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ABSTRACT

We address the problem of group fairness in classification, where the objective is
to learn models that do not unjustly discriminate against subgroups of the pop-
ulation. Most existing approaches are limited to simple binary tasks or involve
difficult to implement training mechanisms. This reduces their practical applica-
bility. In this paper, we propose FairGrad, a method to enforce fairness based
on a reweighting scheme that iteratively learns group specific weights based on
whether they are advantaged or not. FairGrad is easy to implement and can ac-
commodate various standard fairness definitions. Furthermore, we show that it is
competitive with standard baselines over various datasets including ones used in
natural language processing and computer vision.

1 INTRODUCTION

Fair Machine Learning addresses the problem of learning models that are free of any discriminatory
behavior against a subset of the population. For instance, consider a company that develops a model
to predict whether a person would be a suitable hire based on their biography. A possible source
of discrimination here can be if, in the data available to the company, individuals that are part of
a subgroup formed based on their gender, ethnicity, or other sensitive attributes, are consistently
labelled as unsuitable hires regardless of their true competency due to historical bias. This kind
of discrimination can be measured by a fairness notion called Demographic Parity (Calders et al.,
2009). If the data is unbiased, another source of discriminate may stem from the model itself that
consistently mislabel the competent individuals of a subgroup as unsuitable hires. This can be
measured by a fairness notion called Equality of Opportunity (Hardt et al., 2016).

Several such fairness notions have been proposed in the literature as different problems call for
different measures. These notions can be divided into two major paradigms, namely (i) Individual
Fairness (Dwork et al., 2012; Kusner et al., 2017) where the idea is to treat similar individuals
similarly regardless of the sensitive group they belong to, and (ii) Group Fairness (Calders et al.,
2009; Hardt et al., 2016; Zafar et al., 2017a; Denis et al., 2021) where the underlying idea is that
different sensitive groups should not be disadvantaged compared to an overall reference population.
In this paper, we focus on group fairness in the context of classification.

The existing approaches for group fairness in Machine Learning may be divided into three main
paradigms. First, pre-processing methods aim at modifying a dataset to remove any intrinsic unfair-
ness that may exist in the examples. The underlying idea is that a model learned on this modified
data is more likely to be fair (Dwork et al., 2012; Kamiran & Calders, 2012; Zemel et al., 2013;
Feldman et al., 2015; Calmon et al., 2017). Then, post-processing approaches modify the predic-
tions of an accurate but unfair model so that it becomes fair (Kamiran et al., 2010; Hardt et al.,
2016; Woodworth et al., 2017; Iosifidis et al., 2019; Chzhen et al., 2019). Finally, in-processing
methods aim at learning a model that is fair and accurate in a single step (Calders & Verwer, 2010;
Kamishima et al., 2012; Goh et al., 2016; Zafar et al., 2017a;b; Donini et al., 2018; Krasanakis et al.,
2018; Agarwal et al., 2018; Wu et al., 2019; Cotter et al., 2019; Iosifidis & Ntoutsi, 2019; Jiang &
Nachum, 2020; Lohaus et al., 2020; Roh et al., 2020; Ozdayi et al., 2021). In this paper, we propose
a new in-processing approach based on a reweighting scheme that may also be used as a kind of
post-processing approach by fine-tuning existing classifiers.

Motivation. In-processing approaches can be further divided into several sub-categories (Caton &
Haas, 2020). Common amongst them are methods that relax the fairness constraints under consid-
eration to simplify the learning process (Zafar et al., 2017a; Donini et al., 2018; Wu et al., 2019).
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# The library is available as a part of the supplementary material.
from fairgrad.torch import CrossEntropyLoss

# Same as PyTorch's loss with some additional meta data.
# A fairness rate of 0.01 is a good rule of thumb for standardized data.
criterion = CrossEntropyLoss(y_train, s_train,
fairness_measure, fairness_rate=0.01)

# The dataloader and model are defined and used in the standard way.
for x, y, s in data_loader:
optimizer.zero_grad()
loss = criterion(model(x), y, s)
loss.backward()
optimizer.step()

Figure 1: A standard training loop where the PyTorch’s loss is replaced by FairGrad’s loss.

Indeed, standard fairness notions are usually difficult to handle as they are often non-convex and
non-differentiable. Unfortunately, these relaxations may be far from the actual fairness measures,
leading to sub-optimal models (Lohaus et al., 2020). Similarly, several approaches address the fair-
ness problem by designing specific algorithms and solvers. This is, for example, done by reducing
the optimization procedure to a simpler problem (Agarwal et al., 2018), altering the underlying
solver (Cotter et al., 2019), or using adversarial learning (Raff & Sylvester, 2018). However, these
approaches are often difficult to adapt to existing systems as they may require special training pro-
cedures or changes in the model. They are also often limited in the range of problems to which they
can be applied (binary classification, two sensitive groups, . . . ). Furthermore, they may come with
several hyperparameters that need to be carefully tuned to obtain fair models. The complexity of
the existing methods might hinder their deployment in practical settings. Hence, there is a need for
simpler methods that are straightforward to integrate in existing training loops.

Contributions. In this paper, we present FairGrad, a general purpose approach to enforce fairness
for gradient descent based methods. We propose to dynamically update the weights of the examples
after each gradient descent update to precisely reflect the fairness level of the models obtained at
each iteration and guide the optimization process in a relevant direction. Hence, the underlying idea
is to use lower weights for examples from advantaged groups than those from disadvantaged groups.
Our method is inspired by recent reweighting approaches that also propose to change the importance
of each group while learning a model (Krasanakis et al., 2018; Iosifidis & Ntoutsi, 2019; Jiang &
Nachum, 2020; Roh et al., 2020; Ozdayi et al., 2021). We discuss these works in Appendix A.

A key advantage of FairGrad is that it is straightforward to incorporate into standard gradient based
solvers that support examples reweighing like Stochastic Gradient Descent. Hence, we developed
a Python library (provided in the supplementary material) where we augmented standard PyTorch
losses to accommodate our approach. From a practitioner point of view, it means that using FairGrad
is as simple as replacing their existing loss from PyTorch with our custom loss and passing along
some meta data, while the rest of the training loop remains identical. This is illustrated in Figure 1.
It is interesting to note that FairGrad only brings one extra hyper-parameter, the fairness rate, besides
the usual optimization ones (learning rates, batch size, . . . ).

Another advantage of Fairgrad is that, unlike the existing reweighing based approaches which of-
ten focus on specific settings, it is compatible with various group fairness notions, including exact
and approximate fairness, can handle both multiple sensitive groups and multiclass problems, and
can fine tune existing unfair models. Through extensive experiments, we show that, in addition to
its versatility, FairGrad is competitive with several standard baselines in fairness on both standard
datasets as well as complex natural language processing and computer vision tasks.

2 PROBLEM SETTING AND NOTATIONS

In the remainder of this paper, we assume that we have access to a feature space X , a finite discrete
label space Y , and a set S of values for the sensitive attribute. We further assume that there exists
an unknown distribution D ∈ DZ where DZ is the set of all distributions over Z = X ×Y ×S and
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that we only get to observe a finite dataset T = {(xi, yi, si)}ni=1 of n examples drawn i.i.d. fromD.
Our goal is then to learn an accurate model hθ ∈ H, with learnable parameters θ ∈ RD, such that
hθ : X → Y is fair with respect to a given fairness definition that depends on the sensitive attribute.
In Section 2.1, we formally define the fairness measures that are compatible with our approach
and provide several examples of popular notions that are compatible with our method. Finally, for
the ease of presentation, throughout this paper we slightly abuse the notation P (E) and use it to
represent both the true probability of an event E and its estimated probability from a finite sample.

2.1 FAIRNESS DEFINITION

We assume that the data may be partitioned into K disjoint groups denoted T1, . . . , Tk, . . . , TK
such that

⋃K
k=1 Tk = T and

⋂K
k=1 Tk = ∅. These groups highly depend on the fairness notion

under consideration. They might correspond to the usual sensitive groups, as in Accuracy Parity
(see Example 1), or might be subgroups of the usual sensitive groups, as in Equalized Odds (see
Example 2 in the appendix). For each group, we assume that we have access to a function Fk :
DZ × H → R such that Fk > 0 when the group k is advantaged and Fk < 0 when the group k
is disadvantaged. Furthermore, we assume that the magnitude of Fk represents the degree to which
the group is (dis)advantaged. Finally, we assume that each Fk can be rewritten as follows:

Fk(T , hθ) = C0
k +

K∑
k′=1

Ck
′

k P (hθ(x) 6= y|Tk′) (1)

where the constantsC are group specific and independent of hθ. The probabilities P (hθ(x) 6= y|Tk′)
represent the error rates of hθ(x) over each group Tk′ with a slight abuse of notation. Below, we
show that Accuracy Parity (Zafar et al., 2017a) respects this definition. In Appendix B, we show that
Equality of Opportunity (Hardt et al., 2016), Equalized Odds (Hardt et al., 2016), and Demographic
Parity (Calders et al., 2009) also respect this definition.
Example 1 (Accuracy Parity (AP) (Zafar et al., 2017a)). A model hθ is fair for Accuracy Parity
when the probability of being correct is independent of the sensitive attribute, that is, ∀r ∈ S

P (hθ(x) = y | s = r) = P (hθ(x) = y) .

It means that we need to partition the space into K = |S| groups and, ∀r ∈ S, we define F(r) as the
fairness level of group (r)

F(r)(T , hθ) = P (hθ(x) 6= y)− P (hθ(x) 6= y | s = r)

= (P (s = r)− 1)P (hθ(x) 6= y | s = r) +
∑

(r′)6=(r)

P (s = r′)P (hθ(x) 6= y | s = r′)

where the law of total probability was used to obtain the last equality. Thus Accuracy Parity satisfies
all our assumptions with C(r)

(r) = P (s = r)− 1, C(r′)
(r) = P (s = r′) with r′ 6= r, and C0

(r) = 0.

3 FAIRGRAD

In this section, we present FairGrad, the main contribution of this paper. We begin by discussing
FairGrad for exact fairness and then present an extension to handle ε-fairness.

3.1 FAIRGRAD FOR EXACT FAIRNESS

To introduce our method, we first start with the following optimization problem that is standard in
fair machine learning (Cotter et al., 2019)

arg min
hθ∈H

P (hθ(x) 6= y)

s.t. ∀k ∈ [K], Fk(T , hθ) = 0. (2)
Then, using Lagrange multipliers, denoted λ1, . . . , λK , we obtain an unconstrained objective that
should be minimized for hθ ∈ H and maximized for λ1, . . . , λK ∈ R:

L (hθ, λ1, . . . , λK) = P (hθ(x) 6= y) +

K∑
k=1

λkFk(T , hθ) . (3)
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To solve this problem, we propose to use an alternating approach where the hypothesis and the
multipliers are updated one after the other1.

Updating the Multipliers. To update λ1, . . . , λK , we will use a standard gradient ascent proce-
dure. Hence, given that the gradient of Problem (3) is

∇λ1,...,λKL (hθ, λ1, . . . , λK) =

F1(T , hθ)
...

FK(T , hθ)


we have the following update rule ∀k ∈ [K]:

λT+1
k = λTk + ηλFk

(
T , hTθ

)
where ηλ is a rate that controls the importance of each update. In the experiments, we use a constant
fairness rate of 0.01 as our initial tests showed that it is a good rule of thumb when the data is
properly standardized.

Updating the Model. To update the parameters θ ∈ RD of the model hθ, we use a standard
gradient descent approach. However, first, we notice that given the fairness notions considered,
Equation (3) can be rewritten as

L (hθ, λ1, . . . , λK) =

K∑
k=1

P (hθ(x) 6= y|Tk)

[
P (Tk) +

K∑
k′=1

Ckk′λk′

]
+

K∑
k=1

λkC
0
k . (4)

where
∑K
k=1 λkC

0
k is independent of hθ by definition. Hence, at iteration t, the update rule becomes

θT+1 = θT − ηθ
K∑
k=1

[
P (Tk) +

K∑
k′=1

Ckk′λk′

]
∇θP (hθ(x) 6= y|Tk)

where ηθ is the usual learning rate that controls the importance of each parameter update. Here, we
obtain our group specific weights ∀k, wk =

[
P (Tk) +

∑K
k′=1 C

k
k′λk′

]
, that depend on the current

fairness level of the model through λ1, . . . , λK , the relative size of each group through P (Tk), and
the fairness notion under consideration through the constants C. The exact values of these constants
are given in Section 2.1 and Appendix B for various group fairness notions. Overall, they are such
that, at each iteration, the weights of the advantaged groups are reduced and the weights of the
disadvantaged groups are increased.

