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ABSTRACT

Large Vision-Language Models (LVLMs) are susceptible to object hallucinations,
an issue in which their generated text contains non-existent objects, greatly limiting
their reliability and practicality. Current approaches often rely on the model’s
token likelihoods or other internal information, instruction tuning on additional
datasets, or incorporating complex external tools. We first perform empirical
analysis on sentence-level LVLM hallucination, finding that CLIP similarity to the
image acts as a stronger and more robust indicator of hallucination compared to
token likelihoods. Motivated by this, we introduce our CLIP-Guided Decoding
(CGD) approach1, a straightforward but effective training-free approach to reduce
object hallucination at decoding time. CGD uses CLIP to guide the model’s
decoding process by enhancing visual grounding of generated text with the image.
Experiments demonstrate that CGD effectively mitigates object hallucination across
multiple LVLM families while preserving the utility of text generation.

1 INTRODUCTION

Large Vision-
Language Model

Describe this image in detail.

CLIP Model
CLIP Score

0.6
0.3
0.1

Candidate Sentences:

Generating Response

The image features a white and brown bulldog 
sitting on a skateboard, which is placed on a 
sidewalk. 

There are some people standing behind.

A backpack is visible in the background.

The room has a couch behind.

Figure 1: Intuition of our method: candidate
sentences with higher CLIP similarity to the
image are less likely to be hallucinated, and
hence selected during the decoding process.
Hallucinated text is colored red.

Large Vision-Language Models (LVLMs) have
shown impressive visual reasoning capabilities, repre-
senting an important milestone toward agents that can
operate autonomously in our visual world (Achiam
et al., 2023; Liu et al., 2023b; Dai et al.; Xi et al.,
2023). However, object hallucination, in which the
model produces inaccurate descriptions featuring
non-existent objects, greatly limit the model’s reliabil-
ity and practical utility (Rohrbach et al., 2018; Wang
et al., 2023c; Gunjal et al., 2023; Zhou et al., 2023).
Hallucinations can easily mislead users, particularly
when accompanied by overconfidence (Xiong et al.,
2023). This is especially a concern for safety-critical
applications such as robotics (Brohan et al., 2023)
and medical image analysis (Thawkar et al., 2023),
as well as for human-AI interaction settings where
models should behave in a predictable manner that is
well aligned with human expectations.

Intuitively, object hallucination can be viewed through a lens of human-AI misalignment. Consider
how humans describe images: generally, we mentally ‘anchor’ or compare our descriptions to
objects in the image, making hallucination unlikely. In contrast, LVLMs generate text based on
token likelihoods without explicitly ‘anchoring’ or comparing to the image in this manner, making
hallucination more likely. This gap between how humans and AI operate makes errors made by AI
more surprising and unpredictable, which is detrimental in settings involving human-AI interaction.

1Codes are available at https://github.com/d-ailin/CGD
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While LVLMs do rely on self-attention, the attention weight for a newly generated token is spread
over both the image tokens, and the model’s own previously generated text tokens, which can lead
to a diminishing emphasis of the image tokens as caption length increases. Along these lines, we
observe empirically that multiple LVLM architectures show a consistent increasing trend in their
hallucination probability as a function of sentence index in the caption.

Recent efforts (Liu et al., 2023a; Wang et al., 2023a) have introduced approaches to mitigate halluci-
nations through instruction tuning. However, these methods come with substantial additional costs,
including an annotation budget to acquire extra instruction data (Liu et al., 2023a). Some studies
advocate leveraging internal information from models, such as likelihood scores (Zhou et al., 2023)
and internal hidden states (Huang et al., 2023; Leng et al., 2023). Nevertheless, relying solely on a
model’s internal information may be insufficient (Manakul et al., 2023) and potentially unreliable,
given the known overconfidence issues in neural networks (Kadavath et al., 2022; Xiong et al.,
2023). Alternatively, incorporating external tools or knowledge has been suggested (Yin et al., 2023),
but this approach often involves separate, occasionally intricate modules, accompanied by a heavy
engineering burden (Yin et al., 2023).

In contrast with these approaches, we mitigate hallucination by directly comparing the LVLM’s
generated text to the image to ensure good correspondence between them, improving alignment
to how humans perform the task. As illustrated in Figure 1, we introduce CLIP-Guided Decoding
(CGD), a straightforward but effective training-free approach that utilizes CLIP as an external guide
to alleviate hallucination during decoding.

2 PRELIMINARIES

Notations. In this context, we denote input x = (ximg,xtext) including an input image ximg and a
text input xtext, e.g. ‘Describe this image in detail’. In addition, we represent the generated response
y in the form of L sequential sentences as y := (s1, . . . , sL), where a sentence si is the i-th sentence
and consists of li tokens: si := (z

(i)
1 , . . . , z

(i)
li

) for i ∈ [L] and [L] := {1, . . . , L}. Additionally, we
define H(si) ∈ {0, 1} to output the hallucination label given a sentence si. That is, H(si) = 1 if
the sentence si contains an incorrect object for the image ximg. Since we focus on hallucination
detection at the sentence level, we first reformulate the generative process as sentence generation.

