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Abstract

Recent advancements in large language models001
(LLMs) have demonstrated remarkable capabil-002
ities in complex reasoning tasks, such as math003
problem-solving and code generation. How-004
ever, multi-hop question answering (MHQA)005
over long contexts, which demands both ro-006
bust knowledge-intensive reasoning and effi-007
cient processing of lengthy documents, remains008
a significant challenge. Existing approaches009
often struggle to balance these requirements,010
either neglecting explicit reasoning or incur-011
ring expensive computational costs due to full-012
attention mechanisms over long contexts. To013
address this, we propose Search-in-Context014
(SIC), a novel framework that integrates Monte015
Carlo Tree Search (MCTS) with dynamic key-016
value (KV) retrieval to enable iterative, context-017
aware reasoning. SIC dynamically retrieves018
critical KV pairs (e.g., 4K tokens) at each step,019
prioritizing relevant evidence while mitigating020
the "lost in the middle" problem. Furthermore,021
the paper introduces a Process-Reward Model022
(PRM) trained on auto-labeled data to guide023
the MCTS process with stepwise rewards, pro-024
moting high-quality reasoning trajectories with-025
out manual annotation. Experiments on three026
long-context MHQA benchmarks (HotpotQA,027
2WikiMultihopQA, MuSiQue) and a counter-028
factual multi-hop dataset demonstrate SIC’s029
superiority, achieving state-of-the-art perfor-030
mance while significantly reducing computa-031
tional overhead.032

1 Introduction033

Recent advancements in large language mod-034

els (LLMs) (Brown et al., 2020) have signifi-035

cantly improved their capability to tackle complex,036

reasoning-intensive tasks across diverse domains,037

including mathematical problem-solving (OpenAI038

et al., 2024; Yang et al., 2024a), repository-level039

code generation and correction (Hui et al., 2024;040

Luo et al., 2024), and scientific reasoning (Ma et al.,041

2024). Such achievements highlight their growing042

capacity to handle sophisticated tasks that were pre- 043

viously thought to require human-level expertise. 044

Despite these advances, applying LLMs to multi- 045

hop question answering (MHQA) over long con- 046

texts remains a significant challenge (Bai et al., 047

2023), as it requires models to simultaneously 048

satisfy two key capabilities: Strong knowledge- 049

intensive reasoning capability: The model must 050

effectively integrate information across multiple 051

reasoning hops, effectively synthesizing relevant in- 052

formation from intermediate subquestions to enable 053

knowledge-driven inference (Mavi et al., 2022). 054

Robust long-context processing capability: The 055

model must efficiently handle extensive contexts 056

(often exceeding 10K tokens) while filtering out 057

irrelevant or distracting information (Fu et al., 058

2024b), ensuring the accurate identification and 059

extraction of key information across length context 060

necessary for answering the question. 061

Current approaches struggle to meet these dual 062

requirements simultaneously. Many existing meth- 063

ods rely on long-context LLMs to directly answer 064

MHQA tasks (Bai et al., 2023; Zhang et al., 2024), 065

underestimating the task’s complexity and over- 066

looking the importance of explicit test-time reason- 067

ing. 068

To bridge this gap, some works adopt chain- 069

of-thought (CoT) prompting techniques (Li et al., 070

2024a; Trivedi et al., 2023; Wei et al., 2022). Un- 071

like reasoning tasks in mathematics or science, 072

where contexts are typically limited to a few hun- 073

dred tokens, MHQA over long contexts requires 074

models to generate reasoning chains based on in- 075

puts exceeding 10K tokens. In such scenarios, 076

generating a reasoning chain necessitates comput- 077

ing full attention over an increasingly large Key- 078

Value (KV) cache at each decoding step, leading 079

to quadratic computational complexity growth (Fu 080

et al., 2024a). Furthermore, models often struggle 081

with vast amounts of distractive information, a phe- 082

nomenon commonly referred to as the "lost in the 083
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middle" problem (Liu et al., 2024b).084