The main limitation of the above update rule is that one needs to compute the group-wise gradients
∇θP (hθ(x) 6= y|Tk) = 1

nk

∑
(x,y)∈Tk ∇θI{hθ(x)6=y}. Here, I{hθ(x)6=y} is the indicator function, also

called the 0−1-loss, that is 1 when hθ(x) 6= y and 0 otherwise. Unfortunately, this usually does
not provide meaningful optimization directions. To address this issue, we follow the usual trend in
machine learning and replace the 0−1-loss with one of its continuous and differentiable surrogates
that provides meaningful gradients. For instance, in our experiments, we use the cross entropy loss.

3.2 COMPUTATIONAL OVERHEAD OF FAIRGRAD.

We summarize our approach in Algorithm 1. We consider batch gradient descent rather than full
gradient descent as it is a popular optimization scheme. We empirically investigate the impact of
the batch size in Section 4.7. We use italic font to highlight the steps inherent to FairGrad that do
not appear in classic batch gradient descent. The main difference is Step 5, that is the computation
of the fairness levels for each group. However, these can be cheaply obtained from the predictions
of h(t)

θ on the current batch which are always available since they are also needed to compute the
gradient. Hence, the computational overhead of FairGrad is very limited.

1It is worth noting that, here, we do not have formal duality guarantees and that the problem is not even
guaranteed to have a fair solution. Nevertheless, the approach seems to work well in practice as can be seen in
the experiments.
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Algorithm 1 FairGrad for Exact Fairness
Input: Groups T1, . . . , TK , Functions F1, . . . , FK , Function class H of models hθ with parameters
θ ∈ RD, Learning rates ηλ, ηθ, and Iterator iter that returns batches of examples.
Output: A fair model h∗θ .

1: Initialize the group specific weights and the model.
2: for B in iter do
3: Compute the predictions of the current model on the batch B.
4: Compute the group-wise losses using the predictions.
5: Compute the current fairness level using the predictions and update the group-wise weights.
6: Compute the overall weighted loss using the group-wise weights.
7: Compute the gradients based on the loss and update the model.
8: end for
9: return the trained model h∗θ

3.3 IMPORTANCE OF NEGATIVE WEIGHTS.

A key property of FairGrad is that we allow the use of negative weights throughout the optimization
process, that is

[
P (Tk) +

∑K
k′=1 C

k
k′λk′

]
may become negative, while existing methods often re-

strict themselves to positive weights (Roh et al., 2020; Iosifidis & Ntoutsi, 2019; Jiang & Nachum,
2020). In this Section, we show that these negative weights are important as they are sometimes
necessary to learn fair models. Hence, in the next lemma, we provide sufficient conditions so that
negative weights are mandatory if one wants to enforce Accuracy Parity.
Lemma 1 (Negative weights are necessary.). Assume that the fairness notion under consideration is
Accuracy Parity (see Example 1). Let h∗θ be the most accurate and fair model. Then using negative
weights is necessary as long as

min
hθ∈H
hθunfair

max
Tk

P (hθ(x) 6= y|Tk) < P (h∗θ(x) 6= y) .

Proof. The proof is provided in Appendix C.

The previous condition can sometimes be verified in practice. As a motivating example, assume
a binary setting with only two sensitive groups T1 and T−1. Let h−1

θ be the model minimizing
P (hθ(x) 6= y|T−1) and assume that P

(
h−1
θ (x) 6= y

)
< P

(
h−1
θ (x) 6= y|T−1

)
, that is group T−1 is

disadvantaged for accuracy parity. Given h∗θ the most accurate and fair model, we have

min
hθ∈H
hθunfair

max
Tk

P (hθ(x) 6= y|Tk) = P
(
h−1
θ (x) 6= y|T−1

)
< P (h∗θ(x) 6= y)

as otherwise we would have a contradiction since the fair model would also be the most accurate
model for group T−1 since P (h∗θ(x) 6= y) = P (h∗θ(x) 6= y|T−1) by definition of Accuracy Parity.
In other words, a dataset where the most accurate model for a given group still disadvantages this
group requires negative weights.

3.4 FAIRGRAD FOR ε-FAIRNESS

In the previous section, we mainly considered exact fairness and we showed that this could be
achieved by using a reweighting approach. In fact, we can extend this procedure to the case of ε-
fairness where the fairness constraints are relaxed and a controlled amount of violations is allowed.
Usually, ε is a user defined parameter but it can also be set by the law, as it is the case with the 80%
rule in the US. The main difference with the exact fairness case is that each equality constraint in
Problem (2) is replaced with two inequalities of the form

∀k ∈ [K], Fk(T , hθ) ≤ ε
∀k ∈ [K], Fk(T , hθ) ≥ −ε.

The main consequence is that we need to maintain twice as many Lagrange multipliers and that the
group-wise weights are slightly different. Since the two procedures are similar, we omit the details
here but provide them in Appendix D for the sake of completeness.
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4 EXPERIMENTS

In this section, we present several experiments that demonstrate the competitiveness of FairGrad
as a procedure to learn fair models in a classification setting. We begin by presenting results over
standard fairness datasets and a Natural language Processing dataset in Section 4.4. We then study
the behaviour of the ε-fairness variant of FairGrad in Section 4.5. Next, we showcase the fine-tuning
ability of FairGrad on a Computer Vision dataset in Section 4.6. Finally, we investigate the impact
of batch size on the learned model in Section 4.7.

4.1 DATASETS

In the main paper, we consider 4 different datasets and postpone the results on another 6 datasets
to Appendix E as they follow similar trends. We also postpone the detailed descriptions of these
datasets as well as the pre-processing steps.

On the one hand, we consider commonly used fairness datasets, namely Adult Income (Kohavi,
1996) and CelebA (Liu et al., 2015). Both are binary classification datasets with binary sensitive
attributes (gender). We also consider a variant of the Adult Income dataset where we add a second
binary sensitive attribute (race) to obtain a dataset with 4 disjoint sensitive groups.

On the other hand, to showcase the wide applicability of FairGrad, we consider the Twitter Senti-
ment2 (Blodgett et al., 2016) dataset from the Natural Language Processing community. It consists
of 200k tweets with binary sensitive attribute (race) and binary sentiment score. We also employ the
UTKFace dataset3 (Zhang et al., 2017) from the Computer Vision community. It consists of 23, 708
images tagged with race, age, and gender.

4.2 PERFORMANCE MEASURES

For fairness, we consider the four measures introduced in Section 2.1 and Appendix B, namely
Equalized Odds (EOdds), Equality of Opportunity (EOpp), Accuracy Parity (AP), and Demographic
Parity (DP). For each specific fairness notion, we report the average absolute fairness level of the
different groups over the test set, that is 1

K

∑K
k=1 |Fk(T , hθ)| (lower is better). To assess the utility

of the learned models, we use their accuracy levels over the test set, that is 1
n

∑n
i=1 Ihθ(xi)=yi (higher

is better). All the results reported are averaged over 5 independent runs and standard deviations
are provided. Note that, in the main paper, we graphically report a subset of the results over the
aforementioned datasets. We provide detailed results in Appendix E, including the missing pictures
as well as complete tables with accuracy levels, fairness levels, and fairness level of the most well-off
and worst-off groups for all the relevant methods.

4.3 METHODS

We compare FairGrad to 6 different baselines, namely (i) Unconstrained, which is oblivious to any
fairness measure and trained using a standard batch gradient descent method, (ii) an Adversarial
mechanism (Goodfellow et al., 2014) using a gradient reversal layer (Ganin & Lempitsky, 2015),
similar to GRAD-Pred (Raff & Sylvester, 2018), where an adversary, with an objective to predict
the sensitive attribute, is added to the unconstrained model, (iii) BiFair (Ozdayi et al., 2021), (iv)
FairBatch (Roh et al., 2020), (v) Constraints (Cotter et al., 2019), a non-convex constrained opti-
mization method, and (vi) Weighted ERM where each example is reweighed based on the size of the
sensitive group the example belongs to.

In all our experiments, we consider two different hypothesis classes. On the one hand, we use linear
models implemented in the form of neural networks with no hidden layers. On the other hand, we
use a more complex, non-linear architecture with three hidden layers of respective sizes 128, 64, and
32. We use ReLU as our activation function with batch norm normalization and dropout set to 0.2.
In both cases, we optimize the cross-entropy loss. We provide the exact setup and hyper-parameter
tuning details for all the methods in Appendix E.1.

2http://slanglab.cs.umass.edu/TwitterAAE/
3https://susanqq.github.io/UTKFace/
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In several experiments, we only consider subsets of the baselines due to the limitations of the meth-
ods. For instance, BiFair was designed to handle binary labels and binary sensitive attributes and
thus is not considered for the datasets with more than two sensitive groups or more than two labels.
Furthermore, we implemented it using the authors code that is freely available online but does not
include AP as a fairness measure, thus we do not report results related to this measure for BiFair.
Similarly, we also implemented FairBatch from the authors code which does not support AP as a
fairness measure, thus we also exclude it from the comparison for this measure. For Constraints,
we based our implementation on the publicly available authors library but were only able to reliably
handle linear models and thus we do not consider this baseline for non-linear models. Finally, for
Adversarial, we used our custom made implementation. However, it is only applicable when learn-
ing non-linear models since it requires at least one hidden layer to propagate its reversed gradient.

4.4 RESULTS FOR EXACT FAIRNESS

We report the results over the Adult Income dataset using a linear model, the Adult Income dataset
with multiple groups with a non-linear model, and the Twitter sentiment dataset using both linear
and nonlinear models in Figures 2, 3, and 4 respectively. In these figures, the best methods are closer
to the bottom right corner. If a method is closer to the bottom left corner, it has good fairness but
reduced accuracy. Similarly, a method closer to the top right corner has good accuracy but poor
fairness, that is it is close to the unconstrained model.

The main take-away from these experiments is that there is no fairness enforcing method that is
consistently better than the others. All of them have strengths, that is datasets and fairness measures
where they obtain good results, and weaknesses, that is datasets and fairness measures for which
they are sub-optimal. For instance, FairGrad achieves better fairness levels for EOdds and EOpp
over the Adult dataset with a linear model. However, it pays a price in terms of accuracy in those
settings. Similarly, FairBatch induces better accuracy than the other approaches over Adult with
linear model and EOdds and only pays a small price in terms of fairness. However, it is significantly
worse in terms of fairness over the Adult Multigroup dataset with a non-linear model. Finally, BiFair
is sub-optimal on Adult with EOpp, while being comparable to the other approaches on the Twitter
Sentiment dataset. We observed similar trends on the other datasets, available in Appendix E.3, with
different methods coming out on top for different datasets and fairness measures.
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Figure 2: Results for the Adult dataset using Linear Models.
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Figure 3: Results for the Adult Multigroup dataset using Non Linear models.
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Figure 4: Results for the Twitter Sentiment dataset for Linear and Non Linear Models.
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Figure 5: Results for CelebA with different fairness measure using Linear models. The Uncon-
strained Linear model achieves a test accuracy of 0.8532 with fairness level of 0.0499 for EOdds,
0.0204 for AP, and 0.0387 for EOpp.

In this second set of experiments, we demonstrate the capability of FairGrad to support approximate
fairness (see Section 3.4). In Figure 5, we show the performances, as accuracy-fairness pairs, of
several models learned on the CelebA dataset by varying the fairness level parameter ε. These
results suggest that FairGrad respects the constraints well. Indeed, the average absolute fairness
level (across all the groups, see Section 4.2) achieved by FairGrad is either the same or less than
the given threshold. It is worth mentioning that FairGrad is designed to enforce ε-fairness for each
constraint individually which is slightly different from the summarized quantity displayed here.
Finally, as the fairness constraint is relaxed, the accuracy of the model increases, reaching the same
performance as the Unconstrained classifier when the fairness level of the latter is below ε.

4.6 FAIRGRAD AS A FINE-TUNING PROCEDURE

While FairGrad has primarily been designed to learn fair classifiers from scratch, it can also be
used to fine-tune an existing classifier to achieve better fairness. To showcase this possibility, we
fine-tune the ResNet18 (He et al., 2016) model, developed for image recognition, over the UTKFace
dataset (Zhang et al., 2017), consisting of human face images tagged with Gender, Age, and Race
information. Following the same process as Roh et al. (2020), we use Race as the sensitive attribute
and consider two scenarios where either the gender (binary) with Demographic Parity as the fairness
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Table 1: Results for the UTKFace dataset where a ResNet18 is fine-tuned using different strategies.

