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ABSTRACT

Virtual reality allows a user to be surrounded by multiple floating
virtual screens or windows in a kind of cockpit. Such arrangements
increase the user’s ability to monitor several windows and quickly
switch between windows with rapid eye motions. However, users
sitting in a physical chair may suffer from neck fatigue if they fixate
an off-center window for long periods of time. We propose an inter-
action technique for quickly teleporting any window to the center
of the workspace, allowing the user to fixate that window with their
neck in a neutral position, and later dismiss the window which snaps
back to its original position. We present an experimental compari-
son of (1) a Cockpit whose windows are fixed, (2) a Cockpit with
Teleportation, allowing any window to be temporarily moved to the
center, and (3) a condition similar to a single Desktop screen where
only one window is visible at a time, and a key combination similar
to Alt+Tab switches between windows. Teleportation resulted in
less neck fatigue than Cockpit, as subjectively reported by users, and
was also preferred by a majority of users. We subsequently present
a prototype that sketches how to extend teleportation to multiple
simultaneous windows.

Index Terms: Human-centered computing—Virtual reality;
Human-centered computing—Graphical user interfaces

1 INTRODUCTION

There is growing interest in academia [11, 12, 24, 34] and indus-
try [27] to use virtual reality (VR) headsets and similar technologies
to surround a user with multiple virtual desktops or windows. Tens
of thousands of users already regularly view and interact with their
PC’s virtual desktop in VR1. As the resolution of headsets continues
to improve, the increased real estate available in a VR “cockpit”
(Figure 1) could allow a user to monitor greater amounts of informa-
tion [13, 16, 22], quickly switch their attention between applications
by simply rotating their eyes and/or neck, and also shield the user
from external distractions.

One disadvantage of a virtual cockpit is that the user may suffer
from neck fatigue if they must attend to an off-center window for
more than a few moments. If the user is engaged in knowledge work,
they are likely seated and using a physical keyboard and mouse,
making it difficult to rotate their body to face the current window.

We therefore designed an interaction technique, called Teleporta-
tion, allowing the user to temporarily move any window to the center
of their workspace for maximal comfort. The teleported window
“remembers” its original position, to which it returns as soon as the
user dismisses the window or teleports a different window to the cen-
ter. Thus, the original layout of the windows is preserved, allowing
the user to leverage their spatial memory to find windows. The user
may rotate their head and move their mouse cursor to any window
for a brief glance or interaction, or optionally invoke teleportation
for more prolonged and comfortable work with any given window.

Our contributions are (1) the design of the teleportation interaction
technique, (2) a simple set of 4 tasks for simulating multi-window
work that can be used to evaluate future window management tech-
niques, and (3) the results of a controlled experiment that used the 4
tasks to compare three user interface conditions: a normal Cockpit
where windows have fixed positions, a “Cockpit with Teleporta-
tion” where windows can be moved to the center, and a “Desktop”

1Guy Godin’s VRDesktop “used by more than 40k people every day”
https://twitter.com/VRDesktop/status/1359606565808926723

Figure 1: In our cockpit, the user is surrounded by 15 windows, with a
virtual keyboard (visible in the bottom row, middle column) indicating
the physical keyboard’s location. Not shown here is the chair where
the user sits.

condition where only one window is visible at a time and a key
combination similar to Alt+Tab is used to switch between windows.
Out Of 16 participants, 9 chose the Cockpit with Teleportation as
their favorite of the three conditions. Cockpit with Teleportation also
resulted in less neck fatigue than the normal Cockpit, as subjectively
judged by users. We also present (4) a prototype that sketches how
to extend teleportation to multiple simultaneous windows.

2 BACKGROUND

We review previous work on window management, first for 2D
virtual desktops, and then for immersive 3D environments in VR
and augmented reality (AR).

