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Abstract
Open-domain multi-modal dialogue system heavily relies on visual
information to generate contextually relevant responses. The exist-
ing open-domain multi-modal dialog generation methods ignore
the complementary relationship between multiple modalities, and
are difficult to integrate with LLMs. To tackle these challenges, we
introduce AutoGraph, an innovative method for constructing visual
context graphs automatically. We aim to structure complex informa-
tion and seamlessly integrate it with large language models (LLMs),
aligning information from multiple modalities at both semantic
and structural levels. Specifically, we fully connect the text graphs
and scene graphs, and then trim unnecessary edges via LLMs to
automatically construct a visual context graph. Next, we design
several graph sampling grammar for the first time to convert graph
structures into sequence which is suitable for LLMs. Finally, we pro-
pose a two-stage fine-tuning strategy to allow LLMs to understand
graph sampling grammar and generate responses. We validate our
proposed method on text-based LLMs, and visual-based LLMs, re-
spectively. Experimental results show that our proposed method
achieves state-of-the-art performance on multiple public datasets.

CCS Concepts
• Computing methodologies→ Natural language generation;
Information extraction; • Information systems → Multime-
dia information systems.
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1 Introduction
Open-domain multi-modal dialogue generation has garnered in-
creased attention in recent years due to its ability to closely mimic
real-life scenarios and generate contextually appropriate responses
[8, 30]. Dialogue systems are no longer limited to textual forms,
and visual information plays a crucial role in dialogue agent. Multi-
modal dialogue systems can comprehend not only textual but also
other modal information to generate appropriate responses. This
integration of multi-modal information into traditional text-based
dialogue systems, known as open-domain multimodal dialogue sys-
tems, has attracted increasing research interest [22, 32, 35, 36, 52].

Unlike previous Visual Question Answering (VQA) tasks [1]
that focus on a single, or small number of images related to the
context, the open-domain multi-modal dialog generation task has
a lot third-person viewpoint multi-modal information. Although
existing models have shown promising performances, they still
suffer from two problems. Firstly, recent image-grounded dialogue
models [17, 33, 45] endeavor to enhance dialogue generation ca-
pabilities by integrating relevant images into the dialogue models.
Video-grounded dialogue models [7, 19, 20] aim to combine video
modal information with dialogue systems. These methods encode
multi-modal infromation through different encoders respectively,
while ignoring the complementary relationship between the dif-
ferent modalities. As shown in Figure 1, if the visual contextual
information is ignored, it is difficult to clarify the specific coref-
erence relationship between ’this’, ’it’ and ’you’. Encoding visual
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Additional information 
Scene Graph

person

couchbook

beside

holding sitting on

Check this out.

It says here that there’s a place you
can go to rent videos of all the museums!

Extract

Figure 1: An utterance extracted from the MELD dataset. It is
insufficient only consider text information in open-domain
multi-modal dialogue generation. There should be interac-
tion between different modalities. Using scene graphs can
serve as an expansion of the dialogue, filling in crucial infor-
mation.

context information separately involves a lot of noise. And it is
difficult to map information from multiple modalities to a unified
multi-modal vector space, which leads to the lack of factual and
incoherent responses.

Secondly, the multi-modal community has sparked new interest
in enhancing Large Language Models (LLMs) with visual infor-
mation [14], with representative models such as LlaVA [20], Vis-
CPM [7], and Monkey [16]. But existing image-grounded or video-
grounded models’ features are difficult to combine with LLMs due
to the different vector spaces, which limits the ability of LLMs to
uniformly model multiple modal features. It has been demonstrated
that leveraging scene graphs can effectively enhance the under-
standing of image modalities [51]. The GlaMM model [31] try to
push LLMs to generate scene graphs sentence to understand of
the image. Structure-CLIP proposed by Huang et al. [9] employ
scene graph knowledge to fit image-text matching tasks via multi-
modal language models. However, these methods focus on VQA
task and still struggle to handle multi-turn conversations or video
modal information with a large number of frames present. The
GraphGPT [39] model attempts to integrate text-based graph struc-
tures with LLMs and takes the index of nodes in the graph as direct
input to the context. However, GraphGPT’s comprehension ability
is poor for graph structures with numerous nodes because LLMs
cannot accurately establish the correspondence between indexes
and nodes.

To address the aforementioned two issues, text is used as a cue
to align multiple modalities in this paper. LlaVA’s [20] approach in-
spires the idea that we can use images to augment text-based LLMs.
To establish complementary relationships between different modal-
ities and incorporate them with LLMs, we design an automatically
constructed multi-modal context graphs method and several graph
sampling grammar, called AutoGraph. We aim to structure com-
plex information and seamlessly integrate it with large language
models (LLMs), aligning information from multiple modalities at
both semantic and structural levels. The AutoGraph method is a
general approach that can enhance the visual capabilities of LLMs.