Method s=Race ; y=Gender s=Race ; y=Age
Accuracy DP Accuracy EOdds

Unconstrained 0.8691 ± 0.0075 0.0448 ± 0.0066 0.6874 ± 0.0080 0.0843 ± 0.0089
FairGrad 0.8397 ± 0.0085 0.0111 ± 0.0064 0.6491 ± 0.0082 0.0506 ± 0.0059

Table 2: Effect of the batch size on the CelebA dataset with Linear Models and EOdds as the fairness
measure.

Batch Size 8 16 32 64 128 256 512 1024 2048

Accuracy 0.8186 0.8234 0.8215 0.8268 0.8273 0.8286 0.8292 0.8289 0.8303
Accuracy Std 0.0013 0.006 0.0028 0.0025 0.0031 0.0008 0.0027 0.0017 0.0031

Fairness 0.0031 0.0091 0.0045 0.0036 0.0051 0.0046 0.004 0.0038 0.0057
Fairness Std 0.0042 0.0062 0.0012 0.0014 0.0025 0.0032 0.0026 0.0019 0.0018

measure or age (multi-valued) with Equalized Odds as fairness measure are used as the target label.
The results are displayed in Table 1. In both settings, FairGrad is able to learn models that are more
fair than an Unconstrained fine-tuning procedure, albeit at the expense of accuracy.

4.7 IMPACT OF THE BATCH-SIZE

In this last set of experiment, we evaluate the impact of batch size on the fairness and accuracy level
of the learned model. Indeed, at each iteration, in order to minimize the overhead associated with
FairGrad (see Section 3.1), we update the weights using the fairness level of the model estimated
solely on the current batch. When these batches are small, these estimates are unreliable and might
lead the model astray. This can be observed in Table 2 where we present the performances of several
linear models learned with different batch sizes on the CelebA dataset. On the one hand, for very
small batch sizes, the learned models tends to have slightly lower accuracy and larger standard
deviation in fairness levels. On the other hand, with a sufficiently large batch size, in this case 64
and above, the learned models are close to be perfectly fair. Furthermore, they obtain reasonable
levels of accuracy since the Unconstrained model has an accuracy of 0.8532 for this problem.

5 CONCLUSION

In this paper, we proposed FairGrad, a fairness aware gradient descent approach based on a reweight-
ing scheme. We showed that it can be used to learn fair models for various group fairness definitions
and is able to handle multiclass problems as well as settings where there is multiple sensitive groups.
We empirically showed the competitiveness of our approach against several baselines on standard
fairness datasets and on a Natural Language Processing task. We also showed that it can be used to
fine-tune an existing model on a Computer Vision task. Finally, since it is based on gradient descent
and has a small overhead, we believe that FairGrad could be used for a wide range of applications,
even beyond classification.

Limitations and Societal Impact. While appealing, FairGrad also has limitations. It implicitly
assumes that a set of weights that would lead to a fair model exists but this might be difficult to
verify in practice. Thus, even if in our experiments FairGrad seems to behave quite well, a prac-
titioner using this approach should not trust it blindly. It remains important to always check the
actual fairness level of the learned model. On the other hand, we believe that, due to its simplicity
and its versatility, FairGrad could be easily deployed in various practical contexts and, thus, could
contribute to the dissemination of fair models.
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In this appendix we provide several details that were omitted in the main paper. First, in Section A,
we review several works related to ours. Then, in Section B, we show that several well known
group fairness measures are compatible with FairGrad. In Section C, we prove Lemma 1. Next, in
Section D, we derive the update rules for FairGrad with ε-fairness. Finally, in Section E, we provide
additional experiments.

A RELATED WORK

The fairness literature is extensive and we refer the interested reader to recent surveys (Caton &
Haas, 2020; Mehrabi et al., 2021) to get an overview of the subject. Here, we focus on recent works
that are more closely related to our approach.

BiFair (Ozdayi et al., 2021). This paper proposes a bilevel optimization scheme for fairness. The
idea is to use an outer optimization scheme that learns weights for each example so that the trade-off
between fairness and accuracy is as favorable as possible while an inner optimization scheme learns
a model that is as accurate as possible. One of the limits of this approach is that it does not directly
optimize the fairness level of the model but rather a relaxation that does not provide any guarantees
on the goodness of the learned predictor. Furthermore, it is limited to binary classification with
binary sensitive attribute. In this paper, we also learn weights for the examples in an iterative way.
However, we use a different update rule. Furthermore, we focus on proper fairness definitions rather
than relaxations and our objective is to learn accurate models with given levels of fairness rather
than a trade-off between the two. Finally, our approach is not limited to the binary setting.

FairBatch (Roh et al., 2020). This paper proposes a batch gradient descent approach that can be
used to learn fair models. More precisely, the idea is to draw the batch examples from a skewed
distribution that favors the disadvantaged groups by oversampling them. In this paper, we propose
to use a reweighting approach which could also be interpreted as altering the distribution of the
examples based on their fairness level if all the weights were positive. However, we allow the use of
negative weights, and we prove that they are sometimes necessary to achieve fairness. Furthermore,
we use a different update rule for the weights.

AdaFair (Iosifidis & Ntoutsi, 2019). This paper proposes a boosting based framework to learn
fair models. The underlying idea is to modify the weights of the examples depending on both the
performances of the current strong classifier and the group memberships. Hence, examples that
belong to the disadvantaged group and are incorrectly classified receive higher weights than the
examples that belong to the advantaged group and are correctly classified. In this paper, we use
a similar high level idea but we use different weights that do not depend on the performance of
the model. Furthermore, rather than a boosting based approach, we consider problems that can be
solved using gradient descent. Finally, while AdaFair only focuses on Equalized Odds, we show
that our approach works with several fairness notions.

Identifying and Correcting Label Bias in Machine Learning (Jiang & Nachum, 2020). This
paper considers the fairness problem from an original point of view as it assumes that the observed
labels are biased compared to the true labels. The goal is then to learn a model with respect to the true
labels using only the observed labels. To this end, the paper proposes to use an iterative reweighting
procedure where positive weights for the examples and updated models are alternatively learned.
In this paper, we also propose a reweighting approach. However, we use different weights that are
not necessarily positive. Furthermore, our approach is not limited to binary labels and can handle
multiclass problems.

B REFORMULATION OF VARIOUS GROUP FAIRNESS NOTION

In this section, we present several group fairness notions which respect our fairness definition pre-
sented in Section 2.1.

Example 2 (Equalized Odds (EOdds) (Hardt et al., 2016)). A model hθ is fair for Equalized
Odds when the probability of predicting the correct label is independent of the sensitive attribute,
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that is, ∀l ∈ Y,∀r ∈ S
P (hθ(x) = l | s = r, y = l) = P (hθ(x) = l | y = l) .

It means that we need to partition the space into K = |Y × S| groups and, ∀l ∈ Y,∀r ∈ S, we
define F(l,r) as

F(l,r)(T , hθ) = P (hθ(x) 6= l | y = l)− P (hθ(x) 6= l | s = r, y = l)

=
∑

(l,r′)6=(l,r)

P (s = r′|y = l)P (hθ(x) 6= l | s = r′, y = l)

− (1− P (s = r|y = l))P (hθ(x) 6= l | s = r, y = l)

where the law of total probability was used to obtain the last equation. Thus, Equalized Odds satisfies
all our assumptions with C(l,r)

(l,r) = P (s = r|y = l)−1, C(l,r′)
(l,r) = P (s = r′|y = l), C(l′,r′)

(l,r) = 0 with
r′ 6= r and l′ 6= l, and C0

(l,r) = 0.

Example 3 (Equality of Opportunity (EOpp) (Hardt et al., 2016)). A model hθ is fair for Equality
of Opportunity when the probability of predicting the correct label is independent of the sensitive
attribute for a given subset Y ′ ⊂ Y of labels called the desirable outcomes, that is, ∀l ∈ Y ′,∀r ∈ S

P (hθ(x) = l | s = r, y = l) = P (hθ(x) = l | y = l) .

It means that we need to partition the space into K = |Y × S| groups and, ∀l ∈ Y,∀r ∈ S, we
define F(l,r) as

F(l,r)(T , hθ) =

{ P (hθ(x) = l | s = r, y = l)
− P (hθ(x) = l | y = l) ∀(l, r) ∈ Y ′ × S

0 ∀(l, r) ∈ Y × S \ Y ′ × S
which can then be rewritten in the correct form in the same way as Equalized Odds, the only differ-
ence being that C ·(l,r) = 0,∀(l, r) ∈ Y × S \ Y ′ × S .

Example 4 (Demographic Parity (DP) (Calders et al., 2009)). A model hθ is fair for Demographic
Parity when the probability of predicting a binary label is independent of the sensitive attribute, that
is, ∀l ∈ Y,∀r ∈ S

P (hθ(x) = l | s = r) = P (hθ(x) = l) .

It means that we need to partition the space into K = |Y × S| groups and, ∀l ∈ Y,∀r ∈ S, we
define F(l,r) as

F(l,r)(T , hθ) = P (hθ(x) 6= l)− P (hθ(x) 6= l | s = r)

= (P (y = l, s = r)− P (y = l | s = r))P (hθ(x) 6= y | s = r, y = l)

+
∑

(l,r′) 6=(l,r)

P (y = l, s = r′)P (hθ(x) 6= y | s = r′, y = l)

+
(
P
(
y = l̄ | s = r

)
− P

(
y = l̄, s = r

))
P
(
hθ(x) 6= y | s = r, y = l̄

)
−

∑
(l̄,r′)6=(l̄,r)

P
(
y = l̄, s = r′

)
P
(
hθ(x) 6= y | s = r′, y = l̄

)
P
(
y = l̄

)
− P

(
y = l̄ | s = r

)
where the law of total probability was used to obtain the last equation. Thus, Demographic Par-
ity satisfies all our assumptions with C

(l,r)
(l,r) = P (y = l, s = r) − P (y = l | s = r), C(l,r′)

(l,r) =

P (y = l, s = r′) with r′ 6= r, C
(l̄,r)
(l,r) = P

(
y = l̄ | s = r

)
− P

(
y = l̄, s = r

)
, C

(l̄,r′)
(l,r) =

−P
(
y = l̄, s = r′

)
with r′ 6= r, and C0

(l,r) = P
(
y = l̄

)
− P

(
y = l̄ | s = r

)
.

C PROOF OF LEMMA 1

Lemma 2 (Negative weights are necessary.). Assume that the fairness notion under consideration
is Accuracy Parity. Let h∗θ be the most accurate and fair model. Then using negative weights is
necessary as long as

min
hθ∈H
hθunfair

max
Tk

P (hθ(x) 6= y|Tk) < P (h∗θ(x) 6= y) .

14



Under review as a conference paper at ICLR 2023

Proof. To prove this Lemma, one first need to notice that, for Accuracy Parity, since
∑K
k=1 P (Tk) =

1 we have that
K∑
k′=1

Ck
′

k = (P (Tk)− 1) +

K∑
k′=1
k′ 6=k

P (Tk′) = 0.

This implies that

K∑
k=1

[
P (Tk) +

K∑
k′=1

Ckk′λk′

]
= 1.

This implies that, whatever our choice of λ, the weights will always sum to one. In other words,
since we also have that

∑K
k=1 λkC

0
k = 0 by definition, for a given hypothesis hθ, we have that

max
λ1,...,λK∈R

K∑
k=1

P (hθ(x) 6= y|Tk)

[
P (Tk) +

K∑
k′=1

Ckk′λk′

]
(5)

= max
w1,...,wK∈R
s.t.

∑
k wk=1

K∑
k=1

P (hθ(x) 6= y|Tk)wk (6)

where, givenw1, . . . , wK , the original values of lambda can be obtained by solving the linear system
Cλ = w where

C =

C1
1 . . . C1

K
...

...
CK1 . . . CKK

 , λ =

λ1

...
λK

 , w =

 w1 − P (T1)
...

wK − P (TK)


which is guaranteed to have infinitely many solutions since the rank of the matrix C isK−1 and the
rank of the augmented matrix (C|w) is also K − 1. Here we are using the fact that P (Tk) 6= 0,∀k
since all the groups have to be represented to be taken into account.

We will now assume that all the weights are positive, that is wk ≥ 0,∀k. Then, the best strategy
to solve Problem (6) is to put all the weight on the worst off group k, that is set wk = 1 and
wk′ = 0,∀k′ 6= k. It implies that

max
w1,...,wK∈R
s.t.

∑
k wk=1

K∑
k=1

P (hθ(x) 6= y|Tk)wk = max
k

P (hθ(x) 6= y|Tk) .

Furthermore, notice that, for fair models with respect to Accuracy Parity, we have that
P (hθ(x) 6= y|Tk) = P (hθ(x) 6= y) ,∀k. Thus, if it holds that

min
hθ∈H
hθunfair

max
Tk

P (hθ(x) 6= y|Tk) < P (h∗θ(x) 6= y)

where h∗θ is the most accurate and fair model, then the optimal solution of Problem (3) in the main
paper will be unfair. It implies that, in this case, using positive weights is not sufficient and negative
weights are necessary.

