
Learning Parameterized Policies for Planning Annotated RL

Harsha Kokel, Junkyu Lee, Michael Katz, Shirin Sohrabi
IBM Research

{harsha.kokel,junkyu.lee,michael.katz1}@ibm.com,ssohrab@us.ibm.com

Abstract

Recently, several approaches have utilized AI planning in the
context of hierarchical reinforcement learning. These meth-
ods employ planning operator descriptions to establish op-
tions for acquiring primitive or low-level skills. By employ-
ing hierarchical decomposition through operators, these ap-
proaches offer notable benefits during training, such as en-
hanced sample efficiency, as well as during evaluation, with
improved generalization across different yet related tasks. In
this study, we introduce a novel approach for defining param-
eterized options using operator descriptions. Our empirical
evaluations conducted on the mini-grid domain demonstrate
that the proposed approach not only enhances sample effi-
ciency but also overcomes certain limitations associated with
generalization capabilities.

1 Introduction
Many real-world domains involving sequential decision-
making exhibit a compositional nature. This implies that
these domains possess an inherent hierarchy that allows
decision-makers to abstract certain details and focus on
making high-level decisions. For instance, let’s consider the
task of driving from San Jose Airport to San Francisco Air-
port. By abstracting away low-level details such as traffic
signals, road conditions, and potential roadblocks, we can
create a high-level plan offline. This plan might involve get-
ting on US-101 N from Airport Blvd and Airport Pkwy, fol-
lowing US-101 N to Exit 422 in San Mateo County, and ulti-
mately following signs for the domestic terminal. However,
executing this plan at a low-level necessitates specific skills
and online planning.

It has been observed that the abstracted high-level tran-
sition system can often be described symbolically, com-
monly using the Planning Domain Description Language
(PDDL) (McDermott 2000). This ease of describing high-
level symbolic transitions, coupled with the ability of rein-
forcement learning (RL) agents to acquire low-level skills
through exploration, has inspired various recent works to
propose two-level frameworks (Lee et al. 2022; Kokel et al.
2022b,a, 2021; Silver et al. 2022; Illanes et al. 2020; Sarathy
et al. 2021; Jin et al. 2022; Lyu et al. 2019; Eppe, Nguyen,
and Wermter 2019). These frameworks utilize RL agents to

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learn low-level skills while employing planners to generate
high-level sub-goals. The primary advantage these frame-
works aim to offer is the transferability of learned skills.
Skills acquired for one task can be applied to another task,
enabling efficient skill reuse and adaptation.

While such frameworks have shown some success in
transferring to another task, their ability to generalize to dif-
ferent objects is limited. In this work, we focus on extending
the generalization ability to problems in same domain with
different objects. To do this, we introduce a novel approach
for defining parameterized options using planning operator
descriptions. Our initial experiments on minigrid domain
demonstrates that the proposed approach can not only im-
prove generalization ability to different objects but also en-
hance sample efficiency.

2 Background
2.1 Reinforcement Learning
A goal-oriented sequential decision-making problem can
be represented as a goal-oriented Markov decision pro-
cess (GMDP) xS,A, T,R, γ,Gy. Here, S denotes the set of
states, A represents the set of actions, T : SˆAˆS ÞÑ r0, 1s
represents the transition function, R : SˆAˆS ÞÑ R repre-
sents the reward function, γ P p0, 1q represents the discount
factor, and G represents the set of goal states. The objective
for the agent is to interact with the environment and find an
optimal policy π : S ˆ G ˆ A ÞÑ r0, 1s that maximizes the
expected cumulative discounted reward.

2.2 Options framework
When the action space is excessively large and/or the state
space is impractical to enumerate, RL agents experience the
curse of dimensionality. By introducing temporally extended
actions in hierarchical RL (Dietterich 1998; Sutton, Precup,
and Singh 1998; Parr and Russell 1998), researchers aimed
to leverage the ability of humans to simplify problems by
breaking them down into manageable sub-problems or ab-
stractions. Temporally extended actions allows agents to op-
erate at multiple levels of abstraction. This promotes more
efficient exploration, faster learning, and improved general-
ization to new situations. By decomposing complex actions
into a hierarchy, agents can tackle large problems in a more

MDPs

SMDPs

SMDPS over
MDPs

time

Figure 1: Comparison of actions in MDPs, SMDPs, and
HRL

organized and structured manner, leading to better perfor-
mance and scalability in RL tasks.