More specifically, in order to obtain aligned multi-modal con-
text graphs, we employ the semantic dependency graph parsing to

extract the structure of the utterance and obtain a textual graph.
And the scene graph parsing method is used to convert the video
modalities into image graphs. We fully connect the text graph and
image graphs to form a holistic heterogeneous graph, then design a
pruning strategy to align the graph structures of the two modalities
at the semantic level. In order to combine the aligned multi-modal
graph with LLMs, we devise three types of graph sampling method
to transform the graph structures into a sequential structure. We
argue that while the shift to sequentialization may change the word
order, for LLMs it amounts to learning a new grammar to establish
a mapping relationship with the target responses. During the fine-
tuning stage, we propose a two-stage fine-tuning strategy to enable
the LLMs to better comprehend the graph sampling grammar we
designed. We validate our proposed method on text-based LLMs,
and visual-based LLMs, respectively. Experimental results show
that our proposed AutoGraph method can effectively enhance the
performance of different types of LLMs and achieve the best results
on multiple public datasets.

The main contributions are summarized as follows:

• We align multiple modal information at the semantic and
structural levels through an automatically constructed visual
context graph.

• For the first time, we propose three effective graph sampling
grammar for transforming graph structures into sequences,
seamlessly integrating the aligned visual context graph with
LLMs. And we introduce a two-stage fine-tuning strategy to
enhance the understanding of graph sampling grammar by
LLMs.

• We conduct experiments via text-based LLMs and visual-
based LLMs as backbone models. Experiments on two public
datasets demonstrate that LLMs augmented by our proposed
AutoGraph method exhibit superior visual dialogue capabili-
ties.

2 Related Work
2.1 Open-domain Dialogue Generation
Open-domain multi-modal dialog generation is a task that relies
heavily on understanding the differentmodal context. Open-domain
multi-modal dialogue generation can be divided into two categories:
image-grounded and video-grounded.

2.1.1 Image-grounded approaches. Image-grounded approaches
integrate image-based visual information into dialogue systems.
Open-domain dialogue datasets based on image-grounded include
MMChat [52], DialogCC [13], MMDialog [4], Image-Chat [34], and
others. Maria [17] and VisAD [33] model proposed by Liang et
al. and Shen et al. respectively, attempt to integrate contextually
relevant images with dialogue systems. Tu et al. [41] explicitly
categorize visual knowledge into finer granularity turn-level and
entity-level, proposing the RESEE model to incorporate visual rep-
resentations into dialogue models through modality concatenations.
Zhang et al. [46] propose the ZRIGF model, which includes con-
trastive and generation pretraining modules, mapping different
modalities to the same vector space and generating appropriate
responses. VisCPM [7] and Monkey [16] are Multi-modal Large
Language models (MLLMs), which are pre-trained by image and
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context information. These MLLMs establish mapping relationships
between multiple modalities through extensive data.

2.1.2 Video-grounded approaches. Video-grounded dialogue can
be seen as a more complex extension of image-grounded dialogue,
as videos contain numerous frames that drastically increase com-
putational complexity. Open-domain dialogue datasets for video-
grounded dialogue include MELD [26], OpenViDial [22], Open-
ViDial 2.0 [43], Tiktalk [19], and others. Lin et al. [19] convert
videos into multiple frames and use an image encoder to encode
video modal information. They concatenate the different modali-
ties’ feature and feed them into a decoder to generate responses.
However, these methods overlook the potential complementarity
and enhancement between different modalities.

2.2 Graph Structure for Dialogue and Fusion
with LLMs

2.2.1 Graph Structure for Dialogue. The advantage of applying
graph structure in dialogue is that it can simulate the flow of infor-
mation. DialogueGCN [5] is proposed by Ghosal et al. for dialogue
emotion recognition tasks. Peng et al. [24] construct a dialogue
graph to highlight both global and local features of the conversa-
tion. Kim et al. and Zhang et al. [11, 47] improve the performance of
dialogue systems through coreference relationships across multiple
modalities. Zhao et al. [50] construct dialogue graphs to model
the speaker’s cognitive shifts during the conversation. A expand
strategy is proposed by Zhao et al. [49] to enlarge the constructed
dialogue graph. But the dialogue graph constructed by aforemen-
tioned methods is based on utterance level, the AutoGraph model
in this paper is focus on words level.

2.2.2 Fusion with LLMs. Incorporating structured information into
LLMs can effectively enhance the model’s performance. ERNIE 3.0
[38] simply converts graph triplets into a tokenized text passage
as input. K-BERT [21] injects knowledge triplets into sentences
through visibility matrices to reduce the sequence length, with
only knowledge entities being included as part of the sequence. To
further distill knowledge, CoLAKE [37] proposes a unified word
knowledge graph, where tokens from input sentences form a fully
connected word graph. GraphGPT [39] directly uses the index
of nodes in the graph as input to the context window, enabling
LLMs to comprehend the graph’s topology. However, these methods
are merely sequentialization approaches for different knowledge
triplets, rather than a method for converting a large connected
dialogue graph into a sequence. Our proposed AutoGraph method
aimd to design a graph sampling grammar to reduce the knowledge
noise and seamlessly integrate context graph with LLMs.