D FAIRGRAD FOR ε-FAIRNESS

To derive FairGrad for ε-fairness we first consider the following standard optimization problem

arg min
hθ∈H

P (hθ(x) 6= y)

s.t. ∀k ∈ [K], Fk(T , hθ) ≤ ε
∀k ∈ [K], Fk(T , hθ) ≥ −ε.
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We, once again, use a standard multipliers approach to obtain the following unconstrained formula-
tion:

L (hθ, λ1, . . . , λK , δ1, . . . , δK) = P (hθ(x) 6= y) +

K∑
k=1

λk (Fk(T , hθ)− ε)− δk (Fk(T , hθ) + ε)

(7)

where λ1, . . . , λK and δ1, . . . , δK are the multipliers that belong to R+, that is the set of positive
reals. Once again, to solve this problem, we will use an alternating approach where the hypothesis
and the multipliers are updated one after the other.

Updating the Multipliers. To update the values λ1, . . . , λK , we will use a standard gradient as-
cent procedure. Hence, noting that the gradient of the previous formulation is

∇λ1,...,λKL (hθ, λ1, . . . , λK , δ1, . . . , δK) =

F1(T , hθ)− ε
...

FK(T , hθ)− ε


∇δ1,...,δKL (hθ, λ1, . . . , λK , δ1, . . . , δK) =

−F1(T , hθ)− ε
...

−FK(T , hθ)− ε


we have the following update rule ∀k ∈ [K]

λT+1
k = max

(
0, λTk + η

(
Fk
(
T , hTθ

)
− ε
))

δT+1
k = max

(
0, δTk − η

(
Fk
(
T , hTθ

)
+ ε
))

where η is a learning rate that controls the importance of each weight update.

Updating the Model. To update the parameters θ ∈ RD of the model hθ, we proceed as before,
using a gradient descent approach. However, first, we notice that given the fairness notions that we
consider, Equation (7) is equivalent to

L (hθ, λ1, . . . , λK , δ1, . . . , δK) =

K∑
k=1

P (hθ(x) 6= y|Tk)

[
P (Tk) +

K∑
k′=1

Ckk′ (λk′ − δk′)

]
(8)

−
K∑
k=1

(λk + δk) ε+

K∑
k=1

(λk − δk)C0
k .

Since the additional terms in the optimization problem do not depend on hθ, the main difference
between exact and ε-fairness is the nature of the weights. More precisely, at iteration t, the update
rule becomes

θT+1 = θT − ηθ
K∑
k=1

[
P (Tk) +

K∑
k′=1

Ckk′ (λk′ − δk′)

]
∇θP (hθ(x) 6= y|Tk)

where ηθ is a learning rate. Once again, we obtain a simple reweighting scheme where the weights
depend on the current fairness level of the model through λ1, . . . , λK and δ1, . . . , δK , the relative
size of each group through P (Tk), and the fairness notion through the constants C.

E EXTENDED EXPERIMENTS

In this section, we provide additional details related to the baselines and the hyper-parameters tuning
procedure. We then provide descriptions of the datasets and finally the results.
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E.1 BASELINES

• Adversarial: One of the common ways of removing sensitive information from the model’s
representation is via adversarial learning. Broadly, it consists of three components, namely
an encoder, a task classifier, and an adversary. One the on hand, the objective of the adver-
sary is to predict sensitive information from the encoder. On the other hand, the encoder
aims to create representations that are useful for the downstream task (task classifier) and,
at the same time, fool the adversary. The adversary is generally connected to the encoder
via a gradient reversal layer (Ganin & Lempitsky, 2015) which acts like an identity function
during the forward pass and scales the loss with a parameter −λ during the backward pass.
In our setting, the encoder is a Multi-Layer Perceptron with two hidden layers of size 64
and 128 respectively, and the task classifier is another Multi-Layer Perceptron with a single
hidden layer of size 32. The adversary is the same as the main task classifier. We use a
ReLU as the activation function with the dropout set to 0.2 and employ batch normalization
with default PyTorch parameters. As a part of the hyper-parameter tuning, we did a grid
search over λ, varying it between 0.1 to 3.0 with an interval of 0.2.

• BiFair (Ozdayi et al., 2021): For this baseline, we fix the weight parameter to be of length
8 as suggested in the code released by the authors. In this fixed setting, we perform a grid
search over the following hyper-parameters:

– Batch Size: 128,256,512
– Weight Decay: 0.0, 0.001
– Fairness Loss Weight: 0.5, 1, 2, 4
– Inner Loop Length: 5, 25, 50

• Constraints: We use the implementation available in the TensorFlow Constrained Opti-
mization library with default hyper-parameters.

• FairBatch: We use the implementation publicly released by the authors.

• Weighted ERM: We reweigh each example in the dataset based on inverse of the propor-
tion of the sensitive group it belongs to.

In our initial experiments, we varied the batch size, and learning rates for both Constraints and
FairBatch. However, we found that the default hyper-parameters as specified by the authors result
in the best performances. In the spirit of being comparable in terms of hyper-parameter search
budget, we also fix all hyper-parameters of FairGrad, apart from the batch size and weight decay.
We experiment with two different batch sizes namely, 64 or 512 for the standard fairness dataset.
Similarly, we also experiment with three weight decay values namely, 0.0, 0.001 and 0.01. Note that
we also vary weight decay and batch sizes for FairBatch, Adversarial, Unconstrained, and BiFair
approach.

For all our experiments, apart from BiFair, we use Batch Gradient Descent as the optimizer with
a learning rate of 0.1 and a gradient clipping of 0.05 to avoid exploding gradients. For BiFair, we
employ the Adam optimizer as suggested by the authors with a learning rate of 0.001.

Hyper-parameters selection procedure. As mentioned above, all our baselines come with a num-
ber of hyper-parameters (learning rates, batch size, weight decay, . . . ) and selecting the best combi-
nation is often key to avoid undesirable behaviours such as over-fitting. In this paper, we proceed as
follows. First, for each method, we consider all the X possible hyper-parameter combinations and
we run the training procedure for 50 epochs for each combination. Then, we retain all the models
returned by the last 5 epochs, that is, for a given method, we have 5X models and the goal is to se-
lect the best one among them. Since we have access to two measures of performance, we can select
either the most accurate model, the most fair model, or a trade-off between the two depending on the
goal of the practitioner. In this paper, we chose to focus on the third option and we select the model
with the lowest fairness score between certain accuracy intervals. More specifically, let α∗ be the
highest validation accuracy among the 5X models, we choose the model with the lowest validation
fairness score amongst all models with a validation accuracy in the interval [α∗ − 0.03, α∗].

For FairGrad, FairBatch and Unconstrained, we considered 6 hyper-parameters combinations. For
BiFair, we considered 72 such combinations, while for Adversarial, there were 90 combinations.
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E.2 DATASETS

Here, we provide additional details on the datasets used in our experiments. We begin by describ-
ing the standard fairness datasets for which we follow the pre-processing procedure as described
in Lohaus et al. (2020).

• Adult4: The dataset (Kohavi, 1996) is composed of 45222 instances, with 14 features
each describing several attributes of a person. The objective is to predict the income of a
person (below or above 50k) while remaining fair with respect to gender (binary in this
case). Following the pre-processing step of Wu et al. (2019), only 9 features were used for
training.

• CelebA5: The dataset (Liu et al., 2015) consists of 202, 599 images, along with 40 binary
attributes associated with each image. We use 38 of these as features while keeping gender
as the sensitive attribute and “Smiling” as the class label.

• Dutch6: The dataset (Žliobaite et al., 2011) is composed of 60, 420 instances with each
instance described by 12 features. We predict “Low Income” or “High Income” as dictated
by the occupation as the main classification task and gender as the sensitive attribute.

• Compas7: The dataset (Larson et al., 2016) contains 6172 data points, where each data
point has 53 features. The goal is to predict if the defendant will be arrested again within
two years of the decision. The sensitive attribute is race, which has been merged into
“White” and “Non White” categories.

• Communities and Crime8: The dataset (Redmond & Baveja, 2002) is composed of 1994
instances with 128 features, of which 29 have been dropped. The objective is to predict the
number of violent crimes in the community, with race being the sensitive attribute.

• German Credit9: The dataset (Dua et al., 2017) consists of 1000 instances, with each
having 20 attributes. The objective is to predict a person’s creditworthiness (binary), with
gender being the sensitive attribute.

• Gaussian10: It is a toy dataset with binary task label and binary sensitive attribute, intro-
duced in Lohaus et al. (2020). It is constructed by drawing points from different Gaussian
distributions. We follow the same mechanism as described in Lohaus et al. (2020), and
sample 50000 data points for each class.

• Adult Folktables11: This dataset (Ding et al., 2021) is an updated version of the original
Adult Income dataset. We use California census data with gender as the sensitive attribute.
There are 195665 instances, with 9 features describing several attributes of a person. We
use the same preprocessing step as recommended by the authors.

For all the dataset, we use a 20% of the data as a test set and 80% as a train set. We further divide
the train set into two and keep 25% of the training examples as a validation set. For each repetition,
we randomly shuffle the data before splitting it, and thus we had unique splits for each random seed.
As a last pre-processing step, we centered and scaled each feature independently by substracting the
mean and dividing by the standard deviation both of which were estimated on the training set.

Twitter Sentiment Analysis12: The dataset (Blodgett et al., 2016) consists of 200k tweets with
binary sensitive attribute (race) and binary sentiment score. We follow the setup proposed by Han
et al. (2021) and Elazar & Goldberg (2018) and create bias in the dataset by changing the proportion
of each subgroup (race-sentiment) in the training set. With two sentiment classes being happy and
sad, and two race classes being AAE and SAE, the training data consists of 40% AAE-happy, 10%

4https://archive.ics.uci.edu/ml/datasets/adult
5https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
6https://sites.google.com/site/conditionaldiscrimination/
7https://github.com/propublica/compas-analysis
8http://archive.ics.uci.edu/ml/datasets/communities+and+crime
9https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

10https://github.com/mlohaus/SearchFair/blob/master/examples/get synthetic data.py
11https://github.com/zykls/folktables
12ttp://slanglab.cs.umass.edu/TwitterAAE/
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AAE-sad, 10% SAE-happy, and 40% SAE-sad. The test set remains balanced. The tweets are
encoded using the DeepMoji (Felbo et al., 2017) encoder with no fine-tuning, which has been pre-
trained over millions of tweets to predict their emoji, thereby predicting the sentiment. Note that the
train-test splits are pre-defined and thus do not change based on the random seed of the repetition.

E.3 STANDARD FAIRNESS DATASETS
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Figure 6: Results for the Adult dataset with different fairness measures.