In this paper, we propose a novel framework085

that integrates Monte Carlo Tree Search (MCTS)086

with dynamic KV retrieval to empower LLMs with087

iterative, context-aware exploration over long con-088

texts. Inspired by test-time scaling algorithms089

(Snell et al., 2024; Qi et al., 2024), our method090

formulates the retrieval and reasoning as a search091

tree process, where each node represents a poten-092

tial reasoning step guided by contextually retrieved093

evidence. At each iteration, the model selectively094

utilizes portions of critical KVs (e.g., 4K token bud-095

gets) based on a specialized KV retriever, rather096

than relying on computationally expensive full-097

attention over entire KV cache. This process ef-098

fectively retrieves and prioritizes the most relevant099

KVs that contribute to uncovering critical infor-100

mation for subsequent reasoning hops, mitigating101

the "lost in the middle" problem in long context102

and improving reasoning efficiency. Additionally,103

we incorporate a Process-Reward Model (PRM)104

into the MCTS process to guide the model’s rea-105

soning. This PRM provides step-by-step rewards106

to encourage the model to follow high-quality rea-107

soning paths. Importantly, the PRM can be trained108

using automatically labeled data without requiring109

manual annotation, ensuring scalability and reduc-110

ing human intervention.111

The main contributions of this paper can be sum-112

marized as follows:113

• We propose Search-in-Context (SIC), an114

innovative framework utilizing a modified115

Monte Carlo Tree Search (MCTS) algo-116

thrithm to enhance multi-hop QA in long con-117

texts, guided by a trained Process Reward118

Model which utilizes an automated annota-119

tion process.120

• We integrate dynamic key-value (KV) re-121

trieval into the MCTS process, enabling the122

model to selectively focus on the most rele-123

vant portions of the context (e.g., 4K token124

budgets) at each step.125

• Extensive experiments on three long-context126

multi-hop reasoning datasets (e.g., HotpotQA127

, 2WikiMultihopQA , MuSiQue ) and a coun-128

terfactual multi-hop dataset adapted for long129

contexts demonstrate the superiority of SIC in130

long-context multi-hop QA tasks.131

2 Related Work 132

Multi-hop Reasoning. Multi-hop question answer- 133

ing (MHQA) (Yang et al., 2018; Trivedi et al., 2022; 134

Ho et al., 2020) is a challenging task that requires 135

models to reason over multiple pieces of infor- 136

mation, often scattered across different parts of 137

a document or multiple documents, to arrive at the 138

correct answer (Mavi et al., 2022). Conventional 139

approaches (Zhang et al., 2023a; Zhu et al., 2021) 140

adopt the selector-reader framework, where a se- 141

lector module retrieves relevant documents or pas- 142

sages, and a reader module extracts or generates the 143

final answer based on the retrieved context. Recent 144

developments, however, have marked a significant 145

shift toward a paradigm centered on long-context 146

language models (LMs) (Li et al., 2024a; Trivedi 147

et al., 2023). This emerging approach eliminates 148

the need for a separate selector module, instead 149

relying on a long-context LM to process the entire 150

set of retrieved documents and fulfill the role of the 151

reader. 152

Long-context Language Modeling. Scaling LLM 153

to process long texts poses significant challenges 154

due to the quadratic computational complexity of 155

attention mechanisms (An et al., 2024). To miti- 156

gate the computational and memory constraints, re- 157

cent research has explored various KV compression 158

techniques (Sun et al., 2024; Yang et al., 2024b). 159

These methods selectively retain subsets of KVs 160

based on predefined reduction strategies, often com- 161

pressing them to a fixed budget (Tang et al., 2024; 162

Li et al., 2024b; Huang et al., 2024; Shi et al., 2024). 163

For instance, H2O (Zhang et al., 2023c) employs a 164

policy that discards KVs during generation accord- 165

ing to a scoring function derived from cumulative 166

attention. InfLLM (Xiao et al., 2024) partitions 167

KVs into fixed-size chunks and retains the top-k 168

most salient chunks based on attention score pat- 169

terns. 170

3 Preliminary 171

In this section, we provide a formal and descriptive 172

definition of our task. 173

Problem Formulation. Multi-hop Question An- 174

swering (MHQA) over long context is a complex 175

reasoning task requiring iterative reasoning across 176

multiple, often disparate sources of information 177

over documents to deduce an answer. We formulate 178

this task as follows: Given the input which contains 179

the query q and contexts C = {c1, c2, ..., cn}where 180

ci represents a single and independent document, 181
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Figure 1: The overall framework of our SIC approach.

