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Abstract

Despite remarkable advances in image generation, existing001
diffusion models struggle to capture diverse cultural aes-002
thetics. While Low-Rank Adaptation (LoRA) enables ef-003
ficient fine-tuning, conventional approaches lack semantic004
awareness and apply uniform adaptations across all fea-005
tures, leading to suboptimal cultural representation. To ad-006
dress these limitations, we introduce K-StyleLoRA, a novel007
framework that leverages CLIP’s cross-modal understand-008
ing for culturally-aware image generation. Our approach009
consists of two key innovations. First, CLIP-Guided Infor-010
mation Gating dynamically modulates LoRA adaptations011
based on cultural relevance scores, enabling selective en-012
hancement of culturally-relevant features while suppressing013
irrelevant ones. Second, Cultural Semantic Loss provides014
additional semantic guidance through CLIP-based similar-015
ity optimization with Korean cultural concepts. Extensive016
experiments on Korean traditional art demonstrate supe-017
rior cultural fidelity while maintaining generation qual-018
ity and diversity. Most notably, K-StyleLoRA demon-019
strates exceptional cultural transfer capability on generic020
prompts requiring implicit cultural understanding, achiev-021
ing a Cultural Similarity Score of 0.274, representing a022
9.6% improvement over the vanilla SDXL baseline (0.250).023
Our framework establishes semantic-aware adaptation as024
a powerful paradigm for cultural representation, offering a025
scalable approach that can be extended to diverse cultural026
contexts and generation tasks beyond Korean aesthetics1.027

1. Introduction028

Image generation has undergone remarkable advancement029
with the emergence of large-scale diffusion models [1–030
3]. These models demonstrate exceptional capability in031
producing high-quality, diverse images from various input032
modalities. However, a critical limitation persists: existing033

1Additional qualitative results and visual comparisons are available at
our project page: REMOVED-FOR-REVIEW

models exhibit pronounced cultural bias, predominantly re- 034
flecting the cultural contexts most prevalent in their training 035
data while struggling to authentically represent diverse cul- 036
tural traditions [4, 5]. This bias stems from training data 037
imbalances and the inherent difficulty of capturing nuanced 038
cultural semantics across different generation tasks. 039

This cultural limitation becomes particularly evident 040
when examining culturally-specific concepts. Consider the 041
prompt “traditional clothes” across different cultural con- 042
texts: Korean hanbok with vibrant colors and flowing lines, 043
Indian lehenga with intricate embroidery, Japanese kimono 044
with seasonal motifs, or European ball gowns with struc- 045
tured silhouettes. Current models often default to the most 046
represented cultural interpretation in their training data, re- 047
vealing a fundamental gap in their ability to understand im- 048
plicit cultural contexts and generate culturally-appropriate 049
content without explicit guidance. 050

To address this cultural bias, efficient fine-tuning ap- 051
proaches have gained attention as a means to adapt pre- 052
trained models to specific cultural domains. Low-Rank 053
Adaptation (LoRA) [6, 7] has emerged as a particularly 054
promising solution, enabling customization of large diffu- 055
sion models with minimal computational overhead. How- 056
ever, when applied to cultural adaptation, conventional 057
LoRA approaches face two critical limitations. First, they 058
apply uniform adaptations across all features without con- 059
sidering semantic relevance, leading to inefficient param- 060
eter usage and potential interference with unrelated image 061
aspects. Second, they rely solely on reconstruction-based 062
objectives, lacking explicit semantic guidance to ensure cul- 063
tural authenticity. 064

While recent attempts to address cultural bias have ex- 065
plored data augmentation and prompt engineering tech- 066
niques [8], these approaches face significant limitations. 067
They either require extensive manual data collection or de- 068
pend on carefully crafted prompts, limiting their scalabil- 069
ity and practical applicability. More fundamentally, they 070
fail to address the core challenge: enabling models to de- 071
velop intrinsic understanding of cultural semantics that can 072
be activated automatically across diverse generation scenar- 073
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ios without explicit cultural markers in the input.074