2.1 Window Management on 2D Desktops
On 2D desktops, previous work has proposed interaction techniques
to make it faster for a user to configure the size or position of a
window, either manually [2, 15] or automatically [5]. Other work
has proposed ways to make it easier for the user to retrieve “tasks”
(i.e., subsets of windows), or subsets of documents, where these
subsets might be defined manually [1, 4, 23, 33, 38] or deduced
automatically [6,28,29,42]. Other previous systems present the user
with a spatial layout of thumbnails of windows from which the user
can retrieve one or more windows. These layouts might be defined
manually [33, 40] or computed automatically [6, 39]. If the layout
is stable over time, the user can leverage their spatial memory to
remember where a window or set of windows is located, making
retrieval faster.

Although a notion of subsets can make it easier to restore a group
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of windows, as pointed out by Tak et al. [39], it can be inconve-
nient to require every window to be part of a subset, or to prevent a
window from being a member of multiple subsets. In addition, the
automatic computation of subsets or of layouts always implies a risk
of producing output that is undesirable or confusing to the user. Our
work does not involve retrieval of subsets of windows, nor does it
automatically generate layouts for retrieval. Our work is somewhat
comparable to WindowScape [40] or the “Exposé” feature in ma-
cOS (subsequently renamed as part of “Mission Control”): in both
of those systems, the user can access an overview of minitiarized
windows, and select one to be moved to the “foreground” in its
full size. However, in our system, the overview space is a wide
field-of-view (FoV) cockpit where windows are already at full size
and have no need to be minitiarized, and indeed are fully usable and
more easily recognized than thumbnails, and the “foreground” space
is a narrow FoV where the user can work with the window for a
prolonged period of time more easily, with little or no neck rotation.
Unlike some previous work [6, 39], in our system, there is no need
to have a separate layout of windows for retrieving them, since the
wide FoV already has a layout that the user is presumably familiar
with, making it easy for the user to find whatever window they want
to “promote” (i.e., teleport) to the “foreground” (narrow FoV).

2.2 Window Management in VR/AR
There is more recent work on management of windows in immersive
3D spaces.

Ens et al. [9] present a design space: windows can be egocentric
or exocentric; fixed or movable; far, near, or on the body; work with
direct or indirect input; be tangible (i.e., mapped to a physical surface
that is touched) or intangible (‘in air’); have high, intermediate, or
low visibility; and be positioned on a discrete grid or within a
continuous space. Our work is relevant to a knowledge worker
seated at a physical desk surrounded by windows, using a mouse and
keyboard, hence an egocentric, fixed arrangement, using indirect
input (e.g., mouse or head-gaze), and windows with high visibility.
In our experiment (Section 4), windows have discrete positions,
but our subsequent prototype (Section 6) allows for continuous
positioning.

There are algorithmic approaches that automatically position
windows in 3D or adapt to the physical environment [10, 18, 20, 26].
Projective Windows [19] is a technique for quickly positioning an
individual window, but with no functionality for easily dismissing
a window to return it back to a previous location. The Personal
Cockpit [11] uses a window layout similar to that in our work, but it
was designed for mobile use, direct input, and had a field-of-view
(FoV) limited to 40 degrees to simulate commercially available
augmented reality headsets. We focus on a user who is seated at a
desk with a FoV of ≈90◦ or more.

The Bring2Me [3] system is designed for AR platforms with
a narrow FoV (prototyped with a headset with 23 degree vertical
FoV). Bring2Me allows the user to leverage their spatial memory to
summon a menu from a known spatial location, outside the visible
FoV, bringing it temporarily into the FoV in front of the user for a
single selection before the menu automatically returns to its original
location. Three variants of the technique are proposed, including
two named TeleHead and TelePad, for the idea of teleporting the
menu in front of the user. In our work, however, we teleport an entire
window in front of the user for several interactions, not just a single
selection within a menu, and in Section 6 we show how to extend
our system to allow multiple windows to be teleported in front of
the user at the same time.

3 DESIGN OF THE TELEPORTATION TECHNIQUE

In status-quo workstations (without using a headset), the user often
has a single physical screen, only one full-screen window is visible
at a time, and a shortcut key (Alt+Tab on Microsoft Windows or

Command +Tab on macOS) is often used to switch between win-
dows. One advantage of such an interface is that the neck is always
in a neutral position. However, switching between windows can be
slow and confusing when there are many windows [39].

