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Abstract

Generative diffusion models have rapidly advanced protein design, but their flexi-1

bility introduces biosafety risks: the same models that scaffold therapeutic enzymes2

can also produce prions, toxins, or other harmful proteins. Post-hoc defenses like3

filters and classifiers are brittle and vulnerable to jailbreak-style prompting. We in-4

troduce SAFEGENIE1, a weight-level erasure framework that reshapes the model’s5

probability distribution to proactively suppress unsafe concepts, making the result-6

ing generators resilient to inference-time attacks. Through targeted experiments,7

we show that SafeGenie can reduce the likelihood of generating structural motifs8

such as α-helices, eliminate prion-like aggregation signals, and lower toxic peptide9

predictions, all while preserving designability and diversity. We further construct10

a unified SafeGenie model by erasing 1,450 PDB-labeled toxins, demonstrating11

that large-scale distributional erasure yields a generator that reliably avoids unsafe12

sequences without degrading overall protein quality. Our results establish weight-13

space probability editing as a principled, robust, and practical tool for biosafety in14

generative biology.15

1 Introduction16

1.1 Motivation17

Generative protein diffusion models have enabled precise control over protein backbones and scaffold-18

ing of functional motifs, drastically reducing the time for de-novo protein design. In general, models19

such as Genie [Lin and AlQuraishi, 2023], RFDiffusion [Watson, 2023], and Chroma [Ingraham et al.,20

2023] have been used positively to accelerate enzyme engineering, stabilize therapeutic proteins, and21

generate novel binders with high affinity [Zambaldi et al., 2024].22

However, this flexibility introduces new safety concerns. Generative targeted models may produce23

harmful proteins either deliberately, such as the case of engineering neurotoxins for high-affinity24

binding, or unintentionally by introducing proteins that can misfold into prion-like structures or25

disrupt other bodily functions. Recent work has shown that these same models can also pose26

significant biosafety risks, such as producing sequences with strong similarity to known toxins or27

generating harmful dual-use proteins like membrane disrupters. Although there have been many28

recent calls for policy regulation of these biological generative models Pannu et al. [2025], Hunter29

et al. [2024], the rate of development often exceeds the rate of regulation, which necessitates the need30

for model-based safety measures.31

1All code and data will be made available after the double-blind review process is concluded

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



1.2 Contributions32

Our work makes the following contributions:33

1. We introduce SAFEGENIE, the first framework for erasing concepts from protein diffusion34

models. Unlike post-hoc filtering, SAFEGENIE erases concepts directly at the weight-35

level through a distribution erasure objective, addressing safety concerns before generation36

happens.37

2. Through case studies, we demonstrate successful suppression of both global structural38

features (e.g. α-helices) and pathogenic motif-level features (e.g. prion-like domains).39

3. We present a Unified SAFEGENIE Model trained on toxic proteins from a PDB and evaluate40

it with protein design benchmarks (designability, diversity, F1) as well as toxicity prediction41

pipelines, showing that erasure reduces unsafe generations while preserving statistically-42

identical high-quality protein generation capabilities.43

1.3 Related Works44

Generative Protein Models: Backbone-first generative models have rapidly advanced protein design45

by directly sampling 3D structures prior to sequence realization. RFdiffusion introduced a denoising46

diffusion framework that conditions on functional motifs and scaffolds novel backbones with high47

success rates [Watson, 2023]. Genie extends this idea with SE(3)-equivariant diffusion over oriented48

residue frames, producing diverse and designable structures [Lin and AlQuraishi, 2023]. Chroma49

leverages score-based generative modeling with symmetry-aware networks to sample backbones50

while enabling fine-grained conditional control [Ingraham et al., 2023]. DiffDock adapts diffusion51

methods for ligand-conditioned backbone generation, demonstrating flexibility in drug discovery52

contexts [Ketata et al., 2023]. Other approaches such as FrameDiff [Yim et al., 2023], experiment-53

guided diffusion hybrids [Liu et al., 2024], and flow-based geometry generators for protein ensembles54

[Jing et al., 2024] highlight a growing ecosystem where geometric priors and equivariance play central55

roles. Collectively, these backbone-first methods represent a paradigm shift from sequence-only56

generative models by enabling explicit geometric control, active site scaffolding, and the design of57

folds absent from the natural repertoire.58

Safety In Generative Biology Models: Generative biology research has begun to incorporate59

biosafety measures, yet these remain nascent and incomplete. For example, SafeProtein introduced a60

systematic red-teaming approach along with a benchmark (SafeProtein-Bench), which demonstrates61

that protein foundation models such as ESM3 and DPLM2 can be ’jailbroken’ with great success62

using masked prompt strategies and beam search, thus revealing that current models remain vulnera-63

ble despite dataset filtering [Fan et al., 2025]. Similarly, FoldMark proposes embedding watermarks64

into outputs of protein generative models (including diffusion-based models such as RFDiffusion and65

FrameDiff) in order to trace misuse. However, watermarking merely ensures traceability, not preven-66

tion of harmful sequence generation or intentional obfuscation [Zhang et al., 2024]. Finally, recent67

evaluations on inference time filters find that they often fail to detect known viral-host interactions,68

much less novel threats, highlighting that post-hoc filters are unreliable for biosafety [Feldman and69