Building on these observations, we introduce K-075
StyleLoRA, a novel framework that addresses cultural bias076
through semantically-guided adaptation. Our approach is077
motivated by two key insights: (1) pre-trained vision-078
language models like CLIP [9] possess rich cross-modal079
knowledge that can guide cultural adaptation, and (2) selec-080
tive feature enhancement based on cultural relevance can081
achieve superior authenticity with fewer parameters than082
uniform adaptation approaches.083

Our method integrates two complementary mechanisms084
into the LoRA adaptation process. CLIP-Guided Infor-085
mation Gating leverages CLIP’s cross-modal understand-086
ing to compute cultural relevance scores for input fea-087
tures, dynamically modulating LoRA adaptations to en-088
hance culturally-relevant aspects while suppressing irrele-089
vant ones. This selective approach enables more efficient090
adaptation and demonstrates superior few-shot learning ca-091
pabilities, making it particularly suitable for cultural do-092
mains where large-scale training data may be limited. Com-093
plementing this, our Cultural Semantic Loss provides ex-094
plicit training guidance by encouraging generated images to095
align with cultural concepts through CLIP-based similarity096
optimization, ensuring the model develops genuine cultural097
understanding rather than superficial pattern matching.098

We validate our approach through comprehensive exper-099
iments on Korean traditional art generation, a challenging100
domain requiring sophisticated understanding of aesthetic101
principles, color palettes, and compositional elements.102
Our evaluation employs four distinct prompt categories—103
explicit cultural references, implicit cultural cues, photo-104
style descriptions, and generic prompts without cultural105
markers—enabling thorough assessment of the model’s cul-106
tural understanding and transfer capabilities across different107
prompt types.108

The main contributions of this work are:109

• We propose K-StyleLoRA, a novel framework that com-110
bines CLIP-guided information gating with cultural se-111
mantic loss for effective cultural adaptation in diffusion112
models.113

• We introduce CLIP-Guided Information Gating, a mech-114
anism that dynamically modulates LoRA adaptations115
based on cultural relevance scores, enabling targeted pa-116
rameter updates while preserving general knowledge and117
demonstrating superior few-shot learning capabilities.118

• We design a Cultural Semantic Loss that provides ex-119
plicit semantic guidance through CLIP-based similarity120
optimization, ensuring authentic cultural representation121
and enabling effective learning even with limited cultural122
training data.123

Our framework addresses a critical gap in current gener-124
ative AI systems and provides a principled approach to mit-125
igating cultural bias. While we focus on Korean traditional126

art as our primary testbed, the methodology is designed for 127
generalizability to diverse cultural domains and generation 128
tasks, opening new avenues for inclusive and culturally- 129
aware generative AI. 130

2. Related Work 131

2.1. Text-to-Image Generation and Cultural Bias 132

Recent years have witnessed remarkable progress in text- 133
to-image generation, driven primarily by advances in diffu- 134
sion models [10–14]. Latent Diffusion Models (LDMs) [1] 135
significantly improved computational efficiency by operat- 136
ing in the latent space of pre-trained autoencoders. Build- 137
ing upon this foundation, Stable Diffusion demonstrated 138
remarkable text-to-image generation capabilities [15–17]. 139
More recently, Stable Diffusion XL (SDXL) [18] intro- 140
duced significant architectural improvements including a 141
larger UNet, refined conditioning mechanisms, and en- 142
hanced text encoders, achieving state-of-the-art perfor- 143
mance in high-resolution image generation. Other no- 144
table models like DALL-E 2 [3] and Imagen [2] have also 145
achieved unprecedented quality in generating photorealistic 146
images from textual descriptions. 147

Despite these advances, recent studies have revealed sig- 148
nificant cultural biases in AI models [4, 5, 19, 20]. These 149
biases manifest as systematic underrepresentation of non- 150
Western cultures and stereotypical portrayals that fail to 151
capture authentic cultural aesthetics. SDXL, while demon- 152
strating superior generation quality, inherits similar cul- 153
tural biases from its training data, predominantly reflect- 154
ing Western cultural perspectives. Limited work has explic- 155
itly addressed cultural representation in generative models. 156
Early approaches focused on dataset augmentation strate- 157
gies [21, 22] or bias mitigation through careful training data 158
curation. Others employ prompt engineering techniques [8] 159
or style transfer [23] methods to improve cultural repre- 160
sentation. More recent efforts have explored incorporating 161
cultural knowledge through cultural concept embeddings or 162
style codes. However, these methods often require exten- 163
sive cultural annotations and lack the cross-modal semantic 164
understanding necessary for authentic cultural representa- 165
tion. Our work addresses this critical limitation by devel- 166
oping culturally-aware adaptation techniques that leverage 167
pre-trained vision-language models to enhance SDXL’s cul- 168
tural representation capabilities. 169