Sentence Likelihood. Given a Large Vision-Language Model (LVLM) model with parameters θ, an
image ximg and text input xtext, the model generates a response y by conditional sentence generation
in an auto-regressive manner (Ranzato et al., 2015): log pθ(y | x) = log pθ(s1, . . . , sL | x) =∑L

i=1 log pθ(si | x, s<i), where s<i are the sentences before i-th sentence in the response y.
Further, sentence generation is a process of conditional token generation: log pθ(si | x, s<i) =

log
∑li

j=1 pθ(z
(i)
j | x, s<i, z

(i)
<j), where z

(i)
<j are the tokens before position j in sentence si. Though

log pθ(y | x) is statistically meaningful, it has been shown to be biased with sequence length, i.e.,
models tend to overly favor shorter sentences (Wu et al., 2016). Length-normalized likelihood is an
alternative, where the normalization can be either over the response or the sentence:

fθ(y) :=
1∑L
i=1 li

L∑
i=1

log pθ(si | x, s<i), gθ(si) :=
1

li
log pθ(si | x, s<i), (1)

where fθ(y) is the length normalized likelihood of a response y, and gθ(si) is the sentence likelihood,
the length normalized likelihood of the i-th sentence si conditioning on the previously sentences.

CLIP. Typically, an image-text contrastive model (Radford et al., 2021), e.g. CLIP model parame-
terized with ϕ, consists of image and text feature extractors: fϕimg

and fϕtext
. Given an image ximg

and a sentence s, we obtain the CLIPScore as cosine similarity between the normalized image feature
and text feature:

fϕ(ximg, s) := cos(fϕimg
(ximg), fϕtext

(s)). (2)

CLIPScore provides a quantitative metric to reflect how well a textual description is associated with
the image and is widely applied in image-text evaluation (Hessel et al., 2021; Betker et al., 2023).
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We include the hallucination analysis by comparing sentence likelihood and CLIPScore in Appendix B.
The main observations include: (1) Later sentences are more prone to hallucinations; (2) Poor
predictive performance of sentence likelihood; (3) there exists likelihood gap of sentence likelihood
across datasets; (4) CLIP scores is a more effective and robust indicator of hallucination detection
compared to sentence likelihood.

3 CLIP-GUIDED DECODING

Given the effectiveness of CLIPScore in detecting hallucination, we propose CLIP-Guided Decoding
(CGD) to reduce hallucination by using CLIP as vision-language guidance to prefer visually grounded
content during generation. The algorithm consists of two parts: Reliability Scoring, which designs
a scoring function aiming to assign higher scores to candidate responses which are less likely to
be hallucinated, and Guided Sentence Generation, which generates responses based on this scoring
function. We decode in a similar way to beam search, but at the sentence level: this allows us to apply
CLIP scoring on full sentences instead of incomplete words or phrases which would be present when
decoding at the token level.

Reliability Scoring. Given a step t at decoding time and a candidate response c containing sequen-
tial sentences (s1, . . . , st), we define the reliability score as follows:

F (c) := (1− α)fθ(c) + α
1

t

t∑
i

fϕ(ximg, si), (3)

where α ∈ [0, 1] is hyperparameter to weigh the normalized likelihood fθ(c) from the LVLM model,
and the CLIP guidance

∑t
i fϕ(ximg, si). Mixing between likelihoods and CLIP guidance gives users

flexibility to control the strength of CLIP guidance. When α = 0, CLIP guidance has no effect
and the scoring function only considers the likelihood scores from the model. α = 1 indicates the
preference for higher CLIPScore.

Guided Sentence Generation. Next, we generate responses, guided by the scoring function. An
important goal is to maintain the generation quality and fluency of the LVLM by preserving its
sentence sampling process. To mitigate hallucinations, we use the reliability score function to
prioritize responses that are well-grounded to the image.

Specifically, for every step t, we maintain a set of candidates with maximum cardinality N as
Ct := {ct1, ct2, . . . , ctN}, where each candidate ctj := (stj,1, s

t
j,2, . . . , s

t
j,t) represents the first t

sequences that are generated for j ∈ [N ].

Given a candidate set Ct in step t, the candidate set Ct+1 is generated as follows. Firstly, for every
ctj ∈ Ct, we independently sample its next sentence M times, following the conditional distribution
parameterized by LVLM model parameter θ (see Algorithm 1), from which we obtain a new candidate
set C′

t+1. Then, to avoid the cardinality of the candidate set exponentially increasing, we keep the top
N candidates in C′

t+1 based on the sentence-level hallucination scoring, i.e., Ct+1 := argtopN
c∈C′

t+1

{F (c)},

where argtopN returns the top N members of the set in the subscript, with the highest values of
the function (F ). We repeat the procedure until we reach EOF for all candidates, e.g., reaching the
maximum output length. Finally, we use the highest-scoring candidate c∗ from Ct as output. We
summarize CLIP-Guided Decoding in Algorithm 1.

4 EXPERIMENTS

Tasks and Datasets. Our evaluation tasks include hallucination evaluation and open-ended VQA,
where hallucination evaluation is our main focus, and open-ended VQA allows us to gain insight into
the method’s effect in a wider array of settings. The hallucination evaluation includes COCO (Lin
et al., 2014) (using Karpathy Test split (Karpathy & Fei-Fei, 2015)), NoCaps (near-domain) and
Nocaps (out-of-domain) (Agrawal et al., 2019), where Nocaps (out-of-domain) contains the out-
of-domain data regarding COCO objects. We randomly select 500 samples from each set for each
run and prompt the LVLMs with “Describe this image in detail”. For open-ended VQA, we use the
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Table 1: Hallucination evaluation on COCO Karpathy Test Split (Karpathy & Fei-Fei, 2015) and
NoCaps Validation Set (Near-Domain and Out-of-Domain) (Agrawal et al., 2019). Please see the
case study in Table 6 in Appendix.