3 Method
3.1 Task Definition
The goal of the open-domain multi-modal dialog generation task
is to generate appropriate responses based on contextual informa-
tion with multi-modality. We formulate the this task as follows.
Given text modal 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑠𝑇 = {𝑈1,𝑈2, ...,𝑈𝑛} and visual modal
𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑠𝑉 = {𝑉1,𝑉2, ...,𝑉𝑛}, 𝑛 is the number of turns in a dialogue.
𝑉𝑖 and 𝑈𝑖 are videos and utterances at the 𝑖th turn. The target
response is 𝒀= (𝑦1, 𝑦2, ..., 𝑦𝑚), where𝑚 is the number of words.

3.2 Overview of the Architecture
In this paper, we propose the AutoGraph model to automatically
comprehend and align text and video modal information, the struc-
ture of the model is shown in Figure 2. The AutoGraph model
consists of three modules, §3.3 Visual Context Graph Construction,
§3.4 Graph Sampling Grammar and §3.5 Two-stage Fine-tuning.
We start with semantic dependency graph parsing and scene graph
parsing to obtain structured relations from text and images, respec-
tively. Then, we fully connect the text graph and the scene graph,
and let LLMs trim meaningless edges to obtain the Visual Con-
text Graph via the Few-shot and In-Context Semantic Alignment
Prompt. We design graph sampling grammar to transform graph
structures into sequence structures, and finally use a two-stage
fine-tuning strategy to prompt the LLMs to understand this new
graph sampling grammar.

3.3 Visual Context Graph Construction
To align textual and video modalities in visual context, we construct
a structured visual context graph based on semantic alignment. The
visual context graph G𝑉𝑇 is a heterogeneous graph, consisting of
the text graph G𝑇 and the image graph G𝑉 .

G𝑉𝑇 = {G𝑇 ;G𝑉 } (1)

It is worth mentioning that our proposed AutoGraph approach
focuses on the word level rather than the sentence level. We be-
lieve that achieving better alignment with other modalities and
constructing the visual context graph requires more fine-grained
knowledge. In the field of context graph construction, there has
been a lot of work. In the MuSE model, Zhao et al. [49] split sen-
tences of speakers using punctuation marks to build the context
graph. Zhao et al. [50] individually constructed dialogue context
graphs from the perspective of different speakers. These graphs
focus on the sentence level, treating the utterances of speakers as
nodes in the graph.

3.3.1 Text to Graph. In the part of text-to-graph transformation,
as highlighted in the green box in Figure 2, we use semantic depen-
dency graph parsing [2] to obtain the dependency graph between
words. We split the speaker’s context 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑠𝑇 into multi-turns
{𝑈1,𝑈2, ...,𝑈𝑛} and then separately parse the semantic dependency
graph for each utterance 𝑢𝑖 , obtaining the text graph G𝑇𝑖 , where 𝑖
represents the 𝑖th turn of the context.

G𝑇𝑖 = 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑃𝑎𝑟𝑠𝑖𝑛𝑔(𝑈𝑖 ) (2)

Taking𝑈1 in Figure 2 as an example, the result after parsing with
the semantic dependency graph is shown in Figure 3. In Figure
3, the edges between words represent some form of dependency
relationship in the semantic dependency graph parsing. However,
to avoid introducing redundant information, these relationships
are not used in this paper, and only the edges are employed as
connections between nodes. Finally, we get the text graph G𝑇 =

{G𝑇1 ,G𝑇2 , ...,G𝑇𝑛 }, where 𝑛 is the number of turns.

3.3.2 Image to Graph. Due to the high frame rate of videomodality,
pre-training based multi-modal approaches for extracting image
features face challenges in meeting the demands of processing
multiple frames of images. Following the previous approach to
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Question: Is 'person' and 'book' have semantic connect? 
Answer: No, because they are different type.
Question: Is ‘joe' and 'person' have semantic connect? 
Answer: Yes, because they are same type.

Question: Is 'sir' and 'person' have semantic connect? 
Answer: Yes/No, because they are same/different type. 

Predict the next sentence based on the Relations. 
Relations: Text Graph + Image Graph + Aligned Graph
Sentence: Yes, of course.

Restore the original sentence based on the Relations. 
Relations: Text Graph + Image Graph + Aligned Graph
Sentence: Uh sir, may I see your tickets please?

Text 
Graph

Image 
Graph

Aligned
 Graph

1VT
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Few-shot 
Examples

person sir

LLMs

Figure 2: The architecture of our proposed AutoGraph model, which consists of three modules: §3.3 Visual Context Graph
Construction, §3.4 Graph Sampling Grammar and §3.5 Two-stage Fine-tuning.

Uh sir , may I see your tickets please ?

FEAT

AGT

mDEPD

AGT

mPUNC

FEAT

CONT
CONT

mPUNC

ROOT

Figure 3: Example of semantic dependency graph parsing of
𝑈1 in Figure 2. Relationships between words are not used in
AutoGraph model.

extract keyframes from video [19, 22, 43], we extract each video
clip 𝑉𝑖 into multiple keyframes 𝑓𝑗 .

𝑓𝑗 = 𝐾𝑒𝑦𝐹𝑟𝑎𝑚𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝑉𝑖 ), (3)

𝑉𝑖 = {𝑓1, 𝑓2, ..., 𝑓𝑗 }, (4)

𝑗 is the number of total key frames in video clip 𝑉𝑖 .
For each keyframe 𝑓𝑗 , we employ scene graph parsing [44] to

construct the scene graph at the 𝑖th turn.