2.2. Parameter-Efficient Fine-tuning 170

The computational cost of full fine-tuning large-scale gen- 171
erative models has motivated research into parameter- 172
efficient adaptation methods [24]. Low-Rank Adapta- 173
tion (LoRA) [6] emerged as a particularly effective ap- 174
proach, learning low-rank decompositions of weight up- 175
dates that can be efficiently merged with pre-trained param- 176
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eters. AdaLoRA [25] extends this by adaptively allocating177
ranks across different layers based on importance scores.178

Recent work has explored block-wise adaptation strate-179
gies. B-LoRA [26, 27] introduces selective application180
of LoRA to specific transformer blocks, while Frenkel et181
al. [28] use B-LoRA for style-content separation in diffu-182
sion models. However, these approaches focus on general183
artistic styles rather than cultural-specific adaptations and184
lack explicit semantic guidance for cultural authenticity.185

In diffusion models, several works have applied LoRA186
for domain adaptation [29, 30], including applications to187
SDXL for various customization tasks. However, these188
methods treat all features uniformly without considering se-189
mantic relevance to the target domain. Furthermore, se-190
lective adaptation approaches have shown promise for few-191
shot learning scenarios, where limited training data requires192
careful parameter allocation to prevent overfitting while193
maintaining adaptation effectiveness. Our K-StyleLoRA194
addresses these limitations through CLIP-guided selective195
feature learning specifically designed for cultural adaptation196
of SDXL, demonstrating superior performance even with197
limited cultural training data.198

2.3. Vision-Language Models for Guidance199

Vision-language models, particularly CLIP [9], have200
demonstrated remarkable capabilities in understanding se-201
mantic relationships across modalities. Several works have202
leveraged CLIP for guiding image generation and editing.203
CLIP-Guided Diffusion [31] uses CLIP to steer the genera-204
tion process toward desired text prompts during inference.205
CLIPStyler [32] employs CLIP for artistic style transfer by206
optimizing images to match style descriptions.207

More recently, attention has turned to using CLIP for208
training guidance rather than inference-time steering. In-209
structPix2Pix [33] uses CLIP features to guide instruction-210
based image editing, while other works explore CLIP-based211
loss functions for improved text-image alignment during212
training. However, none of these approaches specifically213
address cultural adaptation or employ CLIP for selective214
feature learning in parameter-efficient fine-tuning of large-215
scale models like SDXL.216

3. Method217

We present K-StyleLoRA, a novel framework that inte-218
grates CLIP’s cross-modal understanding with Low-Rank219
Adaptation for culturally-aware image generation. As illus-220
trated in Figure 1, our approach addresses the limitation of221
conventional LoRA methods that apply uniform adaptations222
without semantic awareness. Our K-StyleLoRA consists of223
two key innovations: CLIP-guided information gating for224
selective feature modulation and cultural semantic loss for225
global consistency enforcement.226

Figure 1. Overview of K-StyleLoRA framework. Our method
integrates CLIP-guided information gating with cultural semantic
loss for culturally-aware adaptation. (a) CLIP-Guided Informa-
tion Gating dynamically modulates LoRA adaptations based on
cultural relevance scores. (b) Cultural Semantic Loss provides
semantic guidance by optimizing CLIP-based similarity between
generated images and Korean cultural concepts. (c) The combined
approach enables both explicit cultural activation via [v] tokens
and implicit cultural transfer for generic prompts.