the task is aimed at predicting an answer a ∈ Aq182

that satisfies:183

∃Pq ⊆ C, |Pq| > 1 ∧ Pq |= (a answers q) (1)184

where Pq = {ĉ1, ĉ2, ..., ĉk} represents the minimal185

sufficient evidence set to deduce the answer.186

4 Methods187

4.1 Decomposed Reasoning with Structured188

Thought Chains189

To enable systematic and controllable multi-step190

reasoning, we formalize the reasoning process as a191

sequence of structured steps comprising three com-192

ponents: query refinement, evidence grounding,193

and hypothesis generation.194

Query Refinement. Query refinement is the pro-195

cess of breaking down the original question q into196

sub-questions qt that guide the model’s reasoning197

at each step. As shown in Figure 1, for each step,198

SIC first generates a sub-query qt to decompose the199

original question into more focused sub-problems.200

Alternatively, based on the evidence retrieved in201

previous steps and the intermediate reasoning out-202

comes, the model may either refine the sub-query203

further to explore unresolved aspects or conclude204

the reasoning process by synthesizing the final an-205

swer from the accumulated evidence and logical206

deductions.207

Evidence Grounding. In long-context multi-hop 208

QA, contexts often contain redundant or irrelevant 209

information, making it crucial to dynamically re- 210

trieve only the most pertinent evidence for each 211

sub-question qt. Motivated by the methodology of 212

reasoning with attribution(Li et al., 2024a; Gao 213

et al., 2023; Trivedi et al., 2023), evidence re- 214

trieval component consists of two parts: supported 215

passage index id and relevant snippet quotation 216

quote, which are formatted into structured evi- 217

dence Et = (idt, quotet). The former identifies the 218

most relevant documents from the contexts, while 219

the latter extracts specific evidence that directly ad- 220

dresses qt. This structured representation ensures 221

that each reasoning step is grounded in verifiable 222

and relevant document snippets, critical for main- 223

taining faithfulness and reducing hallucination. 224

Hypothesis Generation. After obtaining the re- 225

fined sub-query qt and the corresponding evidence 226

Et, the hypothesis generation component formu- 227

lates intermediate conclusions ht to bridge the gap 228

between raw evidence and final answers. This step 229

is critical for transforming raw evidence into in- 230

sights, ensuring that each reasoning step is both 231

logically coherent and grounded in facts. 232

This design allows the Monte Carlo Tree Search 233

(MCTS) which is illustrated in Section 4.2 to treat 234

each step as a discrete node in the search space, fa- 235

cilitating guided exploration and pruning of invalid 236
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paths.237

4.2 Guided Exploration via Process-Aware238

MCTS239

Multi-hop reasoning over long-context documents240

requires systematically planning sub-queries to241

break down complex questions into steps (Radhakr-242

ishnan et al., 2023). By question decomposition,243

it is more effective than standard chain-of-thought244

prompting, as it is easier for LLMs to generate one245

step other than a whole solution in a single-turn246

inference. To address this, we adopt Monte Carlo247

Tree Search (MCTS) (Coulom, 2007; Kocsis and248

Szepesvári, 2006; Hao et al., 2024), a powerful249

planning algorithm that balances exploration and250

exploitation to navigate the combinatorial search251

space of multi-step reasoning.252

During the search process, the algorithm begins253

at root node s0, which unfolds in three iterative254

stages: selection, expand and evaluation, backup:255

• Selection Starting from the root node, the256

algorithm traverses the tree by selecting ac-257

tions (sub-queries qt) that maximize the crite-258

rion according to qt = argmaxq(Q(st, q) +259

U(st, q)) where Q(st, q) illustrates the cumu-260

lative reward and U(st, q) is calculated by a261

variant of PUCT algorithm (Rosin, 2011):262

U(st, q) = w · πθk(q|st)
√
ΣbN(st, b)

