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ABSTRACT

Visuo-tactile sensors aim to emulate human tactile perception, enabling robots to
precisely understand and manipulate objects. Over time, numerous meticulously
designed visuo-tactile sensors have been integrated into robotic systems, aiding
in completing various tasks. However, the distinct data characteristics of these
low-standardized visuo-tactile sensors hinder the establishment of a powerful tac-
tile perception system. We consider that the key to addressing this issue lies in
learning unified multi-sensor representations, thereby integrating the sensors and
promoting tactile knowledge transfer between them. To achieve unified represen-
tation of this nature, we introduce TacQuad, an aligned multi-modal multi-sensor
tactile dataset from four different visuo-tactile sensors, which enables the explicit
integration of various sensors. Recognizing that humans perceive the physical en-
vironment by acquiring diverse tactile information such as texture and pressure
changes, we further propose to learn unified multi-sensor representations from
both static and dynamic perspectives. By integrating tactile images and videos, we
present UltraTouch, a unified static-dynamic multi-sensor representation learning
framework with a multi-level structure, aimed at both enhancing comprehensive
perceptual abilities and enabling effective cross-sensor transfer. This multi-level
architecture captures pixel-level details from tactile data via masked modeling and
enhances perception and transferability by learning semantic-level sensor-agnostic
features through multi-modal alignment and cross-sensor matching. We provide
a comprehensive analysis of multi-sensor transferability, and validate our method
on various offline datasets and in the real-world pouring task. Experimental re-
sults show that our method outperforms existing methods, exhibits outstanding
static and dynamic perception capabilities across various sensors.

1 INTRODUCTION

Tactile perception is an important sense through which humans perceive the physical world. For
many years, researchers have been working to endow robots with human-like tactile perception
abilities through diverse tactile sensors (Liu et al., 2022; Maiolino et al., 2013; Yuan et al., 2017).
Among them, with high resolution comparable to human touch, various types of visuo-tactile sen-
sors have garnered widespread attention (Yuan et al., 2017; Donlon et al., 2018; Lambeta et al.,
2020). Many studies have attempted to use robots equipped with visuo-tactile sensors to perform
manipulation tasks such as grasping (Xu et al., 2024) and inserting (Li et al., 2014).

However, due to the low standardization of visuo-tactile sensors, different sensors may exhibit dis-
crepancies in perceiving the same tactile information. This variability poses challenges to building
precise robotic tactile systems, as sensor-specific data collection (Yang et al., 2022; Gao et al.,
2023) and model training limit the data scale and diversity for the model of a single sensor and lead
to suboptimal perception capabilities. To address this issue, some initial efforts have explored us-
ing multi-sensor data collaboratively to enhance cross-sensor knowledge transferability (Yang et al.,
2024; Zhao et al., 2024). Nevertheless, the lack of aligned multi-sensor data has hindered these at-
tempts from effectively integrating disparate sensors and constructing a unified representation space.
Considering this data issue, Rodriguez et al. (2024) collected a dual-sensor paired dataset to enable
cross-sensor generation. However, their focus on specific manipulation tasks limited the variety
of sensors and collected objects. Moreover, they overlooked the potential benefits of paired multi-
modal data for enhancing sensor transferability and achieving comprehensive tactile perception.
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To enhance support for multi-sensor integration, we collect TacQuad, an aligned multi-modal multi-
sensor tactile dataset containing 72,606 contact frames, using four different visuo-tactile sensors.
We select these representative sensors from publicly available sensors, self-made sensors, and force
field sensors to ensure diversity. To balance the trade-off between the cost of data collection and the
accuracy of pairing, we collect fine-grained spatio-temporal aligned data on a calibration platform,
while larger-scale coarse-grained spatial aligned data is acquired through the handheld collection, as
shown in Figure 1. Additionally, we capture the objects being touched using a camera and annotate
tactile attribute descriptions for each collection, forming a comprehensive touch-vision-language
dataset. This dataset utilizes paired multi-modal data as a bridge to mitigate the impact of sensor
variability on the understanding of tactile semantic features, and enables the explicit integration of
sensors into a unified multi-sensor space for effective knowledge transfer between sensors.

Building on this solid foundation, we further revisit the challenge of learning unified multi-sensor
representations: How can we obtain unified multi-sensor representations adaptable to a wide array
of tasks? We recognize that the human tactile perception is a combination of static and dynamic
processes, as humans derive comprehensive tactile perception from multiple types of information
such as texture, sliding, and pressure changes. Drawing on this insight, we propose learning unified
representations from both static and dynamic perspectives to accommodate a range of tasks.

To obtain multi-sensor representations of this nature, we introduce UltraTouch, a unified static-
dynamic multi-sensor tactile representation learning framework. This framework integrates the input
forms of tactile images and videos, collectively utilizing them to reinforce the model’s abilities to
perceive both static properties and dynamic changes. Moreover, we design a multi-level architecture
to comprehensively strengthen the model’s capabilities for capturing pixel-level tactile details and
semantic-level sensor-agnostic features. Specifically, we utilize masked modeling (He et al., 2022;
Tong et al., 2022) to maximize the use of multi-sensor data for learning fine-grained, pixel-level
details. Subsequently, we conduct multi-modal aligning and a novel cross-sensor matching task to
understand semantic-level tactile properties of objects across different sensors and extract sensor-
agnostic features. We aim for the multi-sensor representations to share a common space and cluster
by the tactile information of the object they represent, thereby reducing the gap between sensors.
To further promote knowledge transfer across multiple sensors, we propose randomly replacing the
sensor-specific tokens (Yang et al., 2024) with universal sensor tokens during training. This strategy
ensures the model maintains its ability to process and perceive tactile data across various sensors,
while also providing knowledge from all seen sensors for generalization to unseen sensors.

We conduct both quantitative and qualitative experiments to analyze the transferability of multi-
sensor data and assess the impact of our framework on the multi-sensor representation space. Build-
ing on this, we comprehensively evaluate the static and dynamic tactile perception capabilities of Ul-
traTouch across various tactile datasets and through a real-world experiment: fine-grained pouring.
The experimental results demonstrate the static and dynamic perception abilities and cross-sensor
transferability of UltraTouch. We hope the approach of learning unified multi-sensor representa-
tions from both static and dynamic perspectives will establish a standardized learning paradigm for
visuo-tactile perception and further inspire research in multi-sensor representation learning.

2 RELATED WORK

Multi-Source Learning. Learning from multi-source data with greater scale and diversity is ex-
pected to enhance the model’s performance and generalization, but faces challenges in integrating
the representation spaces across data sources. Researchers have found that multi-source models
often struggle to capture a unified representation suffering from the discrepancies between data
sources (Glorot et al., 2011; Zhao et al., 2019). Contrastive learning (Wang et al., 2022b; Zhao et al.,
2023) is proposed to learn language-agnostic representations for multi-source language training,
while cycle consistency loss (Zhu et al., 2017; Kim et al., 2022) aligns target domain distributions in
multi-source image generation. Similarly, to integrate multi-source tactile data from different sen-
sors, techniques such as multi-sensor joint training (Zhao et al., 2024), multi-modal alignment (Yang
et al., 2024), and cross-sensor generation (Rodriguez et al., 2024) have emerged. However, these
methods overlook the benefits of jointly utilizing multi-modal data and aligned multi-sensor data
to bridge the sensor gap. In this work, we collect an aligned multi-modal multi-sensor dataset and
propose learning unified multi-sensor representations based on it.
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Figure 1: TacQuad: an aligned multi-modal multi-sensor tactile dataset from four visuo-tactile
sensors. We select GelSight Mini Inc. and DIGIT Lambeta et al. (2020) from publicly available
sensors, DuraGel Zhang et al. (2024) from self-made sensors, and Tac3D Zhang et al. (2022) from
force field sensors for diversity. There is a noticeable gap between the data from these sensors.
We use the four sensors to touch the same position on the same object to obtain aligned data. To
maximize aligned data collection, we use two methods to gather subsets with different alignment
accuracy. We collect fine-grained spatio-temporal aligned data on a calibration platform, while
larger-scale coarse-grained spatial aligned data is acquired through handheld collection.