Table 3: Results for the Adult dataset with Linear Models. All the results are averaged over 5 runs.
Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the worst-off group, respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8456 ± 0.0033 AP 0.0571 ± 0.0022 0.077 ± 0.0029 -0.0373 ± 0.0017
Constant 0.751 ± 0.0 AP 0.102 ± 0.0 0.138 ± 0.0 0.067 ± 0.0
Weighted ERM 0.8442 ± 0.0016 AP 0.0581 ± 0.0021 0.0783 ± 0.0028 -0.0379 ± 0.0014
Constrained 0.783 ± 0.007 AP 0.005 ± 0.003 0.007 ± 0.005 0.004 ± 0.002
FairGrad 0.8124 ± 0.005 AP 0.0097 ± 0.0029 0.0131 ± 0.004 -0.0063 ± 0.0019

Unconstrained 0.846 ± 0.0028 Eodds 0.0453 ± 0.0039 0.048 ± 0.0043 -0.0878 ± 0.01
Constant 0.748 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8475 ± 0.0024 Eodds 0.044 ± 0.0043 0.0477 ± 0.0031 -0.0837 ± 0.0124
Constrained 0.805 ± 0.004 Eodds 0.007 ± 0.005 0.019 ± 0.017 0.002 ± 0.001
BiFair 0.793 ± 0.009 Eodds 0.036 ± 0.008 0.085 ± 0.027 -0.03 ± 0.016
FairBatch 0.8437 ± 0.0013 Eodds 0.0228 ± 0.0071 0.0411 ± 0.0105 -0.0245 ± 0.0183
FairGrad 0.8284 ± 0.004 Eodds 0.0051 ± 0.0021 0.0078 ± 0.0068 -0.0078 ± 0.0054

Unconstrained 0.8457 ± 0.0028 Eopp 0.0263 ± 0.0024 0.0157 ± 0.0011 -0.0893 ± 0.0083
Constant 0.754 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8475 ± 0.0024 Eopp 0.0246 ± 0.0036 0.0148 ± 0.002 -0.0837 ± 0.0124
Constrained 0.846 ± 0.002 Eopp 0.011 ± 0.004 0.039 ± 0.012 0.0 ± 0.0
BiFair 0.8 ± 0.009 Eopp 0.031 ± 0.024 0.019 ± 0.014 -0.107 ± 0.083
FairBatch 0.8457 ± 0.0016 Eopp 0.0098 ± 0.0068 0.0225 ± 0.0174 -0.0166 ± 0.0241
FairGrad 0.8353 ± 0.0106 Eopp 0.0053 ± 0.006 0.0177 ± 0.021 -0.0037 ± 0.0033

19



Under review as a conference paper at ICLR 2023

Table 4: Results for the Adult dataset with Non Linear Models. All the results are averaged over
5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8438 ± 0.0025 AP 0.0575 ± 0.0025 0.0776 ± 0.0033 -0.0375 ± 0.0018
Constant 0.751 ± 0.0 AP 0.102 ± 0.0 0.138 ± 0.0 0.067 ± 0.0
Weighted ERM 0.8469 ± 0.0035 AP 0.0564 ± 0.003 0.0761 ± 0.0038 -0.0368 ± 0.0021
Adversarial 0.8364 ± 0.0063 AP 0.0526 ± 0.0017 0.0709 ± 0.0025 -0.0343 ± 0.0009
FairGrad 0.8054 ± 0.0051 AP 0.0034 ± 0.0033 0.0033 ± 0.0031 -0.0036 ± 0.0042

Unconstrained 0.8299 ± 0.0142 Eodds 0.0448 ± 0.0109 0.0404 ± 0.0136 -0.0977 ± 0.0422
Constant 0.748 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8285 ± 0.0085 Eodds 0.0102 ± 0.0025 0.0196 ± 0.0102 -0.0099 ± 0.0047
Adversarial 0.8202 ± 0.0068 Eodds 0.0145 ± 0.0052 0.0288 ± 0.0177 -0.0153 ± 0.0067
BiFair 0.823 ± 0.017 Eodds 0.038 ± 0.009 0.09 ± 0.034 -0.038 ± 0.015
FairBatch 0.8379 ± 0.0009 Eodds 0.02 ± 0.0088 0.0327 ± 0.0153 -0.0244 ± 0.0218
FairGrad 0.827 ± 0.0071 Eodds 0.0118 ± 0.0024 0.022 ± 0.014 -0.0165 ± 0.0135

Unconstrained 0.8382 ± 0.0076 Eopp 0.0242 ± 0.0031 0.0145 ± 0.0017 -0.0822 ± 0.0108
Constant 0.754 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8293 ± 0.0091 Eopp 0.0051 ± 0.0033 0.0141 ± 0.0137 -0.0062 ± 0.0038
Adversarial 0.8324 ± 0.0058 Eopp 0.007 ± 0.0044 0.0139 ± 0.0159 -0.0144 ± 0.0133
BiFair 0.815 ± 0.014 Eopp 0.03 ± 0.015 0.019 ± 0.009 -0.103 ± 0.053
FairBatch 0.8415 ± 0.0054 Eopp 0.0082 ± 0.0073 0.0157 ± 0.0121 -0.017 ± 0.0271
FairGrad 0.8373 ± 0.0043 Eopp 0.0053 ± 0.0047 0.0099 ± 0.0146 -0.0112 ± 0.0127
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Figure 7: Results for the CelebA dataset with different fairness measures.
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Table 5: Results for the CelebA dataset with Linear Models. All the results are averaged over 5 runs.
Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the worst-off group, respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8532 ± 0.0009 AP 0.0204 ± 0.0022 0.017 ± 0.0019 -0.0238 ± 0.0025
Constant 0.516 ± 0.0 AP 0.072 ± 0.0 0.084 ± 0.0 0.06 ± 0.0
Weighted ERM 0.853 ± 0.0008 AP 0.0193 ± 0.0021 0.0161 ± 0.0018 -0.0225 ± 0.0023
Constrained 0.799 ± 0.013 AP 0.01 ± 0.001 0.012 ± 0.002 0.009 ± 0.001
FairGrad 0.835 ± 0.0028 AP 0.0012 ± 0.0009 0.0011 ± 0.0007 -0.0014 ± 0.0011

Unconstrained 0.8532 ± 0.0009 Eodds 0.0499 ± 0.0019 0.0538 ± 0.0024 -0.1011 ± 0.0033
Constant 0.518 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.853 ± 0.0009 Eodds 0.0504 ± 0.0019 0.0532 ± 0.0024 -0.1001 ± 0.0032
Constrained 0.802 ± 0.004 Eodds 0.006 ± 0.001 0.01 ± 0.003 0.002 ± 0.001
BiFair 0.845 ± 0.007 Eodds 0.021 ± 0.005 0.02 ± 0.003 -0.036 ± 0.009
FairBatch 0.8518 ± 0.0009 Eodds 0.0226 ± 0.0017 0.0218 ± 0.0028 -0.0411 ± 0.0053
FairGrad 0.8274 ± 0.002 Eodds 0.0025 ± 0.0009 0.0038 ± 0.0018 -0.0046 ± 0.0026

Unconstrained 0.8532 ± 0.0009 Eopp 0.0387 ± 0.0014 0.0538 ± 0.0024 -0.1011 ± 0.0033
Constant 0.518 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.853 ± 0.0008 Eopp 0.0383 ± 0.0014 0.0531 ± 0.0024 -0.0999 ± 0.0032
Constrained 0.834 ± 0.005 Eopp 0.002 ± 0.001 0.005 ± 0.002 0.0 ± 0.0
BiFair 0.848 ± 0.004 Eopp 0.014 ± 0.006 0.02 ± 0.009 -0.037 ± 0.017
FairBatch 0.8498 ± 0.001 Eopp 0.0102 ± 0.0016 0.0142 ± 0.0022 -0.0268 ± 0.0042
FairGrad 0.844 ± 0.0022 Eopp 0.0013 ± 0.0009 0.0025 ± 0.0021 -0.0028 ± 0.0018
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Figure 8: Results for the Crime dataset with different fairness measures.
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Table 6: Results for the CelebA dataset with Non Linear Models. All the results are averaged
over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8587 ± 0.0015 AP 0.0184 ± 0.0014 0.0154 ± 0.0012 -0.0215 ± 0.0016
Constant 0.516 ± 0.0 AP 0.072 ± 0.0 0.084 ± 0.0 0.06 ± 0.0
Weighted ERM 0.8593 ± 0.0018 AP 0.018 ± 0.0017 0.015 ± 0.0014 -0.021 ± 0.0019
Adversarial 0.8588 ± 0.0012 AP 0.0178 ± 0.0014 0.0148 ± 0.0012 -0.0208 ± 0.0015
FairGrad 0.8359 ± 0.0033 AP 0.0023 ± 0.0012 0.0025 ± 0.0015 -0.0021 ± 0.0009

Unconstrained 0.8583 ± 0.0012 Eodds 0.0432 ± 0.003 0.0475 ± 0.0028 -0.0893 ± 0.0049
Constant 0.518 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8589 ± 0.0009 Eodds 0.0419 ± 0.0021 0.0459 ± 0.0025 -0.0864 ± 0.0038
Adversarial 0.8567 ± 0.0014 Eodds 0.0223 ± 0.002 0.0272 ± 0.0039 -0.0511 ± 0.0073
BiFair 0.856 ± 0.004 Eodds 0.023 ± 0.002 0.028 ± 0.005 -0.052 ± 0.009
FairBatch 0.8533 ± 0.0037 Eodds 0.0217 ± 0.0014 0.0197 ± 0.0026 -0.0321 ± 0.005
FairGrad 0.8304 ± 0.0031 Eodds 0.0037 ± 0.0017 0.0048 ± 0.0018 -0.0055 ± 0.0023

Unconstrained 0.8585 ± 0.0016 Eopp 0.0341 ± 0.002 0.0473 ± 0.003 -0.0889 ± 0.0052
Constant 0.518 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.859 ± 0.0009 Eopp 0.0331 ± 0.0014 0.046 ± 0.0023 -0.0866 ± 0.0035
Adversarial 0.8557 ± 0.0019 Eopp 0.0161 ± 0.002 0.0223 ± 0.0029 -0.0419 ± 0.0053
BiFair 0.854 ± 0.004 Eopp 0.015 ± 0.009 0.021 ± 0.012 -0.039 ± 0.022
FairBatch 0.8475 ± 0.0043 Eopp 0.0051 ± 0.0024 0.007 ± 0.0033 -0.0131 ± 0.0063
FairGrad 0.8439 ± 0.0063 Eopp 0.0009 ± 0.0008 0.002 ± 0.0022 -0.0016 ± 0.0011

Table 7: Results for the Crime dataset with Linear Models. All the results are averaged over 5 runs.
Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the worst-off group, respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8145 ± 0.0136 AP 0.0329 ± 0.0195 0.0258 ± 0.0162 -0.0399 ± 0.0229
Constant 0.734 ± 0.0 AP 0.272 ± 0.0 0.377 ± 0.0 0.168 ± 0.0
Weighted ERM 0.808 ± 0.0246 AP 0.0361 ± 0.0108 0.0284 ± 0.0091 -0.0438 ± 0.0129
Constrained 0.775 ± 0.015 AP 0.025 ± 0.019 0.031 ± 0.025 0.019 ± 0.014
FairGrad 0.814 ± 0.0102 AP 0.0403 ± 0.0181 0.0316 ± 0.0147 -0.049 ± 0.0218

Unconstrained 0.8035 ± 0.0212 Eodds 0.2152 ± 0.0215 0.1038 ± 0.0231 -0.396 ± 0.0433
Constant 0.677 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8045 ± 0.0271 Eodds 0.2086 ± 0.0357 0.0974 ± 0.0165 -0.3747 ± 0.0679
Constrained 0.751 ± 0.014 Eodds 0.036 ± 0.012 0.088 ± 0.043 0.007 ± 0.004
BiFair 0.76 ± 0.03 Eodds 0.082 ± 0.048 0.048 ± 0.03 -0.163 ± 0.092
FairBatch 0.8306 ± 0.0237 Eodds 0.2015 ± 0.035 0.1054 ± 0.0333 -0.3704 ± 0.067
FairGrad 0.7634 ± 0.03 Eodds 0.0938 ± 0.0144 0.0491 ± 0.016 -0.1927 ± 0.0362

Unconstrained 0.804 ± 0.0215 Eopp 0.1215 ± 0.0183 0.1009 ± 0.0238 -0.3852 ± 0.0549
Constant 0.697 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8171 ± 0.0213 Eopp 0.1209 ± 0.0154 0.0985 ± 0.0106 -0.3851 ± 0.0599
Constrained 0.762 ± 0.021 Eopp 0.044 ± 0.021 0.138 ± 0.066 0.0 ± 0.0
BiFair 0.806 ± 0.01 Eopp 0.085 ± 0.038 0.073 ± 0.042 -0.268 ± 0.112
FairBatch 0.8225 ± 0.0252 Eopp 0.1126 ± 0.0259 0.1002 ± 0.0281 -0.3501 ± 0.0821
FairGrad 0.7755 ± 0.0233 Eopp 0.0609 ± 0.0149 0.0507 ± 0.0166 -0.193 ± 0.0456
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Table 8: Results for the Crime dataset with Non Linear Models. All the results are averaged over
5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8165 ± 0.019 AP 0.0535 ± 0.0199 0.0423 ± 0.0155 -0.0648 ± 0.0251
Constant 0.734 ± 0.0 AP 0.272 ± 0.0 0.377 ± 0.0 0.168 ± 0.0
Weighted ERM 0.8271 ± 0.0114 AP 0.0483 ± 0.0167 0.0382 ± 0.0139 -0.0584 ± 0.02
Adversarial 0.809 ± 0.0175 AP 0.0592 ± 0.0173 0.0464 ± 0.0135 -0.0719 ± 0.0223
FairGrad 0.822 ± 0.0203 AP 0.0434 ± 0.0206 0.0341 ± 0.0162 -0.0526 ± 0.0252

Unconstrained 0.8115 ± 0.014 Eodds 0.1635 ± 0.0395 0.0854 ± 0.014 -0.3326 ± 0.0649
Constant 0.677 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8135 ± 0.0137 Eodds 0.1739 ± 0.0394 0.0861 ± 0.0212 -0.3309 ± 0.0778
Adversarial 0.791 ± 0.007 Eodds 0.1464 ± 0.0168 0.0797 ± 0.0192 -0.3001 ± 0.0296
BiFair 0.793 ± 0.022 Eodds 0.161 ± 0.032 0.091 ± 0.025 -0.339 ± 0.048
FairBatch 0.8391 ± 0.0195 Eodds 0.189 ± 0.0368 0.1106 ± 0.0313 -0.3828 ± 0.0671
FairGrad 0.7734 ± 0.0251 Eodds 0.0982 ± 0.0513 0.0511 ± 0.0179 -0.2016 ± 0.0771