In contrast, a Cockpit-style interface [11] (Figure 1), where all
windows are visible, allows a user to leverage their spatial memory,
possibly enabling faster switching between windows since a simple
neck rotation suffices, but at the cost of inducing neck fatigue.

We sought a way to combine the advantages of both of these
interfaces, and took inspiration from kinesthetically-held modes [35]
(also called spring-loaded modes [14] or quasimodes [32]), and also
from “spring-loaded glances” [30]. We would like a way for the user
to temporarily bring (“teleport”) any window to the center of the
workspace, and make it easy to dismiss the window so that it returns
to its original position.

Selecting the window to teleport could be done with head ori-
entation (head-gaze), eye tracking (eye-gaze), or with the mouse
cursor. We decided to use head-gaze for two reasons. First, we
reasoned that if a user wishes to teleport a window, they would first
look at it, causing the head-gaze to already be directed (or nearly
directed) toward the appropriate window, prior to moving the mouse
cursor to the window. Secondly, eye-gaze would presumably also
precede motion by the mouse, however tracking of eye-gaze is still
not available on many headsets, and there is some evidence that
head-gaze works better than eye-gaze [31].

In our system, the window currently selected by the head-gaze
raycast is shown with its border in red (Figure 3, bottom). Once
the desired window is highlighted in red in this manner, tapping
a single key (in our prototype, the Alt key) causes that window
to teleport to the center, with a smoothly animated transition at a
constant speed that lasts ≈250-550 ms depending on the distance
travelled. Importantly, if the mouse cursor was in the window prior
to it being teleported, the cursor is “carried” by the window so
that it is still inside the window when the window completes its
teleportation. To dismiss the teleported window back to its original
position, the user may hit the Backquote ` key, causing another
animated transition. The teleported window is also automatically
dismissed whenever a different window is teleported to the center,
triggering two simultaneous animations. Thus, at most one window
can be teleported at a time. The limitation to one teleported window
at a time, and the use of animated transitions, makes the interaction
technique easier to understand by new users.

The raycast used in head-gaze is not oriented straight forward.
Instead, it is tilted downward by 15◦, an angle chosen based on [41]
which suggests that a physical monitor’s center should be “15◦ to
25◦ below gaze inclination”. We indeed found that this downward
tilt made the selection feel somewhat more natural.

4 EXPERIMENT

Our goal with this experiment was to investigate the tradeoffs be-
tween different user interfaces for managing multiple windows in
VR.

4.1 Three Main Conditions
Our experiment compared 3 main conditions: Desktop, Cockpit,
and Cockpit with Teleportation. In all conditions, there were 15
windows, with unique text labels in their upper left corner to identify
each window. All windows were the same size.

In the Desktop condition (Figure 2), only one window was visible
at a time. Holding down the Alt key displays a menu of window
names, ordered by recency. Tapping the Backquote key selects a new
window, which is brought to the front when Alt is released. (We did
not use Alt+Tab in our system due to a limitation with our software
framework.) In the Cockpit condition (Figure 3, top), all windows
were visible in 3 rows × 5 columns, and their positions were fixed.
In the Cockpit with Teleportation condition (Figure 3, bottom), any
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Figure 2: (Top) In the Desktop condition, all 15 windows are
stacked together, with only the front-most window visible. (Bottom)
Alt+Backquote on the keyboard cycles through windows, very similar
to Alt+Tab on Microsoft Windows.

window could be moved to the center using the Alt and Backquote
keys as described in section 3.

The tasks performed in the experiment required users to navigate
between windows, with textual instructions telling the user which
window to navigate to next. To imitate a scenario where the user
has had enough time to learn the positions of the windows in a
Cockpit, and can leverage their spatial memory, we labeled the
windows with names that are easy to associate with spatial positions.
Each window’s label is of the form “ColorNumber”, where the
color corresponds to a column (from left to right, the columns are
associated with labels red, orange, green, blue, or black) and the
number indicates the row (1, 2, or 3). These labels were displayed
in French (e.g., ROUGE2 or NOIR3), as were all instructions, as
our users were francophone. In the Desktop condition, the use of
text labels for distinguishing windows when using Alt+Backquote
(Figure 2, bottom) is not so different from Microsoft Windows,
where the thumbnails of windows are often visually similar and the
user must read the names of windows while using Alt+Tab.

