dim = (# c direct search)1/N measures the
sparsity of points the direct search method uses, as illustrated in Figure 10.

N # c (direct search) # c per dim # c (MAP) Win rate (MAP) R2 (MAP)

2 200 14.14 30 49.81% (±0.30) 0.953 (±0.018)
3 300 6.69 50 46.90% (±0.71) 0.980 (±0.003)

4.4 COMPARING WITH OTHER SINGLE MERGED MODEL BASELINE METHODS

We compared the performance of LocMAP with TIES-merging Yadav et al. (2023), TIES-merging
with DARE Yu et al. (2023), Task Arithmetic with DARE, Task Arithmetic with normalized preference
as scaling coefficients Ilharco et al. (2023), Ada-mgering++ Yang et al. (2024), DELLA-merging Deep
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Table 3: Win rate of the amortized PF over the brute-force direct search PF, where the latter can no
longer be regarded as the ground truth when N ≥ 4. # of c is the number of scaling coefficient
vectors each algorithm evaluated to find the Pareto front. # c per dim = (# c direct search)1/N
measures the sparsity of points the direct search method uses, as illustrated in Figure 10.

N # c (direct search) # c per dim # c (MAP) Win rate (MAP) R2 (MAP)

4 300 4.16 60 50.67% (±2.44) 0.984 (±0.004)
5 500 3.47 85 53.00% (±1.88) 0.941 (±0.019)
6 500 2.82 100 60.71% (±1.34) 0.941 (±0.030)
7 1000 2.68 140 63.42% (±1.91) 0.891 (±0.024)
8 1000 2.37 250 65.58% (±0.94) 0.868 (±0.028)

et al. (2024) and SLERP Shoemake (1985). For dimension 2, we can directly visualize the results, as
shown in Figure 5.

MAP offers a well-distributed set of Pareto optimal solutions We can see that none of the
baseline methods can directly dominate all Pareto solutions found by MAP, and most of them lie
either within or on the Pareto front found by MAP. In addition, we sampled 10 points from the
predicted Pareto front by LocMAP and evaluated them (MAP Pareto solutions, real) to confirm that
they indeed lie close to the predicted Pareto front. This evidence further confirms the usefulness of
LocMAP as a general strategy for finding a set of diverse and well-distributed Pareto solutions that
none of the existing model merging methods can substitute.

Figure 5: The Pareto fronts obtained using LocMAP with Task Arithmetic, LocMAP with Task
Arithmetic and DARE. We sampled 10 Pareto solutions from the predicted front by LocMAP and
evaluated them to obtain the real values. We plotted the results obtained using TIES-merging, Task
Arithmetic (TA) with a single scalar for all tasks, Task Arithmetic with preferences as scalars, TA
combined with DARE (DARE-TA), TIES-merging combined with DARE (DARE-TIES), and SLERP.

MAP is an out-of-the-box plugin for other task-vector based model merging methods As
shown in Figure 5, LocMAP is a plug-in that can be directly combined with other model merging
methods where the users can control their preferences over each task using some scaling coefficients.
For example, LocMAP can be combined with DARE, Task Arithmetic, etc.

For dimensions higher than 2, we use preference-weighted evaluation sum to compare the Pareto front
found by LocMAP with other baseline methods. We sample 20 preference vectors and normalize
them. Then, we pick the solution by LocMAP that maximizes the preference-weighted sum of
accuracies and compare it with those of the baseline methods. The results are shown in Table 4. We
can observe that even in higher dimensions, when the user has certain preferences, LocMAP is still
useful and can better accommodate user preferences. Please note that when using MAP, we do not
require the user to pre-specify their preference vector. In fact, the users can get the entire Pareto front
to better understand the trade-offs. This preference vector based metric is only for evaluation.
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Table 4: We compared LocMAP with a set of baseline methods by sampling a set of 20 normalized
preference vectors and computing the preference-weighted sum of accuracies and win rate. The win
rate is defined as the proportion of the 20 preference vectors where the preference-weighted sum
of accuracies of LocMAP is higher than those of the baseline methods. ↑ indicates higher is better.
The number after ± is the standard deviation. Please refer to Table 2 and Table 3 for the number of
scaling coefficient vectors used for different numbers of tasks.

Preference weighted sum of accuracies (↑)
# tasks 2 3 4 5 6 7 8

Single task models 75.84±1.76 77.03±1.84 82.43±4.40 87.69±4.50 88.52±4.02 89.26±3.58 90.62±2.52
MTL 73.63±0.30 75.13±1.00 80.10±2.79 84.93±3.58 86.78±2.94 87.40±2.56 89.11±2.36

Model soups (Wortsman et al. (2022a)) 67.79±1.46 64.25±2.15 66.04±3.22 67.01±3.42 63.11±1.99 63.35±2.17 64.36±2.77
TIES-merging (Yadav et al. (2024)) 69.30±0.33 67.60±0.58 71.79±2.93 76.49±3.10 73.74±2.96 72.54±2.87 72.24±1.91
DARE-TIES 67.62±1.65 66.49±2.34 71.39±4.45 74.55±4.55 73.34±4.10 71.43±3.84 71.89±2.86
Task Arithmetic (Ilharco et al. (2022)) 70.73±1.84 61.15±2.33 52.69±4.23 61.58±4.62 51.37±3.84 39.79±3.97 60.77±2.84
TA with preference as weights 69.22±1.4 66.88±2.37 68.73±5.48 71.92±5.5 68.13±4.69 68.14±4.2 68.17±2.89
DARE-TA 70.61±0.22 64.18±1.24 58.04±8.19 65.39±7.03 56.76±7.01 46.75±5.73 64.51±3.81
Ada-Merging++ (Yang et al. (2024)) 67.27±1.92 67.13±1.92 71.19±4.43 76.84±4.71 74.13±4.07 72.58±4.16 72.55±2.83
DELLA-Merging (Deep et al. (2024)) 67.10±2.08 65.92±2.48 70.71±4.31 74.43±4.32 72.64±3.77 71.16±3.95 71.49±2.83
LocMAP 70.7±1.76 69.05±1.84 72.84±4.4 77.31±4.5 74.26±4.02 73.40±3.58 72.96±2.52

5 RELATED WORK

Due to space constraints, for a more comprehensive discussion, please refer to Appendix B.