Unconstrained 0.817 ± 0.0152 Eopp 0.1044 ± 0.0133 0.0856 ± 0.0123 -0.3321 ± 0.0489
Constant 0.697 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8205 ± 0.0184 Eopp 0.1159 ± 0.0191 0.0955 ± 0.019 -0.368 ± 0.0642
Adversarial 0.795 ± 0.0148 Eopp 0.0959 ± 0.0153 0.0802 ± 0.0227 -0.3036 ± 0.042
BiFair 0.807 ± 0.025 Eopp 0.11 ± 0.031 0.091 ± 0.031 -0.351 ± 0.097
FairBatch 0.8411 ± 0.0177 Eopp 0.1217 ± 0.0277 0.1083 ± 0.0311 -0.3784 ± 0.0891
FairGrad 0.7799 ± 0.0243 Eopp 0.0675 ± 0.0179 0.0556 ± 0.0147 -0.2143 ± 0.0592
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Figure 9: Results for the Adult with multiple groups dataset with different fairness measures.
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Table 9: Results for the Adult with multiple groups dataset with Linear Models. All the results
are averaged over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean
absolute fairness value, the fairness level of the most well-off group, and the fairness level of the
worst-off group, respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8451 ± 0.0042 AP 0.0559 ± 0.0047 0.0985 ± 0.0111 -0.042 ± 0.003
Constant 0.754 ± 0.0 AP 0.097 ± 0.0 0.159 ± 0.0 0.024 ± 0.0
Weighted ERM 0.8454 ± 0.0032 AP 0.0562 ± 0.0042 0.0993 ± 0.0117 -0.0426 ± 0.0018
FairGrad 0.807 ± 0.0022 AP 0.0148 ± 0.0041 0.0256 ± 0.0048 -0.0107 ± 0.0045

Unconstrained 0.844 ± 0.0011 Eodds 0.0558 ± 0.0062 0.0578 ± 0.0069 -0.1586 ± 0.0621
Constant 0.75 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8448 ± 0.0038 Eodds 0.0586 ± 0.0097 0.0567 ± 0.0048 -0.1702 ± 0.0776
FairBatch 0.8396 ± 0.0034 Eodds 0.0308 ± 0.0057 0.0565 ± 0.0116 -0.0641 ± 0.0234
FairGrad 0.8162 ± 0.0052 Eodds 0.0197 ± 0.0118 0.0373 ± 0.0233 -0.0493 ± 0.0403

Unconstrained 0.8431 ± 0.002 Eopp 0.0391 ± 0.0052 0.0297 ± 0.0131 -0.169 ± 0.0565
Constant 0.762 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8443 ± 0.0038 Eopp 0.0415 ± 0.01 0.0316 ± 0.0145 -0.1767 ± 0.0797
FairBatch 0.8392 ± 0.004 Eopp 0.0219 ± 0.0055 0.05 ± 0.0133 -0.0749 ± 0.0285
FairGrad 0.834 ± 0.0044 Eopp 0.0201 ± 0.0099 0.0442 ± 0.0415 -0.0679 ± 0.0808

Table 10: Results for the Adult with multiple groups dataset with Non Linear Models. All the
results are averaged over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the
mean absolute fairness value, the fairness level of the most well-off group, and the fairness level of
the worst-off group, respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8427 ± 0.0041 AP 0.0546 ± 0.0026 0.0966 ± 0.0098 -0.0421 ± 0.0022
Constant 0.754 ± 0.0 AP 0.097 ± 0.0 0.159 ± 0.0 0.024 ± 0.0
Weighted ERM 0.8408 ± 0.0031 AP 0.0575 ± 0.0035 0.101 ± 0.0106 -0.0443 ± 0.0026
Adversarial 0.8358 ± 0.0043 AP 0.0527 ± 0.0028 0.0889 ± 0.0066 -0.0401 ± 0.0022
FairGrad 0.7991 ± 0.0036 AP 0.013 ± 0.0051 0.0257 ± 0.0138 -0.0125 ± 0.0043

Unconstrained 0.8347 ± 0.0129 Eodds 0.0523 ± 0.0126 0.0495 ± 0.0166 -0.1772 ± 0.0512
Constant 0.75 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8199 ± 0.002 Eodds 0.0287 ± 0.0076 0.0274 ± 0.0177 -0.1013 ± 0.0543
Adversarial 0.8251 ± 0.0064 Eodds 0.0223 ± 0.0065 0.0451 ± 0.0308 -0.0667 ± 0.0559
FairBatch 0.8212 ± 0.0103 Eodds 0.0806 ± 0.0137 0.0522 ± 0.0076 -0.2545 ± 0.0525
FairGrad 0.8128 ± 0.0102 Eodds 0.0196 ± 0.0061 0.0392 ± 0.0176 -0.0443 ± 0.0342

Unconstrained 0.8373 ± 0.0123 Eopp 0.0331 ± 0.008 0.0183 ± 0.0045 -0.1587 ± 0.0643
Constant 0.762 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8216 ± 0.0031 Eopp 0.0245 ± 0.008 0.0243 ± 0.0196 -0.1016 ± 0.0543
Adversarial 0.8343 ± 0.0036 Eopp 0.0209 ± 0.0093 0.0327 ± 0.013 -0.0927 ± 0.0589
FairBatch 0.821 ± 0.0097 Eopp 0.067 ± 0.0168 0.047 ± 0.0113 -0.2484 ± 0.0535
FairGrad 0.8341 ± 0.0053 Eopp 0.0176 ± 0.0059 0.0302 ± 0.0272 -0.0731 ± 0.0543
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Figure 10: Results for the Compas dataset with different fairness measures.

Table 11: Results for the Compas dataset with Linear Models. All the results are averaged over
5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.6644 ± 0.0137 AP 0.0091 ± 0.0025 0.0076 ± 0.0031 -0.0107 ± 0.004
Constant 0.545 ± 0.0 AP 0.066 ± 0.0 0.085 ± 0.0 0.047 ± 0.0
Weighted ERM 0.6671 ± 0.0169 AP 0.0088 ± 0.004 0.0061 ± 0.0028 -0.0115 ± 0.0051
Constrained 0.65 ± 0.012 AP 0.014 ± 0.005 0.018 ± 0.006 0.009 ± 0.003
FairGrad 0.6708 ± 0.0166 AP 0.0083 ± 0.0068 0.0057 ± 0.0048 -0.0108 ± 0.0088

Unconstrained 0.6636 ± 0.0104 Eodds 0.0827 ± 0.0165 0.0758 ± 0.0133 -0.1553 ± 0.0259
Constant 0.527 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.6685 ± 0.0073 Eodds 0.082 ± 0.0137 0.0697 ± 0.0115 -0.1618 ± 0.0222
Constrained 0.564 ± 0.014 Eodds 0.007 ± 0.004 0.014 ± 0.011 0.002 ± 0.001
BiFair 0.672 ± 0.021 Eodds 0.076 ± 0.023 0.071 ± 0.025 -0.15 ± 0.039
FairBatch 0.6847 ± 0.0175 Eodds 0.09 ± 0.0094 0.0854 ± 0.0149 -0.1727 ± 0.0304
FairGrad 0.6557 ± 0.0075 Eodds 0.0593 ± 0.0128 0.0524 ± 0.0102 -0.1241 ± 0.0202

Unconstrained 0.6609 ± 0.0106 Eopp 0.052 ± 0.0107 0.062 ± 0.0145 -0.1461 ± 0.0286
Constant 0.55 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.6695 ± 0.0055 Eopp 0.0554 ± 0.0074 0.0659 ± 0.0107 -0.1557 ± 0.0194
Constrained 0.565 ± 0.015 Eopp 0.004 ± 0.003 0.011 ± 0.009 0.0 ± 0.0
BiFair 0.68 ± 0.013 Eopp 0.054 ± 0.016 0.064 ± 0.022 -0.15 ± 0.044
FairBatch 0.6865 ± 0.0171 Eopp 0.0618 ± 0.0134 0.0715 ± 0.0173 -0.1755 ± 0.0364
FairGrad 0.6565 ± 0.0152 Eopp 0.0467 ± 0.0046 0.0554 ± 0.0071 -0.1313 ± 0.0119
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Table 12: Results for the Compas dataset with Non Linear Models. All the results are averaged
over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.6593 ± 0.0192 AP 0.0119 ± 0.0072 0.0095 ± 0.004 -0.0144 ± 0.0107
Constant 0.545 ± 0.0 AP 0.066 ± 0.0 0.085 ± 0.0 0.047 ± 0.0
Weighted ERM 0.6687 ± 0.0138 AP 0.0127 ± 0.0061 0.011 ± 0.0034 -0.0145 ± 0.0099
Adversarial 0.6583 ± 0.0157 AP 0.0078 ± 0.0051 0.0066 ± 0.0044 -0.009 ± 0.0069
FairGrad 0.6672 ± 0.0099 AP 0.0113 ± 0.005 0.0095 ± 0.0023 -0.0131 ± 0.0082

Unconstrained 0.6562 ± 0.0154 Eodds 0.0782 ± 0.014 0.0715 ± 0.0136 -0.1521 ± 0.0277
Constant 0.527 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.6615 ± 0.0175 Eodds 0.0789 ± 0.0131 0.0726 ± 0.0077 -0.1496 ± 0.0313
Adversarial 0.6504 ± 0.0157 Eodds 0.059 ± 0.0138 0.0549 ± 0.0107 -0.1294 ± 0.0183
BiFair 0.661 ± 0.009 Eodds 0.07 ± 0.013 0.068 ± 0.018 -0.133 ± 0.016
FairBatch 0.6792 ± 0.0086 Eodds 0.071 ± 0.0083 0.0663 ± 0.0091 -0.1508 ± 0.0304
FairGrad 0.6457 ± 0.0088 Eodds 0.061 ± 0.0075 0.0564 ± 0.0065 -0.127 ± 0.0081

Unconstrained 0.6552 ± 0.0137 Eopp 0.0553 ± 0.0108 0.0659 ± 0.015 -0.1552 ± 0.0281
Constant 0.55 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.6604 ± 0.0163 Eopp 0.0519 ± 0.0111 0.0618 ± 0.0148 -0.1458 ± 0.0299
Adversarial 0.6494 ± 0.0148 Eopp 0.0472 ± 0.0072 0.0563 ± 0.0108 -0.1327 ± 0.0183
BiFair 0.669 ± 0.01 Eopp 0.042 ± 0.02 0.05 ± 0.025 -0.117 ± 0.055
FairBatch 0.6802 ± 0.0114 Eopp 0.0536 ± 0.0133 0.062 ± 0.0167 -0.1526 ± 0.0367
FairGrad 0.6586 ± 0.0118 Eopp 0.0476 ± 0.0056 0.0563 ± 0.0067 -0.1339 ± 0.0163
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Figure 11: Results for the Dutch dataset with different fairness measures.
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Table 13: Results for the Dutch dataset with Linear Models. All the results are averaged over 5 runs.
Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness value, the
fairness level of the most well-off group, and the fairness level of the worst-off group, respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8049 ± 0.007 AP 0.0281 ± 0.006 0.0281 ± 0.006 -0.0282 ± 0.0061
Constant 0.524 ± 0.0 AP 0.151 ± 0.0 0.152 ± 0.0 0.15 ± 0.0
Weighted ERM 0.8052 ± 0.0073 AP 0.028 ± 0.006 0.028 ± 0.006 -0.0281 ± 0.006
Constrained 0.799 ± 0.009 AP 0.009 ± 0.006 0.009 ± 0.006 0.009 ± 0.006
FairGrad 0.8042 ± 0.0046 AP 0.0048 ± 0.0033 0.0048 ± 0.0033 -0.0048 ± 0.0032

Unconstrained 0.8071 ± 0.0072 Eodds 0.0212 ± 0.0018 0.0322 ± 0.009 -0.0256 ± 0.0052
Constant 0.522 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8074 ± 0.0074 Eodds 0.0213 ± 0.002 0.032 ± 0.0086 -0.0254 ± 0.0051
Constrained 0.79 ± 0.005 Eodds 0.005 ± 0.003 0.009 ± 0.005 0.002 ± 0.002
BiFair 0.804 ± 0.008 Eodds 0.021 ± 0.003 0.025 ± 0.004 -0.033 ± 0.01
FairBatch 0.809 ± 0.0096 Eodds 0.018 ± 0.0016 0.0262 ± 0.0039 -0.0211 ± 0.004
FairGrad 0.7978 ± 0.0064 Eodds 0.0053 ± 0.0019 0.007 ± 0.0019 -0.009 ± 0.0049

