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Abstract

Structural optimization is a popular method for designing objects such as bridge
trusses, airplane wings, and optical devices. Unfortunately, the quality of solutions
depends heavily on how the problem is parameterized. In this paper, we propose
using the implicit bias over functions induced by neural networks to improve the pa-
rameterization of structural optimization. Rather than directly optimizing densities
on a grid, we instead optimize the parameters of a neural network which outputs
those densities. This reparameterization leads to different and often better solutions.
On a selection of 116 structural optimization tasks, our approach produces the best
design 50% more often than the best baseline method.

1 Introduction

(a) L-BFGS (neural net) (b) MMA (pixels) (c) L-BFGS (pixels)

7.3% worse 54% worse

Figure 1: A multi-story building task. Figure (a) is
a structure optimized in CNN weight space. Figures
(b) and (c) are structures optimized in pixel space.

One of the driving forces behind the success of
deep computer vision models is the so-called
“deep image prior" of convolutional neural net-
works (CNNs). This phrase loosely describes
a set of inductive biases, present even in un-
trained models, that make them effective for
image processing. Researchers have taken ad-
vantage of this effect to perform inpainting,
noise removal, and super-resolution on images
with an untrained model [27].

There is growing evidence that this implicit
prior extends to domains beyond natural im-
ages. Some examples include style transfer in
fonts [3], uncertainty estimation in fluid dynam-
ics [30], and data upsampling in medical imaging [8]. Indeed, whenever data contains translation
invariance, spatial correlation, or multi-scale features, the deep image prior may be a useful tool.

One field where these characteristics are important – and where the deep image prior is under-
explored – is computational science and engineering. Here, parameterization is extremely important –
substituting one parameterization for another has a dramatic effect. Consider, for example, the task
of designing a multi-story building via structural optimization. The goal is to distribute a certain
quantity of building material over a two-dimensional grid in order to maximize the resilience of the
structure. As Figure 1 shows, different optimization methods (LBFGS [18] vs. MMA [26]) and
parameterizations (pixels vs. neural net) have big consequences for the final design.

How can we harness the deep image prior to better solve problems in computational science? In this
paper, we propose reparameterizing optimization problems from the basis of a grid to the basis of a
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Figure 2: Schema of our approach to reparameterizing a structural optimization problem with a
neural network. Each of these steps – the CNN parameterization, the constraint step, and the physics
simulation – is differentiable. We implement the forward pass as a TensorFlow graph and compute
gradients via automatic differentiation.

neural network. We use this approach to solve 116 structural optimization tasks and obtain solutions
that are quantitatively and qualitatively better than the baselines.

2 Methods

While we apply our approach to structural optimization in this paper, we emphasize that it is generally
applicable to a wide range of optimization problems in computational science. The core strategy is to
write the physics model in an automatic differentiation package with support for neural networks,
such as Jax, TensorFlow, or PyTorch. We emphasize that the differentiable physics model need not
be written from scratch: adjoint models, as these are known in the physical sciences, are widely used
[21, 9, 13], and software packages exist for computing them automatically [10].

The full computational graph begins with a neural network forward pass, proceeds to enforcing
constraints and running the physics model, and ends with a scalar loss function (“compliance" in the
context of structural optimization). Figure 2 gives an overview of this process. Once we have created
this graph, we can recover the original optimization problem by performing gradient descent on the
inputs to the constraint step (x̂ in Figure 2). Then we can reparameterize the problem by optimizing
the weights and inputs (θ and β) of a neural network which outputs x̂.

Structural optimization. We demonstrate our reparameterization approach on the domain of struc-
tural optimization. The goal of structural optimization is to use a physics simulation to design
load-bearing structures, given constraints such as conservation of volume. We focus on the general
case of free-form design without configuration constraints, known as topology optimization [6].