Figure 3: (Top) In the Cockpit condition, the 15 windows (in 3 rows
× 5 columns) have fixed positions. (Bottom) In the “Cockpit with
Teleportation” condition, any window (such as NOIR2 in this example)
may be temporarily brought to the center, covering the VERT2 window.
Even though the mouse cursor is in the NOIR2 window in the center,
the VERT3 window in the bottom row has its border in red, to show
that it is being selected by the head-gaze raycast.

4.2 Hypothesis

We hypothesize that Cockpit will result in more neck fatigue than
Desktop, that Desktop will require more time than Cockpit to switch
between windows, and that Cockpit with Teleportation will yield a
compromise between the other two conditions in terms of time and
neck fatigue.

4.3 Size and positioning of windows

All windows were 24 inches diagonally, with a 16/9 ratio (≈
53.1×29.9cm), to imitate full-screen windows on a common size
of physical monitors.

In the Desktop condition, the window was 80cm in front of the
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Figure 4: Top left: the Click task. Top right: the Write task. Middle
row: the Read task. Bottom: the Wait task.

user’s head’s initial position (a distance within published recommen-
dations [36, 41]), oriented vertically, with its center slightly lower
than the user’s head’s initial position, so that a line connecting the
two formed a 15◦ angle with the horizontal [41].

In the Cockpit and Cockpit with Teleportation conditions, the
windows in the middle row are vertically oriented, and their centers
follow a circular arc of 80cm radius and span 150◦, at the same
height as in the Desktop condition (so the centers are 15◦ down with
respect to the user’s head’s initial position). The windows in the top
row have the same horizontal positions as the middle row, but are
vertically higher, and are tilted to be directly facing the user’s head’s
initial position (i.e., no 15◦ tilt). In the bottom row, the centers of
windows follow a circular arc of 72cm radius, and the windows are
tilted to again create a 15◦ tilt with respect to the user’s head’s initial
position. The 72cm radius of the bottom row is small enough to
avoid occlusion from windows in the middle row, while also being
big enough to avoid overlap between windows of the bottom row.

At a distance of 80cm, each window covers a horizontal angle of
2 atan(53.1cm/2/80cm) ≈ 36.7◦. If the neck is rotated to center the
head on a given window, the eyes can fixate any point on the window
by yawing less than 20◦ with no further neck rotation. Previous
studies of neck and eye rotation [37] indicate that such shifts in gaze
would entail very little neck rotation. Thus, we expect the maximum
rotation (yaw) necessary by the neck in our Cockpit layout to be
150◦/2 = 75◦ in either direction.

4.4 Four Tasks

To design our tasks, we took inspiration from two sources. First, Liu
et al. [21] defined a simple, parametrized task that can be adjusted
to different levels of difficulty, requiring varying amounts of zoom-
ing or panning, and that has been reused in subsequent work [25],
but that is more relevant to large or zoomable displays than multi-
window arrangements. Second, Ens et al. [11], in their “Study 4”,
aimed for an “ecologically valid task” and created a set of “everyday
applications” (Contacts, Calendar, Map, etc.) where the user had
to switch between windows. However, such applications are not
easy to re-implement in future studies, and seem less amenable to
algorithmic generation of sequences of tasks. We combined these
two approaches with a set of tasks that are simple to implement and
simple to explain to a user, that involve actions used in real knowl-

edge work, that require using a keyboard and mouse and multiple
windows, and that can be parametrized and reused in future studies
involving multiple windows.