Multi-objective optimization Multi-objective optimization (MOOP) identifies diverse Pareto
solutions with different trade-offs. The multi-task problem has been approached from a MOOP
perspective Sener & Koltun (2018); Lin et al. (2019), utilizing algorithms like MGDA, IMTL,
GradNorm, RLW, and scalarization. While these methods iteratively optimize Rd model parameters
with significant computational cost, our approach performs post-training MOOP over RN scaling
coefficients, reducing computational burden. For N ≥ 3 objectives, MOOP becomes many-objective
optimization, challenging traditional algorithms (e.g. NSGA-II and SPEA2). Advanced methods such
as ϵ-MOEA Deb et al. (2003), MSOPS Hughes (2005), SMS-EMOA Beume et al. (2007), and NSGA-
III Deb & Jain (2013), or the KKT approach Augusto et al. (2014) are required. Selection factors
include solution quality and computational efficiency, noting that some methods like hypervolume
indicators Auger et al. (2009) have super-polynomial time complexity with objective count.

Task arithmetic Task arithmetic, a model merging method gaining attention, uses weighted
averages of models for multi-task performance. Various approaches exist for selecting scaling
coefficients Ilharco et al. (2022); Yadav et al. (2024); Yang et al. (2023): Ilharco et al. (2022)
uses equal scaling, which is suboptimal and limited; Yang et al. (2023) optimizes weights using
Shannon entropy but requires unlabeled test data, conflicting with data privacy goals in model
merging Matena & Raffel (2022) and only applies to classification tasks. Wortsman et al. (2022b)’s
’WiSE-FIT’ averages pre-trained and fine-tuned parameters for trade-offs. Task Arithmetic Ilharco
et al. (2022) adds weighted differences between fine-tuned and pre-trained models. Ortiz-Jiménez
et al. (2023) enhanced weight disentanglement through tangent space fine-tuning. Beyond task
arithmetic, Ainsworth et al. (2023) merge models via weight matrix permutations, even without
shared pretraining. Jin et al. (2023) introduced dataless knowledge fusion. Daheim et al. (2024)
proposed uncertainty-based gradient matching for improved merging performance and robustness.

6 CONCLUSION AND LIMITATIONS

We introduced MAP, a novel low-compute approach to efficiently merge models while accounting for
trade-offs between multiple tasks. By leveraging a quadratic approximation of the evaluation metrics,
LocMAP successfully identifies amortized Pareto fronts without the need for gradient descent for deep
neural networks. The algorithm’s efficiency is further enhanced through Bayesian adaptive sampling
and nested merging, enabling it to scale to problems with a higher number of tasks. Moreover,
LocMAP is an out-of-the-box plug-in for other task-vector-based model merging methods.

However, we would like to point out some limitations of our method. We do not have a detector
algorithm to detect if two tasks have proper trade-offs. Approximating a Pareto "front" with only a
single Pareto solution can lead to degenerate solutions. In this case, practitioners should be informed.
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A NOTATIONS

For aid of readability, we provide the table of notations in Table 5.

Table 5: Table of notations.

Notations Explanation
N Number of tasks
c Vector of scaling coefficients for task vectors
cn Scaling coefficients for the nth task
θpre Pretrained model parameters
θm(c) Merged model parameters as a function of scaling vector c
vn Task vector for task n
V Task matrix formed by concatenating task vectors
Mn(c) Evaluation metric for task n as a function of c
An Quadratic coefficient matrix in the surrogate model
bn Linear coefficient vector in the surrogate model
en Constant term in the surrogate model
M̃n(c;An,bn, en) Surrogate quadratic model for task n
Ω Set of scaling coefficient vectors c used for estimating surrogate model parameters
K Number of sampled coefficient vectors in set Ω

B MORE DISCUSSION ON RELATED WORK

Second-order Taylor expansion In deep learning, the second-order Taylor expansion and thus
the quadratic approximation on the evaluation metric is an important technique, that characterizes
the metric landscape. For example, the Newton-Ralphson method is derived from it: wt −wt+1 =
H−1G = argminvM(wt − v) given that M(wt − v) = M(wt)− vG+ 1

2v
⊤Hv. The quadratic

approximation is also combined with Lipschitz smoothness (L) in the classic convergence analysis of
SGD Bubeck et al. (2015); Ghadimi & Lan (2013), through M(wt − ηG) ≤ M(wt)− η||G||2 +
Lη2

2 ||G||
2. Interestingly, although the approximation is only accurate in the local neighborhood,

it can be used to indicate the global convergence over the iterations. One reason is that state-of-
the-art neural networks are usually over-parameterized and undergo lazy training, meaning that the
converging parameters are close to the initialization Chizat et al. (2019); Du et al. (2019); Allen-Zhu
et al. (2019). Thus, the local approximation informs the global convergence behavior. In particular,
this approximation has played important roles in the scaling laws of neural networks (e.g. Equation
3.3 in Su et al. (2024)) that predict the performance and help select hyperparameters before training
actually takes place.

