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Abstract

We propose a novel approach for generating
high-quality synthetic text data for multiclass
text classification by leveraging large language
models (LLMs) with preference-based fine-
tuning. Our method modifies the Direct Pref-
erence Optimization (DPO) framework by in-
corporating a margin-based utility signal that
encourages class-discriminative text genera-
tion. This margin-based variant, which we call
Utility DPO (U-DPO), promotes the genera-
tion of synthetic samples with clearer label-
specific features.We evaluate our method on
two academic document classification bench-
marks, Arxiv and WOS-11967, which cover
11 and 33 classes, respectively. Synthetic data
generated by a language model trained with
U-DPO leads to better classification perfor-
mance than data generated by a baseline LLM
or a model trained with standard DPO. No-
tably, U-DPO yields consistent improvements
in classification accuracy, both when models
are trained exclusively on synthetic data and
when synthetic data is used to augment limited
real data, highlighting the practical value of
preference-optimized synthetic datasets. In gen-
eral, our work demonstrates that incorporating
task-specific utility signals into LLM training
is a promising direction to generate effective
synthetic data for text classification, enabling
improved downstream performance without ad-
ditional human annotation.

1 Introduction

Text classification is a fundamental task in natu-
ral language processing, and recent advances in
Large Language Models (LLMs) have opened new
possibilities to address it (Li et al., 2023; Wang
et al., 2024; Kostina et al., 2025). In particular, us-
ing LLMs to generate labeled synthetic text has
emerged as an attractive approach to supplement
or even replace real training data in scenarios with
limited annotations (Yoo et al., 2021; Kruschwitz
and Schmidhuber, 2024). However, a key challenge

remains: ensuring that the generated texts are label-
specific and useful for training robust classifiers
(Li et al., 2023). Unguided text generation can pro-
duce outputs that do not reflect class-specific dis-
tinctions, limiting their value for supervised learn-
ing (Yamagishi and Nakamura, 2024; Nadas et al.,
2025; Gan and Liu, 2025). In this paper, we address
the above challenge by introducing a preference-
based framework for synthetic data generation tai-
lored to text classification tasks. We build on Direct
Preference Optimization (DPO) (Rafailov et al.,
2024), originally proposed to align LLMs with hu-
man preferences. Our approach, called Utility DPO
(U-DPO), modifies DPO for class-conditional text
generation. In U-DPO, the LLM is fine-tuned using
preference signals that favor outputs with stronger
class relevance: for each class, the model learns to
prefer candidate generations that better exhibit the
distinctive characteristics of the label. By explicitly
optimizing for label consistency and discriminative
content, our method produces synthetic examples
that are more aligned with downstream classifica-
tion needs than those from conventional prompting
or preference alignment alone. We evaluate the pro-
posed U-DPO approach on two multiclass text clas-
sification datasets of research documents, compar-
ing it against baseline synthetic data generation and
standard DPO tuning. Our experiments show that
U-DPO synthetic data leads to consistently better
classification performance than baseline synthetic
data. Moreover, when a modest amount of real data
is available, augmenting it with U-DPO synthetic
samples yields further improvements over using
real data alone or with other synthetic data.We also
performed an analysis using a margin-based confi-
dence metric to verify that U-DPO indeed produces
more label-consistent text. Our analysis confirms
that U-DPO samples have significantly higher mar-
gin scores on average, indicating a stronger class
signal in the generated content.

Our main contributions are as follows.



We extend the DPO preference-based fine-tuning
framework to the domain of synthetic data gener-
ation for classification, introducing methods that
promote class-discriminative text generation.

We propose Utility DPO (U-DPO), which incor-
porates task-specific utility signals based on classi-
fication preferences into LLM fine-tuning, resulting
in more informative synthetic training data.

Through extensive experiments, we show that U-
DPO improves downstream classifier performance,
often narrowing the gap between real and synthetic
training data. U-DPO also proves to be effective in
hybrid settings, where synthetic and real data are
combined.