1 +N(st, q)
(2)263

where w balances the exploration and exploita-264

tion, N(s, q) is the visit count of selecting265

sub-query q at node s. And the prior π(q|st)266

is defined as the exponential of mean log-267

probability of all tokens in sub-query q.268

• Expand and Evaluation When a leaf node st269

is reached, the tree is expanded by generating270

new candidate sub-queries qt+1 with sampling.271

For each candidate qt+1, we then use the LLM272

to predict the next state through structured273

thought decoding as described in Section 4.1.274

Thus each node st+1 can be represented as:275

st+1 = ⟨qt+1, Et+1, ht+1⟩ (3)276

After obtaining the next node state, the re-277

ward function evaluates st, computing a re-278

ward score r(st, qt) based on correctness and279

contribution to the final correct answer. The280

reward design will be discussed in further de-281

tail later.282

• Backup Once the terminal state is reached 283

(e.g., the final answer is validated or a com- 284

putational budget is exhausted), the backup 285

phase propagates rewards backward along the 286

reasoning path, updating the visit count N , 287

the cumulative reward Q and the state value 288

V : 289

Q(st, qt)← r(st, qt) + γV (st+1) (4) 290
291

V (st)←
∑

q N(st+1)Q(st, q)∑
q N(st+1)

(5) 292

293
N(st)← N(st) + 1 (6) 294

where γ is the discount for future state values. 295

Reward Design. The reward function is de- 296

signed to balance factual correctness (grounding 297

in retrieved evidence) and reasoning contribution 298

(progress toward resolving the question). It com- 299

bines two components: 300

• Factual Correctness For evidence Et in 301

each node, factual correctness evaluates rcor 302

whether the quotation in the evidence exists 303

and aligns with the supported evidence in- 304

dices. This evolves two-step verification pro- 305

cess: validate that every document index cited 306

in Et is present in the context C and ensure 307

the referenced content of the corresponding 308

snippet exists in the supported index passage. 309

Alignment is measured using fuzzy match: 310

rcor = I(idt ∈ Cid) · I(FM(quotet, cidt) ≥ τ) (7) 311

where Cid denotes the document index set, τ 312

represents the threshold for fuzzy matching. 313

• Reasoning Contribution The contribution of 314

a reasoning step st is defined as its poten- 315

tial to reduce uncertainty toward the correct 316

answer. Traditional outcome-based reward 317

models (ORMs) evaluate solutions holistically 318

(Yao et al., 2024), lacking granular feedback 319

on intermediate steps. To address this, moti- 320

vated by Math-Shepherd (Wang et al., 2023) 321

which demonstrates that automated process 322

supervision—leveraging Monte Carlo Tree 323

Search (MCTS) principles, we extend this in- 324

sight to design our contribution metric and the 325

process-based reward model (PRM) in step- 326

level. The reasoning contribution is scored 327

with the original question q, provided contexts 328

C and partial solutions s1:t: 329

rcon = PRM([C; q; s1:t]) ∈ [0, 1] (8) 330
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For this PRM training, the step-wise labels331

are automatically constructed via this process:332

for each step st, a completer will generates333

K subsequent reasoning process from this334

step:{st+1,j , ..., sDj ,j , aj}Kj=1 where aj and335

Dj are the answer and the number of reason-336

ing steps for j-th solution. Then we use the337

frequency of reaching the correct answer a∗338

as the contribution label for the step st:339

yst =
ΣK
j=1I(aj = a∗)

K
(9)340

After obtaining the label for each step, we can341

train the PRM using cross-entropy loss.342

Therefore, the final reward score for each step st343

is calculated as r(st, qt) = rcor · rcon.344

4.3 Context-Aware Evidence Retrieval with345

Dynamic KV Cache346

In long multi-hop QA scenarios, the reasoning347

process is divided into two stages: prefilling of348

long context and generation of multiple reasoning349

chains. The prefilling stage is performed only once,350

after which the KVs are cached to speed up genera-351

tion. During the generation of reasoning chains, the352

cached KVs are reused multiple times. However,353

this leads to high computational overhead, as each354

decoding step requires full attention computation355

over the entire lengthy cached KVs.356

To address this challenge, we propose a357

reasoning-oriented, trainable KV retriever to con-358

duct KV cache compression during the generation359

of multiple reasoning chains, only using portions360

of critical KVs for decoding. Existing KV com-361

pression approaches (Xu et al., 2024; Zhang et al.,362

2023d) typically rely on heuristic estimations of363

full attention based on cumulative attention scores,364

which yield suboptimal performance in multi-hop365

reasoning tasks.366

Compression Process. KV compression is per-367

formed to select relevant KVs for a given subques-368

tion during the reasoning chain generation. To fa-369

cilitate retrieval, we first partition the LLM’s input370

context X = {xi}li=1 into contiguous chunks:371

{x1, ..., xl}
partition−−−−−→ {X1, ..., Xm}, Xi = {xi

j}wj=1 (10)372

where w is the chunk size (128 in practice). A373

special landmark token (⟨LMK⟩) is appended to374

each chunk, forming X
′
i = {xi1, ..., xiw, ⟨lmk⟩i}.375

These landmark tokens serve as representations376

Figure 2: Synthetic data for KV retriever training.