G𝑗 = 𝑆𝑐𝑒𝑛𝑒𝐺𝑟𝑎𝑝ℎ𝑃𝑎𝑟𝑠𝑖𝑛𝑔(𝑓𝑗 ) (5)

The graphs of multiple keyframes are merged as subgraphs to
form the image graph G𝑉𝑖 .

G𝑉𝑖 = {G𝑓1 ,G𝑓2 , ...,G𝑓𝑗 }, (6)

𝑗 is the number of total frames in video clip 𝑉𝑖 . Finally, the same
method is applied to construct image graph G𝑉 for each video clip
and G𝑉 = {G𝑉1 ,G𝑉2 , ...,G𝑉𝑛 }.

3.3.3 Graph Alignment. To align multiple modalities at the word
level, we first fully connect the text graph G𝑇 and the image graph
G𝑉 . Next, a semantically prompt for LLMs is designed to guide
the LLMs to prune edges between nodes of different modalities,
resulting in the aligned visual context graph G𝑉𝑇 . We employ the
Few-shot In-Context Learning method [42] to trim meaningless
edges. Taking the 𝑈1 in Figure 2 as an example, the Few-shot In-
Context Semantic Alignment Prompts are shown as follows.

Few-shot In-Context Semantic Alignment Prompt: "Ques-
tion: Is ’person’ and ’book’ have semantic connect? Answer: No,
because they are different type. Question: Is ‘joe’ and ’person’ have
semantic connect? Answer: Yes, because they are same type. Ques-
tion: Is ’word A’ and ’word B’ have semantic connect? Answer:
". The word A and word B are two nodes (words) from textual
and image graph. The first two questions and answers serve as
examples for LLMs to reference.

After traversing both ends of all fully connected edges between
word A and word B, we finally obtain the aligned visual context
graph G𝑉𝑇 .

G𝑉𝑇 = {G𝑉𝑇1 ,G𝑉𝑇2 , ...,G𝑉𝑇𝑛 }. (7)

3.4 Graph Sampling Grammar
At present, most LLMs can only draw knowledge from sequen-
tial structures and cannot directly understand graph-based struc-
ture information. Inspired by structured knowledge-enhanced pre-
trained models [21, 37–39], we attempt to transform the visual
context graph G𝑉𝑇 into a sequential structure, allowing us to sam-
ple the topology of the graph. We design three different graph
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sampling grammar based on graph-level sampling and node-level
sampling, which are §3.4.1 𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒 , §3.4.2 𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 and
§3.4.3 𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 .

3.4.1 𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒 . In graph-level sampling, similar to the node
feature update mechanism in Graph Convolutional Networks (GCN)
[12], for the target node 𝑁𝑖 , the𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒 function can sample
all neighboring nodes within 1 − ℎ𝑜𝑝 (including 𝑁𝑖 ).

The graph-level sampling sequence 𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒 of the entire
visual context graph G𝑉𝑇 can be calculated as follows:

𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒 =

𝑀⋃
𝑖=0

𝑀⋃
𝑗=0

𝐴𝑖 𝑗𝑁 𝑗 , (8)

where 𝑀 represents the number of nodes and 𝐴 represents the
adjacency matrix.

3.4.2 𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 . In the graph-level sampling, all neighboring
nodes of the target node 𝑁𝑖 are sampled, resulting in many nodes
being repeatedly sampled after traversing the entire graph G𝑉𝑇 .
Inspired by GraphSAGE [6], we modify the sampling grammar that
only 𝐾 neighboring nodes of the target node 𝑁𝑖 will be sampled in
node-level sampling. If the target node does not have𝐾 neighboring
nodes, we will not pad to 𝐾 nodes.

Building upon this, we sample first-order and second-order neigh-
bor nodes to sample graph topology to a sequence. The node-level
sampling sequence 𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 of the entire visual context graph
G𝑉𝑇 can be calculated as follows:

𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 =

𝑀⋃
𝑖=0

𝐾⋃
𝑗=0

𝐴𝑖 𝑗𝑁 𝑗 ∪𝐴2
𝑖 𝑗𝑁 𝑗 , (9)

𝐴2
𝑖 𝑗 =

{
0 if i = j
min(1, 𝐴2

𝑖 𝑗
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (10)

where 𝐴2 represents the square of the matrix 𝐴 and𝑀 represents
the number of nodes. To avoid redundant sampling of the target
node, we set the 𝐴2

𝑖 𝑗
= 0 in the adjacency matrix when 𝑖 = 𝑗 , and

to prevent repeated sampling of other nodes, we set the values of
the remaining nodes in 𝐴2

𝑖 𝑗
to 1 .