Feldman, 2025]. Together, while these methods mark early progress, they do not sufficiently prevent70

model misuse. Red-teaming exposes weaknesses rather than fixes them, watermarking does not stop71

hazardous output, DNA jailbreak frameworks reveal scalability of risks, and current filters frequently72

miss even known dangerous proteins.73

Removing or Mitigating Harmful Capabilities in Models: Beyond detection and filtering, a74

growing body of research in machine learning explores how to directly suppress, remove, or steer away75

from dangerous capabilities within generative models. Unlike post-hoc defenses, these approaches76

aim to proactively alter what a model can represent or output, thereby reducing the risk of misuse77

even under adversarial prompting. One prominent line of work focuses on the direct removal of78

information from model weights through methods such as lightweight erasers [Huang et al., 2024],79

unified closed-form edits [Gandikota et al., 2024], and precise single-concept deletion [Gandikota80

et al., 2023], which modify internal parameters to eliminate targeted concepts in a way that prevents81

easy reintroduction.82

Such erasure methods are particularly appealing because they are inherently robust to jailbreak-style83

attacks, do not rely on brittle post-hoc filtering, and can in principle be shipped safely without exposing84
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dangerous capabilities. By removing harmful knowledge at the parameter level, these approaches85

offer protection not only against intentional misuse (e.g., adversaries seeking to elicit toxic proteins)86

but also against accidental harms, where a model might generate hazardous sequences in the course87

of legitimate use. While these methods have primarily been deployed in vision and text domains,88

they highlight a promising paradigm for biosafety in protein diffusion models, where eliminating89

dangerous motifs or folds at their representational source could provide stronger guarantees than90

detection-based defenses alone.91

2 Methods92

2.1 Training Objective93

We apply erasure to Genie2 [Lin et al., 2024], a diffusion process over the Cartesian coordinates of94

the N central Cα atoms of a given protein. A sample protein x0 is selected from the protein structure95

distribution, and then isotropic Gaussian noise is added following a standard cosine variance schedule:96

β = [β1, . . . , βt]. By the reparameterization trick [Ho et al., 2020], we can represent the forward97

process at timestep t as:98

q(xt | xt−1) = N
(√

αt xt−1, (1− αt) I
)
, q(xt | x0) = N

(√
ᾱt x0, (1− ᾱt) I

)
(1)

And the backward process as, using αt := 1− βt and ᾱt :=
∏t

s=1 αs:99

qθ(xt−1 | xt) = N
(

1
√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
, σ2

t I

)
, σ2

t = β̃t :=
1− ᾱt−1

1− ᾱt
βt (2)

The backward process requires a noise prediction, ϵθ(x, t), which is generated through an SE(3)100

equivariant denoiser network. This denoiser is comprised of two linear networks (a single feature101

network with weights θSFN and a pair feature network with weights θPFN ) and one transformer102

layer (a pair transformer network with weights θPTN ), whose sets of weights we can define as103

θ = {θSFN , θPFN , θPTN}.104

In general, we can view the denoiser as a high-dimensional manifold projector that guides noisy105

coordinates back towards the distribution of valid protein conformations Abuduweili et al. [2024].106

Armed with the view that the denoiser controls the sampling distribution, we can imagine 2 different107

SE(3) equivariant denoisers, one that generates an undesirable probability distribution with weights108

θ∗ and another that generates a desirable distribution with weights θ.109

Figure 1: Fine Tuning Architecture

Ideally, we’d like to be able to assign a low probability of generation to undesired concepts in our110

distribution. To do this, we follow Gandikota et al. [2023], reducing the probability of generating a111

specific output x given by the likelihood of it being described by the concept c according to a power112

law Pθ(x) =
Pθ∗ (x)

Pθ∗ (c|x)η
.113

After following Bayes Rule, taking gradients of the log probability, and applying Tweedie’s formula114

to introduce time varying noise, we can relate the noise prediction of θ and θ∗ such that they follow115

the power law:116

ϵθ(xt, t) = ϵθ∗(xt, t)− η(ϵθ∗(xt, c, t)− ϵθ∗(xt, t)) (3)
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A full derivation of this equation can be found in Appendix A. We pose this relationship as our117

objective to optimize over, training θ to minimize the mean-square-error difference between its118

current predictions and the power-law steering prediction, as depicted in Figure 1. To enable scale-119

equivalence, we tag on an additional weighting term so that the current predictions do not have a120

larger magnitude than the η guided power law prediction:121

L = ||ϵθ(xt, t)−
ϵθ∗(xt, t)

ϵtarget + 10−8
ϵtarget||2 (4)

122
ϵtarget = (ϵθ∗(xt, t)− η(ϵθ∗(xt, c, t)− ϵθ∗(xt, t))) (5)

2.2 Training Details123

We fine-tune Genie2 by wrapping the SE(3)-equivariant denoiser into a PyTorch Lightning module124

on a single A1000. Fine-tuning is performed against a frozen reference model θ∗, which provides the125

teacher predictions for the concept-adjusted noise targets. We optimize parameters θ using the Adam126

optimizer with a learning rate of 1× 10−5 and weight decay of 1× 10−4. We optimize all weights θ,127

rather than a subset; Appendix B reports ablation studies on weight choice and describes how we128

determined which parameters to optimize. To stabilize training, we apply gradient clipping with a129

maximum ℓ2-norm of 1.0 across all trainable parameters.130

For efficiency, we accumulate gradients over a scaffolds before each optimizer update. Specifically,131

each training step samples a random scaffolds, computes the masked mean-squared-error loss on each,132

and backpropagates. Losses are normalized by a, and gradients are accumulated across these passes133

before a single optimizer step. In our experiments, we set a = 4. At every step, we (i) randomly select134

a motif scaffolding problem file, (ii) construct conditioned features (fixed residues corresponding135

to the motif) and unconditioned features (motif mask zeroed out), and (iii) add isotropic Gaussian136

noise at a randomly sampled diffusion timestep t. To ensure valid structural signals, motif residues137

are preserved in their original positions while only scaffold residues are perturbed. Unless otherwise138

specified, we fine-tune for 1000 optimization steps, each consisting of a = 4 accumulated scaffolds139

and s = 4-6 noisy samples per scaffold. Sequence lengths are randomly drawn between Lmin = 150140

and Lmax = 256 residues. This stochastic batching encourages robustness across scaffold sizes while141

preserving fixed motifs.142

3 Erasure Case Studies143

To demonstrate the capability of the erasure algorithm (4), we erase a common structural motif from144

the distribution entirely (alpha helices) as well as targeting a specific unsafe motif (amyloids) and145

erasing it.146

3.1 Alpha Helix Erasure147

Training: We select 15 proteins of length 256 or less from the TMalphaDB database [Perea et al.,148