We settled on the following 4 tasks (Figure 4). In the Click task,
a textual message in a window tells the user which of a set of buttons
(in the same window) to click with the mouse. In the Write task, a
textual message tells the user what string (a 4-digit code) to type into
a text field (in the same window). The user gives keyboard focus to
the text field by clicking on it. In the Read task, a textual message
in one window tells the user to go to another window where they
must scroll (using the mouse) within a long text of words, looking
for a 4-digit numeric code, and once they find that code, they must
return to the initial window to type the code into a text field. In the
Wait task, the user clicks on a button to start a 10-second countdown
timer and must wait for the timer to finish (this simulates watching
a video, or an ad, or waiting for a software job to complete). All
4 tasks require the user to read text and use the mouse; the Write
and Read tasks also require the use of the keyboard; and the Read
task requires navigating between two different windows. In the first
3 tasks, if the user clicked on the wrong button or typed the wrong
string, visual feedback indicated their error, and they had to click on
the correct button or use backspace to correct the string before the
task was considered complete.

In addition, a sequence of tasks can be defined that involve differ-
ent windows, sometimes requiring the user to navigate to a different
window before starting the next task. Our system identifies each
window with a label in the window’s upper-left corner, and tells the
user which window to navigate to for the next task with a textual
message in the previously active window, as well as with a global
message displayed above all the windows.

There are at least three parameters that can be manipulated in
defining such a sequence of tasks: the distance between consecutive
windows (requiring the user to navigate short or long distances),
the number of consecutive tasks to do in the same window before
asking the user to switch to a different window (manipulating this
changes the frequency with which the user much change windows),
and the total number of windows to be managed and navigated
between. As the number of windows increases, or the distance
between consecutive windows increases, and as the frequency of
switching decreases, we expect neck fatigue to become more of a
problem for cockpit-style layouts, and therefore expect teleportation
to become more beneficial.

After a pilot study, we adjusted our sequences of tasks to induce
more of a difference between the Desktop and Cockpit conditions, to
better understand if and how Teleportation results in a compromise
between these two conditions. Thus, the tasks in our sequence
involve windows chosen in the left-most and right-most columns of
the 3 row × 5 column layout.

4.5 Equipment

Each user wore a (first generation) Oculus Quest VR headset, which
is untethered and performs inside-out tracking. The headset has two
screens at 1440×1600 pixels each, a mass of 571 g, and a FoV of at
least 90◦ both horizontally and vertically (the precise FoV depends
on the measurement method).

A “Logitech Mx Keys” keyboard and “Logitech Mx Anywhere 2s”
mouse were connected to the headset via Bluetooth. The keyboard
was attached to a cardboard template with holes to insert the “Oculus
Touch” controllers which are tracked by the headset (Figure 5). This
allowed the user to slide the keyboard to a comfortable position at
the start of the experiment, while allowing the headset to detect the
keyboard’s approximate position (fine tuning of this position was
also done by pressing keys during a brief calibration phase). The
controllers were not used during the experiment tasks. A virtual 3D
model of the keyboard was displayed in VR, with labels on the keys
in a large font for easier reading, and certain keys (in particular, Alt
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Figure 5: The controllers, normally held in the user’s hands, are
placed in a cardboard template, allowing the headset to deduce the
location of the physical keyboard.

and Backquote) colored to remind the user of the keys to use during
the experiment. No virtual model of the mouse was displayed, as
this would have prolonged the calibration phase for each user, and
in practice users seemed to easily remember the physical mouse’s
location.

Users sat on a chair that did not swivel or rotate.
The headset pushed notifications wirelessly to a computer, allow-

ing the researchers to monitor each user’s progress.

4.6 Participants
16 users were recruited from university engineering programs, rang-
ing in age from 20 to 26 (mean 22.9), 3 female and 13 male, 2
left-handed and 14 right-handed, all accustomed to using the mouse
in their right hand. Their depth acuity was measured with a Titmus
stereo acuity test, yielding scores from 0/10 to 10/10 (mean 6.4).
Only one user reported having color deficient vision. Users were
asked if they had ever used multiple monitors on a regular basis;
9 answered that they had experience using 2-monitor setups, and
another 3 answered that they had used 3-monitor setups. The inter-
pupillary distance of each user was measured and used to calibrate
the headset prior to the tasks.