3.4.3 DeepNodeSample. Based on 𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 , we further ex-
plore deep node sampling methods. We continuously sample first,
second, and third-order neighbors of the target node 𝑁𝑖 . The deep
node-level sampling sequence 𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 of the entire vi-
sual context graph G𝑉𝑇 is calculated as follows:

𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 =

𝑀⋃
𝑖=0

𝐾⋃
𝑗=0

𝐴𝑖 𝑗𝑁 𝑗 ∪𝐴2
𝑖 𝑗𝑁 𝑗 ∪𝐴

3
𝑖 𝑗𝑁 𝑗 , (11)

𝐴3
𝑖 𝑗 =

{
0 if i = j
min(1, 𝐴3

𝑖 𝑗
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

where 𝐴3 represents the cube of the matrix 𝐴, 𝐴2 is calculated via
equation 10, 𝐾 represents the 𝐾 neighbors of target node 𝑁𝑖 and𝑀
represents the number of nodes.

We do not explore deeper-level sampling as it would significantly
increase the length of the graph sampling sequence. To the best
of our knowledge, this is the first attempt to devise a grammar to
facilitate LLMs in acquiring graph structure information. Given

Table 1: Data statistics for the MELD dataset and OpenViDial
dataset.

MELD OpenViDial
Train 9989 974803
Valid 1109 55679
Test 2610 55667

that the LLMs have the ability to learn other forms of grammar [10],
we believe that LLMs can also handle this type of graph sampling
grammar.

3.5 Two-stage Fine-tuning
In order to facilitate the understanding of entirely new grammar
structures by the LLMs, we devise a two-stage fine-tuning strategy.

The objective of the first stage is to enable the LLMs to compre-
hend this grammar, restoring utterance 𝑈𝑖 via the visual context
graph G𝑉𝑇𝑖 of the 𝑖th turn. Through prompting, the LLMs recon-
struct the sentence under graph sampling grammar into the original
sentence, establishing a connection between the new grammar and
human-familiar grammar. The goal of the second stage is to enable
the LLMs to predict the response to the next utterance 𝑈𝑖+1 based
on the visual context graph G𝑉𝑇 = {G𝑉𝑇1 ,G𝑉𝑇2 , ...,G𝑉𝑇𝑖 }.

Taking the 𝑈1 in Figure 2 as an example and two-stage fine-
tuning prompt is shown as follows. The Relations in stage 1 and
stage 2 is fixed, and the Sentence is the target sentence that the
model needs to predict and participates in the loss calculation dur-
ing the fine-tuning process.

Stage 1 Fine-tuning Prompt: "Restore the original sentence
based on the Relations. Relations: uh sir see, uh sir „ sir „ sir see ?,
sir see I, please see ?, your tickets see, may see I, may see ?, plate
on table, orange on table, person beside person, sir person, I person
, your person. Sentence: uh sir, may I see your tickets please? ".

Stage 2 Fine-tuning Prompt: "Predict the next sentence based
on the Relations. Relations: uh sir see, uh sir, , sir „ sir see ?, sir
see I, please see ?, your tickets see, may see I, may see ?, plate on
table, orange on table, person beside person, sir person, I person,
your person. Sentence: yes, of course. ".

4 Experiment
4.1 Datasets
We conduct experiments on two publicly available datasets, the
MELD dataset [26] and the large-scale OpenViDial dataset [22].
The dataset statistics are summarized in Table 1. To stay close to
open-domain conversation scenarios, we chose these two datasets.
OpenViDial has a larger scale compared to the MELD dataset.

4.2 Baseline Models
• MMChat [52]: A multi-modal dialogue model based on a
multi-layer text encoder, Fast-RCNN encoder and GPT-2
decoder.

• RESEE [41]: RESEE enhances the text-based conversational
abilities via visual knowledge. The visual and text encoders
are composed of CLIP [28] and T5 [29], respectively.
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Table 2: Results of automated evaluation on the MELD dataset (%) via Full fine-tuning approach.

Model Distinct-1 ↑ Distinct-2 ↑ BLEU ↑ Rouge-L ↑ F-BERT ↑ CHRF ↑
RESEE 4.8510 15.2295 0.4130 4.3863 75.2614 7.6507
MMChat (GPT-2) 4.6747 14.6951 0.3323 4.6110 74.7785 8.7579
Llama2-7B (Text only LLMs) 3.1687 10.0073 0.1304 2.2689 77.3152 7.6362
LLaVA2-7B (Multi-modal LLMs) 7.7715 22.8793 0.9121 5.9174 78.1487 8.3218
Llama2-7B + AutoGraph (𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒) 5.6010 21.0152 0.8493 3.6452 78.6225 7.1252
Llama2-7B + AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 7.5920 34.8087 1.4942 6.3176 79.3841 11.6212
Llama2-7B + AutoGraph (𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 6.8226 26.4739 0.6655 6.2572 79.2667 9.8351
LLaVA-7B + AutoGraph (𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒) 7.5184 24.9317 1.1178 5.3264 79.2583 10.1217
LLaVA-7B + AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 8.3218 35.1276 1.5102 7.0311 79.4041 11.3278
LLaVA-7B + AutoGraph (𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 8.1357 33.1671 1.3014 6.9912 79.3302 12.9315

Table 3: Results of automated evaluation on the OpenViDial dataset (%) via Full fine-tuning approach.