2 Related Work
2.1 LLMs for Text Classification

Recent studies explore the capabilities of large lan-
guage models (LLMs) in text classification through
zero-shot and few-shot prompting as well as fine-
tuning (Wang et al., 2023; Meshkin et al., 2024).
These works show that LLMs can often perform
surprisingly well in classification tasks without
task-specific training data, but their effectiveness
varies by task and setting (Bucher and Martini,
2024). LLMs have shown competitive performance
in specialized tasks such as scientific edit intent
classification (Ruan et al., 2024), but large-scale
evaluations report that zero-shot prompting is ef-
fective mainly on simple tasks like sentiment anal-
ysis, while fine-tuned models remain stronger on
more complex classification problems (Vajjala and
Shimangaud, 2025). Moreover, a recent multilin-
gual study found that smaller fine-tuned transform-
ers can even surpass few-shot LLMs in accuracy
across most categories, suggesting that in-context
learning alone is often insufficient for optimal clas-
sification performance (Edwards and Camacho-
Collados, 2024).

2.2 Prompt-Based Synthetic Data Generation

Prompt-based synthetic data generation has
emerged as a promising strategy for training text
classifiers (Yoo et al., 2021). Instead of manually
collecting or annotating data, researchers prompt
LLMs to produce labeled examples, which can be
used to augment or even replace human-labeled
training sets (Li et al., 2023). Such approaches have
shown growing effectiveness for domain adapta-
tion and general-purpose classification (Tan et al.,
2024). For instance, recent studies show that LLMs

can generate domain-general sentiment datasets
(Choi et al., 2024), fully synthetic training corpora
without human labels (Peng et al., 2024), and even
code-mixed data for multilingual sentiment clas-
sification (Zeng, 2024). Despite these successes,
important limitations have also been observed. In
one health-related classification task, augmenting
an unbalanced dataset with GPT-generated samples
did not produce performance improvements (Ya-
magishi and Nakamura, 2024). This suggests that
the effectiveness of synthetic data depends on the
target data, and that generation strategies must be
carefully tailored.

2.3 Preference Optimization for Text
Generation

The standard approach, Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al.,
2023), optimizes a model to produce outputs pre-
ferred by humans and has been widely used to train
aligned language models (Stiennon et al., 2022;
Ouyang et al., 2022). Some prior work has also
explored application of reinforcement learning to
structured prediction tasks such as text classifica-
tion (Chai et al., 2020; Sharma et al., 2025). How-
ever, RLHF can be complex and unstable, espe-
cially in classification settings, where defining re-
liable reward functions can be challenging (Kauf-
mann et al., 2024). To address these issues, Di-
rect Preference Optimization (DPO) avoids reward
modeling and learns directly from human pref-
erences (Rafailov et al., 2024). Building on this
idea, subsequent work has adapted DPO to more
complex alignment tasks. For instance, one line of
work extends DPO to multi-turn dialogue settings
by introducing a sequential objective tailored for
conversational agents (Shi et al., 2025). Another
approach improves calibration by aligning model
scores with human reward scales (Xiao et al., 2024).
Together, these approaches suggest that preference
optimization can be effectively adapted to diverse
task requirements, offering a practical and scalable
framework for alignment.

3 Method

In this section, we present our modified Direct
Preference Optimization (DPO) (Rafailov et al.,
2024) framework for class-conditional synthetic
text generation. Unlike the original DPO formula-
tion, which is designed for preference alignment
in instruction tuning, our approach explicitly en-
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Figure 1: Overview of our modified Direct Preference Optimization (DPO) framework for class-conditional synthetic

text generation.

courages class-discriminative generation suitable
for multiclass classification tasks. An overview of
the entire framework is illustrated in Figure 1.

3.1 Problem Formulation

Let C = {ci1,...,cx} be the set of K class la-
bels. Our goal is to train a language model 7y
that can generate synthetic text z conditioned on
a given class label ¢ € C such that the generated
data are useful for training downstream classifiers.
To achieve this, we adopt a preference-based learn-
ing setup, where for each class ¢, a pair of can-
didate generations (z+,x ™) is assumed to reflect
relative quality under the class semantics, where
2" denotes the preferred sample and x~ the less
preferred one.

