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Abstract001

We propose a novel approach for generating002
high-quality synthetic text data for multiclass003
text classification by leveraging large language004
models (LLMs) with preference-based fine-005
tuning. Our method modifies the Direct Pref-006
erence Optimization (DPO) framework by in-007
corporating a margin-based utility signal that008
encourages class-discriminative text genera-009
tion. This margin-based variant, which we call010
Utility DPO (U-DPO), promotes the genera-011
tion of synthetic samples with clearer label-012
specific features.We evaluate our method on013
two academic document classification bench-014
marks, Arxiv and WOS-11967, which cover015
11 and 33 classes, respectively. Synthetic data016
generated by a language model trained with017
U-DPO leads to better classification perfor-018
mance than data generated by a baseline LLM019
or a model trained with standard DPO. No-020
tably, U-DPO yields consistent improvements021
in classification accuracy, both when models022
are trained exclusively on synthetic data and023
when synthetic data is used to augment limited024
real data, highlighting the practical value of025
preference-optimized synthetic datasets. In gen-026
eral, our work demonstrates that incorporating027
task-specific utility signals into LLM training028
is a promising direction to generate effective029
synthetic data for text classification, enabling030
improved downstream performance without ad-031
ditional human annotation.032

1 Introduction033

Text classification is a fundamental task in natu-034

ral language processing, and recent advances in035

Large Language Models (LLMs) have opened new036

possibilities to address it (Li et al., 2023; Wang037

et al., 2024; Kostina et al., 2025). In particular, us-038

ing LLMs to generate labeled synthetic text has039

emerged as an attractive approach to supplement040

or even replace real training data in scenarios with041

limited annotations (Yoo et al., 2021; Kruschwitz042

and Schmidhuber, 2024). However, a key challenge043

remains: ensuring that the generated texts are label- 044

specific and useful for training robust classifiers 045

(Li et al., 2023). Unguided text generation can pro- 046

duce outputs that do not reflect class-specific dis- 047

tinctions, limiting their value for supervised learn- 048

ing (Yamagishi and Nakamura, 2024; Nadas et al., 049

2025; Gan and Liu, 2025). In this paper, we address 050

the above challenge by introducing a preference- 051

based framework for synthetic data generation tai- 052

lored to text classification tasks. We build on Direct 053

Preference Optimization (DPO) (Rafailov et al., 054

2024), originally proposed to align LLMs with hu- 055

man preferences. Our approach, called Utility DPO 056

(U-DPO), modifies DPO for class-conditional text 057

generation. In U-DPO, the LLM is fine-tuned using 058

preference signals that favor outputs with stronger 059

class relevance: for each class, the model learns to 060

prefer candidate generations that better exhibit the 061

distinctive characteristics of the label. By explicitly 062

optimizing for label consistency and discriminative 063

content, our method produces synthetic examples 064

that are more aligned with downstream classifica- 065

tion needs than those from conventional prompting 066

or preference alignment alone. We evaluate the pro- 067

posed U-DPO approach on two multiclass text clas- 068

sification datasets of research documents, compar- 069

ing it against baseline synthetic data generation and 070

standard DPO tuning. Our experiments show that 071

U-DPO synthetic data leads to consistently better 072

classification performance than baseline synthetic 073

data. Moreover, when a modest amount of real data 074

is available, augmenting it with U-DPO synthetic 075

samples yields further improvements over using 076

real data alone or with other synthetic data.We also 077

performed an analysis using a margin-based confi- 078

dence metric to verify that U-DPO indeed produces 079

more label-consistent text. Our analysis confirms 080

that U-DPO samples have significantly higher mar- 081

gin scores on average, indicating a stronger class 082

signal in the generated content. 083

Our main contributions are as follows. 084

1



We extend the DPO preference-based fine-tuning085

framework to the domain of synthetic data gener-086

ation for classification, introducing methods that087

promote class-discriminative text generation.088

We propose Utility DPO (U-DPO), which incor-089

porates task-specific utility signals based on classi-090

fication preferences into LLM fine-tuning, resulting091

in more informative synthetic training data.092