Model Distinct-1 ↑ Distinct-2 ↑ BLEU ↑ Rouge-L ↑ F-BERT ↑ CHRF ↑
RESEE 2.0103 3.7157 0.6101 0.4538 76.3321 2.4317
MMChat (GPT-2) 1.9131 3.5038 0.5968 0.4151 75.8312 2.3945
Llama2-7B (Text only LLMs) 3.0734 6.9061 0.1092 0.1621 77.7771 2.2540
LLaVA-7B (Multi-modal LLMs) 3.9715 6.3417 0.5211 0.5248 78.2326 3.3493
Llama2-7B + AutoGraph (𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒) 2.8379 9.2816 0.5141 0.6501 78.4735 4.5733
Llama2-7B + AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 4.0888 12.1607 0.6891 0.6091 78.4420 4.7637
Llama2-7B + AutoGraph (𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 3.2510 8.5148 0.7278 0.6320 78.8388 6.0662
LLaVA-7B + AutoGraph (𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒) 3.6234 10.6582 0.6039 0.4670 78.3098 4.7296
LLaVA-7B + AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 4.7310 13.4519 0.7421 0.4764 79.0943 5.2319
LLaVA-7B + AutoGraph (𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 4.0101 13.1492 0.8602 0.6487 79.2304 6.6529

• Llama2-7B [40]: An open-source, high-performance, text
only large language model for English. We fine-tune it using
the textual modality of the MELD and OpenViDial datasets.

• LLaVA-7B [20]: The large language model based on Llama2-
7B, fine-tuned by visual instructions, achieved excellent per-
formance in several multi-modal tasks. After fine-tuning
with the MELD and OpenViDial dataset, we use it as the
baseline model.

4.3 Experiment Settings
We reproduce the results based on the source code provided in
the original paper. All experiments are trained with the same pa-
rameters. The learning rate of QLoRA and Full fine-tuning is 1e-4
and 1e-5, respectively. All baseline models based on the LLMs are
available through the corresponding open source projects. QLoRA
rank is set to 128. In the AutoGraph model, 𝐾 is set to 3, and 𝑀
depends on how many neighbors the target node has. Experiments
on the MELD dataset are accelerated by 8 * NVIDIA 32GB V100
GPUs, and experiments on the OpenViDial dataset are accelerated
by 4 * NVIDIA 40GB A100 GPUs. Our code can be found through
https://github.com/DericZhao/AutoGraph.

4.4 Evaluate Metrics
4.4.1 Automatic Evaluation. Automatic evaluation is efficient and
fair. Following previous work, we adopt mainstream evaluation
metrics, which include Distinct-𝑛 [15], BLEU [23, 27], Rouge-L [18],
F-BERT [48] and CHRF [25]. The Distinct-𝑛 aims to encourage the

dialogue system to generate diverse responses, while the BLEU,
Rouge-L, F-BERT and CHRF seek to produce contextually relevant
responses through different approaches.

4.4.2 Human Evaluation. Human evaluation is to evaluate responses
quality from a human perspective. We conduct the aspect-based
pairwise preference test for human evaluation. (1) Coherence (Coh.):
which measures the relevance and coherence of the generated re-
sponses to the context. (2) Informativeness (Inf.): which response
conveys more information related to context. (3) Grammar (Gra.):
which measures whether the grammar of responses is correct. We
randomly sample 200 response pairs of each model and recruit 10
evaluators to judge.

5 Results and Analysis
5.1 Automatic Evaluation Results
With AutoGraph method, different LLMs achieve state-of-the-art
automatic evaluation results. We evaluate the effectiveness of our
AutoGraph method on both the MELD dataset and the OpenViDial
dataset. The results of automatic evaluation are shown in Tables 2,
3, 4, and 5. We employ QLoRA [3] and Full fine-tuning methods to
fine-tune various LLMs.

Our experimental objectives include three main goals: 1. Validate
the performance of theAutoGraphmethod on the Llama2 text-based
LLMs. 2. Validate the performance of the AutoGraph method on
the LLaVA multi-modal LLMs. 3. Verify the sampling capability of

https://github.com/DericZhao/AutoGraph
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Table 4: Results of automated evaluation on the MELD dataset (%) via QLoRA fine-tuning approach.

Model Distinct-1 ↑ Distinct-2 ↑ BLEU ↑ Rouge-L ↑ F-BERT ↑ CHRF ↑
RESEE 4.8510 15.2295 0.4130 4.3863 75.2614 7.6507
MMChat (GPT-2) 4.6747 14.6951 0.3323 4.6110 74.7785 8.7579
Llama2-7B (Text only LLMs) 2.8622 8.9845 0.1297 2.2876 76.0338 7.5832
LLaVA-7B (Multi-modal LLMs) 5.8526 23.3487 0.7621 5.3247 79.0131 7.9987
Llama2-7B + AutoGraph (𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒) 3.5183 14.4367 0.6896 6.3466 79.0821 8.0001
Llama2-7B + AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 5.7986 24.4724 0.9366 6.1219 79.1248 8.8163
Llama2-7B + AutoGraph (𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 5.5103 22.5282 0.9403 5.5804 79.2403 9.4888
LLaVA-7B + AutoGraph (𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒) 6.3241 23.2184 0.9872 7.0312 79.1342 9.3418
LLaVA-7B + AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 7.8915 26.3398 1.4586 7.4596 79.2197 9.8149
LLaVA-7B + AutoGraph (𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 7.5178 25.1284 1.0893 7.1574 79.2513 9.9324

Table 5: Results of automated evaluation on the OpenViDial dataset (%) via QLoRA fine-tuning approach.