3.2 Limitations of Standard DPO

The DPO objective is defined over preference pairs
(z*,27), optimizing the model to prefer 2 over
x~ without explicitly considering the underlying
task structure. Formally, it minimizes the following
loss.

Lopo(0) = — loga(ﬂ -log 7r9(w+)

1
—(1=p)-logm(z")) .

While this formulation effectively aligns model out-
puts with human preferences in open-ended genera-
tion tasks, it presents key limitations when applied
to classification. Since DPO training aligns with hu-
man preferences without regard to downstream task
structure, it can generate outputs that lack label-
specific discriminative features. As a result, the

model may generate outputs that are linguistically
well-formed but lack clear label-specific signals
required for classification.

3.3 Data Construction for DPO Training

A key challenge in applying DPO to classification
is constructing preference pairs that reflect the rele-
vance of the label. Since human-labeled pairs are
costly, we generate preference pairs automatically
using a lightweight classifier fy. Specifically, we
first sample n candidate texts for each class using
the language model 7y, and then compute margin
scores for each sample using f;. Based on these
scores, we construct preference pairs by selecting
high-scoring samples as " and mid-scoring sam-
ples as ™. The margin score for a given generated
sample = and target class y is defined as:

m(Z) = f(T)y — max fo(2); (2)

where f4(Z), denotes the predicted probability for
class y, and the second term represents the highest
predicted probability among all other classes.

3.4 Reward Utility Function Design

Although the preference pairs are constructed us-
ing margin-based scores to reflect class relevance,
relying solely on margin values during training can
be risky. Margin scores from the auxiliary classi-
fier may be noisy or biased, and do not capture
semantic quality such as fluency or coherence. To
address this, we define a reward utility function
ruil(+) that combines two complementary signals:



an internal score iy (), capturing semantic qual-
ity based on embedding similarity, and an external
score rex(, y), reflecting label-level confidence
via classifier margin. This combination encourages
the model to balance linguistic fluency and class
relevance, mitigating over-reliance on potentially
biased or noisy classifier outputs.

Text(Z,y) = fo(2)y — max fo(Z); 3)

rulil(i.7 y) =X 'f'im(j) + (1 - )‘) : r€X1(i.7 y) (4)

However, the definition of a utility-based reward

function alone does not guarantee that all pref-
erence pairs provide meaningful learning signals.
Pairs that are comparably strong or weak often lack
meaningful contrast, despite having an assigned
preference. To reduce the influence of such cases,
we apply a modulation factor based on the 7.
Specifically, we adopt the tanh function for its sta-
bility and boundedness, enabling smooth scaling
from O to 1.

w(z®,27) = tanh (|run(z*,y) — rua (@™, 9)[) )

The final DPO training loss is computed by
weighting each pair’s contribution according to the
modulation factor:

Loro(0) = Lovo(0) - w(zt,z7) ()
4 [Experiments

4.1 Experimental Setup

We evaluate our approach on two multiclass scien-
tific classification datasets: Arxiv (Clement et al.,
2019) and WOS-11967 (Kowsari et al., 2017), both
consisting of scholarly abstracts.

The overall experimental configuration is sum-
marized in Table 1. We use SciBERT (uncased)
(Beltagy et al., 2019) as the classifier backbone and
MinilM-L12-H384-uncased (Wang et al., 2020)
as the embedding model for computing semantic
utility scores. Prior studies have shown that SciB-
ERT consistently outperforms BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) on scien-
tific NLP benchmarks, highlighting its domain rel-
evance and strong baseline performance. Accord-
ingly, we adopt SciBERT as the backbone for our
experiments.

Synthetic training data is generated using
three open-source LLMs— LLaMA 3.2 1B, 3B
(Grattafiori et al., 2024), and Phi-4-mini (Microsoft
et al., 2025)—with class-conditional prompts and
utility-based filtering. DPO training is performed

Table 1: Summary of experimental configuration.