InstructBLIP mPLUG-Owl2 LLaVA-1.5
CS ↓ CI ↓ Avg. Len CS ↓ CI ↓ Avg. Len CS ↓ CI ↓ Avg. Len

COCO

Greedy 57.9 17.1 102.7 52.7 16.0 89.4 44.7 13.1 80.1
Nucleus 56.1 17.0 98.3 51.9 15.6 89.0 43.3 13.1 80.1
TopK 55.8 16.9 97.3 53.1 15.9 89.2 44.9 13.2 79.7
DoLa 55.6 17.0 97.1 52.6 15.2 88.8 46.6 13.6 80.3
CGD (ours) 42.7 10.9 99.6 35.7 8.6 85.1 29.7 8.1 76.7

NoCaps
(Near-Domain)

Greedy 55.7 15.4 102.9 39.5 10.1 77.7 46.1 12.2 80.0
Nucleus 54.1 14.7 98.9 40.9 10.6 78.0 45.4 11.9 79.5
TopK 53.2 14.1 98.6 41.6 10.9 78.1 46.6 12.1 79.8
DoLa 54.5 14.0 97.9 41.0 10.8 77.9 44.8 12.1 79.5
CGD (ours) 42.6 12.3 100.6 29.0 6.9 72.8 33.3 7.9 75.9

NoCaps
(Out-of-Domain)

Greedy 51.3 17.3 98.4 36.4 12.4 68.0 40.2 14.2 69.1
Nucleus 48.8 16.3 92.8 36.8 12.1 68.8 40.7 14.3 69.4
TopK 50.3 17.0 92.2 37.1 12.3 68.2 39.9 13.5 69.5
DoLa 48.0 16.3 92.3 35.9 13.2 68.3 43.5 14.4 71.1
CGD (ours) 42.0 11.6 94.1 26.6 8.4 65.7 28.8 9.0 66.3

open-sourced multi-modality task benchmark MM-Vet (Yu et al., 2023) and follow the provided
automatic evaluation procedure. See more details in Appendix C.

Metrics. We follow the guidelines in (Rohrbach et al., 2018) to calculate CHAIR metrics for auto-
matic hallucination evaluation. More precisely, CHAIR quantifies the degree of object hallucination
in a given image description by computing the ratio of all objects mentioned in the description but
not present in the ground-truth label set. It comprises two assessment dimensions: CHAIRs (CS)
calculated at the sentence-level, and CHAIRi (CI ) calculated at the instance-level. Specifically,
CHAIR computes CHAIRi and CHAIRs as follows:

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}|

, CHAIRs =
|{captions with hallucinated objects}|

|{all captions}|
.

Following (Rohrbach et al., 2018), we restrict to the objects in 80 COCO object classes for the COCO
dataset. For NoCaps, we set a similar setting and map the fine-grained classes defined in NoCaps to
coarse-grained categories based on the hierarchical object relationships in Open Images to improve
the effectiveness of CHAIR metrics. We only add the super-categories defined in Open Images to our
final object list. Eventually, we construct a list of 90 coarse-grained object categories. We include
more details in the Appendix C.

4.1 EXPERIMENTAL RESULTS

Hallucination Evaluation on COCO and NoCaps. As COCO has been prevalently used in fine-
tuning LVLMs (Liu et al., 2023b; Dai et al.), we extend our evaluation to include images from NoCaps
dataset that feature object classes less or not presented in COCO. This set includes near-domain
and out-of-domain images. Table 1 displays the empirical results with CHAIR metrics for COCO,
near-domain and out-of-domain data. Compared to responses generated in COCO, the average
response length of out-of-domain images is shorter, indicating the LVLM models generally output
less for their less confident data. As a smaller CHAIR metric reflects a lower fraction of hallucinated
objects generated in the response, our method consistently surpasses other baselines, achieving lower
scores in the CHAIR metrics while maintaining response lengths similar to those produced by the
baselines.

Generation Quality Evaluation on COCO. An effective decoding strategy is crucial for minimiz-
ing hallucinations while maintaining high-quality generation in textual outputs. To assess response
quality in LVLMs, we expand our evaluation to include widely recognized caption-related metrics
such as CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016). We calculate these metrics
for responses generated by three different models on the COCO dataset. As shown in Table 2, our
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Table 2: Generation quality evaluation on COCO Karpathy Test Split (Karpathy & Fei-Fei, 2015).

Model Avg.
Length

Avg.
Coverage BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L SPICE CLIPS

InstructBLIP

Greedy 102.65 81.10 15.85 10.97 7.02 4.41 17.12 16.99 17.69 27.06
Nucleus 98.30 80.61 16.38 11.29 7.21 4.53 17.45 17.46 18.17 27.05

TopK 97.26 80.04 16.46 11.26 7.13 4.43 17.36 17.48 18.00 27.03
DoLa 97.11 80.11 16.54 11.34 7.22 4.50 17.47 17.61 18.11 27.07
CGD 99.64 79.44 16.38 11.30 7.19 4.50 17.44 17.49 18.46 28.24

mPLUG-Owl2

Greedy 89.35 81.28 18.08 12.59 8.28 5.39 18.79 19.28 19.18 27.08
Nucleus 88.98 81.68 18.12 12.60 8.26 5.36 18.78 19.38 19.30 27.05

TopK 89.15 81.36 18.09 12.51 8.18 5.29 18.76 19.38 19.22 27.06
DoLa 88.76 81.30 18.14 12.58 8.20 5.29 18.81 19.46 19.20 27.07
CGD 85.06 80.17 19.07 13.42 8.88 5.77 19.37 20.35 20.21 28.21

LLaVA-1.5

Greedy 80.05 81.30 18.91 12.73 8.07 5.07 18.69 20.23 18.49 26.94
Nucleus 80.14 81.19 18.88 12.77 8.10 5.12 18.73 20.25 18.50 26.93

TopK 79.71 81.39 18.90 12.69 8.05 5.07 18.66 20.20 18.39 26.92
DoLa 80.29 80.88 18.74 12.46 7.83 4.88 18.55 19.98 17.98 26.81
CGD 76.66 79.03 19.85 13.46 8.60 5.43 19.34 21.13 19.37 27.96
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Figure 2: Results with LLaVA-1.5 on MM-Vet (Yu et al., 2023) to evaluate integrated capabilities on
multi-modality tasks: recognition (rec), ocr, knowledge (know), language generation (gen), spatial
awareness (spat) and math. Please see the case study in Table 7.

method performs on par with other approaches across these diverse metrics. This underscores our
method’s ability to preserve the overall utility of text generation, while reducing hallucination.