Model Distinct-1 ↑ Distinct-2 ↑ BLEU ↑ Rouge-L ↑ F-BERT ↑ CHRF ↑
RESEE 2.0103 3.7157 0.6101 0.4538 76.3321 2.4317
MMChat (GPT-2) 1.9131 3.5038 0.5968 0.4151 75.8312 2.3945
Llama2-7B (Text only LLMs) 2.1449 5.2219 0.0910 0.1803 77.7377 2.2325
LLaVA-7B (Multi-modal LLMs) 3.1285 7.0711 0.4598 0.2419 78.5334 3.4853
Llama2-7B + AutoGraph (𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒) 2.8486 7.7452 0.4786 0.2134 77.8720 2.4513
Llama2-7B + AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 4.2391 11.8794 0.7251 0.2716 77.9364 2.9878
Llama2-7B + AutoGraph (𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 4.1870 10.7114 0.8754 0.4926 78.6103 4.8728
LLaVA-7B + AutoGraph (𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒) 3.4517 9.2154 0.5128 0.4438 78.8111 3.5147
LLaVA-7B + AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 4.5218 13.2411 0.7493 0.4507 78.9002 3.5574
LLaVA-7B + AutoGraph (𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) 4.3401 13.0013 0.8015 0.5042 79.1871 4.9210

the AutoGraph method with different graph sampling grammar for
visual context graphs.

1. AutoGraph onText-based LLMs.Compared toMMChat and
RESEE models, which are specifically designed for open-domain
dialogue generation, the Llama2-7B model with the AutoGraph
method outperforms the baseline model across various metrics. The
original text-based Llama2-7B model’s performance do not surpass
that of the MMChat model, but with the support of the AutoGraph
method, the text-based model can also perform as well as multi-
modal LLMs. This indicates that leveraging the AutoGraph method
enables the text-based LLMs with the capability to comprehend
visual scenes and then generate more appropriate responses in the
open-domain dialogue generation task.

Compared to other general multi-modal LLMs, leveraging the
best sampling methods in AutoGraph can enable the text-based
Llama2-7B model to outperform the majority of baseline models.
This demonstrates that employing the AutoGraph method can ef-
fectively enable text-based LLMs to comprehend multi-modal in-
formation and enhance model performance.

2. AutoGraph on Multi-modal LLMs. The LLaVA-7B model
has been fine-tuned with visual prompts, and after fine-tuning
on the MELD dataset and OpenViDial dataset, its performance
surpasses that of models specifically designed for open-domain
dialogue generation, such as MMChat and RESEE. We also try to
incorporate the AutoGraph method into the LlaVA-7B model to
enhance the understanding of scene information. Experimental
results indicate that the model’s performance is further improved
after adding the visual context graph.

Compared to other general LLMs, LLaVA-7B exhibits superior
performance after being enhanced by the AutoGraph method. Since
LLaVA-7B already possesses visual capabilities, we believe that
the AutoGraph method further provides the complementary rela-
tionship information. The experimental results indicate that our
proposed AutoGraph method can also enhance multi-modal LLMs.

3. Graph Sampling Ability. We verify the sampling capabil-
ities of different graph sampling methods for constructed visual
context graphs. The 𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒 graph sampling method shows
minimal enhancement in model performance. We attribute this to
the noise caused by a significant number of duplicated nodes when
traversing the entire visual context graph. The 𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 graph
sampling method alleviates the issue of repeated sampling. Models
enhanced by the 𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 sampling method tend to perform
better on diversity metrics, such as Distinct-1 and Distinct-2. We
believe this may stem from the insufficient understanding of the
overall topology of the graph, as only 𝐾 nodes around the target
node are sampled, potentially leading to incomplete sampling. The
𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 graph sampling comprehends the topology of
the graph by sampling nodes at deeper levels. Models with the
𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 graph sampling grammar exhibit excellent per-
formance on context relevance metrics, such as BLEU, Rouge-L,
F-BERT, and CHRF scores.

Moreover, different fine-tuning methods also lead to different
results. The experimental results of Full fine-tuning are signifi-
cantly better than those of QLoRA. QLoRA is an efficient fine-
tuning method as it only adjusts some layers’ parameters in LLMs,
while Full fine-tuning makes adjustments to all parameters. Both
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Table 6: Results of ablation experiments. Based on Llama2-7B, we eliminate the first-stage restore prompt, and only retain the
second-stage predict prompt. All ablation experiments employ the Full fine-tuning method.