Visuo-tactile Perception. Visuo-tactile sensors have garnered widespread attention due to their
high resolution (Yuan et al., 2017; Donlon et al., 2018; Lambeta et al., 2020; Zhang et al., 2024).
Nowadays, many works utilize visuo-tactile sensors to capture contact deformations, enabling the
completion of dexterous manipulation such as dense packing (Li et al., 2022), grasping (Xu et al.,
2024), and small parts insertion (Li et al., 2014). In addition to these tasks requiring dynamic tactile
perception, visuo-tactile sensors are also used in static tasks such as material classification (Yang
et al., 2022) and shape reconstruction (Gao et al., 2022b). However, due to the low standardization
of visual-tactile sensors, these methods fail to leverage larger and more diverse data from other
sensors and lack sensor transferability. In this work, we propose learning a unified multi-sensor
representation from both static and dynamic perspectives.

Representation Learning. Representation learning has achieved remarkable success in improving
model generalization in various fields. Techniques like BERT (Devlin, 2018) and masked autoen-
coder (MAE) (He et al., 2022) have enhanced the model’s performance across various downstream
applications. With the rise of multi-modal learning, representation learning has expanded its im-
pact across fields. Vision-language pre-training (Radford et al., 2021) has seen tremendous success,
and more modalities, including audio (Guzhov et al., 2022; Girdhar et al., 2023), touch (Yang et al.,
2024), and 3D point clouds (Xue et al., 2023), are being integrated. Among them, tactile information
from visuo-tactile sensors can be expressed as images, allowing vision-related techniques to make
strides in touch. Applying MAE (Cao et al., 2023) or multi-modal aligning (Yang et al., 2024; Cheng
et al., 2024) has enhanced tactile model capabilities. However, these efforts have not explored how
to obtain a unified visuo-tactile representation suitable for various tasks. Our research addresses this
challenge from both static and dynamic perspectives, enhancing cross-sensor transferability across
various tasks through semantic-level multi-modal aligning and cross-sensor matching.

3 ALIGNED MULTI-MODAL MULTI-SENSOR TACTILE DATASET

The low standardization of visuo-tactile sensors and the gap between multi-sensor data have resulted
in insufficient data scale for individual sensors and poor cross-sensor transferability of tactile mod-
els. Rodriguez et al. (2024) has made an initial attempt to address it by collecting a dataset with
32,256 pairs of tactile images from two sensors with a limited variety of objects for specific manip-
ulation tasks. It does not consider tactile properties such as material and hardness, and overlooks the
potential to enhance cross-sensor transfer capabilities through multi-modal information.

In this work, we present a more comprehensive solution to this problem by providing multi-sensor
aligned data with text and visual images, explicitly enabling the model to learn semantic-level tactile
attributes and sensor-agnostic features to form a unified multi-sensor representation space through
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Figure 2: Overview of UltraTouch. Our framework integrates static tactile images and dynamic tac-
tile videos, aiming to learn a unified multi-sensor representation suitable for various tasks. Through
a multi-level architecture, we employ masked modeling to learn pixel-level tactile details, and use
multi-modal aligning and cross-sensor matching to understand semantic-level sensor-agnostic tac-
tile properties. We also use universal sensor tokens to integrate and transfer sensor information.

data-driven approaches. We collect TacQuad, an aligned multi-modal multi-sensor tactile dataset
with a greater variety of objects, larger data volume, and more types of sensors. To ensure sensor
diversity, we select GelSight Mini (Inc.) and DIGIT (Lambeta et al., 2020) from publicly available
sensors, DuraGel (Zhang et al., 2024) from self-made sensors, and Tac3D (Zhang et al., 2022) from
force field sensors for data collection. The first three sensors are used to collect tactile images,
while the Tac3D is used to capture deformation force fields, reflecting more comprehensive physical
information about the touches. During the data collection, we sequentially use four different sensors
to touch the same position of the same object to obtain aligned data. However, considering collecting
fine-grained aligned tactile data is very costly, to collect data on a larger scale while ensuring as much
data pairing as possible, we use both coarse and fine methods to collect aligned data:

Fine-grained spatio-temporal aligned data. We fix the four sensors side by side in a rectangular
container and connect them to the movable end of a calibration platform. We use a program to
control the four sensors to press the same position on the same object in sequence, sharing the same
speed and depth. Consequently, we obtain a set of continuous spatio-temporally aligned contact
frames. Due to the high requirement of precision, the process is time-consuming, thus we try our
best to collect 30 sets of aligned data across 25 objects. This portion of the data contains a total
of 17,524 contact frames, which can be used for fine-grained tasks such as cross-sensor generation.
See more details for the fine-grained data collection in Sec. A.4 of the Appendix.

Coarse-grained spatial aligned data. We collect data in a handheld manner by sequentially press-
ing the same location on the same object with four sensors. While pressing, we introduce some
twisting motions to the handheld sensors to better simulate the authentic dynamic touch experience
of humans. This method allows us to obtain a larger amount of aligned data in a short time. Using
this approach, we collect 151 sets of aligned data from 99 objects, including both indoor and outdoor
scenes. This portion of the data contains a total of 55,082 contact frames.

Each tactile frame in the dataset has a paired visual image and tactile attribute descriptions that
generated using GPT-4o and manually corrected. We aim to bridge the gap between sensors and
achieve a more comprehensive tactile perception by aligning with the multi-modal data. As a result,
we obtain an aligned multi-sensor multi-modal tactile dataset, as shown in Figure 1.

4 METHOD

In this section, we introduce UltraTouch, a unified multi-sensor tactile representation learning frame-
work from the perspectives of both static and dynamic perception, as shown in Figure 2. We inte-
grate the input format of tactile images and videos (Sec. 4.1) and focus on learning both fine-grained
pixel-level details for refined tasks (Sec. 4.2) and semantic-level sensor-agnostic features for under-
standing properties (Sec. 4.3) and building unified space (Sec. 4.4) by a multi-level structure. We
also propose universal sensor tokens for better knowledge transfer.
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4.1 UNIFIED INPUT FORMAT FOR STATIC AND DYNAMIC TACTILE PERCEPTION

In daily life, human tactile perception includes both static and dynamic processes. A brief touch
allows quick recognition of properties like material and texture, while tasks such as unlocking a
lock require continuous dynamic perception. These two types of perception complement each other,
enabling us to comprehensively understand the physical surroundings and engage in a variety of
interactions. This inspires us to learn unified multi-sensor representation from the perspective of
combining static and dynamic perception, using tactile images and videos respectively.