Open-Ended VQA Performance on MM-Vet. In addition to evaluating hallucination, we conduct
a study on our algorithm using the open-ended VQA benchmark, MM-Vet (Yu et al., 2023), to gain
insights into its effect in a wider array of settings. Figure 2 illustrates the empirical comparison
between our method and the standard greedy decoding approach. Notably, our method surpasses the
baseline in most tasks, such as recognition and OCR. However, it underperforms in spatial awareness
tasks, likely attributable to the limitations in relational understanding of CLIP models (Thrush
et al., 2022; Yuksekgonul et al., 2022; Hsieh et al., 2023). Ongoing research seeks to enhance
vision-language models through data curation (Fang et al., 2023a; Xu et al., 2023) or feature fusion
techniques (Wang et al., 2023b; Tong et al., 2024). These advances could further augment our method
through a better guidance model with enhanced visual grounding capabilities.

We include the other evaluation results about ablation study in scoring function and sensitivity study
of hyperparameters in Appendix D.

5 CONCLUSION

In this study, we focus on object hallucination analysis and mitigation for open-ended generation
in Large Vision-Language Models (LVLMs). We reveal that there exists severe hallucination in
later sentences, and CLIPScore is a stronger and more robust indicator of hallucination than token
likelihood. Motivated by this, we integrate CLIP as external guidance in a training-free approach
during decoding. Our approach effectively mitigates hallucination while preserving generation
quality.
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A RELATED WORKS

A.1 LARGE VISION-LANGUAGE MODELS

Recent developments in Large Vision-Language Models (LVLMs) (Liu et al., 2023b; Li et al., 2023a;
Ye et al., 2023) have been significantly powered by the open-sourcing of Large Language Models
(LLMs) such as LLaMA (Touvron et al., 2023) and Vicuna (Chiang et al., 2023). These advancements
enable LVLMs to make remarkable strides in understanding and addressing a wide range of vision-
language tasks with more integrated capabilities (Yu et al., 2023; Yue et al., 2023). Most LVLMs share
the same two training phases, i.e., pre-trained feature alignment and instruction fine-tuning, to align
the vision feature with language features from LLMs and make the model comprehend and follow the
instruction (Liu et al., 2023b; Dai et al.). While these LVLMs have shown promising improvements in
handling more complex and general tasks compared to earlier, smaller vision-language models (Zhou
et al., 2020), they are still easily suffered from hallucination issues (Li et al., 2023b; Zhou et al., 2023;
Wang et al., 2023c), especially in open-ended generation contexts (Zhang et al., 2023).

A.2 HALLUCINATION IN VLMS

While the issue of hallucinations in LLMs has been widely studied in the field of NLP (Ji et al., 2023),
hallucination mitigations in recent LVLMs are still unexplored. There are recent efforts in mitigating
hallucination, including robust instruction tuning (Liu et al., 2023a) and using intrinsic information
from models, such as likelihood scores or hidden states from the model (Zhou et al., 2023; Huang
et al., 2023). However, only relying on the internal states of models could be potentially unreliable
due to the known overconfident issues in neural networks (Kadavath et al., 2022; Xiong et al., 2023).
While leveraging external knowledge or models is an alternative way, existing methods (Yin et al.,
2023) often result in substantial engineering complexity. On the other hand, while vision-language
pre-trained models, e.g. CLIP, are widely adopted in evaluation (Hessel et al., 2021) and mainly
studied in the pairwise comparison context (Yuksekgonul et al., 2022; Thrush et al., 2022; Hsieh
et al., 2023), the efficacy of CLIP models in detecting hallucination in open-ended generation remains
underexplored. Motivated by this, we first conduct hallucination analysis with likelihood-based
scores and CLIP scores at the sentence level.

B HALLUCINATION ANALYSIS

In this section, we study how well the sentence likelihood scores and CLIPScore can detect halluci-
nated sentences generated by LVLMs. Note that recent efforts (Zhou et al., 2023) have also studied
uncertainty-related metrics for object hallucination, but focus on the token level, whereas our work
focuses on sentence-level hallucination.

As individual tokens lack sufficient semantic meaning, it is challenging to determine if they are
hallucinations without broader context. This issue also necessitates careful token selection in practical
applications (Zhou et al., 2023). In contrast, a sentence, as a more self-contained unit in natural
language, offers a clearer and more effective basis for studying hallucinations.

Models. We have included three LVLMs: InstructBLIP (Dai et al.), mPLUG-Owl2 (Ye et al.,
2023) and LLaVA-1.5 (Liu et al., 2023b) in the study. We use Greedy Decoding to generate the
response with an image and the prompt, ‘Describe this image in detail’. Note that in our work, we
use InstructBLIP (Vicuna-7B), mPLUG-Owl2 (LLaMA-7B) and LLaVA-1.5 (Vicuna-7B) and set the
maximum new tokens as 500 by default.