Dataset Model Distinct-1 Distinct-2 BLEU Rouge-L F-BERT CHRF

MELD
w/o Stage1: Restore 𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒 ↓ 0.3653 ↓ 5.9942 ↓ 0.0851 ↓ 0.9468 ↓ 0.2688 ↓ 0.3524
w/o Stage1: Restore 𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 ↓ 1.1980 ↓ 12.5266 ↓ 0.1022 ↓ 3.2360 ↓ 0.4772 ↓ 5.3403
w/o Stage1: Restore 𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 ↓ 0.9837 ↓ 6.3151 ↓ 0.0831 ↓ 2.8842 ↓ 0.5791 ↓ 4.1618

OpenViDial
w/o Stage1: Restore 𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑚𝑝𝑙𝑒 ↓ 0.1880 ↓ 0.4295 ↓ 0.0476 ↓ 0.0243 ↓ 0.2730 ↓ 0.3709
w/o Stage1: Restore 𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 ↓ 0.3339 ↓ 1.5294 ↓ 0.0829 ↓ 0.0989 ↓ 0.1583 ↓ 0.5740
w/o Stage1: Restore 𝐷𝑒𝑒𝑝𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 ↓ 0.1453 ↓ 1.4099 ↓ 0.0886 ↓ 0.0671 ↓ 0.2831 ↓ 0.9278

Table 7: Human evaluation results on MELD dataset (%). Ties
are not shown. ‡represent significant improvement with 𝑝-
value < 0.05.We select the𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒 grammar with the best
sampling capability as the model for manual evaluation.

Comparisons Aspects Win Lose
Llama2-7B +

AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) vs.
MMChat (GPT-2)

Coh. 62.3‡ 26.1
Gra. 65.1‡ 18.5
Inf. 68.8‡ 26.1

Llama2-7B +
AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) vs.

Llama2-7B

Coh. 61.2‡ 25.5
Gra. 62.4‡ 19.7
Inf. 60.5‡ 20.6

LlaVA-7B +
AutoGraph (𝑁𝑜𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒) vs.

LLaVA-7B

Coh. 51.5‡ 37.7
Gra. 46.8‡ 35.4
Inf. 49.7‡ 33.9

fine-tuning methods enable LLMs to comprehend the graph sam-
pling grammar proposed in AutoGraph and adapt to two-stage
fine-tuning.

5.2 Human Evaluation
In human evaluation, we are more concerned with whether the
proposed graph sampling grammar can effectively map to the stan-
dard grammar in real-life. The human evaluation data on the MELD
dataset is presented in Table 7. We evaluate the grammar of the
response sentences, and LLMs demonstrate a full understanding
of this graph sampling grammar from a human perspective. In
terms of coherence and informativeness, the Llama2-7B model en-
hanced with the AutoGraph method has surpassed the text-based
Llama2-7B model. In the human evaluation of the multi-modal
LlaVA-7B model, there is a certain performance improvement after
incorporating the AutoGraph method. Human evaluations further
demonstrate that the AutoGraph method effectively enhances the
visual dialogue capabilities of LLMs.

5.3 Ablation Experiments
We conduct ablation studies to verify the effectiveness of the two-
stage fine-tuning strategy, as shown in Table 6. The results indicate
that, after eliminating the first-stage restore prompts, the model’s
performance is affected to varying degrees. This indicates that the
two-stage fine-tuning can assist themodel in initially understanding
the new grammar and providing support during the predict prompt
process in the second stage. And the performance of LLMswith only
predict prompt still surpasses most baseline models. Furthermore,

KeyFrame1 

KeyFrame2

KeyFrame3

Oh yeah, that looks good.Utterance1 :

oh yeah, yeah that, yeah , ,that looks, looks ., 
good looks
person beside person, person holding paper, 
person sitting on couch, cup on table
that paper

Relations1 :

You guys make a very attractive coupleUtterance2 :

you make, guys make, make a, a couple, very 
attractive, attractive couple, couple make
cup on table, person sitting on couch, person 
looking at paper, cup on dining table
you person, guys person, you guys person, 
couple person

Relations2 :

Yeah, we look great together. wow! Imagine 
what our kids would look like!Golden Response:

person looking at paper, person beside person, 
person holding cup, person sitting on couchRelations(Images):

Have you been together long?Llama2-7B:

I'm glad you think so.VisCPM-10B:

I can see the chemistry between you two.LLaVA-7B:

Thanks, we've been together for a while now 
and we're really happy.

Llama2-7B+
AutoGraph(Node):

Thanks! We've been together for a while now.LLaVA-7B+
AutoGraph(Node):

Figure 4: Case study of the generated response. Text in orange
is the scene graph relations extracted from images, text in
green is the semantic dependency graph parsing relations
and text in blue is the aligned relations.

the most significant performance change is observed on the MELD
dataset, which we attribute to its smaller data size compared to
the OpenViDial dataset. Figure 4 shows the case study of different
models.

6 Conclusion
In this paper, we propose an automated method for constructing vi-
sual context graphs to address the task of open-domain multi-modal
dialogue generation. We first construct the visual context graph
based on semantic and structural alignment. Then, to integrate the
visual context graph with LLMs, we design several graph sampling
grammar. Finally, we propose a two-stage fine-tuning strategy to
enable the LLMs to comprehend the new grammar and generate re-
sponses. The experiments on text-based and multi-modal large lan-
guage models validate the effectiveness of the AutoGraph method.
In the future, we will explore how to automatically construct bet-
ter dialogue graphs to integrate more structured information and
develop dynamic graph sampling methods based on different edge
weights.
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