Given a static tactile image I ∈ R1×H×W×3 and a dynamic tactile video clip V ∈ RF×H×W×3, we
consider tactile images as single-frame static videos to unify tactile images and videos. Concretely,
we replicate I along the time axis for F times, and use a unified 4-D tensor XT ∈ RF×H×W×3

to represent both I and V as Girdhar et al. (2022; 2023), where F is the number of frames and
H,W denote the shape of images. We then process XT ∈ RF×H×W×3 into spatio-temporal tokens
z ∈ RN×d through a shared patch projection layer, where N is the length of tokens and d represents
the feature dimension. By unifying the processing of images and videos in this manner, our approach
integrates tactile images and video input, enhancing the model’s ability to comprehend both static
and dynamic information, and endows the model with the potential to accomplish various tasks.

4.2 MASKED MODELING: LEARNING PIXEL-LEVEL DETAILS

Visuo-tactile images are fine-grained data with pixel-level details of subtle tactile deformations and
continuous changes during dynamic processes, especially for refined perception tasks. To enhance
the fine-grained perception capabilities of the tactile representation model, we employ the masked
autoencoder technique (He et al., 2022; Tong et al., 2022), compelling the model to capture pixel-
level details across multiple sensors. Concretely, we randomly mask the tokens of both tactile images
and videos with a masking ratio ρ, and build a decoder to obtain the reconstructed static images Î
and dynamic videos V̂ . The corresponding loss function LS

rec and LD
rec are mean squared error

(MSE) loss between the original masked tokens and reconstructed ones in the pixel space:

LS
rec =

1

|ΩM |
∑

p∈ΩM

|Î(p)− I(p)|2, LD
rec =

1

F |ΩM |

F∑
f

∑
p∈ΩM

|V̂f (p)− Vf (p)|2, (1)

where p is the token index, ΩM is the set of masked tokens and Vf is the f -th frame in the video V .
We use masked modeling to learn fine-grained tactile deformation features at the pixel level, as well
as the temporal dynamics of tactile changes.

To further enhance the model’s understanding of continuous deformation changes, we introduce an
additional task of predicting the next frame VF+1 while reconstructing the dynamic video V . The
loss function LD

pred is MSE loss between the original frame VF+1 and the predicted frame V̂F+1:

LD
pred =

1

N

N∑
p

|V̂F+1(p)− VF+1(p)|2. (2)

4.3 MULTI-MODAL ALIGNING: UNDERSTANDING SEMANTIC-LEVEL PROPERTIES

After obtaining tactile representations with fine-grained perceptual details via masked modeling,
we aim to further understand semantic-level tactile properties and use paired multi-modal data as
a bridge to narrow the gap between sensors. Therefore, we propose using multi-modal aligning,
which binds data from various sensors with paired modalities for a more comprehensive semantic-
level perception and reduce perceptual differences between sensors. However, differences in data
collection scenarios across various datasets (e.g., simulation vs. reality) make simple vision-tactile
alignment less effective in bridging sensor gaps. Therefore, we select the text modality, which
consistently describes tactile attributes across datasets, as an anchor to align touch, vision, and text
modalities. Since tri-modal tactile datasets are rare, with most containing only vision-touch pairs, we
explore two strategies: automatically expanding the amount of text modality pairings and designing
aligning methods that are compatible with missing modalities. We first select representative datasets
for each sensor and then use GPT-4o to generate or expand the text modality within these datasets.
Through this method, we create new text pairs for 1.4 million samples across the four datasets.

Based on these extensive tactile datasets, we develop a modality-missing-aware touch-vision-
language contrastive learning method to leverage the paired data between touch and other modalities

5
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Figure 3: Comparison with existing multi-modal aligning methods. Combining the cross-sensor
matching task, our method not only uses multi-modal data to bridge the gap between sensors, but
also explicitly clusters representations of the same position on the same object from different sensors
together, constructing a unified multi-sensor representation space.

for alignment. We maximize the use of paired data by selecting the largest subset for each modality
combination within the batch for multi-modal aligning. Considering a pair of uni-modal represen-
tations (xT , xV , xL) derived from uni-modal encoders, where xT ∈ Rd is the touch representation,
xV ∈ Rd ∪ ∅ is the vision representation and xL ∈ Rd ∪ ∅ is the text representation. We then
perform multi-modal alignment (Radford et al., 2021) within the batch as:

LT→V = − 1

|ΩV |
∑
i∈ΩV

log
exp(x⊤

T,i · xV,i/τ)∑
j∈ΩV

exp(x⊤
T,i · xV,j/τ)

,

LT→L = − 1

|ΩL|
∑
i∈ΩL

log
exp(x⊤

T,i · xL,i/τ)∑
j∈ΩL

exp(x⊤
T,i · xL,j/τ)

,

LV→L = − 1

|ΩV ∩ ΩL|
∑

i∈ΩV ∩ΩL

log
exp(x⊤

V,i · xL,i/τ)∑
j∈Ωv∩ΩL

exp(x⊤
V,i · xL,j/τ)

,

(3)

where B is the batchsize, ΩV ,ΩL are sets of indices for the samples containing vision and text, and
τ is the scalar temperature. This approach maximizes the use of paired data with missing modalities
by aligning the sample intersections between modalities. The computation of LV→T , LL→T and
LL→V is similar but in the opposite direction. We then obtain the joint aligning loss as:

Lalign =
αTV

2
(LT→V + LV→T ) +

αTL

2
(LT→L + LL→T ) +

αV L

2
(LV→L + LL→V ), (4)

where αTV , αTL and αV L are hyper-parameters to control the alignment strength.

4.4 CROSS-SENSOR MATCHING: EXTRACTING SENSOR-AGNOSTIC FEATURES

To fully utilize multi-sensor aligned data and build unified space by clustering multi-sensor tactile
representations of the same object, we introduce a novel cross-sensor matching task. In this task, the
model needs to determine whether two tactile images or videos are collected from the same position
on the same object. We aim to cluster representations of the same tactile information from different
sensors while performing multi-modal aligning, thereby enhancing the learning of sensor-agnostic
features and forming a unified multi-sensor representation space, as shown in Figure 3.

We treat data collected from the same object and position by two different sensors as a positive pair,
and data from different objects or positions as a negative pair. The model is trained to distinguish
between positive and negative pairs. For each image and video sample XT in our TacQuad, we
randomly select one sample from the same object at the same location captured by another sensor as
the positive sample X+

T , and choose another sample from any dataset of any other object or location
as a negative sample X−

T . We element-wisely multiply the touch representation xT with x+
T and x−

T ,
and then input each result into an MLP to compute the matching scores m+ and m−:

m+ = MLP (xT · x+
T ), m

− = MLP (xT · x−
T ), (5)

where xT , x+
T and x−

T are the representations of XT , X+
T and X−

T . The loss function Lmatch is a
Binary Cross Entropy Loss similar to Lin et al. (2020):

Lmatch = −(y+ log(m+) + (1− y+) log(1−m−))− (y− log(m−) + (1− y−) log(1−m−)) (6)

This task requires the model to distinguish features with the same semantics from different sensors,
thus explicitly clustering representations with the same object information form a unified multi-
sensor representation space. As shown in Figure 3, UltraTouch, incorporating this task, differs from

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

existing multi-modal aligning efforts. The construction of this unified multi-sensor representation
space can explicitly reduce the gap between sensors and aid in generalizing to unseen sensors.