Through extensive experiments, we show that U-093

DPO improves downstream classifier performance,094

often narrowing the gap between real and synthetic095

training data. U-DPO also proves to be effective in096

hybrid settings, where synthetic and real data are097

combined.098

2 Related Work099

2.1 LLMs for Text Classification100

Recent studies explore the capabilities of large lan-101

guage models (LLMs) in text classification through102

zero-shot and few-shot prompting as well as fine-103

tuning (Wang et al., 2023; Meshkin et al., 2024).104

These works show that LLMs can often perform105

surprisingly well in classification tasks without106

task-specific training data, but their effectiveness107

varies by task and setting (Bucher and Martini,108

2024). LLMs have shown competitive performance109

in specialized tasks such as scientific edit intent110

classification (Ruan et al., 2024), but large-scale111

evaluations report that zero-shot prompting is ef-112

fective mainly on simple tasks like sentiment anal-113

ysis, while fine-tuned models remain stronger on114

more complex classification problems (Vajjala and115

Shimangaud, 2025). Moreover, a recent multilin-116

gual study found that smaller fine-tuned transform-117

ers can even surpass few-shot LLMs in accuracy118

across most categories, suggesting that in-context119

learning alone is often insufficient for optimal clas-120

sification performance (Edwards and Camacho-121

Collados, 2024).122

2.2 Prompt-Based Synthetic Data Generation123

Prompt-based synthetic data generation has124

emerged as a promising strategy for training text125

classifiers (Yoo et al., 2021). Instead of manually126

collecting or annotating data, researchers prompt127

LLMs to produce labeled examples, which can be128

used to augment or even replace human-labeled129

training sets (Li et al., 2023). Such approaches have130

shown growing effectiveness for domain adapta-131

tion and general-purpose classification (Tan et al.,132

2024). For instance, recent studies show that LLMs133

can generate domain-general sentiment datasets 134

(Choi et al., 2024), fully synthetic training corpora 135

without human labels (Peng et al., 2024), and even 136

code-mixed data for multilingual sentiment clas- 137

sification (Zeng, 2024). Despite these successes, 138

important limitations have also been observed. In 139

one health-related classification task, augmenting 140

an unbalanced dataset with GPT-generated samples 141

did not produce performance improvements (Ya- 142

magishi and Nakamura, 2024). This suggests that 143

the effectiveness of synthetic data depends on the 144

target data, and that generation strategies must be 145

carefully tailored. 146

2.3 Preference Optimization for Text 147

Generation 148

The standard approach, Reinforcement Learning 149

from Human Feedback (RLHF) (Christiano et al., 150

2023), optimizes a model to produce outputs pre- 151

ferred by humans and has been widely used to train 152

aligned language models (Stiennon et al., 2022; 153

Ouyang et al., 2022). Some prior work has also 154

explored application of reinforcement learning to 155

structured prediction tasks such as text classifica- 156

tion (Chai et al., 2020; Sharma et al., 2025). How- 157

ever, RLHF can be complex and unstable, espe- 158

cially in classification settings, where defining re- 159

liable reward functions can be challenging (Kauf- 160

mann et al., 2024). To address these issues, Di- 161

rect Preference Optimization (DPO) avoids reward 162

modeling and learns directly from human pref- 163

erences (Rafailov et al., 2024). Building on this 164

idea, subsequent work has adapted DPO to more 165

complex alignment tasks. For instance, one line of 166

work extends DPO to multi-turn dialogue settings 167

by introducing a sequential objective tailored for 168

conversational agents (Shi et al., 2025). Another 169

approach improves calibration by aligning model 170

scores with human reward scales (Xiao et al., 2024). 171

Together, these approaches suggest that preference 172

optimization can be effectively adapted to diverse 173

task requirements, offering a practical and scalable 174

framework for alignment. 175

3 Method 176

In this section, we present our modified Direct 177

Preference Optimization (DPO) (Rafailov et al., 178

2024) framework for class-conditional synthetic 179

text generation. Unlike the original DPO formula- 180

tion, which is designed for preference alignment 181

in instruction tuning, our approach explicitly en- 182
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Figure 1: Overview of our modified Direct Preference Optimization (DPO) framework for class-conditional synthetic
text generation.