Dataset Arxiv WOS-
11967
category 11 33
train set 28388 9573
test set 2500 2394
Component Details
Classification Model =~ SciBERT
Embedding Model MiniLM
LLMs for Generation LLaMA 3.2 1B,
LLaMA 3.2 3B,
Phi-4-mini 3.8B
DPO Settings 8 =1.0,
Ir = 2e-5,
batch size = 2,
epochs =3

Standard DPO
[ u-pPO

Figure 2: DPO reward accuracy over the course of train-
ing for standard DPO and U-DPO.

using HuggingFace TRL with custom modifica-
tions to incorporate utility-aware pair selection. All
experiments are conducted on a single NVIDIA
A6000 GPU with 48GB of memory.

Synthetic data are generated using a 2-shot
prompting strategy, where two randomly selected
examples with the same label are used as input to
the LLM. For each prompt, we generate n = 5
samples to encourage diversity while preserving
class consistency. For evaluation, we report accu-
racy score.

4.2 Training-time Preference Consistency

To assess how well the model aligns with the pref-
erence signal during training, we compute the DPO
reward accuracy—defined as the percentage of
training pairs (x*, 27) for which the current model
assigns a higher reward (log-probability) to the pre-
ferred sample z 7.

As shown in Figure 2, U-DPO maintains con-
sistently higher reward accuracy throughout train-
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Figure 3: Margin score distributions for synthetic
samples generated from identical prompts using the
Phi-4-mini model on the Arxiv dataset. We compare
three training regimes: baseline (no preference optimiza-
tion), standard DPO, and U-DPO.

ing compared to standard DPO. This indicates that
utility-filtered preference pairs are better aligned
with the model’s learning signal, enabling more
efficient and stable optimization. In contrast, stan-
dard DPO exhibits greater fluctuations in reward
accuracy, likely due to inconsistencies and noise in-
troduced by unfiltered pair selection. The area plot
shows that U-DPO achieves consistently higher
alignment with the preference signal, indicating
more stable and effective training dynamics.

4.3 Margin-Based Quality Assessment

To verify whether our U-DPO training framework
enhances the class consistency of generated text,
we evaluate the quality of synthetic samples us-
ing a lightweight classifier, following the margin
score definition introduced in Section 3.4. The mar-
gin score quantifies the model’s confidence in the
correct label over the second-best prediction, with
higher values indicating stronger class discrim-
inability.

We analyze this margin score using samples gen-
erated by the Phi-4-mini model on the Arxiv
dataset. As shown in Figure 3, both standard DPO
and our U-DPO training regimes consistently re-
sult in higher average and median margin scores
compared to generation without preference opti-
mization, indicating that preference-based training
improves label alignment. Notably, U-DPO yields
further gains by producing text with higher margin
scores in most cases, suggesting that incorporat-
ing utility signals during training strengthens the
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Figure 4: Downstream classification accuracy of models
trained exclusively on synthetic data generated under
three training regimes: baseline (no preference optimiza-
tion), standard DPO, and U-DPO. All models are evalu-
ated on the Arxiv test set.

model’s ability to generate label-consistent outputs.
However, we note that margin scores do not always
directly translate into improved downstream clas-
sification performance, as they primarily indicate
confidence at the sample level rather than over-
all task-level generalization. Additional results on
other model—dataset combinations are provided in
Appendix A.

4.4 Classification Performance with Synthetic
Data

To directly assess the classification performance of
synthetic data, we train models exclusively on gen-
erated samples from the Arxiv dataset and evaluate
their ability to generalize to real-world tasks. This
setup allows us to examine whether improvements
in sample-level quality lead to better generalization
on real-world tasks.