MDPs model time as discrete steps, where actions per-
sist for only a single step. In contrast, Semi-MDPs (SMDPs)
introduce temporally extended actions of varying lengths
over continuous time, as depicted in the first two trajecto-
ries of Figure 1. By incorporating temporally extended ac-
tions, HRL approaches augment the primitive action space
of MDPs, combining elements of both MDPs and SMDPs,
as illustrated in the last trajectory of Figure 1.

The Options framework introduced by Sutton, Precup,
and Singh (1998) provides a modeling approach for tem-
porally extended actions known as options. An option p “
xIp, βp, πpy consists of three components: a set of states
where the option can be initiated (Ip), a termination con-
dition (βp : S ÞÑ r0, 1s) that determines the probability of
option termination, and an option policy (πp). A policy is
learned for each option. At each step, the agent decides be-
tween taking a primitive (single-step) action or initiating a
temporally extended option. Once an option is initiated, the
agent employs the corresponding option policy to determine
actions until the termination condition is satisfied. The Op-
tions framework offers a notable advantage in transfer learn-
ing. A skill learned to accomplish one high-level task can
be applied to another high-level task, promoting knowledge
reuse. However, a limitation of the options framework is that
it learns a single policy for a specific termination condition.
In order to effectively generalize across different tasks, the
option policy should be adaptable to changing termination
conditions.

2.3 Planning
A typed first-order language L “ xP,B, T ,Vy comprises a
finite set of predicates P , objects B, types T , and free vari-
ables. A substitution θ maps variables to objects. An atom is
a predicate symbol followed by a parenthesized list of terms,
e.g., predicate(term1, term2, ¨ ¨ ¨). A term can be
a variable or an object. A literal is either an atom or the nega-
tion of an atom. An atom is considered a ground atom if all
its terms are objects; otherwise, it is referred to as a lifted

atom. A lifted atom can be grounded by applying a substi-
tution. For instance, with the substitution α “ tX{p1u, the
atom a “ ppXq is grounded to apαq “ ppp1q. We use the
symbol |ù to denote entailment. For example, A |ù B indi-
cates that in every possible world where A holds True, B
also holds True.

A planning domain D “ xL,Oy consists of a first-order
language L and a finite set of schematic operators O. A
schematic operator is defined as o “ xhpoq, prepoq, addpoq,
delpoqy, which includes a lifted atom, hpoq, referred to as
the head; a first-order formula representing preconditions
prepoq; and two disjoint sets of atoms, addpoq and delpoq,
representing the positive (add) and negative (delete) effects
of executing the operator. All terms appearing in the literals
of prepoq, addpoq, and delpoq are also arguments of hpoq.
Thus, a schematic operator can be grounded by substitut-
ing the head atom, resulting in hpoqα. A possibly empty
subset of literals in the preconditions that do not appear in
the effects (positive or negative) is called the prevail con-
dition, denoted as prvpoq. A ground operator opαq can be
applied in a state s if a substitution α satisfies the precon-
dition prepoq in s, i.e., s |ù prepopαqq. When the ground
operator opαq is applied, the state s transitions to another
state s1 “ pszdelpopαqqq Y addpopαqq.

A classical planning task is defined as a tuple Π “

xD, s0,Gy “ xP,B, T ,V,O, s0,Gy, where s0 represents
the initial state, and goal G is specified as a conjunction of
literals. A plan for the planning task is a sequence of ground
operators that, when executed in the initial state s0, leads to
a state satisfying G.