Pareto fronts for Multi-task Learning Recent advancements in multi-task learning (MTL) have
seen diverse approaches to Pareto Front learning in machine learning. Sener & Koltun (2018)
explicitly formulated multi-task learning as a multi-objective optimization problem and adapted
gradient-based multi-objective optimization algorithms to large-scale learning problems. Lin et al.
(2019) developed a constrained optimization approach to find multiple Pareto optimal solutions
representing different trade-offs among tasks in multi-task learning and solved decomposed sub-
problems in parallel using gradient-based optimization. It requires separate training runs for each
solution. Navon et al. (2020) and Lin et al. (2020) employed hypernetworks for continuous Pareto
Front approximation, generating target network weights based on preferred trade-offs. However,
the size of these hypernetworks can become prohibitively large and needs to be properly trained
as well. Ruchte and Grabocka Ruchte & Grabocka (2021) introduced a memory-efficient method
by augmenting network inputs with desired trade-offs, although this may obscure the network’s
conditioning due to nonlinear dynamics, and it is also based on the gradient updating method.

Model-merging Applications in LLM In the realm of model merging applications for language
model preferences, recent research has made significant progress. Ramé et al. (2023) and Jang
et al. (2023) introduced “rewarded soups" and “personalized soups", which utilize model soup to
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interpolate weights of networks fine-tuned on diverse rewards to achieve Pareto-optimal general-
ization across preference spaces and address the challenge of aligning large language models with
individual perspectives. WARP (Weight Averaged Rewarded Policies) Ramé et al. (2024) and WARM
(Weight Averaged Reward Models) Ram’e et al. (2024) demonstrate how merging policies or reward
models in weight space can refine the trade-off between competing constraints, such as reward
optimization and alignment with pre-trained knowledge or human preferences. Zhong et al. (2024)
developed “Panacea", which reframes alignment as a multi-dimensional preference optimization
problem, using singular value decomposition-based low-rank adaptation to guide model behavior
with a low-dimensional preference vector. To address the limitations of scalar rewards in RLHF, Zhou
et al. (2023) introduced Multi-Objective Direct Preference Optimization, an RL-free algorithm that
extends Direct Preference Optimization to handle multiple alignment objectives efficiently. Du et al.
(2024) relies on “mutation" and crossover operations typical of evolutionary algorithms, exploring
the parameter space by combining and perturbing existing solutions. Models are evaluated on de-
velopment datasets, and only those that improve upon their predecessors are retained, guiding the
population toward better-performing solutions. Li et al. (2024) employs Bayesian optimization with a
weak-to-strong approach and utilizes Fisher information to improve the selection of configurations
for evaluation, aiming to find optimal merging configurations within limited computational budgets.
Finally, Wang et al. (2024) proposed the Directional Preference Alignment framework, which incor-
porates multi-objective reward modeling to represent user preferences, offering intuitive arithmetic
control over LLM generation for diverse user preferences.

Bayesian Optimization Bayesian optimization has been widely used in scenarios that require
efficient exploration of parameter spaces, particularly when evaluating the performance of each
configuration is costly or time-consuming. This method is especially advantageous in machine learn-
ing and hyperparameter tuning, where traditional optimization techniques may be computationally
prohibitive. Popular Bayesian optimization methods and applications are Wilson et al. (2017); Jain
et al. (2022); Moss et al. (2020); Pyzer-Knapp (2018); Terayama et al. (2021).

C ADDITIONAL DETAILS ON THE METHODS

C.1 PROOF: NEGLIGIBILITY OF THE REMAINDER IN MULTIVARIATE TAYLOR SERIES

Corollary 2. If f : Rn → R is (k+ 1) times continuously differentiable in a neighborhood around a
point a ∈ Rn, then the Taylor polynomial Tk(x) of order k provides an accurate approximation of
f(x) when x is sufficiently close to a. Furthermore, the remainder term Rk(x) becomes negligibly
small as ||x− a|| approaches zero, assuming that the (k + 1)th derivatives of f are bounded by a
constant M in the neighborhood between a and x.

Proof Consider the Taylor series expansion of f around the point a, truncated at order k:

Tk(x) =
∑
|α|≤k

Dαf(a)

α!
(x− a)α

where α is a multi-index of non-negative integers, Dαf(a) denotes the partial derivatives of f at a
corresponding to α, and (x− a)α = (x1 − a1)

α1 . . . (xn − an)
αn .

Assumptions

1. Proximity: ∥x− a∥ → 0 where ∥ · ∥ denotes the Euclidean norm in Rn.

2. Bounded Derivatives: There exists a constant M such that for all multi-indices α with
|α| ≡ k + 1, the norm of the tensor Dαf evaluated at any point ξ between a and x is
bounded by M .

∥Dαf(ξ)∥ = sup
∥v1∥=1,...,∥vk+1∥=1

|Dαf(ξ)(v1, . . . , vk+1)| ≤M
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The remainder term of the Taylor series expansion is given by:

Rk(x) =
∑

|α|=k+1

Dαf(ξ)

α!
(x− a)α

Given the assumptions, we estimate:

|Rk(x)| ≤
∑

|α|=k+1

∥Dαf(ξ)∥
α!

∥x− a∥k+1 ≤
∑

|α|=k+1

M

α!
∥x− a∥k+1

As ∥x − a∥ → 0, the term ∥x − a∥k+1 goes to zero. Thus, the remainder term Rk(x) becomes
arbitrarily small, making it negligible.