courages class-discriminative generation suitable183

for multiclass classification tasks. An overview of184

the entire framework is illustrated in Figure 1.185

3.1 Problem Formulation186

Let C = {c1, . . . , cK} be the set of K class la-187

bels. Our goal is to train a language model πθ188

that can generate synthetic text x conditioned on189

a given class label c ∈ C such that the generated190

data are useful for training downstream classifiers.191

To achieve this, we adopt a preference-based learn-192

ing setup, where for each class c, a pair of can-193

didate generations (x+, x−) is assumed to reflect194

relative quality under the class semantics, where195

x+ denotes the preferred sample and x− the less196

preferred one.197

3.2 Limitations of Standard DPO198

The DPO objective is defined over preference pairs199

(x+, x−), optimizing the model to prefer x+ over200

x− without explicitly considering the underlying201

task structure. Formally, it minimizes the following202

loss.203

LDPO(θ) = − log σ
(
β · log πθ(x

+)

−(1− β) · log πθ(x
−)

) (1)204

While this formulation effectively aligns model out-205

puts with human preferences in open-ended genera-206

tion tasks, it presents key limitations when applied207

to classification. Since DPO training aligns with hu-208

man preferences without regard to downstream task209

structure, it can generate outputs that lack label-210

specific discriminative features. As a result, the211

model may generate outputs that are linguistically 212

well-formed but lack clear label-specific signals 213

required for classification. 214

3.3 Data Construction for DPO Training 215

A key challenge in applying DPO to classification 216

is constructing preference pairs that reflect the rele- 217

vance of the label. Since human-labeled pairs are 218

costly, we generate preference pairs automatically 219

using a lightweight classifier fϕ. Specifically, we 220

first sample n candidate texts for each class using 221

the language model πθ, and then compute margin 222

scores for each sample using fϕ. Based on these 223

scores, we construct preference pairs by selecting 224

high-scoring samples as x+ and mid-scoring sam- 225

ples as x−. The margin score for a given generated 226

sample x̃ and target class y is defined as: 227

m(x̃) = fϕ(x̃)y −max
j ̸=y

fϕ(x̃)j (2) 228

where fϕ(x̃)y denotes the predicted probability for 229

class y, and the second term represents the highest 230

predicted probability among all other classes. 231

3.4 Reward Utility Function Design 232

Although the preference pairs are constructed us- 233

ing margin-based scores to reflect class relevance, 234

relying solely on margin values during training can 235

be risky. Margin scores from the auxiliary classi- 236

fier may be noisy or biased, and do not capture 237

semantic quality such as fluency or coherence. To 238

address this, we define a reward utility function 239

rutil(·) that combines two complementary signals: 240
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an internal score rint(x), capturing semantic qual-241

ity based on embedding similarity, and an external242

score rext(x, y), reflecting label-level confidence243

via classifier margin. This combination encourages244

the model to balance linguistic fluency and class245

relevance, mitigating over-reliance on potentially246

biased or noisy classifier outputs.247

rext(x̃, y) = fϕ(x̃)y −max
j ̸=y

fϕ(x̃)j (3)248

249
rutil(x̃, y) = λ · rint(x̃) + (1− λ) · rext(x̃, y) (4)250

However, the definition of a utility-based reward251

function alone does not guarantee that all pref-252

erence pairs provide meaningful learning signals.253

Pairs that are comparably strong or weak often lack254

meaningful contrast, despite having an assigned255

preference. To reduce the influence of such cases,256

we apply a modulation factor based on the rutil.257

Specifically, we adopt the tanh function for its sta-258

bility and boundedness, enabling smooth scaling259

from 0 to 1.260

w(x+, x−) = tanh
(∣∣rutil(x

+, y)− rutil(x
−, y)

∣∣) (5)261

The final DPO training loss is computed by262
weighting each pair’s contribution according to the263
modulation factor:264

L̂DPO(θ) = LDPO(θ) · w(x+, x−) (6)265

4 Experiments266

4.1 Experimental Setup267

We evaluate our approach on two multiclass scien-268

tific classification datasets: Arxiv (Clement et al.,269

2019) and WOS-11967 (Kowsari et al., 2017), both270

consisting of scholarly abstracts.271

The overall experimental configuration is sum-272

marized in Table 1. We use SciBERT (uncased)273

(Beltagy et al., 2019) as the classifier backbone and274

MiniLM-L12-H384-uncased (Wang et al., 2020)275

as the embedding model for computing semantic276

utility scores. Prior studies have shown that SciB-277

ERT consistently outperforms BERT (Devlin et al.,278

2019) and RoBERTa (Liu et al., 2019) on scien-279

tific NLP benchmarks, highlighting its domain rel-280

evance and strong baseline performance. Accord-281

ingly, we adopt SciBERT as the backbone for our282

experiments.283

Synthetic training data is generated using284

three open-source LLMs— LLaMA 3.2 1B, 3B285

(Grattafiori et al., 2024), and Phi-4-mini (Microsoft286

et al., 2025)—with class-conditional prompts and287

utility-based filtering. DPO training is performed288

Table 1: Summary of experimental configuration.