2.4 Planning annotated RL task
In the Planning annotated RL (PaRL) framework proposed
by Lee et al. (2022), a PaRL task E “ xM,Π, Ly is defined
over an GMDP M , a planning task Π, and a mapping L :
S ÞÑ sS from the states of the MDP to planning states. In the
PaRL framework, an option p “ xIp, βp, πpy is defined for
each grounded operator opαq in Π as follows:

1. Initiation set: Ip “ ts P S|Lpsq |ù prepopαqqu

2. Termination set: βp “ ts P S|Lpsq |ù prvpopαqq Y
eff popαqqu.

Additionally, a single goal option is defined to achieve the
goal (G) of the GMDP after the goal condition (G) in the
planning task is satisfied. The goal option is represented as
xs P S|Lpsq |ù G, G, πgy, where the option’s initiation set
consists of states that satisfy the goal condition, and the pol-
icy πg is trained to accomplish the GMDP goal. The poli-
cies for these options are trained using an online learning
approach. Specifically, the GMDP of the PaRL task is de-
composed into separate MDPs for each option, and the poli-
cies for these options are trained. During the training pro-
cess, an intrinsic reward is incorporated, which encourages
adherence to frame constraints.

A PaRL agent that has been trained on a locked
door-key environment within the mini-grid domain, as
shown in Figure 2a exhibits efficient generalization to a
locked door-key environment with an obstacle, depicted
in Figure 2b. However, the agent encounters difficulties

(a) (b) (c)

Figure 2: Three variants of minigrid domain with 4 rooms. The agent is represented with a red triangle. Goal is to navigate the
agent to the goal location, represented as a green cell. (a) A locked door-key environment. (b) A locked door-key environment
with the blue ball as an obstacle. (c) A locked door-key environment with red keys.

when trying to generalize to a locked door-key envi-
ronment with a red key. To comprehend this limitation,
let’s consider the list of grounded operators defined in
the initial environment. This list would include oper-
ators such as (pick yellow_key room_0_0),
(pick yellow_key room_0_1),
(unlock yellow_key door_1), and so on. How-
ever, the operator (pick red_key room_0_0) does
not exist in the initial environment. Consequently, no option
has been trained specifically for this operation. As a result,
the generalization capability of the PaRL agents is con-
strained to the objects present in the training environment.
In this work, our objective is to address this limitation and
overcome it by enhancing the generalization capability of
PaRL agents.

3 Parameterized PaRL
The primary objective of this work is to train an agent capa-
ble of generalizing to various tasks that may involve objects
that have not been seen during training. To provide clarity to
the concept of “generalization to different tasks,” we define
a domain-constrained distribution of PaRL tasks and specif-
ically emphasize the agent’s ability to generalize within that
distribution. By focusing on tasks within this defined distri-
bution, we aim to enhance the agent’s capacity to adapt and
perform well in novel scenarios that share the same domain
constraints.

Definition 1 A domain-constrained distribution of PaRL
task E is a distribution of PaRL tasks in which all the tasks:

1. Share a common set of operators O and actions A.
2. Share a common superset of predicates P , objects B, and

types T .

It is important to note that the predicates, objects, and
types within each task of the domain-constrained distri-
bution may vary. For instance, in the mini-grid task de-
picted in Figure 2, the task shown in Figure 2a includes a

yellow-key object, while the task in Figure 2c includes a
red-key object. Furthermore, while the task in Figure 2a
does not feature any object of type ball, the task in Fig-
ure 2b does. In order to generalize across such a distribu-
tion, it is necessary to learn a policy that can accommodate
this variability. To achieve this, we employ the approach of
learning parameterized options.

Definition 2 A parameterized option is defined as a 4-tuple
p “ xIp, θp, βp, πpy, where:

• Ip is the set of states where the option can be initiated,
with Ip Ă 2S .

• θp represents the parameter space associated with the
option.

• βp : S ˆ S ˆ θp ÞÑ p0, 1q is the termination condition,
which determines the probability of option termination
based on the current state, previous state, and parame-
ters.

• πp : S ˆ θp ÞÑ A is the option policy, which specifies
the action to be taken in a given state and with specific
parameters.