In conclusion, under the stated assumptions, the Taylor series truncated at order k, Tk(x), provides
an accurate approximation of f(x) near a, and the remainder Rk(x) can be ignored as ∥x− a∥ → 0
and the higher-order derivatives remain bounded by M .

C.2 CLOSED-FORM SOLUTION FOR SURROGATE MODEL PARAMETERS

Corollary 3 (Closed-form Solution for Surrogate Model Parameters). Under Assumption 1, for each
task n = 1, . . . , N , the optimization problem

(A∗
n,b

∗
n, e

∗
n) = arg min

An,bn,en

∑
c∈Ω

∣∣∣Mn (θm(c))− M̃n(c;An,bn, en)
∣∣∣2

is equivalent to solving the following linear regression problem:

1. Predictors: For each coefficient vector c = (c1, c2, . . . , cN )⊤ ∈ RN , construct the predictor
vector Cn(c) ∈ R

N(N+3)
2 +1 as

Cn(c) = [c21, c
2
2, . . . , c

2
N , c1c2, c1c3, . . . , cN−1cN , c1, c2, . . . , cN , 1]

This vector includes:

• Quadratic terms: c2i for i = 1, . . . , N .
• Interaction terms: cicj for 1 ≤ i < j ≤ N .
• Linear terms: ci for i = 1, . . . , N .
• Constant term: 1.

2. Response Variable: Let yn ∈ RK be the vector of observed evaluation metrics for task n
across all sampled coefficients Ω = {c(1), . . . , c(K)}:

yn =


Mn

(
θm(c(1))

)
Mn

(
θm(c(2))

)
...

Mn

(
θm(c(K))

)


3. Design Matrix: Construct the design matrix Cn ∈ RK×(N(N+3)
2 +1) where each row

corresponds to Cn(c
(k))⊤ for k = 1, . . . ,K.

4. Coefficient Vector: Define the coefficient vector βn ∈ R
N(N+3)

2 +1 as

βn =

[vec(An)
bn

en

]
where vec(An) represents the vectorization of the upper triangular part of An, including
the diagonal elements.
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Optimal Solution: The parameters (A∗
n,b

∗
n, e

∗
n) that minimize the mean squared error are obtained

via the Ordinary Least Squares (OLS) solution:

β∗
n =

(
C⊤

nCn

)−1
C⊤

nyn

Interpretation: This closed-form solution provides the optimal surrogate model parameters by
fitting a quadratic model to the observed evaluation metrics through linear regression. The design
matrix Cn incorporates all necessary quadratic, interaction, linear, and constant terms, enabling
the surrogate model M̃n(c;An,bn, en) to accurately approximate Mn(θm(c)) within the specified
region.

D ADDITIONAL DETAILS ON EXPERIMENTS

D.1 EXPERIMENT SETUP

Table 6: Experiment setup in terms of task details and models.

Task type Metric # of total tasks Model type

Zero-shot Classification (normal) Accuracy 8 ViT-B/32 (CLIP) (Dosovitskiy et al. (2020))
Zero-shot Classification (medical) Accuracy 2 ViT-B/32 (CLIP) (Dosovitskiy et al. (2020))
Language Generation Loss/Perplexity 4 Llama3-8B (Touvron et al. (2023))
Image Classification Accuracy 3 ResNet-18 (He et al. (2016))

D.2 ADDITIONAL METRIC: GENERATIONAL DISTANCE AND INVERTED GENERATIONAL
DISTANCE

We evaluated the quality of the Pareto front in capturing the shape of the ground truth Pareto front
by measuring how much the predicted Pareto front converges to the ground truth Pareto front by
calculating the generational distance (GD) Van Veldhuizen (1999) and how much the predicted
Pareto front covers the ground truth Pareto front by calculating the inverted generational distance
(IGD) Coello & Cortés (2005). GD and IGD are standard measures used in evolutionary multi-
objective optimization to evaluate the solutions found by the evolutionary algorithms.Given two
solution sets PFi = {M̃ i

1(θmerged(c)), . . . , M̃
i
N (θmerged(c))}, i = 1, 2, the GD and IGD metrics

are defined as

GD(PF1) ≡
1

K

(
K∑
i=1

dpi

)1/p

and IGD(PF1) ≡
1

M

(
M∑
i=1

d̃pi

)1/p

where di is the minimal Euclidean distance from M̃1
1 (θmerged(c)) to PF2 and d̃i is the minimal

Euclidean distance from M̃2
1 (θmerged(c)) to PF1.

Since the Pareto front that resulted from the direct search method when the number of tasks is low
(i.e., < 4) can be deemed as ground truth Pareto fronts, we calculated the GD and IGD between the
Pareto fronts obtained by LocMAP and the brute force grid search method.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 6: (a) Generational distance between the Pareto fronts by LocMAP and by direct search for
dimensions 2 and 3. (b) Inverted generational distance between the Pareto fronts by LocMAP and by
direct search for dimensions 2 and 3. For both subfigures, the x-axis is the number of total scaling
coefficients used by MAP. For dimension 2, direct search used 200 scaling coefficients, and 300 for
dimension 3.

D.3 ZERO-SHOT MEDICAL IMAGE CLASSIFICATION

In addition to natural images, we used another dataset consisting of over 112,000 chest X-rays and
30,000 unique patients of Health et al. (2017). It originally contained 15 classes (14 diseases and 1
class for no finding). We split the dataset into two groups, where medical task 1 specifically tries to
classify Atelectasis, Consolidation, Infiltration, Pneumothorax, and medical task 2 tries to classify
Nodule, Mass, and Hernia. An example image taken from the dataset is shown in Figure 7 (a).