of their respective chunks and are used for KV 377

retrieval. 378

After pre-filling of the long context, the KVs 379

are cached and reused for generations of multiples 380

reasoning chains. During generation of new tokens, 381

KV retrieval is conducted for each intermediate 382

subquestion within the reasoning chain: 383

C : {X ′
1, ..., X

′
k} = pkv(X ′ : {X ′

1, ..., X
′
m}|q) (11) 384

where C represents the compressed KVs used for 385

attention computation, replacing the expensive full- 386

attention mechanism. The query q corresponds to 387

the current subquestion. 388

KV Retriever. We propose a reasoning-oriented, 389

trainable KV retriever to retrieve critical KVs for 390

each reasoning step. It introduces a set of trainable 391

parameters to the self-attention module of LLM. 392

During the self-attention computation, the hid- 393

den states of normal tokens (n) and landmark to- 394

kens (b) are sliced out and projected into query, key, 395

and value vectors respectively: 396

Qn = W n
QH

n, Kn = W n
KHn, V n = W n

V Hn,

Qb = W b
QH

b, Kb = W b
KHb, V b = W b

V Hb

(12) 397

where Wn
∗ are the LLM’s original projection ma- 398

trices and W b
∗ are the newly introduced matrices 399

designed specifically to handle landmark tokens. 400

KV importance estimation employs similarity 401

between the query vector of target chunk’s land- 402

mark token and the key vectors of past chunks’ 403

landmark tokens: 404

pkv(X ′) = top-k
{
⟨qlmk

m ,klmk
j ⟩

}m−1

j=1
(13) 405

where ⟨∗, ∗⟩ denotes the dot product operation. 406

Training. Training the KV retriever poses a chal- 407

lenge due to the lack of appropriately labeled long- 408

context data for retrieval supervision. 409

As shown in Figure 2, we synthesize 10K pair- 410

wise long-context data (up to 8K tokens) using text 411

from Wikipedia (Lehmann et al., 2015) to train the 412
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KV retriever. This dataset contains coherent con-413