As both this task and multi-modal aligning focus on semantic-level features, we combine them as
the second stage, with masked modeling as the first stage. This multi-level training approach allows
us to develop unified multi-sensor representations adaptable to tasks of varying granularities.

4.5 UNIVERSAL SENSOR TOKEN

In addition to building a multi-sensor representation space, we aim to extract and store information
related to each sensor to aid the understanding of input data. More importantly, we want to integrate
and effectively transfer this information when generalizing to new sensors. Using sensor-specific
tokens is a method for extracting sensor-specific information, but this approach cannot fully transfer
information from all seen sensors when generalizing to new sensors (Yang et al., 2024).

Therefore, we propose using universal sensor tokens to integrate and store information related to
various sensors, thereby maximizing the utilization of multi-sensor data when generalizing to new
sensors. During training, we randomly replace the sensor-specific tokens with the universal sensor
tokens, expecting them to aid in understanding input data from various sensors. Specifically, we
introduce a set of learnable sensor tokens {sk}Kk=1 ∪ su, where K is the number of sensor types,
sk ∈ RL×d are the sensor-specific tokens for the k-th sensor, su ∈ RL×d are universal sensor tokens
and L is the number of sensor tokens for each sensor. When inputting the tactile token sequence z
from the k-th sensor into the encoder Φenc to obtain its representation xT , we randomly select one
from sk and su to concatenate with z, as follows:

s = i · su + (1− i) · sk, i ∼ B(pu),

xT = Φenc(z, s),
(7)

where pu is the probability of using universal sensor tokens su. During inference, we consistently
use universal sensor tokens for data from new sensors. We transfer all available sensor information
through these universal sensor tokens to aid in understanding new sensors.

4.6 TRAINING PARADIGM

Our framework has a multi-level structure, with the training of two stages conducted sequentially.
In the first stage, we simultaneously perform the reconstruction of static tactile images and dynamic
tactile videos, as well as the unique next frame prediction task for tactile videos. The loss for the
first stage Lstage1 is as follows:

Lstage1 = LS
rec + LD

rec + LD
pred. (8)

In the second stage, we continue to use both tactile images and videos, and simultaneously perform
multi-modal aligning and cross-sensor matching tasks. Hence, the loss function for the second stage
is the sum of the losses from these two tasks:

Lstage2 = Lalign + λLmatch, (9)

where λ is a hyper-parameter controlling the weight of cross-sensor matching task. From both static
and dynamic perspectives, we employ this multi-level framework to comprehensively learn unified
multi-sensor representations for tasks requiring fine-grained perception and semantic understanding.

5 EXPERIMENTS

In this section, we explore the answers to the following questions through quantitative and qualitative
experiments: (Q1) How much benefit does the data of each sensor provide when it is integrated?
(Q2) What does the unified multi-sensor representation space constructed by UltraTouch look like?
(Q3) Is the unified multi-sensor representation more advantageous in various static and dynamic
perception tasks? We analyze Q1 in Section 5.2, expolore Q2 in Section 5.3, and answer Q3 through
comparisons with existing methods in Sections 5.4, 5.5 and 5.6.

5.1 DATASET AND BASELINES

We use a total of 9 datasets for training, including: Touch and Go (TAG) (Yang et al., 2022), Vis-
Gel (Yang et al., 2023), Cloth (Yuan et al., 2018), ObjectFolder Real (OF Real) (Gao et al., 2023) ,
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Table 1: The impact of adding data from multiple sensors on the seen dataset (TAG), the unseen
dataset from seen sensors (Feel), and the unseen dataset from unseen sensors (OF 1.0 and OF 2.0).

Tactile Training Data Data TAG Feel OF 1.0 OF 2.0
Volume Material Grasp Material Material

No Tactile Pre-training (CLIP) / 52.96 72.37 41.00 73.16

TAG, VisGel, Cloth 996k 83.55 (↑30.59) 79.12 (↑6.75) 46.12 (↑5.12) 75.10 (↑1.94)
TAG, VisGel, Cloth, OF Real 2161k 79.67 (↓3.88) 79.28 (↑0.16) 47.55 (↑1.43) 75.53 (↑0.43)
TAG, VisGel, Cloth, OF Real, 2388k 79.61 (↓0.06) 79.10 (↓0.18) 48.00 (↑0.45) 75.57 (↑0.04)TVL, SSVTP, YCB-Slide
TAG, VisGel, Cloth, OF Real, 2427k 79.70 (↑0.09) 79.40 (↑0.30) 48.75 (↑0.75) 75.66 (↑0.09)TVL, SSVTP, YCB-Slide, Octopi

CLIP
UltraTouch
(MAE Only)

UltraTouch
(MAE + Align)

UltraTouch
(MAE + Align + Match)

GelSight Mini DIGIT DuraGel

Figure 4: The impact of components in UltraTouch on the multi-sensor representation space.
We use t-SNE to visualize the representations on the unused fine-grained subset of TacQuad, starting
with CLIP and sequentially incorporating the modules. Each color represents a single touch, and
samples from three sensors that touch the same position are connected by dashed lines.

TVL (Fu et al., 2024), YCB-Slide (Suresh et al., 2023) and SSVTP (Kerr et al., 2022), Octopi (Yu
et al., 2024) and the coarse-grained subset of our TacQuad. We leverage the continual frames avail-
able in these datasets for dynamic perception. We also select four datasets: TAG, Feel (Calandra
et al., 2017), ObjectFolder 1.0 (Gao et al., 2022a), ObjectFolder 2.0 (Gao et al., 2022b) as the down-
stream datasets. We compare UltraTouch with several single-sensor models: VIT-LENS-2 (Lei
et al., 2024), TLV-Link (Cheng et al., 2024), and Omnibind (Lyu et al., 2024). We also compare
our method with the multi-sensor model UniTouch (Yang et al., 2024). We use the largest subset
of all data that meets the requirements of UniTouch and TLV-Link to train them, remarked as Uni-
Touch† and TLV-Link†. For the real-world dynamic perception task, we compare our method with a
multi-sensor model T3 (Zhao et al., 2024), which is trained on 3M data, more than UltraTouch. The
detailed dataset and baseline introduction are provided in Appendix A.1, A.2 and A.3.

5.2 SENSOR TRANSFERABILITY ANALYSIS (Q1)

Since we have integrated data from multiple sensors into unified representations, we aim to inves-
tigate the contributes of the knowledge transferred from each sensor’s data to downstream tasks.
Therefore, we incorporate data from GelSight, GelSlim (Donlon et al., 2018), DIGIT and GelSight
Mini into the training of UltraTouch to obtain four different models, and compare them across four
downstream tasks. As shown in Table 1, training with only GelSight data significantly improves
performance on downstream datasets for all sensors, compared to the CLIP model which has not
encountered any tactile data. This indicates that tactile representation pre-training is crucial and
transferable across new sensors. After sequentially integrating data from GelSlim, DIGIT, and Gel-
Sight Mini into the training, we observe performance improvements across the three unseen datasets,
with greater enhancements for unseen sensors than seen sensors. This suggests that the knowledge
from the data of GelSlim, DIGIT, and GelSight Mini can transfer to the GelSight and other sensors.