(a) (b)

Figure 7: (a) Example figure from the NIH of Health et al. (2017) dataset. (b) Pareto fronts found by
brute-force direct search using 400 points and by LocMAP using 30 points. We randomly sampled
25 points from the predicted Pareto front by MAP. The resulting IGD is 0.016, and GD is 0.014.

D.4 MERGING LANGUAGE MODEL

We merged language models in French and Arabic, as well as Chinese and Japanese. Please refer
to Table 7. As we can see, the ground truth Pareto front is not in good shape. There are only
a few points on the ground truth Pareto front which means few merged models could dominate
the rest and the trade-off between the metrics of different languages might not be very significant.
Even under this condition, our algorithm is still able to find the Pareto fronts. We further tried to
merge ‘Arabic+French’ and ‘Chinese+Japanese’ in the nested scheme in Algorithm 2 with various
preferences. However, the Pareto front usually only contains a single model, which prevents us from
predicting a Pareto front.
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Table 7: Llama-3 fine-tuned models merging

GD IGD GD+IGD
Arabic+French 0.0230.010 0.0350.018 0.0580.028

Chinese+Japanese 0.0140.013 0.0280.017 0.0410.026

(a) (b)

Figure 8: (a) Amortized Pareto front on merging Llama-3 fine-tuned on French with Llama-3 fine-
tuned on Arabic; (b) Amortized Pareto front on merging Llama-3 fine-tuned on Chinese with Llama-3
fine-tuned on Japanese

D.5 ADDITIONAL EXPERIMENT RESULTS ON RESNET

We performed additional experiments on ResNet18 He et al. (2016) by merging two models finetuned
on CIFAR10 Krizhevsky et al. (2009) and Flowers102 Nilsback & Zisserman (2008) and show the
obtained Pareto front in Figure 9. Unlike ViT models, which perform zero-shot classification, ResNet
requires additional fine-tuning of the classification head after model merging. We demonstrate that
our method still applies to those models.

Figure 9: Pareto front obtained for two ResNet18 models on CIFAR-10 and Flowers-102. We perform
additional finetuning of the classification head after merging the model weights.
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E MORE DETAILS ON ALGORITHMS

E.1 PLAIN MAP

It is important to note that Plain LocMAP (Algorithm 1) is an out-of-the-box plugin-like method.
Many parts of it are kept generic: there are multiple ways to sample Ω in terms of the number of c
and the style of sampling (Bayesian or not), thus creating a tradeoff between the quality of the Pareto
front and the computational time; the task vector can be computed on the more memory-capable
CPU and possibly in a parameter-efficient manner (e.g. LoRA, Adapter, and BiTFiT): for example,
computing vn via the subtraction of two full 7B models requires 2×23 = 46GB of memory capacity,
but the memory cost for PEFT models may reduce to 16MB by only subtracting the non-frozen
components; the for-loops in lines 2 and 4 can be computed in parallel, possibly using a much smaller
subset of the data, and thus enjoying a computational speed-up.

E.2 NESTED-MERGING MAP

E.2.1 OVERVIEW

In this section, we explain the procedure of the algorithm in Figure 4 in detail.

Empirically, we only need 20 scaling coefficients to get a Pareto front of good quality to merge
2 tasks. However, due to the curse of dimensionality, we need exponentially more pairs of
(c, {M̃n(θm(c))}Nn=1) pairs to achieve a good quality of the Pareto front in the case of 8 tasks.
Theoretically, in the best case, the number of points required to obtain a good quality Pareto front
for N tasks is O(N3). In the worst case, when the curse of dimensionality dominates, it could
be O(N · 2N ). Using the nested merging scheme, we reduce the computation complexity from
O(N · 2N ) to O(N logN2 ). Please refer to Table 8 for the detailed computational complexity compar-
ison. Algorithm details are presented in Algorithm 2.

Algorithm 2 Nested-merging MAP
Input: A predetermined preference pref ∈ RN over the N tasks, the tuple of task, loss, task vector:

Gn = (taskn, ln,θ
n
ft)

Normalize pref to make sure the sum is 1
Initialize the set τ = {G1, . . . , GN}
while |τ | > 1 do

Find the pair of (Gi, Gj) ∈ τ that are closest to each other in terms of (li, lj)
Implement Algorithm 1 to find the Pareto front PFi,j between (M̃i, M̃j)
Select c∗ = (c∗i , c

∗
j ) ∈ R2 based on the Pareto front PFi,j

Merge the models by θi,j
merge = θpre + ci(θpre − θi

ft) + cj(θpre − θj
ft)

Calculate the weighted average loss on the two tasks lij = prefili + prefj lj
Update τ by replacing {Gi, Gj} with {Gij}, where Gij ≡ (taski,j , lij ,θ

i,j
merge)

end
return θ1,2,...,N

merge

E.2.2 TIME COMPLEXITY OF NESTED-MERGING MAP

Table 8: Computational cost of model merging for N models.