Following the “modified SIMP" approach described by [2], we begin with a discretized domain of
linear finite elements on a regular square grid. The physical density x̃ij at grid element (or pixel)
(i, j) is computed by applying a cone-filter with radius 2 on the input densities xij . Then, letting
K(x̃) be the global stiffness matrix, U(K,F ) the displacement vector, F the vector of applied forces,
and V (x̃) the total volume, we can write the optimization objective as:

min
x

: c(x) = UTKU, such that: KU = F, V (x) = V0, and 0 ≤ xij ≤ 1 ∀(i, j). (1)

We implemented this algorithm in NumPy, SciPy and Autograd [19]. The computationally limiting
step is the linear solve U = K−1F , for which we use a sparse Cholesky factorization [7].

One key challenge was enforcing the volume and density constraints of Equation (1). Standard
topology optimization methods satisfy these constraints directly, but only when directly optimizing
the design variables x. Our solution was to enforce the constraints in the forward pass, by mapping
unconstrained logits x̂ into valid densities x with a constrained sigmoid transformation:

xij = 1/(1 + exp[x̂ij − b(x̂, V0)]), such that: V (x) = V0. (2)

where b(x̂, V0) is solved for via binary search on the volume constraint. In the backwards pass, we
differentiate through the transformation at the optimal point using implicit differentiation [14].
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A note on baselines. Structural optimization problems are sensitive not only to choice of parameteri-
zation but also to choice of optimization algorithm. Unfortunately, standard topology optimization
algorithms like the Method of Moving Asymptotes (MMA) [26] and the Optimality Criteria (OC) [5]
are ill-suited for training neural networks. How, then, can we separate the effect of parameterization
from choice of optimizer? Our solution was to use a standard gradient-based optimizer, L-BFGS [20],
to train both the neural network parameterization (CNN-LBFGS) and the pixel parameterization
(Pixel-LBFGS). We found L-BFGS to be significantly more effective than stochastic gradient descent
when optimizing a single design, similar to findings for style transfer [12].

MMA

OC

Pixel-LBFGS

CNN-LBFGS

?

Figure 3: Comparing baselines on the MBB beam
example, on a 60×20 grid. Whereas Pixel-LBFGS
and CNN-LBFGS use the same optimizer, we
found that MMA and OC are much stronger base-
lines, so we decided to report all three. We use the
implementation of MMA from NLopt [? ]. We
re-implemented OC, but verified the results agree
exactly on the tasks reported in [2].

Since constrained optimization is often much
more effective at topology optimization (in pixel
space, at least), we also report the MMA and
OC results. In practice, we found that these
provided stronger baselines than Pixel-LBFGS.
Figure 3 is a good example: it shows structural
optimization of an MBB beam using the three
baselines. All methods except Pixel-LBFGS
converge to similar, near-optimal solutions.

Choosing the 116 tasks. In designing the 116
structural optimization tasks, our goal was to cre-
ate a distribution of diverse, well-studied prob-
lems with real-world significance. We started
with a selection of problems from [28] and [24].
Most of these classic problems are simple beams
with only a few forces, so we hand-designed
additional tasks reflecting real-world designs in-
cluding bridges with various support restrictions, trees, ramps, walls and buildings. The final tasks
fall into 28 categories, with V0 ∈ [0.05, 0.5] and between 211 to 216 elements.

Neural network methods. Our convolutional neural network architecture was inspired by the U-net
architecture used in the Deep Image Prior paper [27]. We were only interested in the parameterization
capabilities of the this model, so we used only the second, upsampling half of the model. We also
made the first activation vector (β in Figure 2) into a trainable parameter. Our model consisted of
a dense layer into 32 image channels, followed by five repetitions of tanh nonlinearity, 2x bilinear
resize (for the middle three layers), global normalization by subtracting the mean and dividing by
the standard deviation, a 2D convolution layer, and a learned bias over all elements/channels. The
convolutional layers used 5× 5 kernels and had 128, 64, 32, 16, and 1 channels respectively.

3 Analysis

Figure 4: Empirical distribution of the relative
error across design tasks. The x-axes measure
design error relative to the best overall design. The
y-axes measure the probability that the method’s
solution has an error below the x-axis threshold.

We found that reparameterizing structural opti-
mization problems with a neural network gave
equal performance to MMA on small problems
and compellingly better performance on large
problems. On both small and large problems,
it produced much better designs than OC and
Pixel-LBFGS.