2015], extract the alpha-helices, and optimize over them using the objective function in the previous149

section. We fine-tune 4 values of η, η ∈ {0, 0.5, 1, 10}, and compare the results to the base Genie2150

model. A detailed experimental procedure, hyperparameter information, and loss plots can be found151

in Appendix C152

Evaluation: Figure 2 reports the fraction of generated proteins containing any alpha helix when153

samples 20 times. The baseline model reproduces helices in all sampled generations, consistent with154

its training distribution. Introducing even a modest erasure penalty (η = 0.5) reduces alpha helix155

prevalence to 90.4%, while strong erasure (η = 10) eliminates helices altogether. This demonstrates156

that the erasure signal is both effective and tunable: stronger penalties monotonically decrease the157

likelihood of generating the targeted concept.158

Figure 3 analyzes helix length distributions. At η = 0, the model recapitulates naturalistic helix159

lengths centered around 20 residues. For η = 0.5, the distribution is compressed but not abolished,160

indicating partial suppression. At η = 10, the distribution collapses to near zero mass, confirming161

complete motif removal. This graded suppression provides evidence that erasure is not a brittle162

intervention, but rather admits fine-grained control over structural frequencies.163
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Figure 2: (Left) Percent of Generations With Alpha Helices, (Right) First 3 Proteins Generated

The erasure weight η directly governs the strength of the penalty applied to the targeted concept,164

and thus controls the balance between suppression and preservation of structural features. At165

low values (η ≤ 0.5), the penalty is weak relative to the base generative prior, leading to partial166

erasure. This regime highlights that the model retains some inductive bias toward producing helices,167

but their prevalence and average size are measurably reduced. As η increases, the penalty term168

dominates the objective, and the model progressively reconfigures its generative distribution to169

avoid helices altogether. At η = 10, the near-complete elimination of helices suggests that the170

optimization landscape allows strong penalties to override even deeply embedded structural motifs,171

like alpha-helices. However, this comes at a cost: we observe broader distributional shifts in non-172

targeted structural features, suggesting that high η values can induce spurious correlations or degrade173

generalization.174

This trade-off illustrates a general principle of concept erasure in high-dimensional models: small175

η values yield interpretable attenuation of the target concept without large off-target effects, while176

large η values produce stronger suppression but risk unintended distributional drift. Thus, η should177

be interpreted not as a binary “erase vs. preserve” switch, but as a continuous knob controlling the178

degree of structural editing and its side effects.179

Figure 3: Comparison of Alpha Helix Size distribution for parameters 0, 0.5, and 10.

3.2 Prion Erasure180

Prions are misfolded proteins that cause neurodegenerative diseases by inducing normal versions181

of the same protein to adopt their abnormal conformation [Colby and Prusiner, 2011]. Due to the182

dangerous nature of these proteins, we would like to condition our generative models to avoid creating183

prion-like outputs.184

Training: To erase this concept, we select 4 prions from the Protein Databank and condition (4) on185

the entire sequence for each protein. We then train the model at η = 5, 10 for 450 steps; the full186

training details can be found in Appendix D.187

Evaluation: We use the Modified Prion Aggregation Prediction Algorithm (mPAPA) to identify188

prion-like domains (PrLDs) in protein sequences based on amino acid composition and aggregation189

propensity [Cascarina and Ross, 2020, Toombs et al., 2010]. By design, the mPAPA metric returns a190

value of −1 if no intrinsically disordered segments are detected within a protein. Scores greater than191

−1 indicate the relative likelihood that a protein contains prion-like characteristics.192

Using mPAPA, we find the protein’s predicted window of amino acids contributing the most to its193

classification as a prion, and then remove that window of amino acids from the protein. We then194
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used this masked protein as a motif to conditionally generate outputs from the base Genie-2 model, a195

finetuned Genie model with η = 5, and a finetuned Genie model with η = 10. Figure 4 demonstrates196

model performance on testing with the first 59 sequences of protein Human prion protein variant197

M166V [Calzolai et al., 2000]. We hope to extend this framework to a generalized benchmark in198

future works.199

Figure 4: Comparison of mPAPA score distributions for parameters 0, 5, and 10.

Figure 4 highlights how increasing the regularization parameter η sharpens the prion-discrimination,200

collapsing variance. The base model (η = 0) yields a broad distribution centered near −0.25,201

capturing heterogeneous sequence-level variation, while η = 5, η = 10 progressively concentrate202

scores at −1 with sparse excursions, effectively driving most proteins into the “non-prionic” regime.203

This distributional collapse suggests that higher η values impose stringent penalties on folding204

disorder, suppressing borderline prion-like domains and biasing the model toward conservative205

predictions.206

4 A Unified SAFEGENIE Model207

Training: To develop a unified safe model, we erase the 1450 proteins labeled "TOXIN" in the PDB208

under length 256. We do this by setting the entire protein as the motif to erase, and then updating209

the model parameters θ∗ using (4) for 350 steps. We create 2 variants, η = {5, 10}, denoted by210

SAFEGENIE-η. A complete discussion of training data, model parameters, and loss curves can be211

found in Appendix D.212

Evaluation: To evaluate the toxicity of the model, we first generate protein samples from the base213

model, SAFEGENIE-5, and SAFEGENIE-10. For each sample, we generate 5 likely sequences given214

the backbone using proteinMPNN [Dauparas et al., 2022], and then use ToxinPred3 [Rathore et al.,215

2024] to assess the toxicity of a given protein.216

We demonstrate model performance on a modified alpha-conotoxin AuIB [Dutton et al., 2002]. The217

key component of this protein responsible for toxicity is the presence of the disulfide bridge. As such,218

we set the non-disulfide bridge components of the protein as set motifs, and then use the base-model219

and Safe-Genie-5/10 to generate residues in the place of the bridge. A model that generates toxic220

sequences is expected to keep the disulfide-bridge structure intact, one that does not is expected221

to remove the bridge. We aim to generalize this approach of targeted toxic sequence fill-ins into a222

broader benchmark covering a more diverse set of proteins in future work.223

Figure 5: Comparison of ToxinPred3 score distributions and predictions for parameters 0, 5, and 10.