texts, enabling the retriever to effectively learn to414

locate target evidence relevant to a given query. For415

each long text, we randomly select a span contain-416

ing several consecutive sentences and use ChatGPT417

to generate a question based on this span. This pro-418

cess provides a retrieval supervision signal, guiding419

the KV retriever in identifying the target evidence420

corresponding to the query.421

Given that the evidence for a query (chunk m) is422

located on chunk i, we train the KV retriever using423

the following contrastive learning objective:424

L1 = − log
exp(⟨qlmk

m ,klmk
i ⟩)∑m−1

j=1 exp(⟨qlmk
m ,klmk

j ⟩)
(14)425

where qlmk
∗ and klmk

∗ are the query and key vectors426

of landmark tokens of corresponding chunks in the427

self-attention module.428

KV compression is conducted at each decoder429

layer, allowing for a broader global contextual view430

while enabling the decoder to focus on key infor-431

mation within the lengthy text. This process ef-432

fectively reduces noise and distractions, enhancing433

evidence retrieval performance.434

5 Experiments435

5.1 Experiments Setup436

Datasets and Evaluation Metrics. We conduct437

our experiments on multi-hop long-context QA,438

i.e., HotpotQA (Yang et al., 2018), 2WikiMulti-439

hopQA (Ho et al., 2020) and MusiQue (Trivedi440

et al., 2022) from LongBench (Bai et al., 2023). Ad-441

ditionally, we also incorporate CofCA (Wu et al.,442

2024), a counterfactual MHQA benchmark. To443

adapt to the demands of this task, we randomly444

sample 100 examples each from the 2-hop , 3-hop ,445

and 4-hop subsets of CofCA. We then extend their446

context lengths to 10K by adding irrelevant docu-447

ments, thereby constructing a new variant called448

CofCA-10K. This dataset helps reduce the risk of449

data contamination, thereby providing a more ro-450

bust evaluation of the model’s multi-hop reasoning451

capabilities. Table 1 presents the statistics about452

these datasets. Following previous works, we adopt453

the F1 score as our evaluation metric.454

Baselines. The baselines we compare can be di-455

vided into two categories: (1) single-turn prompt-456

ing, including standard prompting (IO) (Brown457

et al., 2020) which generates answers directly and458

Chain-of-Thought (CoT) prompting (Wei et al.,459

Dataset # Total Samples Max Tokens Avg. Tokens

HotpotQA 200 16323 12780

MusiQue 200 16320 15543

2WikiMultihopQA 200 16336 7097

CofCA

2-hop 100 11176 10853

3-hop 100 11239 10851

4-hop 100 11095 10867

Table 1: Statistics of our test datasets. The number of
tokens is calculated by the tokenizer of Llama-3.1-8B-
Instruct.

2022). (2) multi-turn tree search approaches. We 460

select Tree-of-Thoughts (ToT) (Yao et al., 2024) 461

and rStar (Qi et al., 2024) as baselines, using 462

Breadth-First-Search (BFS) and MCTS, respec- 463

tively. 464

Implementation Details. We use two LLMs 465

as the backbone in our experiments: Mistral-7B- 466

Instruct-v0.2 (Jiang et al., 2023) and Llama-3.1-8B- 467

Instruct(Grattafiori et al., 2024). To ensure that the 468

model adheres to structured node outputs illustrated 469

in Section 4.1, we fine-tune our backbones for 1 470

epoch using 1K samples from a mixed training set 471

derived from the original training sets of HotpotQA 472

, MusiQue , and 2WikiMultiHopQA. For each ques- 473

tion in this training set, we utilize DeepSeek-V3 474

(Liu et al., 2024a) to sample 5 structured reasoning 475

trajectories. Thus, the whole generated training set 476

both for the policy model and PRM contains 50K 477

solutions. These trajectories provide clear, step-by- 478

step intermediate reasoning paths, ensuring that the 479

model learns to produce outputs that align with the 480

desired structured format. The generation prompt 481

can be found in Appendix A. 482

The training set created in this process is also uti- 483

lized for training the PRM. For each single step, we 484

use Llama-3.1-8B-Instruct as the completer, with a 485

sampling number of K=16. Additionally, we select 486

Llama-3.1-8B as the base model to train the re- 487

ward model using the entire training set mentioned 488

above, which serves as the verifier in our algorithm. 489

For all tree search method, we set the depth d = 8 490

and the width w = 5. 491

5.2 Main Results 492

Table 2 shows the F1 score of our framework and 493

all baselines on four MHQA datasets. From the ta- 494

ble, we can find that, SIC method outperforms other 495

baselines across all four MHQA datasets, demon- 496

strating its superior ability to handle multi-hop 497

question answering tasks in long-context scenar- 498
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Model Methods MusiQue HotpotQA 2Wiki
CofCA-10K

Avg.
2 hop 3 hop 4 hop

Mistral-7B-Instruct-v0.2

IO 19.12 44.44 26.93 48.60 33.79 38.28 35.19
CoT 26.57 40.78 39.45 39.28 40.9 35.14 37.02
SIC* 32.54 53.47 59.75 43.45 58.14 54.03 50.23

ToT (N=16) 27.48 38.89 36.91 41.98 37.98 35.36 36.43
rStar (N=16) 37.90 50.89 51.91 51.60 46.46 39.96 46.45
SIC (N=16) 51.80 61.54 70.66 53.93 67.19 60.45 60.93

+Retrieval (4K, N=4) 51.46 63.41 72.87 54.83 65.42 59.54 61.26

Llama3.1-8B-Instruct

IO 32.09 57.27 46.08 63.97 46.65 45.99 48.66
CoT 39.60 54.31 59.79 48.95 56.8 55.19 52.44
SIC* 47.86 61.77 65.98 62.46 54.84 52.35 57.54