However, we also observe two interesting phenomena: (1) In the material classification task of the
seen dataset TAG, the model trained solely on GelSight data performs the best, while incorporating
data from more sensors leads to a performance drop. This is because TAG is included in the pre-
training data and integrating more data reduces the proportion of TAG data in pre-training. This
aligns with the CLIP paper’s finding that greater overlap between the downstream task dataset and
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Table 2: Evaluation of static perception capabilities on the seen sensor (GelSight). *Note that Feel
is seen for the corresponding UniTouch and UltraTouch models. ‡Note that original TLV-Link
uses frames after grasping which are much easier in Feel, whereas other models use frames during
grasping. UltraTouch achieves a result of 99.0 using frames after grasping.

Method Tactile Training Data Touch and Go Feel
Material Roughness Hardness Grasp

CLIP / 52.96 84.09 88.34 72.37
VIT-LENS-2 TAG 63.0 85.1 92.0 -

TLV-Link Touch100k 67.2 84.7 91.3 94.5‡
OmniBind TAG 67.45 - - -

UniTouch TAG, Feel*, YCB, OF 2.0 61.3 - - 82.3
TLV-Link† TAG, TVL, SSVTP, OF Real, TacQuad 74.12 85.94 94.18 76.97

UltraTouch TAG, Feel*, YCB, OF 2.0 82.74 86.01 94.24 87.17

UltraTouch TAG, visgel, Cloth, TVL, SSVTP, 80.82 86.74 94.68 80.53YCB-Slide, OF Real , Octopi, TacQuad

the pre-training dataset may improve performance. (2) Although the integrated data volume from
DIGIT is larger, the benefits are less compared to incorporating data from GelSight Mini. This may
suggest that the images from DIGIT differ more from the images of GelSight and other sensors than
the images from GelSight Mini do due to the hardware difference.

5.3 MULTI-SENSOR REPRESENTATION SPACE (Q2)

To verify whether UltraTouch clusters the representations with the same tactile information from
different sensors together as expected, we use t-SNE (Van der Maaten & Hinton, 2008) to visualize
the tactile representations. We extract one aligned contact frame from each sensor for the 30 touches
in the unused fine-grained subset of TacQuad. We input these samples into the CLIP model and the
UltraTouch model which gradually incorporates masked modeling, multi-modal aligning, and cross-
sensor matching, and visualize their representations in Figure 4. Due to the lack of exposure to tactile
images, CLIP struggles to distinguish the same tactile information from different sensors, instead
clustering samples by sensor. After introducing masked modeling, the representations become more
centralized within each sensor, as this method focuses on pixel-level tactile features, which are
sensor-dependent. However, this is not ideal for cross-sensor generalization, as we want multi-sensor
tactile representations to cluster based on the object’s tactile information they represent, minimizing
sensor gaps. After incorporating multi-modal aligning, the multi-sensor tactile representations begin
to blend and cluster by the objects they represent. This indicates that cross-sensor generalization is
beginning to emerge, but there is still a distinct tendency for sensor-specific clustering. With our
cross-sensor matching task, the representations from different sensors fully mix in a shared multi-
sensor space, clearly clustering by the object’s tactile information. This indicates that our model
possesses the ability to extract sensor-agnostic features, enabling generalization to unseen sensors.

5.4 STATIC PERCEPTION ON SEEN SENSORS (Q3)

To validate the benefit of unified multi-sensor representations in transferring knowledge from multi-
ple sensor data to seen sensors, we compared it to baselines on the seen dataset TAG and the unseen
dataset Feel from the GelSight sensor. Since UniTouch uses different training data, we also train
an UltraTouch model with the same data as UniTouch to ensure a fair comparison. As shown in
Table 2, the TLV-Link† trained with multi-sensor data outperforms all single-sensor models and
the original TLV-Link in all three tasks of TAG. The UltraTouch trained with the same data as Uni-
Touch, outperforms UniTouch in all four tasks. With the integration of dynamic perception and more
multi-sensor data, UltraTouch trained on all data achieved the best results in hardness and roughness
classification in TAG and comparable results to UniTouch in Feel, despite UniTouch having seen
this data. These demonstrate the static perception capabilities of our framework on seen sensors.
Notably, the original TLV-Link uses frames after grasping, while other models use frames during
grasping. UltraTouch achieves a result of 99.0 using frames after grasping. It is worth mentioning
that the UltraTouch trained with less data outperforms the one trained with all data in TAG material
classification, similar to Table 1, while exposure to more multi-sensor data enhances performance in
hardness and roughness classification. This is because these binary hardness and roughness classi-
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Table 3: Evaluation of static perception capabilities on unseen sensors (TACTO and Taxim) using
linear probing. *Note that OF 2.0 is seen for the corresponding UniTouch and UltraTouch models.

Method Tactile Training Data ObjectFolder 1.0 ObjectFolder 2.0
Material Material

CLIP / 41.00 73.16
UniTouch TAG, Feel, YCB-Slide, OF 2.0* 41.3 85.4

UniTouch† TAG, VisGel, TVL 47.25 75.29SSVTP, OF Real , TacQuad

UltraTouch TAG, Feel, YCB-Slide, OF 2.0* 46.50 85.87

UltraTouch TAG, VisGel, Cloth, TVL, SSVTP, 49.62 76.02YCB-Slide, OF Real , Octopi, TacQuad

Table 4: Evaluation on the real-world pouring task
using GelSight Mini.

Method Dynamic Mean Error (g) ↓
Perception Fine-tune Freeze

CLIP ✘ 5.22 49.1
T3 ✘ 2.33 9.74

UltraTouch ✘ 2.45 9.60
UltraTouch ✔ 1.56 8.22 Figure 5: Setup of real-world pouring task.

fication tasks are much simpler, and the tactile text descriptions in other datasets also include these
two binary attributes, which have less impact on the data distribution.

5.5 STATIC PERCEPTION ON UNSEEN SENSORS (Q3)

To verify the generalization of our method on unseen sensors, we compare it with the multi-sensor
models UniTouch and UniTouch† on two datasets from unseen sensors, OF 1.0 and OF 2.0. As
shown in Table 3, the UltraTouch trained on the same data as Unitouch outperforms it on both
datasets, demonstrating the static perception capability of our method across different sensors. Both
UniTouch and UltraTouch, perform better on the unseen OF 1.0 dataset, confirming that integrating
multi-sensor data aids generalization to unseen sensors. In addition, the UltraTouch trained on the
full dataset achieves the highest performance on the unseen OF 1.0, demonstrating that learning
sensor-agnostic semantic-level tactile features and constructing unified multi-sensor representation
space is an effective approach for cross-sensor transfer.

5.6 REAL WORLD DYNAMIC PERCEPTION (Q3)

To test the dynamic perception capability of our method in real-world object manipulation tasks, we
conduct experiments on a real-world task: fine-grained pouring, as shown in Figure 5. The detailed
task setup is located at A.7. We compare UltraTouch with a recent multi-sensor model T3 and use a
static-only UltraTouch model trained solely on tactile images as a baseline. Neither model includes
modules specifically designed for dynamic perception. We conduct 10 real-world test runs and
record the error between the poured mass and the target mass for each test. We then average the error
across the test runs to get the ”mean error” and use it as the metric, as shown in Table 4. When the
tactile encoder is frozen and only the policy network is fine-tuned, CLIP, which has not seen tactile
images, struggles with the task, highlighting the challenges of fine-grained dynamic perception. In
contrast, the static-only UltraTouch performed comparably to T3 which was trained on more data.
After integrating dynamic perception capabilities, UltraTouch achieved the best performance. This
demonstrates the importance of learning unified multi-sensor representations from both static and
dynamic perspectives for completing various tasks including real-world tasks.