We compare three training regimes for synthetic
data generation: (1) generation from the base LLM
without preference training, (2) generation using
standard DPO, and (3) generation via our proposed
U-DPO framework. For each setting, a classifier
is trained solely on the generated data and eval-
uated on the original test dataset using accuracy
as the primary metric. As shown in Figure 4, clas-
sifiers trained using U-DPO samples consistently
outperform those trained on data from the base
LLM and standard DPO. These results demonstrate
that utility-based training not only improves con-
sistency of individual sample labels but also leads
to significant improvements in the classification
performance of the task.

4.5 Evaluating Synthetic—Real Data

To evaluate the practical utility of synthetic sam-
ples, we measure classification performance when



Table 2: Classification accuracy of the fine-tuned SciBERT baseline, SciBERT prompting, and GPT-40 prompting
on the Arxiv and WOS-11967 datasets. Results for open-source LLMs—LLaMA 3.2 1B (denoted as LLaMA-1B),
LLaMA 3.2 3B (LLaMA-3B), and Phi-4-mini (Phi-4)—are also included for comparison.

SciBERT Baseline
Dataset Accuracy Dataset Accuracy
Arxiv 0.8828 WOS-11967  0.9005
Dataset Method LLaMA-1B LLaMA-3B Phi-4 ZeroShot k=2 k=3 k=5
Prompt Based - - - 0.78 0.85 0.86 0.88
Arxiv Base Synthetic 0.8864 0.8868 0.8824 - - - -
DPO Synthetic 0.8872 0.8876 0.8904 - - - -
U-DPO 0.8884 0.8896 0.8912 - - - -
Prompt Based - - - 0.64 0.78 0.82 0.85
WOS Base Synthetic 0.9076 0.9085 0.906 - - - -
DPO Synthetic 0.9118 0.9112 0.9122 - - - -
U-DPO 0.9143 0.9156 0.9143 - - - -
, : : As shown in Table 2, augmenting real data with
synthetic samples leads to consistent accuracy im-
provements across both datasets. Among the meth-
1 ods, U-DPO yields the most substantial gains, in-
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Figure 5: Classification accuracy on the Arxiv dataset
when combining a fixed set of real data with synthetic
samples generated using different methods. U-DPO
achieves the highest performance among all hybrid se-
tups.

combining them with a fixed subset of real anno-
tated data. This setup reflects a realistic scenario in
which synthetic augmentation is used to improve
generalization. To examine the impact of synthetic
data volume, we vary the number of generated sam-
ples per class across {10, 30, 50, 100, 150}. Inter-
estingly, models trained with 50 synthetic samples
per class consistently achieved the highest perfor-
mance on average, suggesting that moderate aug-
mentation achieves an effective balance between
synthetic diversity and label reliability.

We conduct experiments using a hybrid train-
ing set composed of synthetic samples generated
by three different methods: baseline generation,
standard DPO, and U-DPO. Each synthetic set is
combined with a fixed number of real samples per
class.

dicating that utility-based optimization improves
both the quality of the standalone sample and the
downstream effectiveness in hybrid settings.

In addition, we compare our approach against
GPT-40 (OpenAl, 2023) prompting baselines under
zero-shot and few-shot conditions. Despite GPT-
40’s strength as an instruction-following model,
classifiers trained on U-DPO synthetic data outper-
form both prompting setups.

Furthermore, paired #-tests conducted on accura-
cies of 20 independent runs indicate that U-DPO
consistently outperforms both the baseline and stan-
dard DPO in a statistically significant manner. As
shown in Figure 5, U-DPO also produces more sta-
ble and higher accuracy distributions between trials,
strengthening the robustness of utility-based train-
ing. Specifically, DPO and U-DPO significantly
outperform the baseline model (p < 0.01 and p <
0.001, respectively), while U-DPO further shows
a significant improvement over standard DPO (p <
0.05). These results highlight the value of incorpo-
rating utility signals not only in optimizing prefer-
ence alignment, but also in generating practically
useful training data for supervised learning.