Dataset Arxiv WOS-
11967

category 11 33
train set 28388 9573
test set 2500 2394

Component Details

Classification Model SciBERT
Embedding Model MiniLM
LLMs for Generation LLaMA 3.2 1B,

LLaMA 3.2 3B,
Phi-4-mini 3.8B

DPO Settings β = 1.0,
lr = 2e-5,
batch size = 2,
epochs = 3

U-DPO

Standard DPO

Figure 2: DPO reward accuracy over the course of train-
ing for standard DPO and U-DPO.

using HuggingFace TRL with custom modifica- 289

tions to incorporate utility-aware pair selection. All 290

experiments are conducted on a single NVIDIA 291

A6000 GPU with 48GB of memory. 292

Synthetic data are generated using a 2-shot 293

prompting strategy, where two randomly selected 294

examples with the same label are used as input to 295

the LLM. For each prompt, we generate n = 5 296

samples to encourage diversity while preserving 297

class consistency. For evaluation, we report accu- 298

racy score. 299

4.2 Training-time Preference Consistency 300

To assess how well the model aligns with the pref- 301

erence signal during training, we compute the DPO 302

reward accuracy—defined as the percentage of 303

training pairs (x+, x−) for which the current model 304

assigns a higher reward (log-probability) to the pre- 305

ferred sample x+. 306

As shown in Figure 2, U-DPO maintains con- 307

sistently higher reward accuracy throughout train- 308
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Figure 3: Margin score distributions for synthetic
samples generated from identical prompts using the
Phi-4-mini model on the Arxiv dataset. We compare
three training regimes: baseline (no preference optimiza-
tion), standard DPO, and U-DPO.

ing compared to standard DPO. This indicates that309

utility-filtered preference pairs are better aligned310

with the model’s learning signal, enabling more311

efficient and stable optimization. In contrast, stan-312

dard DPO exhibits greater fluctuations in reward313

accuracy, likely due to inconsistencies and noise in-314

troduced by unfiltered pair selection. The area plot315

shows that U-DPO achieves consistently higher316

alignment with the preference signal, indicating317

more stable and effective training dynamics.318

4.3 Margin-Based Quality Assessment319

To verify whether our U-DPO training framework320

enhances the class consistency of generated text,321

we evaluate the quality of synthetic samples us-322

ing a lightweight classifier, following the margin323

score definition introduced in Section 3.4. The mar-324

gin score quantifies the model’s confidence in the325

correct label over the second-best prediction, with326

higher values indicating stronger class discrim-327

inability.328

We analyze this margin score using samples gen-329

erated by the Phi-4-mini model on the Arxiv330

dataset. As shown in Figure 3, both standard DPO331

and our U-DPO training regimes consistently re-332

sult in higher average and median margin scores333

compared to generation without preference opti-334

mization, indicating that preference-based training335

improves label alignment. Notably, U-DPO yields336

further gains by producing text with higher margin337

scores in most cases, suggesting that incorporat-338

ing utility signals during training strengthens the339

Figure 4: Downstream classification accuracy of models
trained exclusively on synthetic data generated under
three training regimes: baseline (no preference optimiza-
tion), standard DPO, and U-DPO. All models are evalu-
ated on the Arxiv test set.