Figure 5 illustrates how the erasure parameter η systematically modulates the presence of the toxic224

concept within ToxinPred3’s hybrid score distribution. At η = 0, the model cleanly separates toxic225

peptides (orange) above the 0.38 threshold from non-toxic peptides (blue), reflecting the baseline226
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learned representation of toxicity. As η increases to 5, we observe a marked compression of the227

non-toxic distribution toward zero, while the toxic distribution persists above threshold, albeit with228

reduced density near the decision boundary—consistent with partial erasure of the toxic concept229

while preserving its detectability. By η = 10, this erasure is nearly complete: toxic predictions are230

strongly attenuated, with the score distribution dominated by near-zero non-toxic instances and only231

faint residual traces of toxicity.232

5 Looking Forwards233

5.1 Limitations and Future Works234

Erosion of Non-target Capabilities. A persistent limitation of concept removal is erosion of non-235

target capabilities—unintended degradation outside the targeted concept. In our protein setting, we236

observe a phenomenon for helix erasure: increasing the erasure strength (η) eliminates α-helices237

but also induces broader distributional shifts in non-target structural features (Sec. 3.1; Fig. 3). This238

illustrates the trade-off between safety and generative fidelity at high η. For other traits (e.g., prion-like239

domains), potential spillover into structurally related but benign patterns (such as ordinary β-sheets)240

remains a risk to evaluate empirically. Previous works have introduced methods to benchmarks to241

evaluate this designability-diversity tradeoff [Lin et al., 2024], in future works we plan to run these242

benchmarks on the various iterations of SAFEGENIE to understand how erasure impacts the broader243

distributions. Future avenues to explore with regards to broader distribution shifts include more244

localized edits (e.g., orthogonality-constrained or lightweight erasers) and multi-concept procedures245

designed to reduce interference [Huang et al., 2024, Gandikota et al., 2024], as well as preservation246

sets that explicitly protect benign secondary-structure distributions during editing.247

Unified Toxic Protein Benchmarks. Current evaluations rely on a mixture of task-specific metrics248

(e.g., mPAPA for prions, ToxinPred3 for peptides) and structural analyses (e.g., helix distributions).249

While these provide valuable evidence of safety gains, they do not yet constitute a standardized250

benchmark for toxic concept erasure in generative protein models. Moreover, each was generated251

with ad-hoc editing of specific proteins, rather than a sustained test suite. Establishing unified252

benchmarks—covering toxins, prions, membrane disrupters, and other classes of unsafe proteins—253

is essential to enable systematic comparison across erasure algorithms and models. We envision254

adopting the same procedure described in Section 4, wherein toxic sub-residues are removed and255

diffusion models are employed to regenerate residues that fill the resulting gaps. The toxicity of256

the reconstructed proteins is then evaluated. Such benchmarks should balance safety evaluation257

with standard design metrics (designability, diversity, F1), ensuring that models are both safe and258

generatively useful.259

Cross-Model Generalization. Our study primarily focuses on erasure in Genie-style SE(3)-260

equivariant diffusion models. However, the broader landscape of generative protein design includes261

alternative architectures such as flow-matching models, autoregressive transformers, and hybrid262

sequence-structure generators. Future work should investigate whether our erasure objective general-263

izes across these architectures and whether similar trade-offs between safety and generative fidelity264

emerge. Running SAFEGENIE-style algorithms on diverse model classes will help determine the265

robustness of erasure strategies and reveal whether unified erasure methods can provide consistent266

safety guarantees across the ecosystem of generative biology models.267

5.2 Conclusion268

We introduced SAFEGENIE, both as an algorithm and as a unified model for safe protein design. As an269

algorithm, SAFEGENIE provides the first parameter-level framework for erasing dangerous biological270

concepts from protein diffusion models, enabling tunable suppression of structural motifs (α-helices),271

pathogenic domains (prions), and toxin-related residues. As a model, our unified SAFEGENIE variant272

extends this framework by erasing thousands of toxic proteins simultaneously, yielding a single273

generator that balances safety with designability across diverse protein classes. This dual contribution274

highlights a key insight: concept erasure is not merely a defense mechanism, but a constructive tool275

for shaping generative distributions toward safe and useful regions of protein space. By unifying276

algorithmic erasure with a deployable safe model, we take a step toward standardized toxic-protein277

benchmarks and cross-architecture generalization, moving the field closer to generative biology278

models that are both powerful and responsibly deployable.279
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A Erasure Objective Derivativation377

We derive378

ϵθ(xt, t) = ϵθ∗(xt, t) − η
(
ϵθ∗(xt, c, t)− ϵθ∗(xt, t)

)
, (6)

starting from a power–law reweighting that down-weights concept c.379

Let pθ∗(x) be the base data distribution and let c denote an (undesired) concept. Define the reweighted380

distribution381

pθ(x) ∝ pθ∗(x)

pθ∗(c | x)η
, η ≥ 0. (7)

Let qt(xt | x0) be the forward diffusion kernel and pθ∗(xt) =
∫
qt(xt | x0)pθ∗(x0) dx0, pθ∗(xt |382

c) =
∫
qt(xt | x0)pθ∗(x0 | c) dx0. Write the time-t scores:383

sθ∗(xt, t) = ∇xt
log pθ∗(xt), sθ∗(xt, c, t) = ∇xt

log pθ∗(xt | c). (8)

By Bayes’ rule,384

log pθ∗(c | xt) = log pθ∗(xt | c) + log pθ∗(c)− log pθ∗(xt), (9)

so differentiating w.r.t. xt gives385

∇xt log pθ∗(c | xt) = ∇xt log pθ∗(xt | c)−∇xt log pθ∗(xt) = sθ∗(xt, c, t)− sθ∗(xt, t). (10)

From (7),386

log pθ(xt) = log pθ∗(xt)− η log pθ∗(c | xt) + const, (11)

⇒ sθ(xt, t) = ∇xt
log pθ(xt) = sθ∗(xt, t)− η∇xt

log pθ∗(c | xt). (12)

Using (10),387

sθ(xt, t) = sθ∗(xt, t)− η
(
sθ∗(xt, c, t)− sθ∗(xt, t)

)
. (13)