The initiation set Io is determined as the set of states
in S that satisfy the precondition prepoq when instantiated
with any valid assignment α from θo, denoted as Lpsq |ù
prepopαqq. Before delving into the initialization of the ter-
mination condition for the parameterized options, there are
a few terms that need to be explained.

We initialize a parameterized option for each schematic
operator o in the following manner:

1. The parameter space θo is defined as the space of assign-
ments to the parameters of schematic operator o.

2. The initiation set Io is determined as the set of states in
S that satisfy the precondition prepoq when instantiated
with any valid assignment α from θo, denoted as Lpsq |ù
prepopαqq. Mathematically expressed as,
Io “ ts P S|Lpsq |ù prepopαqq, Dα P θou.

Before delving into the initialization of the termination con-
dition for the parameterized options, there are a few terms
that need to be explained.

Definition 3 The context of a state s for a ground operator
opαq refers to the set of facts that are neither part of the pre-
condition nor the effect of the operator. In formal terms, the
context Cops, αq is defined as the set of literals in Lpsq that
are not present in the union of the instantiated precondition
prepoppαqqq and the instantiated effect eff popαqq. Mathe-
matically, we can express it as:

Cops, αq “ Lpsqz tprepopαqq Y eff popαqqu

Definition 4 The frame of a state s for a ground operator
wα refers to the set of facts that remain unchanged after ex-
ecuting the corresponding action. In formal terms, the frame
Fops, αq is defined as the set of literals in Lpsq that are pre-
served or unaffected by the execution of the action repre-
sented by o with the parameter assignment α. This is equiv-
alently expressed as the set of facts in the context and prevali
conditions. Mathematically, we can express it as:

Fops, αq “ Cops, αq Y prvpopαqq

Using the above definitions of the context and frame,
we can now define the termination condition of the pa-
rameterized option as follows: The termination condition
βops, s

1, αq for the parameterized option associated with
schematic operator o and parameter assignment α is defined
as:

βops, s
1, αq “

#

1 if Lps1q |ù eff popαqq
and Lps1q |ù Fops, αq

0 otherwise
(1)

This means that the termination condition returns 1 when
the resulting state s1 satisfies the effect of the operator with
the given parameter assignment α, and the frame Fops, αq
conditions. Otherwise, the termination condition returns a
value of 0, indicating that the option should continue.

Additionally, we also define an unparameterized goal op-
tion, similar to Lee et al. (2022). To train the parameterized
options, we define an intrinsic reward that encourages ad-
herence to the frame conditions. This reward is formulated
as a linear combination of three components. The first com-
ponent is the step cost, which is a negative constant assigned
for every action executed by the agent. This encourages the
agent to complete the task in as few steps as possible. The
second component is a conditional positive reward, which
is provided only when the agent successfully terminates the
parameterized option. This reward is associated with achiev-
ing the intended goal or subgoal of the option. The third
component is a conditional negative constant that is given
when the frame conditions of the option is violated. The
frame conditions ensures that the context of the state remains
unchanged after executing the option. If the context changes,
indicating a violation of the frame constraint, the agent re-
ceives a negative reward. Formally, the reward Rops, s

1, αq
for a transition ps, s1q with the parameter assignment α for
the parameterized option associated with schematic operator

o is defined as:

Rops, s
1, αq “ c1

loomoon

step cost

` c2Ipβops, s
1, αqq

loooooooomoooooooon

successful termination

` c3Ips1 |ù Fops, αqq
loooooooooomoooooooooon

frame violation

(2)

where c1, c2, and c3 are constants, and IpP q is an indicator
function that evaluates to 1 if P is True, and 0 otherwise.
This formulation of the reward provides a learning signal for
the agent to optimize its policy with respect to achieving suc-
cessful termination while adhering to the frame constraint.
The overall training procedure is described in Algorithm 1.