4.7 Design of Experiment
Each user performed tasks in each of the 3 conditions. The ordering
of conditions was random for each user. Prior to the experiment, we
generated and saved 3 sequences of trials of tasks. For each user,
these sequences were assigned at random to the 3 conditions.

For each condition, the user performed the sequence of trials
in 3 phases. Phase 1 was for “warming up”, to get familiar with
the user interface, and involved 16 trials: 4 trials of each of the
4 types of tasks in an order determined by the pre-generated and
randomly assigned sequence. Users were instructed to take their
time in phase 1 and to ask questions to ensure that they understood
how the interface worked. Users were asked to complete the trials in
the subsequent phases faster. Phases 2 and 3 each involved 30 trials:
8 trials of Click, 8 trials of Write, 10 trials of Read, and 4 trials of
Wait, but not in that order, rather in the order determined by the
sequence. The trials in phase 2 were chosen so that the user would
need to navigate to a new window every 2 trials, i.e., they needed to
frequently change windows. The trials in phase 3 were chosen so
that the user would need to navigate to a new window every 10 trials.
In our results, we only present the data collected from phases 2 and
3, to cover a range of behavior (frequent and infrequent window
switching) while excluding warm-up trials.

Figure 6: Average time spent per trial, in seconds.

Figure 7: Average time spent per trial, in seconds, broken down by
phase. (Phase 1 involved warm-up trials and is excluded.)

Throughout all phases, textual instructions in the current window
and above the windows prompted the user on what to do, step-by-
step. Between phases, the user was asked to remove the headset to
take a break and to evaluate the cognitive load and neck fatigue of
the preceding phase on Likert scales on a questionnaire.

In total, there were 16 users × 3 conditions (Desktop, Cockpit,
Cockpit with Teleportation) × 2 phases (phase 2 + phase 3) × 30
trials (8 Click + 8 Write + 10 Read + 4 Wait) = 2880 trials, not
including the warm-up trials performed in phase 1.

4.8 Results
For these results, advice was adopted from Dragicevic [8]: we avoid
emphasizing null hypothesis significance testing (NHST) to avoid
misleading, dichotomous thinking (“Tip 25” in [8]); we present
effect sizes visually and with confidence intervals (Tips 15, 16),
where the confidence intervals are computed using only one (aver-
aged) value for each (user, condition) pair (Tip 9); and we clearly
distinguish between our pre-experiment hypotheses and post-hoc ex-
ploratory data analysis, because not doing so encourages HARKing
(Hypothesising After the Results are Known) and p-hacking.

In Figures 6-11, the error bars show 95% confidence intervals
(CIs), calculated using 16 points each, i.e., one point for each user.
CIs were calculated using the t distribution for time and angles
(Figures 6-9) or using percentile bootstrapping for Likert scales
(Figures 10-11).

Our hypothesis (section 4.2), was only partially confirmed. Fig-
ure 11 does show evidence that teleportation results in intermediate
levels of neck fatigue, but Figure 6 does not reveal any difference in
time.

Figure 8: Estimated time spent on each navigation between windows,
in seconds.
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Figure 9: The standard deviation, in degrees, of the orientation of
the user’s head. The difference shown between two of the conditions
corresponds to p ≈ 0.09.

Figure 10: Cognitive load rated subjectively by users on a scale from
1 to 7 at the end of each phase of each condition.

The rest of the results presented here are post-hoc exploratory
analysis.

To obtain an estimate of the time spent navigating between win-
dows, we reanalyzed our data logs. In the Desktop condition, we
counted how much time the Alt key was held down. In the other
two conditions, we counted how much time the mouse cursor was
not in the appropriate window for the current task (or appropriate
windows, in the case of a Read task). We then divided this time by
the number of times that the user had to change windows in each
phase, yielding the estimate in Figure 8.

In the Cockpit with Teleportation condition, one of the users never
used teleportation, despite being encouraged to do so. Each of the
other 15 users had a window teleported during at least 83% of trials.

Figure 9 was generated by computing the angle between the user’s
head’s “forward vector” and the workspace’s fixed “forward vector”
for each frame, and then finding the standard deviation of these
angles for each phase of the experiment.