4.6 LLM-based Evaluation with GPT-4.5

To assess the quality of the generated synthetic
samples, we employ GPT-4.5 as an automated eval-
uator. Each sample is rated on a 0-5 scale based on



Statistic Standard DPO U-DPO
Mean 4.05 4.14
Median 4.50 4.50
Std Dev 1.09 0.89

Table 3: GPT-4.5-based evaluation of synthetic samples
from the Standard DPO and U-DPO.

its relevance, fluency, and class alignment. A total
of 132 synthetic samples were evaluated, compris-
ing three samples per class from both the Arxiv and
WOS-11967 datasets.

Table 3 reports the mean, median, and standard
deviation of scores assigned to generations from
the Standard DPO and the U-DPO incorporating
U-DPO. The U-DPO achieves a higher average
score (4.14 vs. 4.05) and the same median score
(4.50), indicating improved overall quality without
compromising peak performance. Additionally, the
lower standard deviation (0.89 vs. 1.09) suggests
that the U-DPO produces more consistent outputs
across samples.

These results suggest that utility-based genera-
tion improves not only the average quality but also
the reliability of synthetic samples as judged by a
strong LLM evaluator.

4.7 Expanded Discussion of Experimental
Findings

The experimental results clearly demonstrate that
U-DPO yields superior text classification perfor-
mance compared to both standard DPO and the
baseline synthetic data approach. Classifiers trained
on U-DPO-generated synthetic datasets consis-
tently outperformed those trained on either baseline
synthetic text or text from a standard DPO-tuned
model. This trend holds across both benchmark
datasets, including WOS-11967 and Arxiv, as well
as various model configurations, underscoring the
robustness of U-DPO’s improvements. Overall, U-
DPO enhances classification accuracy by produc-
ing higher-quality synthetic data that better aligns
with true labels, leading to more effective down-
stream performance across diverse datasets. Repre-
sentative examples of the synthetic data generated
under different training regimes are provided in the
Appendix C for further reference. Considering the
degree of training improvement, the LLaMA-3.2-
1B model generally exhibited lower performance
gains compared to larger models, suggesting that
model size may play a significant role in the effec-
tiveness of utility-based preference optimization.

This observation is further supported by margin
score evaluations and classification performance
assessments conducted using only synthetic data,
both of which indicate that larger models tend to
produce higher-quality, better-aligned samples that
translate into improved downstream results.

5 Conclusions

In this paper, we explored how preference-guided
generation with large language models can improve
the quality of synthetic data for text classification.
We introduced Utility DPO (U-DPO), a variant of
Direct Preference Optimization designed specifi-
cally for class-conditional generation. By incorpo-
rating a utility signal that promotes label-consistent
and discriminative outputs, U-DPO produces syn-
thetic examples that better reflect the needs of a
classifier.

Our experiments on multiclass document classi-
fication show clear benefits: models trained on U-
DPO-generated data consistently outperform those
using baseline LLM outputs or standard preference
tuning. Notably, we observed stronger accuracy
and generalization to real test data. Even in low-
resource scenarios, augmenting limited real exam-
ples with U-DPO samples led to substantial im-
provements.

A closer analysis using a margin-based metric
revealed that U-DPO enhances label fidelity in gen-
erated texts, shedding light on why its samples are
more effective for training.

Taken together, these results highlight the value
of task-specific preference optimization in generat-
ing high-quality synthetic data. We believe this ap-
proach offers a practical and scalable way to reduce
reliance on large annotated datasets, and we hope
it encourages further exploration of preference-
driven generation in NLP.

6 Limitation

Although our findings demonstrate the potential
of U-DPO, several limitations remain. First, the
effectiveness of our method depends heavily on
the quality of the preference signal. In our case,
preferences are derived from an automatic classifier
using margin scores and class consistency checks,
which may introduce biases or errors. This can lead
to overoptimization of proxy metrics without real
improvements in downstream performance.
Second, our evaluation is limited to two datasets
in the domain of research article classification. It



remains to be seen whether U-DPO generalizes to
other tasks such as short-text or multilabel classi-
fication, or to domains where discrete class labels
are not clearly defined.