Datasets. We use images from COCO (Karpathy & Fei-Fei, 2015) and NoCaps Validation (Out-of-
Domain) datasets (Agrawal et al., 2019). Specifically, The NoCaps (Agrawal et al., 2019) dataset is
proposed to evaluate models trained on the training set of COCO captions to examine how well they
generalize to a much larger variety of visual concepts, i.e., unseen objects. NoCaps (Out-of-Domain)
set is a subset of NoCaps dataset and includes samples with novel classes, which are unseen in the
COCO dataset. Following the procedure in Rohrbach et al. (2018), the hallucination label H(si)
for a sentence si is decided based on whether the sentence contains a non-existent object label
when compared with all objects in the ground-truth caption and segmentation labels provided by
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Figure 3: (a) Hallucination ratios in sentences generated by three LVLM models on COCO. The
later-generated sentences are more prone to hallucinations. (b) Likelihood gap between COCO and
NoCaps over three models implies the potential instability of likelihood-only methods when applied
to diverse datasets. (c) Normalized gap between COCO and NoCaps using sentence likelihood and
CLIPScore. A smaller gap value indicates more stable values across datasets. This finding shows that
CLIPScore values are more stable across datasets compared to sentence likelihood.

the datasets. We include 1000 samples in analysis for each dataset. For object labels in datasets,
we include more details in Appendix C. The object labels are restricted to 80 classes of COCO
dataset. For NoCaps, we set a similar setting and map the fine-grained objects defined in NoCaps to
coarse-grained categories based on the hierarchical object relationships in Open Images2 to improve
the effectiveness of evaluation. We only add the super-categories defined in Open Images to our final
object list. Eventually, we construct a list of 90 coarse-grained object categories. We include more
details in the Appendix.

Metrics To quantify hallucination at sentence level, we define two metrics: hallucination ratio R(·)
and first-time hallucination ratio Rfirst(·). For evaluating the detection performance, we use AUROC
metric.

Given a dataset D and the corresponding output Y generated by a model, we denote Yi := {y ∈
Y | |y| ≥ i} to be the set of responses where each response y has a length of at least i sentences; here
|y| denotes the number of sentences in the response y. Hence, we define the hallucination ratio at
i-th sentence as the fraction of times the i-th sentence is hallucinated, among responses with at least i
sentences:

R(i) :=
|{y ∈ Yi |H(si) = 1}|

|Yi|
. (4)

In addition, we define the first-time hallucination ratio as the fraction of responses where hallucination
first occurs at the i-th sentence, among responses with at least i sentences:

Rfirst(i) :=
|{y ∈ Yi |H(si) = 1, H(sj) = 0,∀j < i|

|Yi|
. (5)

Later Sentences Are More Prone to Hallucinations. We investigate the hallucination ratios R(·)
across sentences regarding the position of the sentences in the generated description. Figure 3a
shows that the sentences generated in the later part are more prone to hallucination, with surprisingly
consistent increasing pattern across multiple LVLMs. This finding echoes previous observations
about object positional bias in Zhou et al. (2023), which is at the token level. This bias indicates the
severity of hallucination as longer descriptions are generated.

Does this positional bias occur solely due to error propagation in sequential generation (Arora et al.,
2022; Zhang et al., 2023), i.e., early errors inducing later errors? To investigate this, we focus on
first-time hallucination ratios Rfirst(·) across different sentence indexes, which removes the effect of
error propagation. Interestingly, as shown in Figure 6, the bias remains evident. This suggests that
positional bias is not exclusively a result of error propagation. Instead, it may be partly attributed
to diminishing attention to visual inputs as the length of the generated descriptions increases Zhang
et al. (2024).

2
https://storage.googleapis.com/openimages/web/download_v7.html#df-classes-hierarchy
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Figure 4: Hallucination detection performance (AUROC) of using Sentence Likelihood gθ(·) and
CLIPScore over COCO and NoCap (out-of-domain) datasets with three LVLMs. CLIPScore outper-
forms sentence likelihood generally, especially for the later sentences. An AUROC of 50% represents
random guessing.

Poor Predictive Performance of Sentence Likelihood. Next, we assess the performance of hal-
lucination detection, measured by AUROC, using length-normalized sentence likelihood gθ(·) as
defined in Eq. (1). An effective metric should distinguish between hallucinated and non-hallucinated
sentences, yielding a higher AUROC value. As depicted in Figure 4, the performance of sentence
likelihood diminishes in later sentences and exhibits generally weak predictive capabilities in halluci-
nation detection.

Likelihood Gap of Sentence Likelihood. To investigate the stability of likelihood scores over
different datasets, in Figure 3b we compare the mean values of sentence likelihood across COCO
and NoCaps (Out-of-Domain) datasets. Notably, a discernible gap often exists between the mean
likelihood scores over COCO and out-of-domain data. Specifically, likelihood scores obtained in
COCO are consistently higher than those in the out-of-domain data, suggesting that models may
exhibit more confidence in the data they were trained on, particularly since COCO datasets are
commonly utilized for fine-tuning in LVLMs (Liu et al., 2023b; Dai et al.). This observation raises
concerns about relying solely on likelihood scores in real-world applications, as these internal metrics
from models may be influenced by training data or other model-specific characteristics (Ranzato
et al., 2015), making it challenging to generalize them to out-of-domain data.