3.1. CLIP-Guided Information Gating 227

3.1.1. Cultural Relevance Assessment 228

We employ a shared CLIP ViT-B/32 model to maintain con- 229
sistent cultural understanding across all components. Ko- 230
rean cultural concepts are pre-encoded and normalized: 231

Tcultural = {Fnorm(CLIPtext(ck))}8k=1 (1) 232

where concepts include “Korean traditional painting”, “Ko- 233
rean hanbok clothing”, “Korean traditional architecture”, 234
and other cultural descriptors. 235

For input features h ∈ RB×S×D from UNet attention 236
layers, we compute cultural relevance by projecting features 237
to CLIP’s visual space: 238

v = Fnorm(Wproj · mean(h, dim = 1)) (2) 239

s = σ · (v · TT
cultural) (3) 240

where Wproj ∈ R512×D projects features to CLIP space and 241
σ controls guidance strength. 242

3.1.2. Selective Feature Modulation 243

The information gating network generates element-wise 244
modulation weights based on both original features and cul- 245
tural relevance: 246

g = Sigmoid(MLP([hflat; sexpanded])) ∈ [0, 1]BS×D (4) 247

where sigmoid activation ensures gating weights between 0 248
(suppress) and 1 (enhance). The enhanced LoRA layer then 249
applies selective adaptation: 250

y = h+
α

r
· reshape(g ⊙ flatten(BAh)) (5) 251

where B and A are LoRA matrices, ⊙ denotes element- 252
wise multiplication, and the gating mechanism g ensures 253
only culturally-relevant features are adapted. 254
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3.2. Cultural Semantic Loss255

To enforce global cultural consistency, we introduce a Cul-256
tural Semantic Loss that leverages CLIP’s vision encoder257
to assess the cultural alignment of generated images during258
training.259

3.2.1. Cultural Guidance Scaling260

Following classifier-free guidance principles, we maintain261
both conditional and unconditional text embeddings:262

Tcultural = {CLIPtext(ck)}8k=1 (6)263

Tuncond = CLIPtext(“”) (7)264

For generated images x̂ decoded from predicted latents265
during training, we compute CLIP visual features and mea-266
sure similarities:267

V = Fnorm(CLIPvision(preprocess(x̂))) (8)268

Scultural = V · TT
cultural (9)269

wconcepts = Softmax(Scultural) (10)270

scond =
∑
k

Scultural ⊙ wconcepts (11)271

suncond = V · Tuncond (12)272

We apply cultural guidance scaling similar to CFG:273

sguided = suncond + γ(scond − suncond) (13)274

where γ = 7.5 is the cultural guidance scale. The Cultural275
Semantic Loss maximizes cultural alignment:276

Lcultural = −sguided (14)277

3.3. Training Objective and Implementation278

Our complete training objective combines standard diffu-279
sion loss with cultural semantic guidance:280

Ltotal = Ldiffusion + λLcultural (15)281

where Ldiffusion = Et,ϵ∼N (0,1)∥ϵ − ϵθ(zt, t, c)∥2 and λ =282
0.1.283

4. Experiments284

In this section, we present comprehensive experiments to285
evaluate the effectiveness of K-StyleLoRA for culturally-286
aware text-to-image generation. We conduct extensive com-287
parisons with baseline methods, ablation studies on key288
components, and both quantitative and qualitative analyses289
on Korean traditional art generation.290

4.1. Experimental Setup291

4.1.1. Dataset292

We curate a dataset of Korean traditional cultural im-293
ages consisting of 128 high-quality images collected from294
copyright-free online sources. Training data consists of Ko-295
rean cultural images from public heritage collections.296

4.1.2. Implementation Details 297

We implement K-StyleLoRA on top of Stable Diffusion XL 298
using PyTorch and the Diffusers library. Training is per- 299
formed on NVIDIA RTX 4080 SUPER. We use a batch size 300
of 1 per device with gradient accumulation steps of 4, result- 301
ing in an effective batch size of 4. The resolution is set to 302
1024×1024 pixels to match SDXL’s native resolution. 303

The shared CLIP model uses ViT-B/32 architecture for 304
computational efficiency. LoRA rank is set to r = 4 across 305
all experiments. The cultural loss weight λ is set to 0.1, 306
cultural guidance scale γ to 7.5, and guidance strength σ 307
to 1.0. Training is performed for 10 epochs with AdamW 308
optimizer using learning rate 1× 10−4. 309