Algorithm 1: Learning Parameterized PaRL

INPUT: PaRL task distribution E , operators O, #tasks to
train T , #episodes to train K,
OUTPUT: Parameterized options policies πo,@o P O

1: πo,Bo,@o P O
Ź initialize a policy and a buffer for each operator

2: for task t “ 0 to T do
3: xM,Π, Ly ∼ P pEq

Ź sample a PaRL task
4: for episode k “ 0 to K do
5: s,G “M.reset()

Ź reset env and observe state and goal
6: ss,G “ Lpsq, LpGq

Ź get planning state and goal
7: plan = getPlan(Π, ŝ,G) + goal option

Ź Get a sequence of operators and assignments
8: e done, o done “ False, False

Ź done flags for episode and option
9: for opαq in plan do

10: while ␣ e done and ␣ o done do
11: a “ πops, αq

Ź Sample an action from the resp. policy
12: s1, done “M.step(s, a) Ź Take a step in env
13: ss1 “ Lps1q

14: r “ c1 ` c3Ips1 |ù Fops, αqq
Ź Step cost & frame constraint

15: o done “ Ipβops, s
1, αqq

16: if o done then
17: r “ r ` c2
18: end if
19: Bo “ Bo Y xs||α, a, r, s

1||αy
Ź Adding experience in the buffer

20: s “ s1

21: end while
22: end for
23: end for
24: for all o P O do
25: πo “ update(πo,Bo)

Ź Update the policy using off-policy algorithm
26: end for
27: end for
28: return πo,@o P O

4 Experiments
Our initial experiments are designed to address the following
research questions:

Q1. Is learning parameterized policies sample efficient?
Q2. Do the parameterized policies demonstrate improved

generalization abilities?
The answers to these questions will provide valuable in-
sights into the effectiveness and potential advantages of em-
ploying parameterized policies in our approach.

To investigate and answer our research questions, we have
defined a PaRL task distribution within the mini-grid do-
main. The mini-grid domain represents a grid world consist-
ing of multiple interconnected rooms. Figure 2 illustrates
a few examples of the mini-grid environment. Each room
can have locked or unlocked doors, with each door hav-
ing a specific color. Keys of corresponding colors can be
used to lock or unlock the doors, and these keys may be lo-
cated in different rooms. The objective in the mini-grid do-
main is to navigate an agent to a designated goal location.
The goal location is represented by a green indicator, while
the agent is depicted as a red triangle in Figure 2. Within
this domain, different PaRL tasks can be defined, encom-
passing various configurations and attributes. These varia-
tions may include doors at different locations, doors and
keys of different colors and quantities, distinct initial and
goal room assignments, varying numbers of rooms, balls, or
other elements. Moreover, within a specific PaRL task, dif-
ferent episodes may present diverse initial and goal locations
within the same room.

In our implementation, we utilize Ray RLlib (Liang et al.
2017) as the framework for implementing our approach.
Specifically, for learning the base policy, we employ the
Proximal Policy Optimization (PPO) algorithm, which is
implemented within Ray RLlib. To facilitate the learning
process, we utilize the same planning domain description as
presented in Lee et al. (2022). We adopt an egocentric image
representation for the mini-grid. An example transformation
is illustrated in Figure 4, which is an egocentric transforma-
tion of state shown in Figure 3a. In this representation, the
agent is always positioned at the bottom center of the im-
age and facing upwards. The egocentric image representa-
tion consists of six channels: doors, walls, balls, agent, keys,
and goal. Different objects are represented by distinct values
in the respective channels, allowing the agent to perceive the
environment from an egocentric viewpoint. For the param-
eterized options, we extend the image representation by in-
corporating additional channels that represent the parameter
assignments. These parameter assignments are concatenated
with the original image representation, forming a compre-
hensive input representation for the parameterized options.
By leveraging Ray RLlib, incorporating the egocentric im-
age representation, and representing parameter assignments
as additional channels, our implementation provides a robust
framework for training and utilizing parameterized policies.

To address the research question Q1 regarding the sam-
ple efficiency of learning parameterized options, we con-
ducted a comparative analysis with two prior baselines: stan-
dard Deep RL with the PPO algorithm and PaRL with PPO

as the base learner. It is evident from the curves, shown in
Fig 5, that our approach of learning parameterized options
outperforms both the PaRL and RL baselines in terms of
sample efficiency. This finding directly answers question Q1
by demonstrating that parameterized options can indeed be
learned in a sample-efficient manner, even in the presence of
a larger state space.