Can CLIPScore Detect Hallucination? Existing studies predominantly focus on CLIPScore within
a pairwise context, wherein a correct caption is compared with a modified version generated through
word manipulation (such as removal, addition, or swapping) (Thrush et al., 2022; Hsieh et al., 2023).
There is limited exploration of CLIPScore’s efficacy in detecting hallucinations within an open-world
generation setting. In contrast to the traditional pairwise approach, our investigation demonstrates
that CLIPScore is adept at distinguishing incorrect (hallucinated) sentences from correct ones in a
broader context. Illustrated in Figure 4, CLIPScore exhibits notable effectiveness in distinguishing
hallucinated and non-hallucinated sentences across different models and datasets. Moreover, as
CLIP models function as independent external examiners, they exhibit insensitivity to positional bias,
performing well across sentence indexes. We also investigate the stability of scores across different
datasets, specifically COCO and NoCaps. Figure 3c indicates that CLIPScore maintains greater
consistency across these datasets when compared to sentence likelihood scores.
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Figure 5: Hallucination ratios across different sentence indexes on both COCO and NoCaps (Out-of-
Domain) datasets.
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Figure 6: First-time hallucination ratios across different sentence indexes on both COCO and NoCaps
(Out-of-Domain) datasets.

C EXPERIMENTS

C.1 MODELS

We select three representative LVLM models for evaluation, including InstructBLIP (Dai et al.),
mPLUG-Owl2 (Ye et al., 2023) and LLaVA-1.5 (Liu et al., 2023b). InstructBLIP adopts a Q-former to
bridge the features between the vision and text modalities, using 32 tokens as image token embeddings.
mPLUG-Owl2 and LLaVA-1.5 use linear projection layers to align the vision and text modalities, with
256 or 576 tokens as image representations. Generally, the image encoders of these LVLM models
are pre-trained models trained with image-text contrastive objective, e.g., CLIP (Radford et al., 2021)
and EVA-CLIP (Fang et al., 2023b). Note that we use InstructBLIP (Vicuna-7B), mPLUG-Owl2
(LLaMA-7B) and LLaVA-1.5 (Vicuna-7B) and set the maximum new tokens as 500 by default for all
methods.

C.2 DATASETS

COCO. The COCO dataset (Lin et al., 2014) is a comprehensive dataset used for image recognition,
segmentation and captioning. It contains over 300, 000 images spanning over 80 object categories,
each with detailed annotations. Given the detailed and high-quality annotation, most recent LVLMs
use samples from COCO for vision-language alignment and instruction tuning (Liu et al., 2023b; Li
et al., 2023a). Specifically, we use samples from COCO Karpathy Split (Karpathy & Fei-Fei, 2015)
in our experiments.
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Algorithm 1 CLIP-Guided Decoding

1: Input: input containing an image and textual prompt x := (ximg,xtext), LVLM parameterized
by θ, CLIP model parameterized by ϕ, maximum cardinality N , sampling size M , weight
hyperparameter α

2: Output: Response output c∗
3: t := 0
4: C0 := {⟨start token⟩}.
5: while not EOF do
6: C′

t+1 := ∅
7: for cti ∈ Ct do
8: repeat
9: s ∼ Pθ(st+1 | x, sti,1, . . . , sti,t)

10: C′
t+1 := C′

t+1

⋃
{(sti,1, . . . , sti,t, s)}

11: until M times
12: end for
13: Ct+1 := Top N candidates in C′

t+1
14: t := t+ 1
15: end while
16: c∗ := argmaxc∈Ct

F (c) ▷ Eq. (3)
17: Return c∗

NoCaps. The NoCaps dataset (Agrawal et al., 2019) is proposed for evaluating the models trained
with COCO with images less or not seen in the COCO object categories. There are 4, 500 images
in the validation set and 10, 600 images in the test set. Images are taken from the Open Images
V4 (Krasin et al., 2017) dataset, which spans 600 object classes. Due to the unavailability of ground
truth captions of the test set, we use the validation set of NoCaps.

MM-Vet. MM-Vet (Yu et al., 2023) is an evaluation benchmark3 that examines large multimodal
models on complicated multimodal tasks. It defines 6 core vision-language capabilities including
recognition, OCR, knowledge, language generation, spatial awareness and math. It examines the 16
integrations of interest derived from the combination of these 6 capabilities. In total, this benchmark
contains 200 images and 218 questions, all paired with their respective ground truths, which are
human annotated or gathered from the internet. Specifically, the benchmark has gathered 187 images
from various online sources, 10 high-quality images from VCR (Zellers et al., 2019) and 3 images
from ChestX-ray14 (Wang et al., 2017). The benchmark has also labeled the capacities required for
answering each question correctly.

C.3 METRICS.

Hallucination Evaluation. We follow the guidelines in (Zhou et al., 2023) to calculate CHAIR
metrics for automatic hallucination evaluation. More precisely, CHAIR quantifies the degree of
object hallucination in a given image description by computing the ratio of all objects mentioned in
the description but not present in the ground-truth label set. It comprises two assessment dimensions:
CHAIRs (CS) calculated at the sentence-level, and CHAIRi (CI ) calculated at the instance-level.
Specifically, CHAIR computes CHAIRi and CHAIRs as follows:

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}|

,

CHAIRs =
|{captions with hallucinated objects}|

|{all captions}|
.

Following Rohrbach et al. (2018); Zhou et al. (2023), we restrict the objects in 80 COCO object
classes for the COCO dataset. For NoCaps, we set a similar setting and map the fine-grained classes
defined in NoCaps to coarse-grained categories based on the hierarchical object relationships in
Open Images4 to improve the effectiveness of CHAIR metrics. Specifically, we only add the super-

3https://github.com/yuweihao/MM-Vet
4
https://storage.googleapis.com/openimages/web/download_v7.html#df-classes-hierarchy
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categories defined in Open Images to our final object list. Eventually, we construct a list of 90
coarse-grained object categories from 600 fine-grained object classes.