model’s ability to generate label-consistent outputs. 340

However, we note that margin scores do not always 341

directly translate into improved downstream clas- 342

sification performance, as they primarily indicate 343

confidence at the sample level rather than over- 344

all task-level generalization. Additional results on 345

other model–dataset combinations are provided in 346

Appendix A. 347

4.4 Classification Performance with Synthetic 348

Data 349

To directly assess the classification performance of 350

synthetic data, we train models exclusively on gen- 351

erated samples from the Arxiv dataset and evaluate 352

their ability to generalize to real-world tasks. This 353

setup allows us to examine whether improvements 354

in sample-level quality lead to better generalization 355

on real-world tasks. 356

We compare three training regimes for synthetic 357

data generation: (1) generation from the base LLM 358

without preference training, (2) generation using 359

standard DPO, and (3) generation via our proposed 360

U-DPO framework. For each setting, a classifier 361

is trained solely on the generated data and eval- 362

uated on the original test dataset using accuracy 363

as the primary metric. As shown in Figure 4, clas- 364

sifiers trained using U-DPO samples consistently 365

outperform those trained on data from the base 366

LLM and standard DPO. These results demonstrate 367

that utility-based training not only improves con- 368

sistency of individual sample labels but also leads 369

to significant improvements in the classification 370

performance of the task. 371

4.5 Evaluating Synthetic–Real Data 372

To evaluate the practical utility of synthetic sam- 373

ples, we measure classification performance when 374
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Table 2: Classification accuracy of the fine-tuned SciBERT baseline, SciBERT prompting, and GPT-4o prompting
on the Arxiv and WOS-11967 datasets. Results for open-source LLMs—LLaMA 3.2 1B (denoted as LLaMA-1B),
LLaMA 3.2 3B (LLaMA-3B), and Phi-4-mini (Phi-4)—are also included for comparison.

SciBERT Baseline
Dataset Accuracy Dataset Accuracy

Arxiv 0.8828 WOS-11967 0.9005

Dataset Method LLaMA-1B LLaMA-3B Phi-4 Zero Shot k=2 k=3 k=5

Arxiv

Prompt Based – – – 0.78 0.85 0.86 0.88
Base Synthetic 0.8864 0.8868 0.8824 – – – –
DPO Synthetic 0.8872 0.8876 0.8904 – – – –
U-DPO 0.8884 0.8896 0.8912 – – – –

WOS

Prompt Based – – – 0.64 0.78 0.82 0.85
Base Synthetic 0.9076 0.9085 0.906 – – – –
DPO Synthetic 0.9118 0.9112 0.9122 – – – –
U-DPO 0.9143 0.9156 0.9143 – – – –

Figure 5: Classification accuracy on the Arxiv dataset
when combining a fixed set of real data with synthetic
samples generated using different methods. U-DPO
achieves the highest performance among all hybrid se-
tups.

combining them with a fixed subset of real anno-375

tated data. This setup reflects a realistic scenario in376

which synthetic augmentation is used to improve377

generalization. To examine the impact of synthetic378

data volume, we vary the number of generated sam-379

ples per class across {10, 30, 50, 100, 150}. Inter-380

estingly, models trained with 50 synthetic samples381

per class consistently achieved the highest perfor-382

mance on average, suggesting that moderate aug-383

mentation achieves an effective balance between384

synthetic diversity and label reliability.385

We conduct experiments using a hybrid train-386

ing set composed of synthetic samples generated387

by three different methods: baseline generation,388

standard DPO, and U-DPO. Each synthetic set is389

combined with a fixed number of real samples per390

class.391

As shown in Table 2, augmenting real data with 392

synthetic samples leads to consistent accuracy im- 393

provements across both datasets. Among the meth- 394

ods, U-DPO yields the most substantial gains, in- 395

dicating that utility-based optimization improves 396

both the quality of the standalone sample and the 397

downstream effectiveness in hybrid settings. 398

In addition, we compare our approach against 399

GPT-4o (OpenAI, 2023) prompting baselines under 400

zero-shot and few-shot conditions. Despite GPT- 401

4o’s strength as an instruction-following model, 402

classifiers trained on U-DPO synthetic data outper- 403

form both prompting setups. 404

Furthermore, paired t-tests conducted on accura- 405

cies of 20 independent runs indicate that U-DPO 406

consistently outperforms both the baseline and stan- 407

dard DPO in a statistically significant manner. As 408

shown in Figure 5, U-DPO also produces more sta- 409

ble and higher accuracy distributions between trials, 410

strengthening the robustness of utility-based train- 411

ing. Specifically, DPO and U-DPO significantly 412

outperform the baseline model (p < 0.01 and p < 413

0.001, respectively), while U-DPO further shows 414

a significant improvement over standard DPO (p < 415

0.05). These results highlight the value of incorpo- 416

rating utility signals not only in optimizing prefer- 417

ence alignment, but also in generating practically 418

useful training data for supervised learning. 419

4.6 LLM-based Evaluation with GPT-4.5 420

To assess the quality of the generated synthetic 421

samples, we employ GPT-4.5 as an automated eval- 422

uator. Each sample is rated on a 0–5 scale based on 423
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Statistic Standard DPO U-DPO