Finally, preference-based fine-tuning introduces
computational overhead. Although we used rela-
tively lightweight models (up to 4B parameters),
scaling to larger models or fine-grained label spaces
may be prohibitively expensive due to the cost of
pairwise comparisons.

In sum, U-DPO offers a promising direction for
improving synthetic data quality, but further work
is needed to refine the preference signal, reduce
noise, and evaluate generalization across tasks and
domains.

7 Future work

There are several promising directions for extend-
ing our utility-based synthetic data generation
framework.

First, improving the quality of the preference
signal is key. Instead of relying solely on margin-
based scores, future work could explore automatic
preference inference through model-internal scor-
ing, ensemble agreement, or task-specific heuris-
tics, that better reflect sample utility.

Second, testing U-DPO on more diverse data
types is crucial to validate its generality. Applica-
tions to short-form texts, multilabel tasks, noisy la-
bels, or domain-specific corpora would show how
well the method adapts to varied real-world set-
tings.

Third, reducing the overhead of margin-based se-
lection is an important efficiency challenge. Since
utility scoring requires repeated model evaluations,
scalable alternatives such as ranking distillation,
selective pair mining or joint training with the clas-
sifier may improve both speed and quality.

Finally, analyzing the generated data itself can
offer insight into what U-DPO learns. Understand-
ing linguistic patterns, diversity, and preference-
driven behaviors could guide future improvements
in synthetic supervision strategies.

Looking ahead, these directions point to a more
efficient, adaptable, and purposeful use of LLMs
for task-specific data creation.
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Prompt for Synthetic Data

You are an expert academic assistant. The following
Examples are academic paper abstracts in the field
of text classification and synthetic data generation.
They are written in formal scientific style.

You are an expert academic assistant. The fol-
lowing Examples are academic paper abstracts in
the field of something. They are written in formal
scientific style. Your task is to generate a new aca-
demic abstract in a similar style and topic.

Examples:

* Example 1:
{abstract 1}

* Example 2:
{abstract 2}

Now, generate a single academic abstract para-
graph in the same domain.
Only output the abstract content. Do not include
titles, citations, links, or additional instructions. Ab-
stract:

Abstract:

A Additional Margin Score Results

Figures 6 and 7 illustrate the distribution of margin
scores for models such as LLaMA 3.2 1B and LLaMA
3.2 3B on datasets in Arxiv. Consistently across
these combinations, both standard DPO and our
proposed Utility DPO (U-DPO) training achieve
higher median and average margin scores relative
to baseline generation without preference optimiza-
tion.

While some labels exhibit slightly lower mar-
gin scores compared to the Phi-4-mini model, the
majority demonstrate improvements, confirming
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Figure 6: Margin score distributions for synthetic
samples generated from identical prompts using the
L1aMA3.2-1B model on the Arxiv dataset.
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Figure 7: Margin score distributions for synthetic
samples generated from identical prompts using the
L1aMA3.2-3B model on the Arxiv dataset.

the general effectiveness of preference-based opti-
mization across diverse model and dataset config-
urations.This suggests that model size and archi-
tecture play significant roles in the effectiveness
of preference-guided training, with smaller models
like LLaMA 3.2 1B benefiting less from the DPO
and U-DPO approaches relative to larger or more
optimized models.

B Additional Results on Classification
Performance of Synthetic Data

Figures 8 report classification results for models
trained exclusively on synthetic samples generated
from the WOS-11967 dataset. We compare three
generation methods: base model sampling, stan-
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Figure 8: Downstream classification accuracy of models
trained exclusively on synthetic data generated under
three training regimes: All models are evaluated on the
WOS-11967 test set.

dard DPO, and Utility DPO (U-DPO). Consistent
with observations on Arxiv data, classifiers trained
on U-DPO synthetic samples exhibit superior ac-
curacy compared to those trained on samples from
the base model or standard DPO.