Generation Quality Evaluation. To reflect the quality of the generated description, we include
several metrics: average word number in a response (Avg. Length) and average coverage ratio
(Avg. Coverage), which calculates the proportion of correctly identified objects in a generated
description relative to the total number of ’golden’ (i.e., actual or reference) objects present in the
image. We also include other caption-related evaluation metrics including BLEU (Papineni et al.,
2002), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), CIDEr (Vedantam et al., 2015),
SPICE (Anderson et al., 2016) and CLIPScore (Hessel et al., 2021):

• BLUE BLUE (Bilingual Evaluation Understudy (Papineni et al., 2002)) is a metric for
evaluating the quality of machine-generated translations by comparing them to one or
more reference translations. The BLEU score is based on precision of n-grams, which are
contiguous sequences of n words.

• METEOR METEOR (Metric for Evaluation of Translation with Explicit ORdering (Baner-
jee & Lavie, 2005)) is designed to evaluate the quality of machine-generated text (translations
or captions) by comparing it to one or more human reference texts. Specifically, METEOR
computes a harmonic mean (F-mean) of precision and recall, incorporating both the quality
of the generated text and its similarity to reference text.

• ROUGE-L ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation - Longest
Common Subsequence (Lin, 2004)) is a common metric in evluating text summarization
tasks. It is proposed to measure the quality of a machine-generated summary by comparing
it to one or more reference summaries.

• CIDEr CIDEr (Consensus-based Image Description Evaluation (Vedantam et al., 2015))
is designed for image captioning evaluation by measuring the quality of generated image
captions by comparing them to human-generated reference captions. The score utilizes
the weighted combination of n-gram similarity scores in both the generated and reference
captions. Specfically, it gives more weight to higher-order n-grams to encourage diversity
in generated captions.

• SPICE SPICE (Semantic Propositional Image Caption Evaluation (Anderson et al., 2016))
metric is an evaluation measure used for image captioning. Instead of focusing on n-grams
or surface-level text similarity, SPICE parses both the generated and reference captions into
semantic propositions, including objects, attributes, relationships, and actions present in the
image. It aims to capture the accuracy of generated captions with an aspect of semantic
meanings.

• CLIPScore CLIPScore (Radford et al., 2021; Hessel et al., 2021) is a metric based on CLIP
(Contrastive Language-Image Pretraining (Radford et al., 2021)) to measure how well a
given textual description is associated with the image by computing the cosine similarity
based on the normalized features through CLIP models.

Open-Ended VQA Benchmark Evaluation on MM-Vet. For evaluation of open-ended generation,
due to the high flexibility and free-form of answers, MM-Vet has proposed an LLM-based evaluator
for open-ended outputs. Specifically, they provide a template with the question, ground-truth answer
and prediction (e.g., output from an LVLM) in a few-shot prompt and prompt the LLMs to provide a
soft grading score from 0 to 1, where a high score indicates a more accurate prediction. The total
scores are computed by the average scores obtained for all questions. The score regarding each
capability is the average score obtained for the questions that have been annotated for the requirement
of the specific capability.

D EXPERIMENTAL RESULTS

Ablation Study of Hallucination Scoring. To further understand the functionality of sentence like-
lihood and CLIPScore in our hallucination scoring, defined in Eq. (3), we conduct an ablation study
focusing on sentence likelihood and CLIPScore’s impact on hallucination mitigation by controlling
α. Specifically, the algorithm operates without sentence likelihood when α = 1 and without CLIP
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Table 3: Ablation study on scoring components in Eq. (3).

Method CS ↓ CI ↓ Avg. Len

Greedy 44.67 13.11 80.05

CGD (Ours) 29.73 8.12 76.66
w/o Sentence Likelihood 29.45 7.37 76.12
w/o CLIP-Guidance 45.07 13.29 81.60

guidance when α = 0. From Table 3, we can see that the performance without CLIP-guidance is
close or even slightly worse than greedy decoding and sentence likelihood demonstrates relatively
limited effectiveness in reducing hallucination. This result confirms the dominant contribution of
CLIP guidance in hallucination mitigation.

Table 4: Sensitivity analysis of maximum candidate number N and sampling times M .

Method N M CS ↓ CI ↓ Avg. Len

Greedy - - 44.67 13.11 80.05

CGD

1 3 37.66 9.90 78.67
1 5 34.50 8.95 78.70
3 3 29.73 8.12 76.66
5 3 28.40 6.78 78.18

Sensitivity Analysis of Hyperparameters N and M . To examine the sensitivity of our method to
variations in maximum candidate number N and sampling times M , we carry out the experiments
with different settings where N ∈ {1, 3, 5} and M ∈ {3, 5}. We omit M = 1 from our study as this
setting reverts to the ordinary sampling. Table 4 shows that our method outperforms the baseline
even with a reduced maximum candidate number and sampling times. Generally, the performance
improves with larger N and M . This suggests that having a broader range of choices and larger
candidate budgets helps the model to avoid hallucination.

Table 5: Sensitivity analysis of CLIP-guidance model.