Mean 4.05 4.14
Median 4.50 4.50
Std Dev 1.09 0.89

Table 3: GPT-4.5-based evaluation of synthetic samples
from the Standard DPO and U-DPO.

its relevance, fluency, and class alignment. A total424

of 132 synthetic samples were evaluated, compris-425

ing three samples per class from both the Arxiv and426

WOS-11967 datasets.427

Table 3 reports the mean, median, and standard428

deviation of scores assigned to generations from429

the Standard DPO and the U-DPO incorporating430

U-DPO. The U-DPO achieves a higher average431

score (4.14 vs. 4.05) and the same median score432

(4.50), indicating improved overall quality without433

compromising peak performance. Additionally, the434

lower standard deviation (0.89 vs. 1.09) suggests435

that the U-DPO produces more consistent outputs436

across samples.437

These results suggest that utility-based genera-438

tion improves not only the average quality but also439

the reliability of synthetic samples as judged by a440

strong LLM evaluator.441

4.7 Expanded Discussion of Experimental442

Findings443

The experimental results clearly demonstrate that444

U-DPO yields superior text classification perfor-445

mance compared to both standard DPO and the446

baseline synthetic data approach. Classifiers trained447

on U-DPO-generated synthetic datasets consis-448

tently outperformed those trained on either baseline449

synthetic text or text from a standard DPO-tuned450

model. This trend holds across both benchmark451

datasets, including WOS-11967 and Arxiv, as well452

as various model configurations, underscoring the453

robustness of U-DPO’s improvements. Overall, U-454

DPO enhances classification accuracy by produc-455

ing higher-quality synthetic data that better aligns456

with true labels, leading to more effective down-457

stream performance across diverse datasets. Repre-458

sentative examples of the synthetic data generated459

under different training regimes are provided in the460

Appendix C for further reference. Considering the461

degree of training improvement, the LLaMA-3.2-462

1B model generally exhibited lower performance463

gains compared to larger models, suggesting that464

model size may play a significant role in the effec-465

tiveness of utility-based preference optimization.466

This observation is further supported by margin 467

score evaluations and classification performance 468

assessments conducted using only synthetic data, 469

both of which indicate that larger models tend to 470

produce higher-quality, better-aligned samples that 471

translate into improved downstream results. 472

5 Conclusions 473

In this paper, we explored how preference-guided 474

generation with large language models can improve 475

the quality of synthetic data for text classification. 476

We introduced Utility DPO (U-DPO), a variant of 477

Direct Preference Optimization designed specifi- 478

cally for class-conditional generation. By incorpo- 479

rating a utility signal that promotes label-consistent 480

and discriminative outputs, U-DPO produces syn- 481

thetic examples that better reflect the needs of a 482

classifier. 483

Our experiments on multiclass document classi- 484

fication show clear benefits: models trained on U- 485

DPO-generated data consistently outperform those 486

using baseline LLM outputs or standard preference 487

tuning. Notably, we observed stronger accuracy 488

and generalization to real test data. Even in low- 489

resource scenarios, augmenting limited real exam- 490

ples with U-DPO samples led to substantial im- 491

provements. 492

A closer analysis using a margin-based metric 493

revealed that U-DPO enhances label fidelity in gen- 494

erated texts, shedding light on why its samples are 495

more effective for training. 496

Taken together, these results highlight the value 497

of task-specific preference optimization in generat- 498

ing high-quality synthetic data. We believe this ap- 499

proach offers a practical and scalable way to reduce 500

reliance on large annotated datasets, and we hope 501

it encourages further exploration of preference- 502

driven generation in NLP. 503

6 Limitation 504

Although our findings demonstrate the potential 505

of U-DPO, several limitations remain. First, the 506

effectiveness of our method depends heavily on 507

the quality of the preference signal. In our case, 508

preferences are derived from an automatic classifier 509

using margin scores and class consistency checks, 510

which may introduce biases or errors. This can lead 511

to overoptimization of proxy metrics without real 512

improvements in downstream performance. 513

Second, our evaluation is limited to two datasets 514

in the domain of research article classification. It 515
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remains to be seen whether U-DPO generalizes to516