C Generated Sample Examples

Table 4 shows representative synthetic samples gen-
erated by the Standard DPO, and U-DPO for a
specific class label. These examples illustrate dif-
ferences in content quality, fluency, and label align-
ment.
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Method

Generated Sample (Class: Computer Vi-
sion)

Standard DPO

In recent years, the integration of computer
vision and computer graphics technologies
has led to significant advancements in the
development of interactive virtual environ-
ments. This paper discusses the challenges
and solutions related to the seamless inte-
gration of virtual objects into real-world
images. We explore the importance of ac-
curate pose estimation, surface correspon-
dence, and the creation of visually convinc-
ing interactions between virtual and real-
world elements. Our study introduces novel
algorithms for the accurate placement and
interaction of virtual objects within complex
environments. We demonstrate the efficacy
of these algorithms through a series of case
studies, including architectural visualization
and interactive gaming scenarios. Our find-
ings suggest that advancements in this area
have far-reaching implications for the fields
of computer graphics, computer vision, and
augmented reality applications, providing
users with more immersive and realistic ex-
periences.

U-DPO

This study presents a novel framework for
integrating visual-inertial odometry with
structure-from-motion algorithms to achieve
real-time 6-DOF pose estimation and map-
ping. Our proposed method leverages the
complementary strengths of visual and iner-
tial sensors to mitigate the limitations inher-
ent in each modality. By employing a robust
factor graph optimization, we ensure accu-
rate alignment of visual and inertial data,
which is crucial for achieving precise mo-
tion tracking and environmental mapping.
Experiments conducted in diverse environ-
ments, including indoor and outdoor set-
tings, demonstrate our approach’s resilience
to challenging conditions such as variable
lighting and dynamic occlusions. The results
indicate significant improvements in accu-
racy and robustness compared to traditional
visual-inertial odometry systems, paving the
way for enhanced autonomous navigation
and interactive robotic applications. Future
research directions include refining the sen-
sor fusion algorithm to further reduce com-
putational overhead and exploring the in-
tegration of additional sensory modalities,
such as LiDAR, to complement the visual-
inertial system.

Table 4: Example synthetic samples generated by differ-
ent methods for the same class.



Method Generated Sample (Class: Materials Sci-
ence, Engineering)

Standard DPO | The study of process optimization in man-
ufacturing engineering involves determin-
ing the effect of various process parameters
on product quality, cost, and efficiency. Re-
cent advancements in statistical and compu-
tational methods have provided engineers
with powerful tools to design experiments
that can systematically investigate these ef-
fects. In this paper, we present a comprehen-
sive analysis of the application of Design of
Experiments (DoE) and Taguchi Methods
in optimizing manufacturing processes. We
demonstrate how these methodologies can
be effectively utilized to identify critical fac-
tors, interactions, and optimal settings for
process variables. Our case study focuses
on the manufacturing of a high-precision
component, where we employed a full fac-
torial design and Taguchi orthogonal arrays
to minimize variation and improve product
quality. The results highlight the potential
of these approaches to enhance process con-
trol, reduce waste, and achieve cost-effective
production. Further, we discuss the integra-
tion of these techniques with modern man-
ufacturing systems and the implications for
continuous improvement and innovation in
engineering practice.

U-DPO In this study, we examine the integration of
piezoelectric sensors into composite man-
ufacturing processes. Piezoelectric sensors
have emerged as a valuable tool for moni-
toring stress distribution and detecting po-
tential failure points within composite mate-
rials. This paper presents a comprehensive
analysis of the impact of piezoelectric sen-
sor embedding on the mechanical properties
of composite materials, particularly focus-
ing on tensile strength and strain distribu-
tion. Our results indicate a slight reduction
in tensile strength but an improved ability to
monitor stress distribution, which can lead to
better quality control and increased safety in
composite manufacturing. Additionally, the
study explores the feasibility of using piezo-
electric sensors as a real-time monitoring
system, offering insights into their potential
applications in aerospace and automotive in-
dustries. The findings underscore the impor-
tance of piezoelectric sensors in enhancing
the reliability and performance of composite
materials used in critical applications.

Table 5: Example synthetic samples generated by differ-
ent methods for the same class.
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