Method CS ↓ CI ↓ Avg. Len

Greedy 44.67 13.11 80.05

w/ SigLIP ViT-SO-14@384px 29.73 8.12 76.66
w/ OpenAI ViT-L-14@336px 32.80 8.78 75.83

Effect of CLIP Guiding Model. As most of the LVLMs have adopted CLIP models from OpenAI
as vision encoders, it is worthwhile to investigate whether utilizing the same CLIP models as guiding
models in our method can still enhance hallucination mitigation. For a fair comparison, we maintain
all the settings but substitute the guidance model with CLIP ViT/L-14 with 336px resolution image
input (Radford et al., 2021), which is used as vision encoder in LLaVA-1.5. Table 5 demonstrates
that our method continues to surpass the baseline method even when using this vision encoder. This
finding suggests that the existing fine-tuning processes for vision-language alignment in LVLMs (Liu
et al., 2023b; Dai et al.) might, to some extent, compromise the original vision capabilities. Our
method is a way to recalibrate the alignment between vision and language by directly examining the
outputs from LVLMs.

D.1 CASE STUDY

Hallucination Case Study. We have included several cases of hallucination mitigation on the
COCO dataset, as shown in Table 6. This table shows examples by comparing the original generated
description and generated description by our method given the image in the leftmost column. The
hallucinated part in the description has been highlighted in red.
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Table 6: Examples of COCO with LLaVA-1.5. Comparison between the text generated by Original
(TopK Sampling with K = 5) and our methods. The hallucinated parts are highlighted in red.

Image Original Ours

The image depicts a man sitting at a din-
ing table, enjoying a meal of pizza. He
is wearing a police uniform, indicating
his occupation. There are two pizzas on
the table, one closer to the man and the
other further away. The table is set with
a cup, a fork, and a knife. A book is also
present on the table, possibly for the man
to read while he eats. The scene is set in
a cozy environment, with a couch visible
in the background.

The image features a man wearing a po-
lice uniform sitting at a dining table with
a plate of pizza in front of him. The table
is set with two cups, one on the left side
and the other on the right side. There are
also two slices of pizza on the table, one
in front of the man and the other on the
right side. The man appears to be enjoy-
ing his meal, and the scene seems to be a
casual dining experience.

The image features a small dog standing
on a paved road, wearing a collar. The
dog is positioned near the center of the
scene. A motorcycle is parked on the
right side of the dog, and a bus is visi-
ble in the background, occupying a large
portion of the image. There are two peo-
ple in the scene. One person is standing
near the left edge of the image, while the
other person is located on the right side,
closer to the motorcycle.

The image features a small brown and
white dog standing on a paved surface,
possibly a parking lot. The dog is on a
leash, and it appears to be looking at the
camera. In the background, there is a bus
parked, and a motorcycle is also visible
in the scene. The dog is positioned near
the center of the image, with the bus and
motorcycle occupying the right side of
the frame.

The image features a woman wearing a
blonde wig and holding a tennis racket.
She is smiling and appears to be enjoying
herself. The woman is standing in a room
with a couch in the background. There
is a TV mounted on the wall, and a cup
can be seen placed on a surface nearby.
The overall atmosphere of the scene is
light-hearted and fun.

The image features a woman wearing a
blonde wig and a green shirt, holding a
tennis racket. She appears to be dressed
as a tennis player, possibly for a costume
party or a themed event. The woman is
smiling and posing with the tennis racket,
showcasing her enthusiasm for the sport.

VQA Case Study. We have demonstrated some examples from the MM-Vet dataset in Table 7. We
have inlcuded some samples with each row containing the image, the corresponding question, the
originally generated response, a response based on our method and the provided ground-truth answer.
The score under each response reflects the accuracy of the response to the question. We also show the
required capabilities for answering each question in the “Answer” Column.

17



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Table 7: Examples from MM-Vet (Yu et al., 2023) based on LLaVA-1.5.

Image Question Original Ours Answer

Can you
give a short
introduc-
tion to this
painting?

This is a painting of
a night scene with a
city in the foreground
and a mountain in
the background. The
painting is a repre-
sentation of the night
sky with the stars and
the moon. The city is
depicted with buildings
and the mountain is
shown with a church on
top. The painting is a
beautiful representation
of the night sky and the
cityscape.

(score: 0.2)

This painting is a
famous representation
of the night sky by
the artist Vincent Van
Gogh. The painting
is a depiction of the
night sky with the stars
visible, and it is set
against a backdrop of
a town. The painting
is a combination of the
artist’s imagination and
the night sky, creating a
unique and captivating
piece of art.

(score: 0.6)

The Starry Night
is an oil-on-canvas
painting by the Dutch
Post-Impressionist
painter Vincent van
Gogh. Painted in June
1889, it depicts the
view from the east-
facing window of his
asylum room at Saint-
Rémy-de-Provence,
just before sunrise,
with the addition of
an imaginary village.
It has been in the
permanent collection of
the Museum of Modern
Art in New York City
since 1941, acquired
through the Lillie P.
Bliss Bequest. Widely
regarded as Van Gogh’s
magnum opus, The
Starry Night is one of
the most recognizable
paintings in Western
art.

Required capabil-
ities: recognition,
knowledge, language
generation

Which
animal in
the picture
is larger,
the cat or
the dog?

The cat is larger than
the dog.

(score: 1.0)

The dog is larger than
the cat in the picture.

(score: 0.0)

cat

Required capabil-
ities: recognition,
spatial awareness

What
should
kids do
after snap
fingers?

After snap fingers, kids
should then touch their
toes.

(score: 0.0)

After snap fingers, kids
should hop on one foot.

(score: 1.0)

hop on one foot

Required capabil-
ities: OCR, spatial
awareness

What is the
name of
this dish?

The name of this dish is
”Tofu Soup” or ”Tofu
Stew.”

(score: 0.0)

The dish is called ”Tofu
in a spicy sauce”.

(score: 0.4)

mapo tofu

Required capabil-
ities: recognition
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