ToT (N=16) 38.24 55.2 64.15 52.94 55.03 53.8 53.22
rStar (N=16) 47.20 62.02 72.90 57.30 57.55 47.67 57.44
SIC (N=16) 59.87 67.11 77.75 66.66 62.65 59.71 65.63

+Retrieval (4K, N=4) 57.10 66.38 76.83 66.94 65.31 63.90 66.07

Llama-3.1-70B-Instruct IO 40.75 64.39 62.68 64.00 53.53 47.55 55.48

Table 2: Performance (%) comparison of different baselines on four datasets. SIC* represents the backbone model
after fine-tuning and using CoT prompting with greedy decoding. N denotes the iteration number of the tree search
algorithm. Under the setting of using dynamic KV retrieval, our context window is set to 4K, while other baselines
rely on the full-attention mechanism with a context window of 32K. The boldface indicates the best result.

ios.499

For single-turn baselines, we observe that our500

SIC* method fine-tuned with just 1K data samples501

for one epoch achieves significant performance im-502

provements on nearly all datasets. And for multi-503

turn tree search approaches, our framework, which504

integrates MCTS algorithm with dynamic KV re-505

trieval, achieves significant improvements across506

all datasets. Notably, SIC using SLMs even ex-507

ceeds the performance of Llama-3.1-70B-Instruct,508

highlighting its potential to enhance the capabili-509

ties of smaller models in long-context multi-hop510

reasoning tasks.511

Moreover, with dynamic KV retrieval, the model512

operates within a 4K context window, yet it still out-513

performs the full-attention approach that processes514

the entire context. This highlights the efficiency515

and effectiveness of our method in prioritizing rel-516

evant information, reducing computational over-517

head, and achieving superior results in multi-hop518

reasoning tasks over long contexts.519

5.3 Analysis520

Results for CofCA CofCA is a counterfactual521

dataset that emphasizes the model’s reasoning abil-522

ity rather than its memorization capacity due to data523

contamination. In Table 2, SIC achieves the best524

performance on the dataset without any specific525

training on it. This demonstrates the robustness and526

Figure 3: Attention score map for a CofCA-10K 3hop
sample. Left: from original full attention. Right: score
from our dynamic KV retriever. Red squares indicate
key information for the multi-hop question. For each
turn, the x-axis represents sequence position (up to 10K
tokens), and the y-axis represents each decoder layer.

generalizability of our approach, as it relies on the 527

inherent reasoning capabilities of the framework 528

rather than dataset-specific fine-tuning. However, 529

IO prompting on CofCA-2hop outperforms both 530

CoT and SIC*. This is likely due to the simplicity 531

of the dataset, where explicit reasoning does not 532

significantly improve the performance. This out- 533

come aligns with the findings in (Li et al., 2024a). 534

Dynamic KV retriever As the case shown in Fig- 535

ure 3, while full-attention mechanism fails to cap- 536

ture the essential KVs, our KV retriever identifies 537

key KVs effectively with each turn. Notably, the 538

key information for the second hop is located in 539

the middle of the context, a region typically chal- 540
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Models Verifiers MusiQue HotpotQA 2WikiMQA CofCA Avg.

Mistral-7B-Instruct-v0.2
SC@maj16 44.88 58.97 65.81 56.08 56.42

BoN16(Ours) 49.26 60.05 69.53 56.75 58.90

Llama-3.1-8B-Instruct
SC@maj16 50.51 62.23 73.70 58.99 61.36

BoN16(Ours) 56.38 62.85 73.94 60.99 63.54

Table 3: Performance of different LLMs on four MHQA datasets using different verification strategies. SC@maj
denotes the self-consistency technique, which samples multiple reasoning paths and selects the most consistent
answer by majority voting. BoN means best-of-N sampling using a verifier.

lenging for models due to the "lost in the middle"541

problem. The ability of our KV retriever to success-542

fully identify this information demonstrates that543

dynamic KV retrieval can, to some extent, alleviate544

this issue.545

5.4 Ablation Study546

Effectiveness under Different Rollouts. For tree547

search algorithms, the number of rollouts (itera-548

tions) directly impacts both the quality of candidate549

solutions and the computational cost. Increasing550

the number of rollouts allows the algorithm to ex-551

plore a larger portion of the search space, poten-552

tially uncovering higher-quality reasoning paths.553

However, this comes at the expense of increased554

inference time and resource consumption. To in-555

vestigate how different the number of rollouts ef-556

fects our SIC’s performance, we evaluate the per-557

formance of the HotpotQA under different rollouts,558

as illustrated in Figure 4 .559

Figure 4: Performance comparison on the HotpotQA
dataset under different number of solutions.