other tasks such as short-text or multilabel classi-517

fication, or to domains where discrete class labels518

are not clearly defined.519

Finally, preference-based fine-tuning introduces520

computational overhead. Although we used rela-521

tively lightweight models (up to 4B parameters),522

scaling to larger models or fine-grained label spaces523

may be prohibitively expensive due to the cost of524

pairwise comparisons.525

In sum, U-DPO offers a promising direction for526

improving synthetic data quality, but further work527

is needed to refine the preference signal, reduce528

noise, and evaluate generalization across tasks and529

domains.530

7 Future work531

There are several promising directions for extend-532

ing our utility-based synthetic data generation533

framework.534

First, improving the quality of the preference535

signal is key. Instead of relying solely on margin-536

based scores, future work could explore automatic537

preference inference through model-internal scor-538

ing, ensemble agreement, or task-specific heuris-539

tics, that better reflect sample utility.540

Second, testing U-DPO on more diverse data541

types is crucial to validate its generality. Applica-542

tions to short-form texts, multilabel tasks, noisy la-543

bels, or domain-specific corpora would show how544

well the method adapts to varied real-world set-545

tings.546

Third, reducing the overhead of margin-based se-547

lection is an important efficiency challenge. Since548

utility scoring requires repeated model evaluations,549

scalable alternatives such as ranking distillation,550

selective pair mining or joint training with the clas-551

sifier may improve both speed and quality.552

Finally, analyzing the generated data itself can553

offer insight into what U-DPO learns. Understand-554

ing linguistic patterns, diversity, and preference-555

driven behaviors could guide future improvements556

in synthetic supervision strategies.557

Looking ahead, these directions point to a more558

efficient, adaptable, and purposeful use of LLMs559

for task-specific data creation.560
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Prompt for Synthetic Data742

You are an expert academic assistant. The following743

Examples are academic paper abstracts in the field744

of text classification and synthetic data generation.745

They are written in formal scientific style.746

You are an expert academic assistant. The fol-747

lowing Examples are academic paper abstracts in748

the field of something. They are written in formal749

scientific style. Your task is to generate a new aca-750

demic abstract in a similar style and topic.751

Examples:752

• Example 1:753

{abstract 1}754

• Example 2:755

{abstract 2}756

Now, generate a single academic abstract para-757

graph in the same domain.758

Only output the abstract content. Do not include759

titles, citations, links, or additional instructions. Ab-760

stract:761

Abstract:762

A Additional Margin Score Results763

Figures 6 and 7 illustrate the distribution of margin764

scores for models such as LLaMA 3.2 1B and LLaMA765

3.2 3B on datasets in Arxiv. Consistently across766

these combinations, both standard DPO and our767

proposed Utility DPO (U-DPO) training achieve768

higher median and average margin scores relative769

to baseline generation without preference optimiza-770

tion.771

While some labels exhibit slightly lower mar-772

gin scores compared to the Phi-4-mini model, the773

majority demonstrate improvements, confirming774

Figure 6: Margin score distributions for synthetic
samples generated from identical prompts using the
LlaMA3.2-1B model on the Arxiv dataset.

Figure 7: Margin score distributions for synthetic
samples generated from identical prompts using the
LlaMA3.2-3B model on the Arxiv dataset.

the general effectiveness of preference-based opti- 775

mization across diverse model and dataset config- 776

urations.This suggests that model size and archi- 777

tecture play significant roles in the effectiveness 778

of preference-guided training, with smaller models 779

like LLaMA 3.2 1B benefiting less from the DPO 780

and U-DPO approaches relative to larger or more 781

optimized models. 782

B Additional Results on Classification 783

Performance of Synthetic Data 784

Figures 8 report classification results for models 785

trained exclusively on synthetic samples generated 786

from the WOS-11967 dataset. We compare three 787

generation methods: base model sampling, stan- 788
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Figure 8: Downstream classification accuracy of models
trained exclusively on synthetic data generated under
three training regimes: All models are evaluated on the
WOS-11967 test set.