# evals per task minimum # evals (total) # evals (total)

Naive model merging O(N2) O(N3) O(N · 2N )

Nested model merging O(1) O(N logN2 ) O(N logN2 )

To estimate the computational complexity of nested-merging MAP, we denote N as the number of
tasks. The number of total evaluations needed for nested-merging LocMAP is: N/2 × 2 + . . . +

N/2m × 2m = O(N logN2 ) where 2m−1 < N ≤ 2m.
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Detailed calculations are as follows. When the number of tasks is 8, in the first rounds, 4 2-task
merging procedures are running in parallel. Each of the procedures evaluates 2 tasks. In the procedure
of model-merging between 2 tasks, as discussed, we need to sample 20 scaling coefficients c and
evaluate 20 merged models on the 2 tasks. Thus, it takes 4× 20× 2 = 160 times of evaluation in the
first round. In the second round, 2 2-task merging procedures are running in parallel, each of them
evaluating 4 tasks. Thus, it takes 2× 20× 4 = 160 times of evaluation. In the last round, there is
only one 2-task merging and evaluation on 8 tasks. It takes 1× 20× 8 = 160 times of evaluation. In
total, NMMAP takes 480 times of evaluations. Generalizing the calculation, the number of rounds
can be calculated by log2(N). In each round, we need to evaluate T · N/2i · 2i = TN where T
is the number of scaling coefficient vectors needed to be evaluated when the number of tasks is 2.
In the above example, T = 20. Thus, the time complexity is O(TN log2(N)). We rewrite it as
O(N log2(N)) if ignoring T which is a constant.

Pts per 
dim

Discretization when # tasks = 2
Δ = 1/(pts_per_dim-1)
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Scaling Coefficients for task 1

Discretization when # tasks = 3

Figure 10: The discretization of scaling coefficients when the number of tasks is 2 and 3. As the
dimension grows, preserving the same number of pts per dimension results in exponentially more
grid points. This serves to illustrate why when the dimension is low (e.g., < 4), we can regard the
brute-force direct search method as ground truth, but it becomes insufficient when the dimension is
higher.

E.2.3 INTERMEDIATE PARETO FRONTS IN EACH ROUND

To determine if NMMAP affects performance negatively when compared to merging multiple models
in a single operation. We show the intermediate Pareto fronts obtained when merging 8 models using
nested-merging LocMAP in Figure 11, where we merge two models at a time. The figures illustrate
the intermediate Pareto fronts obtained, where A_B means the model obtained by merging model A
and model B.
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Figure 11: Illustration of the sequential steps involved in merging 8 models using nested-merging
LocMAP (left to right, top to bottom). The figures show the intermediate Pareto fronts obtained,
where A_B means the model obtained by merging model A and model B.

E.2.4 RESULTS ON USING NESTED MERGING TO MERGE 8 MODELS

We further evaluate the effectiveness of nested-merging MAP. Supplemental Figure 11 shows the
intermediate Pareto fronts obtained using nested-merging LocMAP (NMLocMAP) sequentially. In
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Table 9: We compared nested-merging LocMAP with LocMAP and baseline methods in merging 8
models using a set of 10 preference vectors in terms of preference-weighted sum of accuracies.

Metric Single-task models MAP-nested MAP-plain TIES-merging DARE-TIES Task Arithmetic (TA) DARE-TA

Preference weighted sum (↑) 90.05±3.02 67.05±3.89 72.12±3.78 70.79±3.81 70.51±3.58 59.44±5.68 63.14±4.91

addition, we compared the performance of NMLocMAP with Plain LocMAP (Algorithm 1). The
results are shown in Table 9. The results confirm that nested-merging LocMAP can obtain comparable
results to those obtained by LocMAP while using much fewer evaluation runs. As discussed in
Appendix E.2.2, in total, we run 40×4+80×2+160×1 = 480 evaluations. In contrast, when running
the Plain LocMAP (Algorithm 1), we used 280 coefficients and evaluate 280 × 8 = 2240 times.
In addition, while being suboptimal to LocMAP (Algorithm 1), nested-merging LocMAP can still
outperform other baseline methods such as TA and DARE-TA in accommodating various user
preferences with relatively low computational cost, especially when the number of tasks is high.

E.3 BAYESIAN MAP

Figure 12 includes illustration of our discretization method (how we create bins) in 2D and 3D
decision variable (c) space.
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Discretization in 2D Polar Coordination System

(a) (b)

Figure 12: (a) Discretizing of two task scaling coefficients along the angular dimension in 2D polar
coordinate system; (b) Discretizing of three task scaling coefficients along the angular dimensions in
3D spherical coordinate system;

E.3.1 PERFORMANCE OF BAYESIAN MAP

We further improve the efficiency of LocMAP by proposing an adaptive Bayesian sampling algorithm.
This Bayesian approach samples the points from regions with the highest level of uncertainty, where
uncertainty is quantified with the Upper Confidence Bound (UCB). Please refer to Algorithm 3 for
more details about the algorithm.

Please refer to Figure 13 for the experimental results comparing Bayesian LocMAP Algorithm 3 with
LocMAP Algorithm 1. The very left column shows the names of the 2 tasks being merged. Below,
we define points (pts) as scaling coefficients and evaluation metrics of the corresponding merged
models. Please note that the results shown in this figure are the mean of 7 merging tasks that merge 2
models: DTD+Cars, DTD+RESISC45, EuroSAT+RESISC45, GTSRB+Cars, GTSRB+RESISC45,
RESISC45+SVHN, SUN397+SVHN. The Pareto front estimated by Bayesian LocMAP with only
one iteration (6+3 pts) is shown in Figure 14.

The experiments are initialized with 6 pairs of c, {Mn}Nn=1 (iter 0). In every following iteration, we
sample more points following the Bayesian adaptive sampling algorithm. We compare the Bayesian
adaptive sampling beginning with 6 points and adding 3 additional points (6 + 3 pts) with running
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Algorithm 3 Bayesian Adaptive of Surrogate Model
Input: Number of iterations J , Buffer B, Pretrained model θpre, Task vectors vn, Evaluators for

task N , Mn(·), Discretization bin number K, sample size for every iteration nj , j = 0 to J ,
Bootstrap dropping rate α = 20%, Bootstrap sampling number Q = 30.