For Gaussian forward noising, Tweedie’s formula [Efron, 2011] yields a linear (time-dependent) map388

between the score and the denoiser’s noise prediction:389

ϵθ(xt, t) = At sθ(xt, t), ϵθ∗(xt, ·, t) = At sθ∗(xt, ·, t), (14)

where At is the same linear operator for all conditionings at fixed t (it depends only on the diffusion390

schedule). Applying (14) to (13) and using linearity of At,391

ϵθ(xt, t) = Atsθ(xt, t) = At

[
sθ∗(xt, t)− η

(
sθ∗(xt, c, t)− sθ∗(xt, t)

)]
(15)

= ϵθ∗(xt, t)− η
(
ϵθ∗(xt, c, t)− ϵθ∗(xt, t)

)
, (16)

which is (6).392

The difference ϵθ∗(xt, c, t)− ϵθ∗(xt, t) isolates the concept-c direction at time t; subtracting η times393

this component removes the concept with tunable strength while preserving non-c content. (xt394

B Ablation Studies and Interpretability395

To understand the role of different layers in the Genie2 denoiser, we individually fine-tune the weights396

of specific sub-modules while keeping the remaining weights fixed. More specifically, we repeat397

the Alpha Helix Erasure experiment described in Section 3.1 with η = 2, while fine-tuning only398

θSFN , θPFN , or θPTN . Information on experimental procedure and hyper-parameter information399

can be found in Appendix C.400

Figure 6 shows the loss curves from fine-tuning different weights. The “Single Feature” (blue) model401

converges slowly and exhibits high variance across steps, suggesting that residue-level encodings402

alone are insufficient to capture structural constraints. In contrast, the “Pair Feature” (green) and403

“Transformer” (orange) ablations both achieve more stable convergence, with the transformer-driven404

updates yielding particularly rapid and consistent decreases in loss. Unsurprisingly, fine-tuning all405

layers (red) leads to the lowest final loss, demonstrating the complementary nature of these modules.406
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Figure 6: Loss Curve with Different Layers Unfrozen

The shape of the curves can be explained by the representational roles of each component. Single-407

feature embeddings primarily encode residue-level information such as type, position, and chain408

identity, but without pairwise or structural context, they cannot easily adapt to erasure tasks. Pairwise409

features incorporate inter-residue distances and orientations, allowing the model to more directly410

compensate for missing structural information, hence their stronger performance. The transformer-411

style triangular updates refine pair encodings through higher-order attention, further stabilizing412

training. The combined optimization shows that the modules interact synergistically rather than413

redundantly.414

We hypothesize that the differences in convergence reflect the inductive biases each layer provides.415

The single feature network constrains learning to local residue identities, while the pair feature and416

transformer layers introduce global geometric reasoning. Thus, the improvement from adding each417

layer indicates that Genie2 distributes structural knowledge across levels of abstraction.418

From an interpretability standpoint, these ablations clarify how structural constraints are encoded in419

the model. The pair and transformer modules are most directly responsible for enforcing geometric420

consistency, whereas the single feature network mainly anchors residue identities. This division of421

labor suggests that future interpretability analyses should focus on the pairwise and triangular update422

mechanisms when probing how Genie2 encodes motif-level or global structural information.423

C Alpha Helix Erasure424

We select the follow 14 proteins from the TMalphaDB database: 2oar, 3am6, 4bem, 4fbz, 4hyj,425

4pop, 4qnc, 4qnd, 4rng, 4tsy, 4wab, 4wav, 4xu4, 5ax0, and 5cbg. For each protein, we extract the426

alpha-helix motif’s associated with chain A, as specified by the Protein Data Bank file [Berman et al.,427

2000]. We treat these motifs as concepts to condition on by selecting them as motif’s in the Motif428

Scaffolding Problem Definition File and then artificially generate scaffold around the motif’s to reach429

a protein length of 50 to 256. Recall the artificial scaffold does not matter for the loss function, as we430

only use the motif to calculate the loss.431

We fine tune the model on values of η ∈ {0, 0.5, 1, 10} with a learning rate of 2 ∗ 10−5, a warmup432

of 50, 2 samples per step, a max-gradient norm of 40, 300 steps, and gradient accumulation every 8433

steps. Loss plots can be seen in Fig 7.434

D Prion Erasure435

We select the follow 4 human prion proteins: 1e1p, 1e1s, 1e1u, and 1e1w [Calzolai et al., 2000]. We436

treat the entire protein as a motif, or concepts to condition on, and then fine tune on the protein.437

We fine tune the model on values of η ∈ {5, 10} with a learning rate of 2 ∗ 10−5, a warmup of 50,438

2 samples per step, a max-gradient norm of 40, 300 steps, and gradient accumulation every 8 steps.439

Loss plots can be seen in Fig 8.440
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(a) Loss curve, η = 0 (b) Loss curve, η = 0.5

(c) Loss curve, η = 1 (d) Loss curve, η = 10

Figure 7: Training loss curves for different values of η for Alpha Helices.

(a) η = 5 (b) η = 10

Figure 8: Training loss curves for different values of η for Prions.
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E Diffusion Sampling Process441

Figure 9: Conditional and Unconditional Sampling Pipeline

Genie follows a DDPM framework that generates protein backbones as sequences of Cα coordinates,442

performing diffusion directly in Cartesian space. At each step, an SE(3)-equivariant denoiser443

predicts noise displacements by reasoning over residue frames, with a single-feature encoder (residue444

embeddings), a pair-feature encoder (distance/orientation features), and a transformer-style pair445

update block that enforces global geometric consistency. Figure 9 shows this SE(3)-equivariant446

architecture, which we use for both inference and fine-tuning. In SAFEGENIE, we fine-tune the447

same denoiser parameters θ under our erasure objective (Eqs. (4)–(5)); when sampling with the448

edited model, the targeted motifs (e.g., α-helices or prion-like domains) are suppressed in generated449

structures (see Sec. 3.1).450

F Unified Model Training451

Preprocessing. We convert raw PDBs to a uniform, backbone-only format expected by our training452

pipeline. The script (i) retains only Cα atoms, (ii) selects the highest-occupancy Cα per residue453

index, (iii) normalizes common nonstandard residue names to canonical 3-letter codes, (iv) renumbers454

residues sequentially as 1..L in a single chain A and renumbers atom serials accordingly, and (v)455

writes fixed-width PDB-style lines together with a compact REMARK header. Structures with456