6 CONCLUSION

In this paper, we collect TacQuad, an aligned multi-modal multi-sensor tactile dataset that enables
the explicit integration of various sensors. Based on this, we present UltraTouch, a unified multi-
sensor tactile representation learning framework from the perspectives of both static and dynamic
perception. We also explore the multi-sensor representation space and sensor transferability.
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Table 5: Training dataset statistics. The text modality in Touch and Go and ObjectFolder Real is
generated by GPT-4o. *Note that Cloth and YCB-Slide contain vision modality, but we intentionally
do not use it to demonstrate our method’s compatibility with modality absence. We only count the
number of contact frames used for training in each dataset.

Dataset Vision Text Video Sensor Size

Touch and Go (Yang et al., 2022) ✔ ✔ ✔ GelSight 250k
VisGel (Yang et al., 2023) ✔ ✘ ✔ GelSight 587k
Cloth (Yuan et al., 2018) ✘* ✘ ✔ GelSight 587k

TVL (Fu et al., 2024) ✔ ✔ ✔ DIGIT 39k
SSVTP (Kerr et al., 2022) ✔ ✔ ✘ DIGIT 4.5k

YCB-Slide (Suresh et al., 2023) ✘* ✘ ✔ DIGIT 183k
ObjectFolder Real (Gao et al., 2023) ✔ ✔ ✔ GelSlim 1165k

Octopi (Yu et al., 2024) ✘ ✔ ✔ GelSight Mini 39k

TacQuad ✔ ✔ ✔
GelSight, DIGIT, DuraGel 55kGelSight Mini

A APPENDIX

A.1 TRAINING DATASET STATISTICS

In this section, we provide a detailed presentation of the sensor type, modality pairing and data scale
of the datasets used during the training phase. We use a total of 9 datasets from 5 different sensors
for training, including: Touch and Go (TAG) (Yang et al., 2022), VisGel (Yang et al., 2023) and
Cloth (Yuan et al., 2018) from GelSight (Yuan et al., 2017); ObjectFolder Real (OF Real) (Gao et al.,
2023) from GelSlim (Donlon et al., 2018); TVL (Fu et al., 2024), YCB-Slide (Suresh et al., 2023)
and SSVTP (Kerr et al., 2022) from DIGIT (Lambeta et al., 2020); Octopi (Yu et al., 2024) from
GelSight Mini (Inc.); and the coarse-grained subset of our TacQuad from DIGIT, GelSight Mini and
DuraGel (Zhang et al., 2024). We filter the contact frames with tactile deformations by calculating
the difference between each tactile image and the corresponding background frame in these datasets.
Eventually, we extract a total of 2,481,703 tactile contact frames from these datasets for model
training. We also leverage the continual frames available in these datasets to train the model’s
dynamic perception capabilities. The detailed training dataset statistics are shown in Table 5. We
generate text descriptions for Touch and Go and ObjectFolder Real using GPT-4o. We also expand
the text descriptions in TVL, SSVTP and Octopi. We remove the text modality of the training samples
included in the test set of downstream tasks for fairness. It is worth saying that Cloth and YCB-Slide
contain vision modality originally, but we intentionally do not use it to demonstrate our method’s
compatibility with missing modalities.

A.2 DOWNSTREAM DATASETS

In this section, we provide a more detailed introduction to the downstream datasets. Specifically,
we compare the static perception capabilities of UltraTouch and the baselines on four downstream
datasets: TAG, Feel (Calandra et al., 2017), ObjectFolder 1.0 (OF 1.0) (Gao et al., 2022a) and
OjectFolder 2.0 (OF 2.0) (Gao et al., 2022b). TAG includes three tactile properties understanding
tasks: material, hardness, and roughness classification. Feel is a robotic dataset from GelSight
containing a grasp success prediction task. We follow the data split in (Yang et al., 2024; Cheng
et al., 2024) for Feel. ObjectFolder 1.0 and OjectFolder 2.0 are two simulated object datasets using
TACTO (Wang et al., 2022a) and Taxim (Si & Yuan, 2022). We use them as unseen datasets from
unseen sensors, and follow the data split in Yang et al. (2024).

A.3 BASELINES

In the static perception task, we compared UltraTouch with several recent single-sensor and multi-
sensor baselines. VIT-LENS-2 (Lei et al., 2024), TLV-Link (Cheng et al., 2024), and Omnibind (Lyu
et al., 2024) are three single-sensor models included, all of which conduct multi-modal alignment us-
ing data from GelSight. As for multi-sensor models, we compare our method with UniTouch (Yang
et al., 2024), which currently demonstrates the SOTA cross-sensor performance. We also intend
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to train UniTouch and TLV-Link using all available multi-sensor data for comparison. However,
since UniTouch requires touch-vision paired data and TLV-Link can only be trained on three-modal
paired data, we extract the largest subset of data that meets the requirements to train them, remarked
as UniTouch† and TLV-Link†.

In the real-world dynamic perception task, we compare with a recent multi-sensor model T3 (Zhao
et al., 2024). This model has been validated to have strong capabilities in completing manipulation
tasks. It is important to note that the amount of training data used by this model is approximately
3M, which is more than our UltraTouch. Additionally, since this model utilizes labels from various
downstream tasks during pre-training, comparing its static perception capabilities with other models
would be unfair. Therefore, we only use it in the dynamic perception task.

A.4 DETAILS FOR FINE-GRAINED DATA COLLECTION

In this section, we provide a more detailed introduction of the data collection process for the fine-
grained spatio-temporal aligned data. The calibration platform we built consists of three main parts:
a platform, a movable end effector, and a 3D-printed container that holds the sensor. The four
sensors are fixed side by side in the container. The movable end on our calibration platform can
be programmed to move at a specified speed to a designated position within the coordinate system
defined by the base. Therefore, as long as we pre-measure the relative positions of the centers of the
four sensor surfaces within the container and compensate for the relative positions during each set
of data collection, we can ensure that all four sensors make contact with the object from the same
initial position and at the same speed, thereby achieving both temporal and spatial alignment.

A.5 IMPLEMENTATION DETAILS

We base our encoders on OpenCLIP-Large (Cherti et al., 2023). For the tactile decoder, we use a
Vision Transformer (ViT) (Dosovitskiy et al., 2020) with 8 layers and a dimension of 512. We use
the AdamW (Loshchilov, 2017) optimizer with a learning rate of 2e-4. After a warm-up period of 1
epoch, we implement linear learning rate decay. For each tactile video clip, we use T = 3 frames.
We train both stages for 10 epochs on 4 NVIDIA A800 GPUs. We alternate between training
with tactile images and video clips throughout the entire training process. We use a mask ratio
ρ = 0.75. During the alignment, we use the text modality as the anchor, freezing the text encoder
while performing LoRA fine-tuning on the vision encoder. We set the alignment strength αTV =
αTL = 1.0 and αV L = 0.2, and set the weight of cross-sensor matching λ = 0.2. Following (Yang
et al., 2024), we use L = 5 sensor tokens for each type of sensor. In both stages, we set the
probability of using universal sensor tokens pu to increase linearly from 0 to 0.75.