B ← ∅
for j = 0 to J do

if j = 0 then
Sample n0 scaling coefficients {ci}

nj

i=1 from U([0, 1]N )
else

Sample nj scaling coefficients {ci}
nj

i=1 based on the posterior distribution
end
for i = 0 to nj do

Merge the model θm(ci) = θpre+ci·vn Evaluate mn,i = Mn(θm(ci))B ← B∪{(ci,mn,i)}
end
Fit the quadratic approximation surrogate model M̃n by learning A∗

n,b
∗
n, e

∗
n in Equation (5).

Discretize the scaling coefficients along the angular dimensions in hyper-spherical coordinates
(see Figure 12 as examples)

for k = 0 to K do
Calculate the mean of L2 loss between M̃n(ci) and Mt(ci), where ci are in bin k, denoted

as meank
Bootstrap to estimate the standard deviation of the losses.
for q = 0 to Q do

Randomly (uniformly) drop α scaling coefficient in bin k Calculate the mean of L2 loss
between M̃n(ci) and Mt(ci) with the rest points and denoted with lq

end
Calculate the standard deviation of the {lq}Qq=0 and denoted as stdk scorek = meank +

1
2 stdk

end
Calculate probability distribution across the discretized bins by scorek as the posterior sampling

strategy in the next round
end

Algorithm 1 with 9 points in a row. We also compare the Bayesian adaptive sampling beginning with
6 points and adding 3 additional points for 2 times (6 + 2× 3 pts) with running Algorithm 1 with 12
points in a row. We show that, in most cases, utilizing the same number of points, Bayesian adaptive
sampling performs better than the run-in-a-row scheme in Algorithm 1.

In conclusion, when the number of data points (scaling coefficients and evaluation metrics of the
corresponding merged models) is small, Bayesian LocMAP Algorithm 3 performs better than
LocMAP Algorithm 1. As the number of data points increases, their performance becomes closer.
Thus, we recommend implementing Bayesian LocMAP when computational resources are very
limited and the number of models (tasks) to merge is not high.
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Figure 13: Bayesian LocMAP compared to MAP. The x-axis represents the number of points used by
either LocMAP or Bayesian MAP, while the y-axis represents the value for IGD or GD. We compared
LocMAP with 6, 9, and 12 points, and Bayesian LocMAP with 6 initial points, sampling 3 more
points each round for two rounds.

(a) (b)

Figure 14: (a) This plot shows a failure case of the amortized Pareto front when we only have 6
initial randomly sampled pairs of (c, {Mi(θm(c))}Ni=1) (b) After one iteration of Bayesian adaptive
sampling for 3 more pairs (9 in total), the amortized Pareto front is much better than the initial Pareto
front.
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F POTENTIAL Q & A

In this section, we anticipate and address some potential questions that readers might have.

F.1 THE AUTHORS ASSUME A SETTING WHERE IT IS COMPUTATIONALLY EXPENSIVE TO
QUERY THE MODEL EVALUATIONS. BUT IS THIS THE REALITY?

Yes, to get the Pareto front of tasks that have trade-offs. We need to have a lot of data points to show
the trade-off. Here, each data point is the evaluation metric of a model. To get the ground truth
evaluation metric of a task (e.g. let’s say classification), we need to run the evaluation script of the
model to determine the metric. If we have 4 tasks, and we set 5 possible values (let’s say 0.2, 0.4,
0.6, 0.8, 1) for the scaling coefficient vector of each model specialized for one task. We will have to
evaluate 54 = 625 models on all 4 tasks. Assuming each evaluation takes 1 minute, evaluating all the
models on all the 4 tasks will take 625 models× 4 tasks× 1 minute = 2500 minutes = 41.7 hours
which is expensive. In big O notation, assuming we have T tasks, the time of evaluation for each task
is T . The time (computational) complexity is O(TN2N ).

F.2 HOW IS LOCMAP DIFFERENT FROM OTHER MOOP METHODS, SUCH AS LINEAR
SCALARIZATION?

Computational Efficiency MAP is computationally efficient because it leverages a surrogate model
(the quadratic approximation) to estimate the evaluation metrics for different model combinations.
Once the quadratic model is learned, solving the optimization problem (approximating the Pareto
front) is much faster because the complexity is reduced to optimizing over the quadratic approximation,
rather than needing to directly evaluate the task metrics over the entire solution space.

Additionally, LocMAP doesn’t require gradient descent or re-training when merging models and the
surrogate model provides an efficient way to approximate the Pareto front without re-evaluating every
model configuration.

On the other hand, linear scalarization involves computing a weighted sum of the objectives and
solving it as a single-objective optimization problem. However, it often requires multiple optimization
runs with different weight configurations to explore different points on the Pareto front. Since linear
scalarization doesn’t model non-linear relationships, it might require more iterations or grid searches
over different weights to achieve a decent approximation of the Pareto front. This can become
computationally expensive, especially for a large number of tasks or highly complex models.

Non-convex Pareto Fronts Many real-world multi-objective optimization problems have non-
convex Pareto fronts, which require more sophisticated methods. While linear scalarization can only
explore the convex regions of the Pareto front, NSGA-III allows LocMAP to discover non-convex
regions of the Pareto front. It does this by evolving a population of solutions that are non-dominated
(i.e., not Pareto dominated by any other solution) and spreading these solutions across the entire
Pareto front, including both convex and non-convex regions.