In post-questionnaires, users described the cockpit layout as good
for seeing an overview (1 user) or that they liked the 15 windows
(1 user). Teleportation was liked (4 users), easy to learn (1 user),
much easier than desktop (1 user), and fun (1 user). Users asked
for a cockpit layout covering a smaller FoV or with fewer windows
(4 users). They also suggested that the selection of the window to
teleport could be done with the mouse (3 users) or with the keyboard
(1 user). Other suggestions were to combine teleportation and the
Alt+Tab-style functionality (1 user), to have a physically rotating
workstation where the chair, keyboard, and mouse could all rotate (1

Figure 11: Neck fatigue rated subjectively by users on a scale from 1
to 7 at the end of each phase of each condition. The difference shown
between two of the conditions corresponds to p < 0.002.

user), and to make the windows further from the center be smaller
(1 user).

A majority of users preferred Cockpit with Teleportation over the
other two conditions (Table 1).

Table 1: Subjectively preferred conditions by the 16 users.

Most Least
Condition Favorite Favorite

Cockpit 1 12
Desktop 6 4

Cockpit with Teleportation 9 0

5 DISCUSSION

The estimated time to navigate between windows (Figure 8) was
highest when using teleportation. In our own testing of the prototype,
selecting the window to teleport using head-gaze was not always
fast and natural: one of us often had to tilt our head downward to
cause the correct window’s border to highlight in red before hitting
the Alt key, suggesting that the raycast was tilted too high for at least
some users. At the same time, it often seemed natural to move the
mouse cursor onto whatever window we attended to, even prior to
teleporting a window. This suggests that the mouse cursor might be
faster than head-gaze for selecting the window to teleport, and such
a modification was suggested by 3 users.

Figures 9 and 11 show that, although teleportation reduced neck
rotation, users still felt some fatigue. Limiting the cockpit to a
smaller number of windows was suggested by multiple users. A
3×3 layout (for example) would reduce the available display space
by 40%, but might indeed be preferred by users who are seated
and using a keyboard and mouse. A compromise would be to have
windows beyond the central 3 columns that are smaller (covering a
smaller angle) and/or used mostly for monitoring data.

6 PROTOTYPE FOR MULTIPLE FOREGROUND WINDOWS

In real tasks, users sometimes need to frequently switch between
2 or 3 windows, to visually compare content or copy information
between windows. This was partially simulated in our experiment
with the Read task that always involved 2 windows, however the
prototype in our experiment only allows one window to be teleported
to the front at a time. We subsequently designed a 2nd prototype
that allows multiple windows to be teleported in front of the user at
once. This 2nd prototype was not implemented in VR, but instead is
implemented with JavaScript in an HTML document, showing the
windows of the cylindrical cockpit unwrapped onto a flat surface.
This allowed for faster prototyping, and allows readers to try the
prototype for themselves (see supplemental material). The aspect
ratio of this prototype was chosen to reproduce the amount of space
available to users in our experiment, with room to tile 3 rows × 5
columns of windows, each with a 16/9 aspect ratio. In line with the
observations from our experiment, we assume that this prototype
will only use mouse input for selecting windows to be teleported,
and has no need for head-gaze input.

In our previous prototype, whenever the user teleported a new
window to the center, the previously teleported window was auto-
matically dismissed and returned to its original location. In the new
prototype, the user may teleport as many windows as they wish.
These teleported windows are added to a foreground layer that is
automatically centered by the system. In the following description,
the foreground layer refers to the subset of windows centered in
front of the user within a narrow FoV, while the background layer
refers to complete set of windows covering a wide FoV.

We assume that one modifier key on the keyboard can be dedi-
cated to this new window managing approach. In our case, we use
the Ctrl key for this, so that our JavaScript implementation can inter-
cept press and release events, however in a real system, another key
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Figure 12: This prototype allows multiple windows to be teleported to
the foreground layer, shown in orange.

like the “Windows” key might be more appropriate. When Ctrl is
held down, the window manager enters a special mode, within which
Alt and the left mouse button activate various functions. Without
holding down Ctrl, the other keys and buttons act normally.