4.1.3. Baseline Methods 310

We compare K-StyleLoRA against several strong baseline 311
methods: 312

Vanilla SDXL: The original Stable Diffusion XL model 313
without any cultural adaptation, serving as the baseline for 314
cultural representation capability. 315

Standard LoRA: Conventional LoRA fine-tuning ap- 316
plied to the same attention blocks as our method but without 317
CLIP guidance or cultural semantic loss (σ = 0, λ = 0). 318

LoRA + CLIP Loss: Standard LoRA augmented with 319
cultural semantic loss but without CLIP-guided information 320
gating (σ = 0, λ = 0.1). 321

All baseline methods are trained using the same dataset, 322
computational resources, and training duration to ensure 323
fair comparison. 324

4.2. Evaluation Metrics 325

4.2.1. Quantitative Metrics 326

We employ automated metrics to comprehensively assess 327
generation quality and cultural authenticity: 328

Cultural Similarity Score (CSS): We compute the av- 329
erage CLIP similarity between generated images and the 8 330
pre-defined Korean cultural concepts used in our training. 331
This metric directly measures cultural alignment: 332

CSS =
1

N

N∑
i=1

K
max
k=1

sim(CLIP(Ii), Tk) (16) 333

where Ii are generated images, Tk are Korean cultural con- 334
cept embeddings, and N is the number of generated images. 335

CLIP Score: Standard CLIP score between generated 336
images and input prompts to evaluate text-image alignment. 337

LPIPS: We compute average LPIPS distance between 338
pairs of generated images from the same prompt to measure 339
generation diversity. 340

4.3. Main Results 341

Table 1 presents the quantitative comparison of K- 342
StyleLoRA against baseline methods across key evaluation 343
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Figure 2. K-StyleLoRA qualitative results organized by Korean cultural categories. Each column represents a different cultural domain.
Top row shows explicit cultural activation using [v] token representing “Korean traditional” (e.g., “a woman wearing [v] dress”), while
bottom row demonstrates implicit cultural transfer for equivalent prompts without tokens (e.g., “a woman wearing a traditional dress”).
Our method successfully applies Korean aesthetics in both scenarios while maintaining high visual quality and prompt adherence.

Method CSS(All) ↑ CSS(Exp) ↑ CSS(Gen) ↑ CLIP ↑
Vanilla SDXL 0.291±0.04 0.299±0.02 0.250±0.04 0.324±0.02
Standard LoRA 0.290±0.04 0.295±0.03 0.255±0.05 0.323±0.02
LoRA + CLIP 0.293±0.04 0.302±0.03 0.261±0.04 0.327±0.02

K-StyleLoRA 0.298±0.04 0.309±0.03 0.274±0.03 0.327±0.02

Table 1. Quantitative evaluation results on Korean traditional art
generation.

metrics. We evaluate cultural alignment using our Cultural344
Similarity Score (CSS) across different prompt categories:345
explicit cultural prompts (CSS-Exp), and generic prompts346
requiring implicit cultural transfer (CSS-Gen).347

K-StyleLoRA demonstrates improved performance348
across cultural similarity metrics, achieving the highest349
CSS(Exp) score of 0.309, representing a 9.6% improvement350
over vanilla SDXL on generic prompts (CSS-Gen): 0.274351
vs 0.250. Our method also maintains superior text-image352
alignment while preserving cultural authenticity.353

4.4. Ablation Studies354

Method CSS(All) ↑ CSS(Gen) ↑ CLIP ↑ LPIPS ↑
Standard LoRA 0.290±0.04 0.255±0.05 0.323±0.02 0.725±0.06
+ CLIP Loss Only 0.293±0.04 0.261±0.04 0.327±0.02 0.755±0.07
+ CLIP Gating Only 0.293±0.04 0.262±0.04 0.325±0.02 0.724±0.06

K-StyleLoRA (σ = 0.5) 0.289±0.04 0.250±0.03 0.324±0.02 0.761±0.08
K-StyleLoRA (σ = 1.0) 0.292±0.04 0.257±0.04 0.330±0.02 0.741±0.06
K-StyleLoRA (σ = 1.5) 0.298±0.04 0.274±0.03 0.327±0.02 0.749±0.06

Table 2. Ablation Study on K-StyleLoRA Components and Guid-
ance Strength.