F.3 WHY DOES QUADRATIC APPROXIMATION HAVE A LOWER COST?

For the LocMAP algorithm (Algorithm 1), the time complexity is the same as what we mentioned
above; what is different is that we fitted an approximation of the evaluation metrics. We only need
the scaling coefficient vectors to input to a quadratic function model to be able to get the estimated
evaluation score. Running the quadratic function once takes only 3.91×10−6s±894×10−9s. Thus,
evaluating 2500 times takes < 2500× 4× 10−6s = 10−2s.

F.4 WHY NOT COMPARE TO GIT-REBASIN AINSWORTH ET AL. (2023)?

We didn’t compare our method to Git Re-Basin because their study focuses on the scenarios of
merging the models from different initializations, whereas our background works on the same
initialization of different fine-tuned models.
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F.5 WHY DOES NESTED-MERGING LOCMAP NOT GIVE A COMPLETE PARETO FRONT?

In nested-merging MAP, we merge the models in pairs. For example, there are modeli for task i as
individual fine-tuned models where i = 1, 2, 3, 4. We first merge model 1 and model 2 given the
preference of the user between task 1 and task 2. We then get model1,2. At the same time, we merge
model 3 and model 4 given the preference of the user between task 3 and task 4 and get model3,4.
Finally, we merge the model1,2 and model3,4 given the preference of user to get model1,2,3,4. We
output the model1,2,3,4 as the output merged model of the algorithm. Please note that the merging
order in the algorithm should be decided by the loss function clustering. It is a heuristic decision and
does not always dominate other merging orders. Thus, we choose not to emphasize the contribution
of this order. The practitioner may use any order they think can be helpful for the merging.

F.6 IT SEEMS NESTED-MERGING LOCMAP PERFORMS WORSE THAN MAP. WHAT IS THE
MEANING OF IT?

In theory, the surrogate model can be easily fitted when the number of tasks is low. When it is high
(e.g. 8), the fit of the surrogate model can no longer be a near-perfect approximation (please find the
R2 in Table 3). Thus, even if the NMMAP can only find the suboptimal solution, it is still comparable
to LocMAP Algorithm 1 according to Table 9. We understand in general that NMMAP does not find
the global optimum, but please kindly keep in mind that even if their performance is comparable,
NMMAP takes way less computation for evaluation.

F.7 WHY DOES NESTED-MERGING LOCMAP NOT OUTPUT THE OPTIMAL SOLUTION?

The solution found by nested-merging LocMAP (NMLocMAP) is indeed suboptimal given the
limited search space compared with merging all models at once. However, it does not mean that it
is not useful in all situations. When the number of tasks is high, it has comparable performance to
LocMAP while consuming much fewer computations for evaluation.

F.8 HOW DO YOU DEAL WITH GRADIENT AND HESSIAN IN THE SECOND-ORDER TAYLOR
EXPANSION?

Notations:

• p as the number of parameters in the pre-trained model (also the number of parameters in
each task vector).

• V is the matrix of task vectors of different N tasks. Thus, V ∈ Rp×N .

• c is the scaling coefficient vector ∈ RN .

• Mn is the metric (e.g. accuracy) for the task n.

Mn(c) = Mn(θpre)︸ ︷︷ ︸
∈R

+∇Mn(θpre)
⊤︸ ︷︷ ︸

∈R1×p

V︸︷︷︸
∈Rp×N

c︸︷︷︸
∈RN×1

+
1

2
(Vc)⊤︸ ︷︷ ︸
∈R1×p

Hn(θpre)︸ ︷︷ ︸
∈Rp×p

Vc︸︷︷︸
∈Rp×1

+ Rn︸︷︷︸
∈R

(6)

= en︸︷︷︸
∈R

+ b⊤
n︸︷︷︸

∈R1×N

c︸︷︷︸
∈RN×1

+ c⊤︸︷︷︸
∈R1×N

An︸︷︷︸
∈RN×N

c︸︷︷︸
∈RN×1

(7)

(8)

M̃n(c;An,bn, en) ≡ en + b⊤
n c+

1

2
c⊤Anc

where

An = V⊤Hn(θpre)V ∈ RN×N ,bn = V⊤∇Mn(θpre) ∈ RN , en = Mn(θpre) +Rn (9)
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Please notice that A is a symmetric matrix. Specifically, when the number of tasks is 2, we have:

M̃1(c;A1,b1, e1) ≡ e1 + b⊤
1 c+

1

2
c⊤A1c (10)

=
1

2
A1,11c

2
1 +A1,12c1c2 +

1

2
A1,22c

2
2 + b1,1c1 + b1,2c2 + e1 (11)

M̃2(c;A2,b2, e2) ≡ e2 + b⊤
2 c+

1

2
c⊤A2c (12)

=
1

2
A2,11c

2
1 +A2,12c1c2 +

1

2
A2,22c

2
2 + b2,1c1 + b2,2c2 + e2 (13)

(14)

We don’t calculate the gradient or Hessian to get A1, A2, b1, b2, e1 and e2. We use linear regression
to estimate them. How? Given a (c1, c2) pair, we can define a merged model θmerge(c1, c2). We
evaluate the merged model on task 1 and task 2 to get the metrics (e.g. accuracy). Given 20 pairs
of (c1, c2), we would be able to evaluate and get 20 corresponding, (M1,M2) which are metrics for
task 1 and task 2. Thus, we can fit the surrogate model M̃1(c;A1,b1, e1) and M̃2(c;A2,b2, e2).
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