To address question Q2, we conducted evaluations on ad-
ditional PaRL tasks using the policies trained on the training
task (shown in Figure 3a). The evaluation tasks consisted
of three variations: (1) randomly sampling the room for the
initial location of the agent, (2) randomly sampling the room
for the goal location, and (3) randomly sampling rooms for
both the initial and goal locations. The performance of the
agents on these evaluation tasks is depicted in Figure 6. The
results of the evaluations demonstrate that while PaRL ex-
hibits some level of generalization to these random evalua-
tion tasks, our approach of learning parameterized policies
showcases significantly improved generalization efficiency.

Further, we conducted evaluations on MiniGrid PaRL
tasks with randomly sampled colors for the doors and keys.
The objective was to examine how well the policies could
adapt to variations in key colors. The success rates of the
evaluations are compared and illustrated in Figure 7. The re-
sults clearly demonstrate that our approach, utilizing param-
eterized options, exhibits a similar success rate in generaliz-
ing to different key colors as it does in generalizing to ran-
dom initial and goal locations. In contrast, the PaRL baseline
struggles to generalize effectively in the face of changing
key colors. The lower success rate observed in the PaRL ap-
proach highlights its limitations in handling variations that
are specific to objects, such as different key colors.

In summary, our evaluation results provide strong evi-
dence that learning parameterized options yields superior
generalization capabilities when dealing with variations re-
lated to objects. This highlights the advantages of our ap-
proach and reinforces the significance of utilizing param-
eterized policies for enhanced generalization in reinforce-
ment learning tasks involving objects.

5 Related work
Various promising approaches have recently emerged to
learn generalizable policies. Schaul et al. (2015) pro-
posed a framework for learning parameterized value func-
tions known as Universal Value Function Approximators
(UVFAs). This approach extends traditional value functions
by incorporating both states and goals as inputs, allowing
for more flexible and generalizable value estimation. The
key idea behind UVFAs is to factorize the value function
into two components: a goal representation and a state rep-
resentation. By separately encoding the goal and state infor-
mation, UVFAs can capture the value of being in a partic-
ular state while aiming to achieve a specific goal. da Silva,
Konidaris, and Barto (2012) propose a method for learning
reusable motor skills with parameters. The method focuses
on acquiring skills that can be adapted and applied to differ-
ent tasks or situations by adjusting their parameters. While
UVFAs and parameterized skills focus on generalizing poli-
cies across tasks or goals, our work introduces a novel per-

(a) Training task (b) Different initial and goal room (c) Different Key Color

Figure 3: Three PaRL tasks used in evaluation

Figure 4: Egocentric representation of state in Fig. 3a

Figure 5: Learning curves of different agents on training task
(shown in Fig 3a)

spective by parameterizing options to represent object as-
signment. This differs from both universal value functions
(UVFAs) and parameterized skills approaches, where the
parameters represent goals or tasks, respectively.

In a recent work by Kokel et al. (2022a), they proposed
the RePReL framework, which integrates planning and re-
inforcement learning. Our proposed framework shares simi-
larities with the RePReL framework in that both frameworks
define a single option for each schematic operator. However,
there is a notable difference in terms of the additional influ-
ence information required in the RePReL framework to gen-
erate abstract representations of the state and differentiate
among the ground operators. The RePReL framework em-
ploys first-order conditional influence information to gener-
ate abstract state representations. These representations ef-
fectively capture the contextual aspects required for the op-
tions to acquire context-specific behaviors. In contrast, our
approach learns parameterized policies for options.

6 Conclusion

In conclusion, this paper presents a novel approach for defin-
ing parameterized options using operator descriptions in the
context of hierarchical reinforcement learning. The study fo-
cuses on utilizing AI planning techniques to establish op-
tions for acquiring primitive or low-level skills. The empir-
ical evaluations conducted on the mini-grid domain demon-
strate the effectiveness of the proposed approach. The re-
sults indicate that the approach enhances sample efficiency
during training, allowing for more efficient exploration and
learning. The approach overcomes limitations associated
with generalization to problems with different objects. The
findings of this study contribute to the growing body of
research that combines AI planning and hierarchical rein-
forcement learning. The proposed approach provides a valu-
able technique for defining parameterized options, expand-
ing the possibilities for more efficient and adaptable learning
in complex environments.