L > 255 are skipped.457

Residue normalization. We map frequent nonstandard/modified residue codes to their canonical458

counterparts to avoid downstream tokenization or feature issues:459

Nonstandard → Canonical Examples

SEC → CYS, MSE → MET seleno variants
HSD/HSE/HSP → HIS histidine protonation/tautomer codes
GLX → GLU, ASX → ASP ambiguous GLN/GLU and ASN/ASP
CSO/CSE/CSD → CYS oxidized cysteine variants
SEP → SER, TPO → THR, PTR → TYR phosphorylated residues

460

Unlisted residue names pass through unchanged.461

Selection and renumbering. For each PDB residue index (column 23–26), we keep the Cα atom462

with the highest occupancy; ties are resolved by first occurrence in the file. Residues are then sorted463

by their original indices and reassigned consecutive IDs (1..L) in chain A. Note that residues are464

keyed only by the original residue index; if multiple chains share the same index, they are collapsed465

into a single sequence.466
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Output format. Each processed file begins with:467

REMARK 999 NAME <basename>468

REMARK 999 PDB <basename>469

REMARK 999 INPUT A 1 <L> A470

REMARK 999 MINIMUM TOTAL LENGTH <L>471

REMARK 999 MAXIMUM TOTAL LENGTH <L>472

followed by one ATOM line per residue (chain A, new residue IDs 1..L) with preserved x, y, z473

coordinates and the occupancy/B-factor parsed from the original line, and finally END. Files with474

L > 255 are skipped with a console message.475

Rationale and compatibility notes.476

• Equivariance features. Genie/SAFEGENIE build pairwise geometric features from Cα477

coordinates; ensuring one Cα per residue avoids ambiguity in frame construction.478

• Chain and indexing. Unifying to chain A and sequential indices simplifies motif masks479

and batching (no PDB insertion codes or gaps to resolve during training).480

• Length cap. The 255-residue limit matches our training window sizes and GPU memory481

profile (see Sec. C for lengths used per task).482

• Compute Resources. Experiments were conducted on an NVIDIA A100 with 40 GB of483

VRAM. Experiments each took no longer than a few hours on GPUs.484

Failure modes and logging. Files with no Cα records, malformed numeric fields, or L> 255 are485

skipped with a reasoned log (e.g., “too long”).486

Reproducibility. Processing is deterministic given an input PDB. We release the mapping table487

and preprocessing code to enable regeneration of the dataset.488
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NeurIPS Paper Checklist489

1. Claims490

Question: Do the main claims made in the abstract and introduction accurately reflect the491

paper’s contributions and scope?492

Answer: [Yes]493

Justification: The claims about how we can target specific traits and suppress them in the494

model are supported by the experimental results of the paper.495

Guidelines:496

• The answer NA means that the abstract and introduction do not include the claims497

made in the paper.498

• The abstract and/or introduction should clearly state the claims made, including the499

contributions made in the paper and important assumptions and limitations. A No or500

NA answer to this question will not be perceived well by the reviewers.501

• The claims made should match theoretical and experimental results, and reflect how502

much the results can be expected to generalize to other settings.503

• It is fine to include aspirational goals as motivation as long as it is clear that these goals504

are not attained by the paper.505

2. Limitations506

Question: Does the paper discuss the limitations of the work performed by the authors?507

Answer: [Yes]508

Justification: The paper includes a dedicated section for limitations including but not limited509

to limitations of methods and experiments.510

Guidelines:511

• The answer NA means that the paper has no limitation while the answer No means that512

the paper has limitations, but those are not discussed in the paper.513

• The authors are encouraged to create a separate "Limitations" section in their paper.514

• The paper should point out any strong assumptions and how robust the results are to515

violations of these assumptions (e.g., independence assumptions, noiseless settings,516

model well-specification, asymptotic approximations only holding locally). The authors517

should reflect on how these assumptions might be violated in practice and what the518

implications would be.519

• The authors should reflect on the scope of the claims made, e.g., if the approach was520

only tested on a few datasets or with a few runs. In general, empirical results often521

depend on implicit assumptions, which should be articulated.522

• The authors should reflect on the factors that influence the performance of the approach.523

For example, a facial recognition algorithm may perform poorly when image resolution524

is low or images are taken in low lighting. Or a speech-to-text system might not be525

used reliably to provide closed captions for online lectures because it fails to handle526

technical jargon.527

• The authors should discuss the computational efficiency of the proposed algorithms528

and how they scale with dataset size.529

• If applicable, the authors should discuss possible limitations of their approach to530

address problems of privacy and fairness.531

• While the authors might fear that complete honesty about limitations might be used by532

reviewers as grounds for rejection, a worse outcome might be that reviewers discover533

limitations that aren’t acknowledged in the paper. The authors should use their best534

judgment and recognize that individual actions in favor of transparency play an impor-535

tant role in developing norms that preserve the integrity of the community. Reviewers536

will be specifically instructed to not penalize honesty concerning limitations.537

3. Theory assumptions and proofs538

Question: For each theoretical result, does the paper provide the full set of assumptions and539

a complete (and correct) proof?540
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d: [Yes]541

Justification: The paper includes formulas throughout the main sections, as well as supple-542

mentary derivations in the appendix for the erasure formulation and training methods.543

Guidelines:544

• The answer NA means that the paper does not include theoretical results.545

• All the theorems, formulas, and proofs in the paper should be numbered and cross-546

referenced.547

• All assumptions should be clearly stated or referenced in the statement of any theorems.548

• The proofs can either appear in the main paper or the supplemental material, but if549

they appear in the supplemental material, the authors are encouraged to provide a short550

proof sketch to provide intuition.551

• Inversely, any informal proof provided in the core of the paper should be complemented552

by formal proofs provided in appendix or supplemental material.553

• Theorems and Lemmas that the proof relies upon should be properly referenced.554