It can be found that SIC benefits from rollouts,560

regardless of whether dynamic KV retrieval is used,561

which applies to both Llama and Mistral models.562

Another observation we can conclude is that self-563

consistency (SC) tends to saturate and even decline564

on Llama-3.1-8B-Instruct. The reason is that for565

chain-of-thought prompting, hallucinations in inter-566

mediate steps can occur and compound, leading to567

entirely incorrect conclusions (Zhang et al., 2023b; 568

Wan et al., 2024). 569

Effectiveness of the Verifier. To evaluate the ef- 570

fectiveness of the verifier, we compare our veri- 571

fier, which uses best-of-N (BoN) sampling, with 572

the self-consistency (SC) (Wang et al., 2022)ap- 573

proach. In the BoN method, the verifier selects the 574

best-performing trajectory from multiple sampled 575

paths based on the last step contribution scores, 576

while SC aggregates results by majority voting af- 577

ter sampling diverse reasoning paths. As shown 578

in Table 3, our trained verifier outperforms self- 579

consistency across all datasets with both models. 580

Notably, on the MusiQue dataset, the performance 581

improvements are significant, with Llama and Mis- 582

tral achieving gains of 5.87 and 4.38 , respectively. 583

Moreover, the training data used for the verifier 584

was generated using Llama-3.1-8B-Instruct, yet it 585

still demonstrates strong generalization and pro- 586

vides effective guidance for Mistral. This indicates 587

that the verifier’s learned scoring mechanism is 588

robust and transferable, even when applied to dif- 589

ferent backbone models. 590

6 Conclusion 591

In this paper, we propose SIC, a novel framework 592

integrating Monte Carlo Tree Search (MCTS) with 593

dynamic key-value (KV) retrieval to address the 594

dual challenges of efficiency and reasoning in large 595

language models (LLMs) for multi-hop question 596

answering (MHQA) over long contexts. By mod- 597

eling the reasoning process as a search tree and in- 598

corporating dynamic KV retrieval, SIC iteratively 599

focuses on critical contextual segments (e.g., 4K 600

tokens per step), mitigating the "lost in the middle" 601

problem while reducing computational complexity. 602

Our comprehensive experiments across two mod- 603

els and four datasets validate that the superiority of 604

SIC in long-context multi-hop QA tasks. 605
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7 Limitation606

While our framework demonstrates promising re-607

sults on long-context multi-hop QA tasks, several608

limitations remain for future work. The iterative609

nature of the Monte Carlo Tree Search (MCTS) pro-610

cess, though effective for refining reasoning trajec-611

tories, incurs increased inference latency and com-612

putational cost compared to single-pass methods,613

limiting its practicality for real-time applications.614

Additionally, our framework has primarily been615

tested on datasets with contexts around 10-20K to-616

kens, leaving its applicability to significantly longer617

texts (e.g., 100K+ tokens or even book-length doc-618

uments) an open question for future work.619

8 Ethical consideration620

Our work is built upon open-source LLMs. Conse-621

quently, it inherits similar ethical and social risks as622

those associated with the base LLM. These risks in-623

clude but are not limited to biases in language gen-624

eration, potential reinforcement of societal stereo-625

types, and the generation of harmful or toxic con-626

tent. Despite efforts in LLM pre-training and fine-627

tuning to mitigate such risks, no model is entirely628

free from unintended biases, as these often stem629

from the underlying training data. One major eth-630

ical concern is the presence of biases within the631

pre-training data. LLMs are typically trained on632

vast amounts of text data scraped from the inter-633

net, which may contain biased or discriminatory634

language patterns. If not carefully controlled, these635

biases can be reflected in the model’s outputs, per-636

petuating social inequalities and reinforcing harm-637

ful narratives.638
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A Prompt List1158

The prompt used for creating our training dataset1159

and generating reasoning steps is shown in Figure1160

5.1161
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Figure 5: Prompt used in SIC.
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