(a) Randomly sampled
initial room

(b) Randomly sampled
goal room

(c) Randomly sampled initial
as well as goal room

Figure 6: Different evaluation tasks

Figure 7: Comparison of the generalization ability

References
da Silva, B. C.; Konidaris, G. D.; and Barto, A. G. 2012.
Learning Parameterized Skills. In ICML.

Dietterich, T. G. 1998. The MAXQ Method for Hierarchical
Reinforcement Learning. In ICML, 118–126.

Eppe, M.; Nguyen, P. D. H.; and Wermter, S. 2019. From Se-
mantics to Execution: Integrating Action Planning With Re-
inforcement Learning for Robotic Causal Problem-Solving.
Frontiers in Robotics and AI.

Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. A. 2020.
Symbolic Plans as High-Level Instructions for Reinforce-
ment Learning. ICAPS, 540–550.

Jin, M.; Ma, Z.; Jin, K.; Zhuo, H. H.; Chen, C.; and Yu, C.
2022. Creativity of AI: Automatic Symbolic Option Discov-
ery for Facilitating Deep Reinforcement Learning. In AAAI,
7042–7050. AAAI Press.

Kokel, H.; Manoharan, A.; Natarajan, S.; Ravindran, B.; and
Tadepalli, P. 2021. RePReL: Integrating Relational Plan-
ning and Reinforcement Learning for Effective Abstraction.
ICAPS, 31(1): 533–541.

Kokel, H.; Natarajan, S.; Ravindran, B.; and Tadepalli, P.
2022a. RePReL: A Unified Framework for Integrating Re-
lational Planning and Reinforcement Learning for Effective
Abstraction in Discrete and Continuous Domains. Neural
Computing and Applications.
Kokel, H.; Prabhakar, N.; Ravindran, B.; Blasch, E.; Tade-
palli, P.; and Natarajan, S. 2022b. Hybrid Deep RePReL:
Integrating Relational Planning and Reinforcement Learn-
ing for Information Fusion. In FUSION, 1–8. IEEE.
Lee, J.; Katz, M.; Agravante, D. J.; Liu, M.; Tasse, G. N.;
Klinger, T.; and Sohrabi, S. 2022. Hierarchical Reinforce-
ment Learning with AI Planning Models.
Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gon-
zalez, J.; Goldberg, K.; and Stoica, I. 2017. Ray rllib:
A composable and scalable reinforcement learning library.
arXiv preprint arXiv:1712.09381, 85.
Lyu, D.; Yang, F.; Liu, B.; and Gustafson, S. 2019. Sdrl:
Interpretable and data-efficient deep reinforcement learning
leveraging symbolic planning. In AAAI.
McDermott, D. V. 2000. The 1998 AI Planning Systems
Competition. AI Mag., 21(2): 35–55.
Parr, R.; and Russell, S. J. 1998. Reinforcement learning
with hierarchies of machines. In NeurIPS.
Sarathy, V.; Kasenberg, D.; Goel, S.; Sinapov, J.; and
Scheutz, M. 2021. SPOTTER: Extending Symbolic Plan-
ning Operators through Targeted Reinforcement Learning.
In AAMAS, 1118–1126. ACM.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal Value Function Approximators. In ICML.
Silver, T.; Athalye, A.; Tenenbaum, J. B.; Lozano-Pérez, T.;
and Kaelbling, L. P. 2022. Learning Neuro-Symbolic Skills
for Bilevel Planning. In CoRL, volume 205 of Proceedings
of Machine Learning Research, 701–714. PMLR.
Sutton, R. S.; Precup, D.; and Singh, S. 1998. Intra-Option
Learning about Temporally Abstract Actions. In ICML,
556–564. Morgan Kaufmann.