Figure 12 illustrates a sequence of interactions in the prototype.
The horizontal axis ranges from -93.75 to +93.75 degrees, to match
the angle covered by windows in the experiment. Figure 12: (a)
The user has placed the mouse cursor over window A1 in upper

left corner. The user presses Ctrl+click and releases to teleport the
window to (b) the foreground layer in the center, shown in orange,
already containing windows E5, P6, and C1. The user then drags
the top of A1, right and downward, to (c) reposition A1 within the
foreground. Releasing the mouse button causes the foreground layer
to (d) recenter itself. Holding down Ctrl and hovering over windows
in the foreground (e and f) causes an orange shadow to show where
each window came from in the background. Ctrl-clicking on any
window in the background or foreground will teleport it to the fore-
ground, or dismiss it to the background, respectively. Holding down
Ctrl+Alt (g) makes the foreground transparent, allowing the user to
click on windows behind the foreground to move, resize, or teleport
them.

Our prototype displays smoothly animated motion whenever a
window is teleported to the foreground, or dismissed to the back-
ground, or when the foreground layer automatically recenters itself
because one of its windows has been moved, resized, or dismissed.
As in the previous prototype, each window remembers its original lo-
cation in the background when it is dismissed, preserving the layout
of the background. When not holding down the Ctrl key, the user is
free to reposition and resize any window, within the background or
foreground, by grabbing the normal widgets on the window’s frame.

Whenever a window is teleported to the foreground for the first
time (like in Figure 12(b)), it is automatically given a position within
the foreground, either to the left or to the right of the existing fore-
ground windows, depending on whether it came from the left or
the right side of the background. Subsequently, windows remember
whatever position they had in the foreground. Thus, when the user
repositions window A1 in Figure 12(c), if the user were to dismiss
and then teleport again A1, A1 would return to the same relative
position in Figure 12(c).

7 CONCLUSION

The use of teleportation allows a user to retain the benefits of a
cockpit layout (e.g., ability to monitor more data than with a single
window), but also benefit from reduced head rotation and reduced
neck fatigue, as shown in our experiment. Teleportation was also
preferred by 9/16 users over the other two conditions in our study.

We subsequently presented a prototype of a window manager
that allows multiple windows to be teleported to the center of the
user’s FoV, with automatic centering, making it easy to dismiss any
window to the background, where the original layout of windows is
preserved.

8 FUTURE WORK

Future work could evaluate our prototype from Section 6, and/or
experimentally compare alternative mechanisms for selecting the
window to teleport, such as (1) the mouse cursor, (2) eye-gaze [7],
(3) a combination of head- and eye-gaze [17], or (4) allowing the
user to popup a miniature view of all their windows at the center
of their workspace, within which they can select a small proxy of
the full-size window to teleport, while using very small eye or neck
rotation. This 4th idea is inspired by the “Exposé” feature in macOS
which shrinks all windows to temporarily eliminate overlap.

Future work could also apply our set of 4 tasks and vary the
3 parameters described in section 4.4 to evaluate other window
management techniques in VR or immersive environments.

REFERENCES

[1] A. Agarawala and R. Balakrishnan. Keepin’ it real: pushing the desktop
metaphor with physics, piles and the pen. In ACM CHI, 2006.

[2] D. Ahlström, J. Großmann, S. Tak, and M. Hitz. Exploring new window
manipulation techniques. In Proc. Conf. Australian Computer-Human
Interaction Special Interest Group, 2009.

[3] C. Bailly, F. Leitner, and L. Nigay. Bring2Me: Bringing virtual widgets
back to the user’s field of view in mixed reality. In AVI, 2020.

7



Online Submission ID: 32

[4] M. Beaudouin-Lafon. Novel interaction techniques for overlapping
windows. In ACM UIST, 2001.

[5] B. Bell and S. Feiner. Dynamic space management for user interfaces.
In Proc. ACM UIST, 2000.

[6] M. S. Bernstein, J. Shrager, and T. Winograd. Taskposé: exploring
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