For each task, we report typical (median over
101 random seeds for the CNN, constant ini-
tialization for the other models1) performance
and “best-of-ensemble" performance (with the
same initializations for all models, taken from
the untrained CNN). Figure 4 summarizes our
results; its second column of plots show how on
large problems (defined by ≥ 215 grid points)
the CNN-LBFGS solutions were more likely to
have low error.

1Constant initialization was better than the median for all baseline models.
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Why do large problems benefit more? Returning to the literature, we found that finite grids can
suffer from a “mesh-dependency problem", with varying solutions as grid resolution changes [23].
When grid resolution is high, small-scale “spiderweb" structures tend to form first and then interfere
with the development of large-scale structures. We suspected that optimizing the weights of a CNN
allowed us to instead optimize structures at several spatial scales at once, thus improving optimization
dynamics. To investigate this idea, we plotted structures from all 116 design tasks (see “Ancilliary
files” for this paper on arXiv.org). Then we chose five examples to highlight and showcase important
qualitative trends (Figure 5).

CNN-LBFGS MMA OC Pixel-LBFGS
cantilever beam two point 256x192 0.15

0.0 0.015 0.095 0.185

roof 256x256 0.4

0.0 0.004 0.039 0.166

thin support bridge 256x256 0.15

0.0 0.018 0.065 0.194

mbb beam 384x128 0.3

0.0 0.008 0.054 0.132

free suspended bridge 256x256 0.075

0.0 0.02 0.099 0.299

Figure 5: Qualitative examples of structural opti-
mization via reparameterization. The scores below
each structure measure relative difference between
the design and the best overall design in that row.
The “best of ensemble” CNN-parameterized solu-
tions were best or near-best (score ≤ 0.005) in 99
out of 116 tasks including these five, vs. 66 out
of 116 tasks for MMA. The CNN solutions are
qualitatively different from the baselines and often
involve simpler and more effective structures.

Reparameterized designs are often simpler.
The CNN-LBFGS designs have fewer “spider-
web" artifacts as shown in the cantilever beam,
MBB beam, and suspended bridge examples.
On the cantilever beam, CNN-LBFGS used a
total of eight supports whereas MMA used eigh-
teen. We see simpler structures as evidence
that the CNN biased optimization towards large-
scale structure. This effect was particularly pro-
nounced for large problems, which may explain
why they benefited more.

Convergence to different solutions. We also
noted that the baseline structures resembled each
other more closely than they did CNN-LBFGS.
In the thin support bridge example, the baseline
designs feature double support columns whereas
CNN-LBFGS used a single support with tree-
like branching patterns. In the roof task, the
baselines use branching patterns, but the CNN-
LBFGS uses pillars.

4 Related work

Parameterizing topology optimization. The
most common parameterization for topology op-
timization is a grid mesh [2, 22, 29]. Some-
times, polyhedral meshes are used [11]. Some
domain-specific structural optimizations feature
locally-refined meshes and multiple load case
adjustments [17]. Like locally refined meshes,
our method permits structure optimization at multiple scales. Unlike them, our method permits
optimization on both scales at once.

Neural networks and topology optimization. Several papers have proposed replacing topology
optimization methods with CNNs [4, 25, 1, 16]. Most of them begin by creating a dataset of structures
via regular topology optimization and then training a model on the dataset. While doing so can reduce
computation, it comes at the expense of relaxing physics and design constraints. More problematically,
these models can only reproduce their training data. In contrast, our approach produces better designs
that also obey exact physics constraints. One recent work resembles ours in that they use adjoint
gradients to train a CNN model [15]. Their goal was to learn a joint, conditional model over a range
of related tasks, which is different from our goal of reparameterizing a single structure.

5 Conclusions

Choice of parameterization has a powerful effect on solution quality for tasks such as structural
optimization, where solutions must be computed by numerical optimization. Motivated by the
observation that untrained deep image models have good inductive biases for many tasks, we
reparameterized structural optimization tasks in terms of the output of a convolutional neural network
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(CNN). Optimization then involved training the parameters of this CNN for each task. The resulting
framework produced qualitatively and quantitatively better designs on a set of 116 tasks.
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