dard DPO, and Utility DPO (U-DPO). Consistent789

with observations on Arxiv data, classifiers trained790

on U-DPO synthetic samples exhibit superior ac-791

curacy compared to those trained on samples from792

the base model or standard DPO.793

C Generated Sample Examples794

Table 4 shows representative synthetic samples gen-795

erated by the Standard DPO, and U-DPO for a796

specific class label. These examples illustrate dif-797

ferences in content quality, fluency, and label align-798

ment.799

Method Generated Sample (Class: Computer Vi-
sion)

Standard DPO In recent years, the integration of computer
vision and computer graphics technologies
has led to significant advancements in the
development of interactive virtual environ-
ments. This paper discusses the challenges
and solutions related to the seamless inte-
gration of virtual objects into real-world
images. We explore the importance of ac-
curate pose estimation, surface correspon-
dence, and the creation of visually convinc-
ing interactions between virtual and real-
world elements. Our study introduces novel
algorithms for the accurate placement and
interaction of virtual objects within complex
environments. We demonstrate the efficacy
of these algorithms through a series of case
studies, including architectural visualization
and interactive gaming scenarios. Our find-
ings suggest that advancements in this area
have far-reaching implications for the fields
of computer graphics, computer vision, and
augmented reality applications, providing
users with more immersive and realistic ex-
periences.

U-DPO This study presents a novel framework for
integrating visual-inertial odometry with
structure-from-motion algorithms to achieve
real-time 6-DOF pose estimation and map-
ping. Our proposed method leverages the
complementary strengths of visual and iner-
tial sensors to mitigate the limitations inher-
ent in each modality. By employing a robust
factor graph optimization, we ensure accu-
rate alignment of visual and inertial data,
which is crucial for achieving precise mo-
tion tracking and environmental mapping.
Experiments conducted in diverse environ-
ments, including indoor and outdoor set-
tings, demonstrate our approach’s resilience
to challenging conditions such as variable
lighting and dynamic occlusions. The results
indicate significant improvements in accu-
racy and robustness compared to traditional
visual-inertial odometry systems, paving the
way for enhanced autonomous navigation
and interactive robotic applications. Future
research directions include refining the sen-
sor fusion algorithm to further reduce com-
putational overhead and exploring the in-
tegration of additional sensory modalities,
such as LiDAR, to complement the visual-
inertial system.

Table 4: Example synthetic samples generated by differ-
ent methods for the same class.
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Method Generated Sample (Class: Materials Sci-
ence, Engineering)

Standard DPO The study of process optimization in man-
ufacturing engineering involves determin-
ing the effect of various process parameters
on product quality, cost, and efficiency. Re-
cent advancements in statistical and compu-
tational methods have provided engineers
with powerful tools to design experiments
that can systematically investigate these ef-
fects. In this paper, we present a comprehen-
sive analysis of the application of Design of
Experiments (DoE) and Taguchi Methods
in optimizing manufacturing processes. We
demonstrate how these methodologies can
be effectively utilized to identify critical fac-
tors, interactions, and optimal settings for
process variables. Our case study focuses
on the manufacturing of a high-precision
component, where we employed a full fac-
torial design and Taguchi orthogonal arrays
to minimize variation and improve product
quality. The results highlight the potential
of these approaches to enhance process con-
trol, reduce waste, and achieve cost-effective
production. Further, we discuss the integra-
tion of these techniques with modern man-
ufacturing systems and the implications for
continuous improvement and innovation in
engineering practice.

U-DPO In this study, we examine the integration of
piezoelectric sensors into composite man-
ufacturing processes. Piezoelectric sensors
have emerged as a valuable tool for moni-
toring stress distribution and detecting po-
tential failure points within composite mate-
rials. This paper presents a comprehensive
analysis of the impact of piezoelectric sen-
sor embedding on the mechanical properties
of composite materials, particularly focus-
ing on tensile strength and strain distribu-
tion. Our results indicate a slight reduction
in tensile strength but an improved ability to
monitor stress distribution, which can lead to
better quality control and increased safety in
composite manufacturing. Additionally, the
study explores the feasibility of using piezo-
electric sensors as a real-time monitoring
system, offering insights into their potential
applications in aerospace and automotive in-
dustries. The findings underscore the impor-
tance of piezoelectric sensors in enhancing
the reliability and performance of composite
materials used in critical applications.

Table 5: Example synthetic samples generated by differ-
ent methods for the same class.
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