A.6 GPT-4O ANNOTATION

In this work, we generate paired text descriptions of tactile properties for Touch and Go, Object-
Folder Real and our TacQuad. We input paired visual images and predefined text prompts into
GPT-4o to obtain text descriptions. We borrow the prompt from (Cheng et al., 2024) and make
appropriate adjustments. The prompt for Touch and Go and TacQuad is shown in Figure 6.

Specifically, because the ObjectFolder Real dataset has two camera views and some touch locations
or details may not be visible, we input two visual images and one tactile image simultaneously, with
clear indications in the prompt, as shown in Figure 7.

Since the TVL and SSVTP datasets only contain simple phrase-level tactile descriptions, we also use
GPT-4o to extend the text modality in both datasets. We input both visual images and the existing
text descriptions simultaneously, as shown in Figure 8.

After generating the annotations using GPT-4o, we conduct a simple and rough sampling check to
ensure the correctness. We find that as long as the model can correctly recognize the object, the
knowledge of object-related physical properties stored in the large model can effectively provide
accurate tactile annotations. Errors in the generated annotations may occur when an object’s cate-
gory is difficult to determine or when occlusions are present. However, such instances are relatively
uncommon.
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Focus on the object being touched by the handheld tactile sensor. Please provide a description of the 
tactile properties (exact location of the touch, materials at the contact point, texture, roughness level,
hardness level, and more than these properties), using a series of adjectives. Please do not use
ambiguous adjectives like ‘moderate’ or ‘medium’. Ensuring your response does not exceed 60
words, counting punctuation as separate words.

Output: The sensor touches a rough, splintered wooden bench with peeling paint. Textured surface,
visibly cracked, and fragmented. Hardness level high, unevenness significant, and the material at the
contact point is weathered, aged wood coated in deteriorating paint chips.

Figure 6: Prompt and raw output for TAG and TacQuad.

Focus on the object being touched by the tactile sensor in the first two images. The two images are 
shot from two distinct viewpoints. The third image comes from the tactile sensor, reflecting the
detailed deformations when touching the object. Please provide a description of the tactile properties
(exact location of the touch, materials at the contact point, texture, roughness level, hardness level,
and more than these properties), using a series of adjectives. Please do not use ambiguous adjectives
like 'moderate' or 'medium'. Ensuring your response does not exceed 60 words, counting punctuation
as separate words.

Output without tactile image: The tactile sensor contacts the upper center of a clear polycarbonate
box lid. The material is smooth, glossy, and transparent, featuring a hard, durable surface.The
texture is sleek, with no visible roughness or irregularities, providing a nearly frictionless feel. The
hardness level is high, indicative of robust plastic material.

Output with tactile image: The tactile properties indicate contact at the smooth, transparent
polycarbonate lid, characterized by its high hardness and rigidity.The surface is designed with a
bubble-like texture that feels slightly raised and evenly distributed.The texture appears consistent,
lacking significant roughness, while retaining a firm yet slightly flexible quality at the touchpoint.

Figure 7: Prompt and raw output for OF Real. Given that OF Real includes two camera views
and some touch locations or details may be obscured, we input two visual images along with one
tactile image simultaneously. If the tactile image is not provided as input, there is a possibility of
producing incorrect annotations (marked in red).

A.7 REAL-WORLD POURING TASK

To test the dynamic perception capability of our method in real-world object manipulation tasks,
we conduct experiments on a real-world task: fine-grained pouring, as shown in Figure 5. In the
experiments, we use a 6-DoF UFACTORY xArm 6 robotic arm equipped with a Robotiq 2F-140
gripper. Cartesian space displacement commands are generated at a policy frequency of 5 Hz. The
robot arm must rely entirely on tactile feedback to pour out 60g of small beads from a cylinder that
initially contains 100g of beads. The robot arm can select one of the three actions to perform based
on the real-time tactile feedback: pouring, waiting, or retracting. The action step size is δϕ = 0.25◦.
We train the model through imitation learning and collect the training data using a keyboard. As both
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Focus on the object being touched by the tactile sensor. Please provide a description of the tactile
properties (exact location of the touch, materials at the contact point, texture, roughness level,
hardness level, and more than these properties), using a series of adjectives. It is already known that
the object is {phrase-level descriptions}. Please do not use ambiguous adjectives like ‘moderate’ or
‘medium’. Ensuring your response does not exceed 60 words, counting punctuation as separate words.

Output: The touch is at the upper edge, the tactile sensor contacts leather. The texture is smooth,
with a slight grain. The roughness is low, and the hardness is low. The material feels soft, yielding
minimally to pressure, with a consistent, uninterrupted surface.

Figure 8: Prompt and raw output for TVL and SSVTP. Given that these datasets only contain
phrase-level tactile descriptions, we input the visual image and the phrase-level descriptions to gen-
erate more detailed tactile descriptions.

Table 6: The impact of modalities and modules in UltraTouch on static perception capabilities.

Model TAG Feel OF 1.0 OF 2.0
Material Grasp Material Material

UltraTouch 80.82 80.53 49.62 76.02
w/o Text Modality 75.91(↓4.91) 78.93(↓1.60) 48.87(↓0.75) 75.52(↓0.50)

w/o Vision Modality 74.55(↓6.27) 77.30(↓3.23) 48.12(↓1.50) 75.22(↓0.80)
w/o Text in TacQuad 80.70(↓0.12) 80.19(↓0.34) 49.21(↓0.41) 75.91(↓0.11)

w/o Stage 1 78.34(↓2.48) 78.62(↓1.91) 48.75(↓0.87) 76.08(↑0.06)
w/o Stage 2 68.64(↓12.18) 72.39(↓8.14) 46.50(↓3.12) 73.09(↓2.93)

w/o Cross-Sensor Matching 80.54(↓0.28) 79.43(↓1.10) 49.25(↓0.37) 75.80(↓0.22)
w/o Dynamic Perception 77.93(↓2.89) 79.28(↓1.25) 48.62(↓1.00) 75.70(↓0.32)

w/o Universal Sensor Tokens 80.79(↓0.03) 79.03(↓1.53) 48.40(↓1.22) 75.40(↓0.62)

rotating the cylinder and pouring out the small beads lead to continuous variations in pressure on
the sensors, the model must analyze the fine-grained changes between tactile images to determine
the appropriate pouring speed and the right moment to retract the cylinder. This task is typically
performed using multi-modal data (Li et al., 2022), making it particularly challenging for models
that rely solely on tactile perception.

A.8 ABLATION STUDY

To investigate the impact of each module in UltraTouch, as well as the individual contributions of
the vision and text modalities in multi-modal alignment, we conduct ablation studies on the four
downstream datasets. The experimental results are shown in Table 6. We observe performance
decline when the paired vision and text modalities are excluded, highlighting the importance of
aligning with these paired modalities to narrow the sensor gaps and achieve a comprehensive tactile
perception capability. We also find that the performance decline caused by removing the visual
modality is greater than removing text. However, this does not necessarily indicate that the visual
modality is more important, as removing the visual modality results in a more significant reduction
in data during the aligning. We also remove the text from the TacQuad dataset we proposed to
validate the effectiveness of the text in the dataset. Although the TacQuad data is relatively small
compared to the total dataset, making it unlikely to significantly impact performance when modified,
we observe a consistent decline in the model’s performance on downstream tasks after removing the
text modality. This demonstrates the important role of the text modality in our dataset as a bridge
that helps reduce the gap between sensors.
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Table 7: Performance comparison with T3 on the cross-sensor generation task using the fine-grained
spatio-temporal aligned data.