Unconstrained 0.8129 ± 0.0021 Eopp 0.0075 ± 0.0034 0.0107 ± 0.0049 -0.0193 ± 0.0086
Constant 0.524 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8077 ± 0.0078 Eopp 0.0076 ± 0.0034 0.011 ± 0.0049 -0.0196 ± 0.0087
Constrained 0.814 ± 0.003 Eopp 0.003 ± 0.002 0.007 ± 0.006 0.0 ± 0.0
BiFair 0.808 ± 0.01 Eopp 0.005 ± 0.005 0.008 ± 0.007 -0.012 ± 0.012
FairBatch 0.8149 ± 0.0117 Eopp 0.0031 ± 0.0014 0.0044 ± 0.002 -0.0079 ± 0.0036
FairGrad 0.8144 ± 0.0021 Eopp 0.004 ± 0.0037 0.006 ± 0.0052 -0.0099 ± 0.0097

Table 14: Results for the Dutch dataset with Non Linear Models. All the results are averaged over
5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.7937 ± 0.0052 AP 0.0252 ± 0.0091 0.0252 ± 0.009 -0.0252 ± 0.0091
Constant 0.524 ± 0.0 AP 0.151 ± 0.0 0.152 ± 0.0 0.15 ± 0.0
Weighted ERM 0.7954 ± 0.0023 AP 0.0257 ± 0.0089 0.0257 ± 0.0089 -0.0257 ± 0.0089
Adversarial 0.7939 ± 0.0043 AP 0.0232 ± 0.0071 0.0232 ± 0.0071 -0.0232 ± 0.007
FairGrad 0.8043 ± 0.0071 AP 0.0052 ± 0.0026 0.0052 ± 0.0026 -0.0052 ± 0.0026

Unconstrained 0.7914 ± 0.006 Eodds 0.0162 ± 0.0062 0.0193 ± 0.0071 -0.0263 ± 0.0142
Constant 0.522 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7958 ± 0.0027 Eodds 0.0168 ± 0.0053 0.0202 ± 0.0048 -0.0261 ± 0.0131
Adversarial 0.7928 ± 0.0077 Eodds 0.0148 ± 0.0041 0.0202 ± 0.0066 -0.0211 ± 0.006
BiFair 0.819 ± 0.003 Eodds 0.021 ± 0.004 0.03 ± 0.005 -0.028 ± 0.007
FairBatch 0.8091 ± 0.012 Eodds 0.018 ± 0.0021 0.0254 ± 0.0058 -0.0248 ± 0.0062
FairGrad 0.8013 ± 0.0073 Eodds 0.0069 ± 0.0031 0.0099 ± 0.0038 -0.0095 ± 0.0068

Unconstrained 0.8149 ± 0.0034 Eopp 0.0055 ± 0.0024 0.0079 ± 0.0035 -0.014 ± 0.0061
Constant 0.524 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8179 ± 0.0044 Eopp 0.0066 ± 0.0026 0.0095 ± 0.0037 -0.017 ± 0.0065
Adversarial 0.8156 ± 0.0038 Eopp 0.004 ± 0.0039 0.0058 ± 0.0057 -0.0102 ± 0.01
BiFair 0.819 ± 0.003 Eopp 0.009 ± 0.002 0.012 ± 0.003 -0.022 ± 0.006
FairBatch 0.8174 ± 0.0031 Eopp 0.002 ± 0.0012 0.0029 ± 0.0017 -0.0052 ± 0.0031
FairGrad 0.8158 ± 0.0051 Eopp 0.0036 ± 0.0031 0.0051 ± 0.0045 -0.0092 ± 0.0079
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Figure 12: Results for the German dataset with different fairness measures.

Table 15: Results for the German dataset with Linear Models. All the results are averaged over
5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.692 ± 0.0232 AP 0.0226 ± 0.0181 0.0169 ± 0.0111 -0.0284 ± 0.0256
Constant 0.73 ± 0.0 AP 0.05 ± 0.0 0.069 ± 0.0 0.031 ± 0.0
Weighted ERM 0.707 ± 0.0344 AP 0.0243 ± 0.0191 0.0186 ± 0.0113 -0.0299 ± 0.027
Constrained 0.733 ± 0.033 AP 0.024 ± 0.025 0.032 ± 0.033 0.015 ± 0.017
FairGrad 0.744 ± 0.0357 AP 0.0274 ± 0.0212 0.0215 ± 0.0123 -0.0334 ± 0.0306

Unconstrained 0.69 ± 0.0266 Eodds 0.0316 ± 0.0207 0.0499 ± 0.0341 -0.0618 ± 0.0471
Constant 0.7 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.709 ± 0.0296 Eodds 0.0324 ± 0.0338 0.0461 ± 0.046 -0.055 ± 0.0626
Constrained 0.739 ± 0.027 Eodds 0.037 ± 0.012 0.072 ± 0.025 0.01 ± 0.004
BiFair 0.698 ± 0.039 Eodds 0.033 ± 0.01 0.052 ± 0.023 -0.059 ± 0.029
FairBatch 0.7 ± 0.0247 Eodds 0.0706 ± 0.0184 0.1102 ± 0.0489 -0.1134 ± 0.0518
FairGrad 0.734 ± 0.0358 Eodds 0.0464 ± 0.0201 0.0784 ± 0.0232 -0.0721 ± 0.0496

Unconstrained 0.704 ± 0.0193 Eopp 0.0053 ± 0.0035 0.0096 ± 0.004 -0.0116 ± 0.0117
Constant 0.7 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.706 ± 0.0328 Eopp 0.0048 ± 0.0039 0.0097 ± 0.0091 -0.0096 ± 0.0092
Constrained 0.741 ± 0.019 Eopp 0.005 ± 0.002 0.015 ± 0.006 0.0 ± 0.0
BiFair 0.703 ± 0.037 Eopp 0.007 ± 0.006 0.014 ± 0.015 -0.013 ± 0.015
FairBatch 0.718 ± 0.0229 Eopp 0.0172 ± 0.0124 0.0272 ± 0.0187 -0.0416 ± 0.0396
FairGrad 0.723 ± 0.0425 Eopp 0.0125 ± 0.0043 0.0212 ± 0.0087 -0.0288 ± 0.0162
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Table 16: Results for the German dataset with Non Linear Models. All the results are averaged
over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.695 ± 0.0122 AP 0.0426 ± 0.0241 0.0314 ± 0.0144 -0.0537 ± 0.0345
Constant 0.73 ± 0.0 AP 0.05 ± 0.0 0.069 ± 0.0 0.031 ± 0.0
Weighted ERM 0.703 ± 0.0183 AP 0.035 ± 0.0237 0.0265 ± 0.0138 -0.0436 ± 0.0338
Adversarial 0.681 ± 0.0156 AP 0.041 ± 0.0254 0.0327 ± 0.0165 -0.0492 ± 0.0368
FairGrad 0.714 ± 0.026 AP 0.037 ± 0.0222 0.0291 ± 0.0119 -0.0448 ± 0.0331

Unconstrained 0.689 ± 0.0213 Eodds 0.0089 ± 0.0052 0.0117 ± 0.0045 -0.0144 ± 0.0116
Constant 0.7 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.703 ± 0.034 Eodds 0.0211 ± 0.0106 0.0305 ± 0.0186 -0.0372 ± 0.0158
Adversarial 0.684 ± 0.0097 Eodds 0.0184 ± 0.0122 0.0263 ± 0.0201 -0.0339 ± 0.0237
BiFair 0.725 ± 0.031 Eodds 0.016 ± 0.015 0.021 ± 0.018 -0.027 ± 0.018
FairBatch 0.692 ± 0.026 Eodds 0.0489 ± 0.0382 0.0607 ± 0.0446 -0.0882 ± 0.0983
FairGrad 0.695 ± 0.0237 Eodds 0.0095 ± 0.004 0.0121 ± 0.0046 -0.0175 ± 0.0076

Unconstrained 0.686 ± 0.0215 Eopp 0.0124 ± 0.0075 0.0227 ± 0.0128 -0.0269 ± 0.0227
Constant 0.7 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7 ± 0.0261 Eopp 0.0066 ± 0.0057 0.0131 ± 0.0071 -0.0133 ± 0.0173
Adversarial 0.687 ± 0.0129 Eopp 0.0085 ± 0.0051 0.0203 ± 0.0147 -0.0137 ± 0.0099
BiFair 0.727 ± 0.023 Eopp 0.015 ± 0.013 0.023 ± 0.019 -0.036 ± 0.038
FairBatch 0.697 ± 0.025 Eopp 0.0084 ± 0.0079 0.0235 ± 0.0226 -0.0102 ± 0.0094
FairGrad 0.696 ± 0.0166 Eopp 0.0052 ± 0.0038 0.0093 ± 0.0064 -0.0115 ± 0.0108
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Figure 13: Results for the Gaussian dataset with different fairness measures.

29



Under review as a conference paper at ICLR 2023

Table 17: Results for the Gaussian dataset with Linear Models. All the results are averaged over
5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8689 ± 0.0037 AP 0.0966 ± 0.0029 0.0957 ± 0.0028 -0.0974 ± 0.0036
Constant 0.497 ± 0.0 AP 0.001 ± 0.0 0.001 ± 0.0 0.001 ± 0.0
Weighted ERM 0.869 ± 0.0039 AP 0.0966 ± 0.0026 0.0957 ± 0.0023 -0.0974 ± 0.0034
Constrained 0.799 ± 0.004 AP 0.003 ± 0.002 0.003 ± 0.002 0.003 ± 0.002
FairGrad 0.8516 ± 0.0064 AP 0.0558 ± 0.0094 0.0553 ± 0.0093 -0.0562 ± 0.0096

Unconstrained 0.869 ± 0.0037 Eodds 0.0971 ± 0.0026 0.1872 ± 0.0067 -0.1896 ± 0.0056
Constant 0.499 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.869 ± 0.0039 Eodds 0.0971 ± 0.0023 0.1869 ± 0.0063 -0.1894 ± 0.0051
Constrained 0.497 ± 0.003 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
BiFair 0.873 ± 0.004 Eodds 0.113 ± 0.004 0.21 ± 0.007 -0.213 ± 0.004
FairBatch 0.8649 ± 0.0025 Eodds 0.0902 ± 0.0035 0.1717 ± 0.0046 -0.1719 ± 0.0079
FairGrad 0.8459 ± 0.01 Eodds 0.0786 ± 0.0051 0.1504 ± 0.0102 -0.1527 ± 0.0142

Unconstrained 0.8598 ± 0.0121 Eopp 0.0928 ± 0.0012 0.1845 ± 0.0041 -0.1869 ± 0.0041
Constant 0.498 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8599 ± 0.0121 Eopp 0.0931 ± 0.0011 0.1849 ± 0.004 -0.1874 ± 0.004
Constrained 0.698 ± 0.005 Eopp 0.004 ± 0.002 0.008 ± 0.005 0.0 ± 0.0
BiFair 0.863 ± 0.009 Eopp 0.1 ± 0.003 0.2 ± 0.007 -0.202 ± 0.006
FairBatch 0.8635 ± 0.0024 Eopp 0.085 ± 0.0023 0.17 ± 0.0032 -0.1702 ± 0.0065
FairGrad 0.8431 ± 0.0065 Eopp 0.0752 ± 0.0043 0.1494 ± 0.0087 -0.1514 ± 0.0094

Table 18: Results for the Gaussian dataset with Non Linear Models. All the results are averaged
over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.88 ± 0.0038 AP 0.0897 ± 0.0045 0.0888 ± 0.0035 -0.0905 ± 0.0055
Constant 0.497 ± 0.0 AP 0.001 ± 0.0 0.001 ± 0.0 0.001 ± 0.0
Weighted ERM 0.8809 ± 0.0048 AP 0.0903 ± 0.0045 0.0894 ± 0.0033 -0.0911 ± 0.0057
Adversarial 0.8725 ± 0.0115 AP 0.0858 ± 0.0077 0.0851 ± 0.0076 -0.0866 ± 0.0081
FairGrad 0.8542 ± 0.0047 AP 0.0352 ± 0.0047 0.0349 ± 0.0048 -0.0355 ± 0.0046

Unconstrained 0.8814 ± 0.0024 Eodds 0.093 ± 0.0032 0.1807 ± 0.0066 -0.183 ± 0.005
Constant 0.499 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8821 ± 0.0031 Eodds 0.0939 ± 0.0013 0.1826 ± 0.0042 -0.185 ± 0.0033
Adversarial 0.8775 ± 0.0091 Eodds 0.0852 ± 0.007 0.1643 ± 0.0125 -0.1666 ± 0.0146
BiFair 0.868 ± 0.013 Eodds 0.092 ± 0.011 0.167 ± 0.035 -0.168 ± 0.031
FairBatch 0.8735 ± 0.0032 Eodds 0.0749 ± 0.0041 0.1455 ± 0.0059 -0.1456 ± 0.0056
FairGrad 0.8539 ± 0.0056 Eodds 0.0596 ± 0.0068 0.1013 ± 0.0147 -0.1025 ± 0.0144

Unconstrained 0.8801 ± 0.004 Eopp 0.0902 ± 0.0017 0.1792 ± 0.0041 -0.1816 ± 0.0053
Constant 0.498 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.8805 ± 0.0046 Eopp 0.0912 ± 0.0008 0.1812 ± 0.0024 -0.1837 ± 0.0045
Adversarial 0.8754 ± 0.0086 Eopp 0.0808 ± 0.0066 0.1605 ± 0.0128 -0.1628 ± 0.0143
BiFair 0.88 ± 0.003 Eopp 0.086 ± 0.005 0.17 ± 0.013 -0.172 ± 0.009
FairBatch 0.874 ± 0.0035 Eopp 0.0733 ± 0.0029 0.1465 ± 0.0054 -0.1467 ± 0.0066
FairGrad 0.8543 ± 0.0082 Eopp 0.0517 ± 0.0095 0.1028 ± 0.0191 -0.1041 ± 0.0192
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Figure 14: Results for the Twitter Sentiment dataset with different fairness measures.