To understand the contribution of each component, we 355
conduct comprehensive ablation studies examining our two 356
key innovations: CLIP-guided information gating and cul- 357
tural semantic loss. 358

The ablation study reveals that both CLIP loss and CLIP 359
gating contribute similarly to cultural representation. The 360
guidance strength analysis shows that stronger CLIP guid- 361
ance yields the best cultural similarity scores, demonstrat- 362
ing the effectiveness of our CLIP-guided information gating 363
approach. 364

4.5. Qualitative Results 365

Figure 2 presents a comprehensive showcase of K- 366
StyleLoRA’s generation capabilities across different prompt 367
categories, demonstrating the method’s ability to main- 368
tain cultural authenticity while producing diverse and high- 369
quality outputs. 370

Figure 3 demonstrates the comparison between vanilla 371
SDXL and K-StyleLoRA, showing how our method applies 372
Korean cultural aesthetics to various prompt types. 373

Cultural Authenticity: K-StyleLoRA consistently gen- 374
erates images with authentic Korean cultural elements 375
across all prompt categories, accurately capturing tradi- 376
tional Korean aesthetics including proper proportions, color 377
palettes, and cultural motifs. 378

Implicit Cultural Transfer: The method demonstrates 379
strong cultural transfer capabilities even when cultural el- 380
ements are not explicitly mentioned in the prompt, show- 381
ing Korean-influenced design elements while maintaining 382
prompt adherence. 383
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Figure 3. Direct comparison between Vanilla SDXL (top) and K-StyleLoRA (bottom) demonstrating implicit cultural transfer capabilities.
Architecture examples use generic prompts like “traditional building” and “traditional architecture”. Portrait examples use prompts such as
“a woman wearing a traditional dress” and “a woman in silk dress”. K-StyleLoRA automatically applies Korean cultural elements without
explicit Korean cultural keywords, producing culturally-specific outputs while maintaining high visual quality.

4.6. Limitations384

While K-StyleLoRA significantly improves cultural repre-385
sentation, several limitations remain. First, our method is386
inherently dependent on CLIP’s performance and cultural387
understanding capabilities. If CLIP has biases or limitations388
in recognizing certain cultural elements, these may affect389
our generation system’s performance. Future work could390
explore using more diverse vision-language models or de-391
veloping cultural-specific evaluation metrics to better as-392
sess cross-cultural generation quality. Second, the method393
requires careful curation of cultural concept embeddings,394
which may not capture all nuances of a cultural domain.395
Very abstract or conceptual cultural elements may still be396
challenging to represent accurately. Adaptive cultural em-397
bedding techniques could address this limitation. Third, our398
experiments are conducted on a limited dataset and specific399
experimental settings. More extensive evaluation across di-400
verse cultural domains, larger datasets, and varied experi-401
mental configurations would be necessary to fully validate402
the generalizability and robustness of our approach. Scal-403
ing to larger datasets and cross-cultural validation studies404
would strengthen these findings.405

5. Conclusion406

In this paper, we presented K-StyleLoRA, a novel frame-407
work for culturally-aware image generation that addresses408
cultural bias in existing diffusion models. Our approach409
introduces two key innovations: CLIP-Guided Information410
Gating for selective feature learning based on cultural rel-411
evance, and Cultural Semantic Loss for global semantic412
guidance through CLIP-based similarity optimization. Ex-413
tensive experiments on Korean traditional art demonstrate414

that K-StyleLoRA achieves a 9.6% improvement in cultural 415
similarity over vanilla SDXL while maintaining text-image 416
alignment and generation diversity. Our framework estab- 417
lishes semantic-aware adaptation as a powerful paradigm 418
for cultural representation, offering a scalable approach that 419
can be extended to diverse cultural contexts and genera- 420
tion tasks. This work opens new directions for parameter- 421
efficient cultural adaptation, promoting algorithmic fairness 422
and cultural diversity in generative AI. 423
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