Model Training Data
Mean Square Error (↓)

GelSight Mini GelSight Mini DIGIT
→ DuraGel → Tac3D → Tac3D

T3 3.08M 0.2261 0.0167 0.0155
UltraTouch 2.48M 0.2159 0.0151 0.0144

When we remove cross-sensor matching and universal sensor tokens from UltraTouch, we observe
a performance decline primarily on the datasets from unseen sensors. It is important to note that
the sensors in these datasets are not included in the positive sample pairs for cross-sensor matching,
indicating that this task has even greater potential. This demonstrates that both strategies can en-
hance the model’s generalization to unseen sensors. After removing the entire stage 2, we observe
a significant performance decline. On OF 2.0, it performs even worse than CLIP, which has never
encountered tactile data. This result is consistent with the improvement on OF 2.0 when removing
stage 1 and the analysis in Section 5.3, indicating that learning semantic-level features is crucial for
achieving comprehensive tactile perception and cross-sensor generalization. Nevertheless, learning
pixel-level features in stage 1 is still meaningful for the seen sensors. In addition, we also observe a
consistent decline in performance after removing the joint training for dynamic perception, indicat-
ing that integrating dynamic perception can indeed enhance static perception capabilities.

A.9 CROSS-SENSOR GENERATION

To more comprehensively demonstrate the value and impact of the dataset we proposed, we conduct
cross-sensor generation experiments on the fine-grained spatio-temporal aligned data. Specifically,
we trained models to generate aligned DuraGel images from GelSight Mini images, and to recon-
struct the 20x20 force fields captured by the Tac3D sensor from DIGIT and GelSight Mini data. We
compared the performance of our model with the T3 model, which used more training data than
ours (3.08M compared to our 2.48M) for pretraining. Specifically, for generating Duragel images,
we constructed a GAN network based on ViT, using T3 or UltraTouch as the encoders for the dis-
criminator and generator, similar to ViTGAN (Lee et al., 2022). A ViT-based decoder is then used
to generate images across sensors. For the force field generation of Tac3D, due to its low resolution,
we treat it as a regression task and use an MLP to reconstruct the force field based on the features
extracted by the encoder. Both networks can effectively evaluate the quality of the encoder’s tactile
representations. To further ensure fairness, we also removed the overlapping portions of the coarse-
grained aligned data from the training data that overlapped with this dataset. Note that Tac3D is an
unseen sensor for both of the models. We use mean square error (MSE) (↓) between the generated
data and the ground truth as the metric. The results shown in Table 7 indicate that our method outper-
forms T3 in terms of generation quality, both for cross-sensor generation of vision-tactile images and
for force fields captured by the unseen Tac3D. This demonstrates the effectiveness of our method
and the value of the dataset, and supports our motivation to obtain a unified tactile multi-sensor
representation that is applicable to a variety of tasks and sensors.

A.10 DISCUSSION ON FRAME NUMBER

In the real world, the complete process of touching an object can take several seconds or even tens of
seconds. Ensuring the model can comprehend an entire tactile video presents a significant challenge.
Current large-scale video understanding models, such as Video-LLaMA (Zhang et al., 2023), often
process tens or even hundreds of frames as input, encoding them into tokens. However, this comes
at the cost of generating very long token sequences, which significantly increase computational
overhead and inference time. The tactile modality is frequently used in fine-grained manipulation
tasks that demand high real-time performance, which imposes strict requirements on the model’s
inference speed. As a result, models that rely on long frame sequences are challenging to apply in
real-time dynamic perception tasks. Moreover, since touch actions are typically performed at high
speeds, even a sequence of three continual frames (equivalent to 0.1 seconds for a DIGIT sensor
with a frequency of approximately 30Hz) can exhibit noticeable changes. We anticipated these
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challenges and, as a result, chose to use a sequence of three continual frames as the input format for
tactile videos. This approach also enables the understanding of longer videos by selecting multiple
3-frame segments and either concatenating or summing their features, similar to ImageBind (Girdhar
et al., 2023). Using more frames may lead to better perception performance, but this is essentially a
trade-off between performance and both computational cost and reference speed.

A.11 DISCUSSION ON OTHER TACTILE SENSORS

Tactile perception is not limited to images. Some tactile properties, such as temperature and torque,
are difficult to obtain from tactile images alone, requiring the use of other types of tactile sensors.
This issue presents challenges from both hardware and algorithmic perspectives.

From a hardware perspective, an ideal tactile sensor should be capable of gathering various types of
tactile information, effectively integrating multiple existing tactile sensors into a single unit. This
may be very challenging, and a more practical solution might involve equipping different fingers of
a robotic hand with different types of sensors. This would allow for the simultaneous collection of
diverse tactile data, maximizing the range of information captured.

From an algorithmic perspective, when vision-based tactile sensors are replaced with other types of
tactile sensors (e.g., tactile sensor arrays), the multi-sensor data alignment method proposed in this
paper can still be applied. Aligned data can then be used to perform alignment or to distill knowledge
from the visuo-tactile model to models for other types of tactile sensors. For lower-resolution tactile
sensors, the aligned data can facilitate tactile super-resolution learning, enabling knowledge transfer
from vision-based tactile sensor models to enhance their performance.

If both vision-based tactile sensors and other tactile sensors (e.g., those capturing temperature or
other non-visual properties) are used simultaneously, a possible approach is to fuse their outputs
into a unified, comprehensive tactile feature. This enriched representation can then be aligned with
other modalities in a unified manner.

A.12 LIMITATIONS AND FUTURE WORK

In this section, we discuss some potential limitations of our work and propose corresponding solu-
tions for future work:

• Compared to all the training data, the scale of the TacQuad dataset we have currently
collected is still somewhat limited. Capturing the immense variety of object types within
a single dataset is challenging in a limited amount of time. Fortunately, the coarse-grained
spatial alignment data collection method we propose has the potential to scale up, as data
collection can be performed manually without the need for precise alignment. Fine-grained
data collection can also be expanded by replicating the calibration platform and increasing
manpower. We plan to grow our team to scale up the dataset and enhance object diversity
in future work.

• The types of sensors considered are relatively limited. We have made every effort to col-
lect all available vision-based tactile sensors around us, yet we were only able to include
four different types. Moreover, we did not explore the differences between individual sen-
sors of the same type or address issues such as gel damage. Moving forward, we aim to
expand our dataset and increase the diversity of sensors through collaborative data collec-
tion across multiple laboratories.

• The scope of tasks for dynamic tactile perception is currently limited. In this work, we
validated the dynamic perception capabilities of our model on a single real-world manip-
ulation task: pouring. We hope to explore more challenging and interesting dynamic per-
ception tasks in future work. Additionally, beyond real-world manipulation tasks, studying
tactile video understanding—particularly fine-grained dynamic tactile understanding that
includes direction and action descriptions—is also an interesting direction to explore.
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