Table 19: Results for the Twitter Sentiment dataset with Linear Models. All the results are averaged
over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.7211 ± 0.004 AP 0.0426 ± 0.0011 0.0426 ± 0.0011 -0.0426 ± 0.0011
Constant 0.5 ± 0.0 AP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7212 ± 0.0044 AP 0.0426 ± 0.0011 0.0426 ± 0.0011 -0.0426 ± 0.0011
Constrained 0.72 ± 0.002 AP 0.04 ± 0.003 0.04 ± 0.003 0.04 ± 0.003
FairGrad 0.7219 ± 0.0027 AP 0.0462 ± 0.0021 0.0462 ± 0.0021 -0.0462 ± 0.0021

Unconstrained 0.7237 ± 0.0054 Eodds 0.1867 ± 0.0052 0.2287 ± 0.0078 -0.2288 ± 0.0078
Constant 0.5 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7234 ± 0.0054 Eodds 0.188 ± 0.0033 0.2314 ± 0.0056 -0.2315 ± 0.0056
Constrained 0.72 ± 0.004 Eodds 0.012 ± 0.002 0.019 ± 0.005 0.006 ± 0.005
BiFair 0.736 ± 0.009 Eodds 0.041 ± 0.012 0.056 ± 0.022 -0.056 ± 0.022
FairBatch 0.7413 ± 0.0014 Eodds 0.1391 ± 0.0043 0.1755 ± 0.0084 -0.1756 ± 0.0084
FairGrad 0.7193 ± 0.0062 Eodds 0.0154 ± 0.0051 0.0204 ± 0.0098 -0.0204 ± 0.0098

Unconstrained 0.7244 ± 0.0051 Eopp 0.0719 ± 0.0012 0.1439 ± 0.0023 -0.1438 ± 0.0023
Constant 0.5 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.72 ± 0.0054 Eopp 0.0718 ± 0.0013 0.1437 ± 0.0026 -0.1436 ± 0.0026
Constrained 0.752 ± 0.004 Eopp 0.002 ± 0.001 0.005 ± 0.001 0.0 ± 0.0
BiFair 0.746 ± 0.009 Eopp 0.009 ± 0.004 0.017 ± 0.009 -0.017 ± 0.009
FairBatch 0.7426 ± 0.001 Eopp 0.0429 ± 0.0005 0.0858 ± 0.0011 -0.0858 ± 0.0011
FairGrad 0.7518 ± 0.0069 Eopp 0.0024 ± 0.002 0.0049 ± 0.004 -0.0049 ± 0.004
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Table 20: Results for the Twitter Sentiment dataset with Non Linear Models. All the results are
averaged over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute
fairness value, the fairness level of the most well-off group, and the fairness level of the worst-off
group, respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.715 ± 0.0043 AP 0.0392 ± 0.0055 0.0392 ± 0.0055 -0.0392 ± 0.0055
Constant 0.5 ± 0.0 AP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7183 ± 0.0042 AP 0.0427 ± 0.0019 0.0427 ± 0.0019 -0.0427 ± 0.0019
Adversarial 0.7385 ± 0.0075 AP 0.0367 ± 0.0027 0.0367 ± 0.0027 -0.0368 ± 0.0027
FairGrad 0.7154 ± 0.0047 AP 0.0368 ± 0.0079 0.0367 ± 0.0078 -0.0368 ± 0.0079

Unconstrained 0.7167 ± 0.0126 Eodds 0.1854 ± 0.0061 0.2349 ± 0.0091 -0.235 ± 0.0091
Constant 0.5 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.718 ± 0.0137 Eodds 0.1882 ± 0.0062 0.2379 ± 0.0073 -0.2381 ± 0.0073
Adversarial 0.7393 ± 0.0024 Eodds 0.0382 ± 0.0056 0.06 ± 0.0151 -0.06 ± 0.0151
BiFair 0.74 ± 0.01 Eodds 0.039 ± 0.016 0.058 ± 0.017 -0.058 ± 0.017
FairBatch 0.7318 ± 0.004 Eodds 0.1313 ± 0.0057 0.1724 ± 0.0055 -0.1725 ± 0.0055
FairGrad 0.717 ± 0.0082 Eodds 0.0109 ± 0.0027 0.0165 ± 0.0053 -0.0165 ± 0.0053

Unconstrained 0.7147 ± 0.0118 Eopp 0.0653 ± 0.0062 0.1306 ± 0.0124 -0.1306 ± 0.0124
Constant 0.5 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7074 ± 0.0158 Eopp 0.0672 ± 0.0062 0.1346 ± 0.0125 -0.1345 ± 0.0125
Adversarial 0.7471 ± 0.0042 Eopp 0.005 ± 0.0035 0.0099 ± 0.007 -0.0099 ± 0.007
BiFair 0.747 ± 0.009 Eopp 0.007 ± 0.005 0.013 ± 0.01 -0.013 ± 0.01
FairBatch 0.7359 ± 0.0011 Eopp 0.0368 ± 0.0012 0.0736 ± 0.0025 -0.0736 ± 0.0025
FairGrad 0.7401 ± 0.0059 Eopp 0.0049 ± 0.0041 0.0099 ± 0.0083 -0.0099 ± 0.0083
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Figure 15: Results for the Folktables Adult dataset with different fairness measures.
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Table 21: Results for the Folktables Adult dataset with Linear Models. All the results are averaged
over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute fairness
value, the fairness level of the most well-off group, and the fairness level of the worst-off group,
respectively.

METHOD (L) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.7905 ± 0.0033 AP 0.0131 ± 0.0021 0.0123 ± 0.0021 -0.0138 ± 0.0022
Constant 0.666 ± 0.0 AP 0.053 ± 0.0 0.056 ± 0.0 0.051 ± 0.0
Weighted ERM 0.7906 ± 0.0032 AP 0.0127 ± 0.0023 0.0119 ± 0.0022 -0.0134 ± 0.0024
Constrained 0.467 ± 0.115 AP 0.036 ± 0.003 0.039 ± 0.003 0.034 ± 0.003
FairGrad 0.7837 ± 0.0049 AP 0.0023 ± 0.0009 0.0023 ± 0.001 -0.0022 ± 0.0008

Unconstrained 0.789 ± 0.0026 Eodds 0.0301 ± 0.011 0.0377 ± 0.0153 -0.0458 ± 0.0184
Constant 0.667 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7886 ± 0.0032 Eodds 0.0294 ± 0.012 0.0364 ± 0.0169 -0.0443 ± 0.0206
Constrained 0.663 ± 0.032 Eodds 0.008 ± 0.003 0.013 ± 0.004 0.004 ± 0.002
BiFair 0.768 ± 0.007 Eodds 0.008 ± 0.005 0.011 ± 0.006 -0.011 ± 0.008
FairBatch 0.788 ± 0.0027 Eodds 0.0045 ± 0.0033 0.0069 ± 0.0065 -0.0063 ± 0.0049
FairGrad 0.7885 ± 0.0027 Eodds 0.0043 ± 0.0019 0.0073 ± 0.0037 -0.0068 ± 0.0045

Unconstrained 0.7902 ± 0.0038 Eopp 0.0094 ± 0.0031 0.0162 ± 0.0053 -0.0215 ± 0.0071
Constant 0.667 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7893 ± 0.0031 Eopp 0.009 ± 0.003 0.0155 ± 0.0051 -0.0206 ± 0.0069
Constrained 0.706 ± 0.002 Eopp 0.004 ± 0.0 0.01 ± 0.001 0.0 ± 0.0
BiFair 0.77 ± 0.002 Eopp 0.019 ± 0.01 0.033 ± 0.017 -0.044 ± 0.023
FairBatch 0.79 ± 0.0031 Eopp 0.0012 ± 0.0015 0.0022 ± 0.0026 -0.0026 ± 0.0034
FairGrad 0.7893 ± 0.0026 Eopp 0.0011 ± 0.0009 0.0024 ± 0.002 -0.0021 ± 0.0016

Table 22: Results for the Folktables Adult dataset with Non Linear Models. All the results are
averaged over 5 runs. Here MEAN ABS., MAXIMUM, and MINIMUM represent the mean absolute
fairness value, the fairness level of the most well-off group, and the fairness level of the worst-off
group, respectively.

METHOD (NL) ACCURACY ↑ FAIRNESS
MEASURE MEAN ABS. ↓ MAXIMUM MINIMUM

Unconstrained 0.8037 ± 0.0037 AP 0.0131 ± 0.0017 0.0123 ± 0.0016 -0.0139 ± 0.0017
Constant 0.666 ± 0.0 AP 0.053 ± 0.0 0.056 ± 0.0 0.051 ± 0.0
Weighted ERM 0.8046 ± 0.0049 AP 0.0131 ± 0.0014 0.0123 ± 0.0014 -0.0138 ± 0.0015
Adversarial 0.8016 ± 0.0053 AP 0.0122 ± 0.0016 0.0115 ± 0.0015 -0.0129 ± 0.0016
FairGrad 0.7917 ± 0.0025 AP 0.0016 ± 0.0011 0.0016 ± 0.0011 -0.0016 ± 0.001

Unconstrained 0.7947 ± 0.0078 Eodds 0.0314 ± 0.0059 0.0373 ± 0.0058 -0.0454 ± 0.0066
Constant 0.667 ± 0.0 Eodds 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7902 ± 0.0049 Eodds 0.0327 ± 0.0061 0.04 ± 0.0067 -0.0488 ± 0.0077
Adversarial 0.806 ± 0.0047 Eodds 0.0035 ± 0.0018 0.0051 ± 0.0021 -0.0053 ± 0.0028
BiFair 0.793 ± 0.006 Eodds 0.006 ± 0.003 0.007 ± 0.003 -0.007 ± 0.004
FairBatch 0.8061 ± 0.0044 Eodds 0.0051 ± 0.0015 0.0087 ± 0.0048 -0.0084 ± 0.0029
FairGrad 0.7997 ± 0.0087 Eodds 0.0045 ± 0.0029 0.0067 ± 0.0045 -0.0071 ± 0.0058

Unconstrained 0.7902 ± 0.0044 Eopp 0.0097 ± 0.0026 0.0168 ± 0.0045 -0.0222 ± 0.006
Constant 0.667 ± 0.0 Eopp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Weighted ERM 0.7947 ± 0.0022 Eopp 0.0105 ± 0.0027 0.0181 ± 0.0047 -0.024 ± 0.0062
Adversarial 0.8108 ± 0.0161 Eopp 0.0034 ± 0.0057 0.0041 ± 0.0057 -0.0095 ± 0.017
BiFair 0.793 ± 0.008 Eopp 0.028 ± 0.017 0.048 ± 0.029 -0.064 ± 0.039
FairBatch 0.8038 ± 0.0063 Eopp 0.0008 ± 0.0005 0.0014 ± 0.0009 -0.0018 ± 0.0012
FairGrad 0.8058 ± 0.0035 Eopp 0.0014 ± 0.0014 0.003 ± 0.0031 -0.0026 ± 0.0024
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