4. Experimental result reproducibility555

Question: Does the paper fully disclose all the information needed to reproduce the main ex-556

perimental results of the paper to the extent that it affects the main claims and/or conclusions557

of the paper (regardless of whether the code and data are provided or not)?558

Answer: [Yes]559

Justification: The paper includes a comprehensive description of how traits were targetted560

and how to setup the files in order to replicate the experiments. Code will be made available561

to further aid in enabling reproducibility, although the paper describes methods to an extent562

needed to reproduce experiments.563

Guidelines:564

• The answer NA means that the paper does not include experiments.565

• If the paper includes experiments, a No answer to this question will not be perceived566

well by the reviewers: Making the paper reproducible is important, regardless of567

whether the code and data are provided or not.568

• If the contribution is a dataset and/or model, the authors should describe the steps taken569

to make their results reproducible or verifiable.570

• Depending on the contribution, reproducibility can be accomplished in various ways.571

For example, if the contribution is a novel architecture, describing the architecture fully572

might suffice, or if the contribution is a specific model and empirical evaluation, it may573

be necessary to either make it possible for others to replicate the model with the same574

dataset, or provide access to the model. In general. releasing code and data is often575

one good way to accomplish this, but reproducibility can also be provided via detailed576

instructions for how to replicate the results, access to a hosted model (e.g., in the case577

of a large language model), releasing of a model checkpoint, or other means that are578

appropriate to the research performed.579

• While NeurIPS does not require releasing code, the conference does require all submis-580

sions to provide some reasonable avenue for reproducibility, which may depend on the581

nature of the contribution. For example582

(a) If the contribution is primarily a new algorithm, the paper should make it clear how583

to reproduce that algorithm.584

(b) If the contribution is primarily a new model architecture, the paper should describe585

the architecture clearly and fully.586

(c) If the contribution is a new model (e.g., a large language model), then there should587

either be a way to access this model for reproducing the results or a way to reproduce588

the model (e.g., with an open-source dataset or instructions for how to construct589

the dataset).590

(d) We recognize that reproducibility may be tricky in some cases, in which case591

authors are welcome to describe the particular way they provide for reproducibility.592

In the case of closed-source models, it may be that access to the model is limited in593

some way (e.g., to registered users), but it should be possible for other researchers594

to have some path to reproducing or verifying the results.595
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5. Open access to data and code596

Question: Does the paper provide open access to the data and code, with sufficient instruc-597

tions to faithfully reproduce the main experimental results, as described in supplemental598

material?599

Answer: [Yes]600

Justification: Yes, code provided and hosted on github with weights provided. Additional601

weights from referenced papers are also accessable through the URLs in the references602

section.603

Guidelines:604

• The answer NA means that paper does not include experiments requiring code.605

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/606

public/guides/CodeSubmissionPolicy) for more details.607

• While we encourage the release of code and data, we understand that this might not be608

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not609

including code, unless this is central to the contribution (e.g., for a new open-source610

benchmark).611

• The instructions should contain the exact command and environment needed to run to612

reproduce the results. See the NeurIPS code and data submission guidelines (https:613

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.614

• The authors should provide instructions on data access and preparation, including how615

to access the raw data, preprocessed data, intermediate data, and generated data, etc.616

• The authors should provide scripts to reproduce all experimental results for the new617

proposed method and baselines. If only a subset of experiments are reproducible, they618

should state which ones are omitted from the script and why.619

• At submission time, to preserve anonymity, the authors should release anonymized620

versions (if applicable).621

• Providing as much information as possible in supplemental material (appended to the622

paper) is recommended, but including URLs to data and code is permitted.623

6. Experimental setting/details624

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-625

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the626

results?627

Answer: [Yes]628

Justification: Yes, experiments are carefully outlined and the appendix provides training629

details so that data can be preprocessed in a deterministic manner. Training methods are630

also carefully described for each case study.631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• The experimental setting should be presented in the core of the paper to a level of detail634

that is necessary to appreciate the results and make sense of them.635

• The full details can be provided either with the code, in appendix, or as supplemental636

material.637

7. Experiment statistical significance638

Question: Does the paper report error bars suitably and correctly defined or other appropriate639

information about the statistical significance of the experiments?640

Answer: [Yes]641

Justification: The paper reports plots with exact experimental values, so many results do not642

require error bars. However, derivations and methods are provided carefully as so to allow643

one to understand the statistical significance of the experiments.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-647

dence intervals, or statistical significance tests, at least for the experiments that support648

the main claims of the paper.649

• The factors of variability that the error bars are capturing should be clearly stated (for650

example, train/test split, initialization, random drawing of some parameter, or overall651

run with given experimental conditions).652

• The method for calculating the error bars should be explained (closed form formula,653

call to a library function, bootstrap, etc.)654

• The assumptions made should be given (e.g., Normally distributed errors).655

• It should be clear whether the error bar is the standard deviation or the standard error656

of the mean.657

• It is OK to report 1-sigma error bars, but one should state it. The authors should658

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis659

of Normality of errors is not verified.660

• For asymmetric distributions, the authors should be careful not to show in tables or661

figures symmetric error bars that would yield results that are out of range (e.g. negative662

error rates).663

• If error bars are reported in tables or plots, The authors should explain in the text how664

they were calculated and reference the corresponding figures or tables in the text.665

8. Experiments compute resources666

Question: For each experiment, does the paper provide sufficient information on the com-667

puter resources (type of compute workers, memory, time of execution) needed to reproduce668

the experiments?669

Answer: [Yes]670

Justification: Compute specifications are identical to those of the paper [Lin et al., 2024],671

however we provide exact compute resources we used.672

Guidelines:673

• The answer NA means that the paper does not include experiments.674

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,675

or cloud provider, including relevant memory and storage.676

• The paper should provide the amount of compute required for each of the individual677

experimental runs as well as estimate the total compute.678

• The paper should disclose whether the full research project required more compute679

than the experiments reported in the paper (e.g., preliminary or failed experiments that680

didn’t make it into the paper).681

9. Code of ethics682

Question: Does the research conducted in the paper conform, in every respect, with the683

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?684

Answer: [Yes]685

Justification: We reviewed and follow all code of conduct guidelines.686

Guidelines:687

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.688

• If the authors answer No, they should explain the special circumstances that require a689

deviation from the Code of Ethics.690

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-691

eration due to laws or regulations in their jurisdiction).692

10. Broader impacts693

Question: Does the paper discuss both potential positive societal impacts and negative694

societal impacts of the work performed?695

Answer: [Yes]696
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Justification: We situate the work in the broader context of biosafety regulation and discuss697

how erasure could be both used for positive (toxic and prion) erasure but also degrade model698

quality (in the case of alpha helices).699

Guidelines:700

• The answer NA means that there is no societal impact of the work performed.701

• If the authors answer NA or No, they should explain why their work has no societal702

impact or why the paper does not address societal impact.703

• Examples of negative societal impacts include potential malicious or unintended uses704

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations705

(e.g., deployment of technologies that could make decisions that unfairly impact specific706

groups), privacy considerations, and security considerations.707

• The conference expects that many papers will be foundational research and not tied708

to particular applications, let alone deployments. However, if there is a direct path to709

any negative applications, the authors should point it out. For example, it is legitimate710

to point out that an improvement in the quality of generative models could be used to711

generate deepfakes for disinformation. On the other hand, it is not needed to point out712

that a generic algorithm for optimizing neural networks could enable people to train713

models that generate Deepfakes faster.714

• The authors should consider possible harms that could arise when the technology is715

being used as intended and functioning correctly, harms that could arise when the716

technology is being used as intended but gives incorrect results, and harms following717

from (intentional or unintentional) misuse of the technology.718

• If there are negative societal impacts, the authors could also discuss possible mitigation719

strategies (e.g., gated release of models, providing defenses in addition to attacks,720

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from721

feedback over time, improving the efficiency and accessibility of ML).722

11. Safeguards723

Question: Does the paper describe safeguards that have been put in place for responsible724

release of data or models that have a high risk for misuse (e.g., pretrained language models,725

image generators, or scraped datasets)?726

Answer: [NA] .727

Justification: The paper poses no such risks.728

Guidelines:729

• The answer NA means that the paper poses no such risks.730

• Released models that have a high risk for misuse or dual-use should be released with731

necessary safeguards to allow for controlled use of the model, for example by requiring732

that users adhere to usage guidelines or restrictions to access the model or implementing733

safety filters.734

• Datasets that have been scraped from the Internet could pose safety risks. The authors735

should describe how they avoided releasing unsafe images.736

• We recognize that providing effective safeguards is challenging, and many papers do737

not require this, but we encourage authors to take this into account and make a best738

faith effort.739

12. Licenses for existing assets740

Question: Are the creators or original owners of assets (e.g., code, data, models), used in741

the paper, properly credited and are the license and terms of use explicitly mentioned and742

properly respected?743

Answer: [Yes]744

Justification: All code is our own, or cited.745

Guidelines:746

• The answer NA means that the paper does not use existing assets.747

• The authors should cite the original paper that produced the code package or dataset.748
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• The authors should state which version of the asset is used and, if possible, include a749

URL.750

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.751

• For scraped data from a particular source (e.g., website), the copyright and terms of752

service of that source should be provided.753

• If assets are released, the license, copyright information, and terms of use in the754

package should be provided. For popular datasets, paperswithcode.com/datasets755

has curated licenses for some datasets. Their licensing guide can help determine the756

license of a dataset.757

• For existing datasets that are re-packaged, both the original license and the license of758

the derived asset (if it has changed) should be provided.759

• If this information is not available online, the authors are encouraged to reach out to760

the asset’s creators.761

13. New assets762

Question: Are new assets introduced in the paper well documented and is the documentation763

provided alongside the assets?764

Answer: [Yes]765

Justification: Code and datasets will be released after double-blind submission. Training766

information is all disclosed.767

Guidelines:768

• The answer NA means that the paper does not release new assets.769

• Researchers should communicate the details of the dataset/code/model as part of their770

submissions via structured templates. This includes details about training, license,771

limitations, etc.772

• The paper should discuss whether and how consent was obtained from people whose773

asset is used.774

• At submission time, remember to anonymize your assets (if applicable). You can either775

create an anonymized URL or include an anonymized zip file.776

14. Crowdsourcing and research with human subjects777

Question: For crowdsourcing experiments and research with human subjects, does the paper778

include the full text of instructions given to participants and screenshots, if applicable, as779

well as details about compensation (if any)?780

Answer: [NA] .781

Justification: The paper does not involve crowdsourcing nor research with human subjects.782

Guidelines:783

• The answer NA means that the paper does not involve crowdsourcing nor research with784

human subjects.785

• Including this information in the supplemental material is fine, but if the main contribu-786

tion of the paper involves human subjects, then as much detail as possible should be787

included in the main paper.788

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,789

or other labor should be paid at least the minimum wage in the country of the data790

collector.791

15. Institutional review board (IRB) approvals or equivalent for research with human792

subjects793

Question: Does the paper describe potential risks incurred by study participants, whether794

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)795

approvals (or an equivalent approval/review based on the requirements of your country or796

institution) were obtained?797

Answer: [NA]798

The paper does not involve crowdsourcing nor research with human subjects.799

Guidelines:800
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• The answer NA means that the paper does not involve crowdsourcing nor research with801

human subjects.802

• Depending on the country in which research is conducted, IRB approval (or equivalent)803

may be required for any human subjects research. If you obtained IRB approval, you804

should clearly state this in the paper.805

• We recognize that the procedures for this may vary significantly between institutions806

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the807

guidelines for their institution.808

• For initial submissions, do not include any information that would break anonymity (if809

applicable), such as the institution conducting the review.810

16. Declaration of LLM usage811

Question: Does the paper describe the usage of LLMs if it is an important, original, or812

non-standard component of the core methods in this research? Note that if the LLM is used813

only for writing, editing, or formatting purposes and does not impact the core methodology,814

scientific rigorousness, or originality of the research, declaration is not required.815

Answer: [NA]816

Justification: Core method development in this research does not involve LLMs as any817

important, original, or non-standard components.818

Guidelines:819

• The answer NA means that the core method development in this research does not820

involve LLMs as any important, original, or non-standard components.821

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)822

for what should or should not be described.823
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