
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING-FREE SELF-SCHEDULING FOR EFFICIENT
LLM INFERENCE SERVING

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to deliver fast responses under strict latency requirements is critical
for Large Language Model (LLM) inference serving. Most existing systems
rely on a first-come-first-served (FCFS) scheduling policy, which often suffers
from head-of-line blocking. While a number of solutions have been proposed,
they typically require training additional models or auxiliary predictors, such
as BERT, to estimate decoding lengths. These approaches limit generalization
and necessitate retraining for new domains or distributions. To address these
limitations, we propose self-scheduling with LLM, a novel approach that leverages
the reasoning capabilities of the LLM itself without requiring extra training or
auxiliary models. We systematically investigate a range of feasible strategies and
conduct extensive analyses. Experimental results show that our method achieves
up to a 5× improvement in TTFT, a 3× improvement in TPOT, a 6× reduction in
latency, and a 9× increase in throughput under both general and domain-specific
workloads, with negligible overhead. This work offers a lightweight yet intelligent
scheduling paradigm, demonstrating both practicality and strong potential for LLM
inference serving.

Request A Group

LLM

trained
from

score

Request B Group

request
a,b,c

Request A Group

LLM

Request B Group

request
a,b,c

rank_prompt A

rank_prompt B
request
a,b,c

request
a,b,c

Generalization
USE auxiliary model

Generalization

NO auxiliary model

few modified
few output
few cost

Tr
ad

it
io
na

l

Ours

O
ur

s

score

Figure 1: Comparison of traditional scheduling methods and the proposed approach.

1 INTRODUCTION

Large Language Models (LLMs) and their applications such as ChatGPT (OpenAI, 2025), DeepSeek
(DeepSeek-AI et al., 2025), Qwen (Yang et al., 2025), Gemini (Google, 2025), and Cursor (Cursor,
2025) are increasingly integrated into daily life, processing massive volumes of user requests. This
demand poses substantial challenges to meeting Service Level Objectives (SLOs), particularly with
respect to maintaining low latency. Since users expect rapid responses, measuring and optimizing key
performance metrics is essential. The primary metrics of concern are Time to First Token (TTFT),
Time per Output Token (TPOT), and Total Latency (Agarwal et al., 2023; Zhong et al., 2024; Qin
et al., 2024; Yu et al., 2022; Agrawal et al., 2024). Improving these metrics remains a central objective
in LLM optimization research, with efficient scheduling for LLM inference emerging as a critical
direction for addressing these challenges (Zhou et al., 2024; Zhen et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1s/token

0.2s/token1s/token

0.9s/token
time

Assumption

 a 10 tokens

 b 2 tokens

Arrival Order:
Request: a b

 a , b

Output:

Scheduling
FCFS

Short First

(a) Head-of-Line Blocking

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

Bin Range

0

50

100

150

200

250

300

350

Co
un

t

(b) Long-Tail Distribution

Figure 2: Illustration of head-of-line blocking and real-world data distributions. (a) Prioritizing
shorter requests improves overall efficiency. Here, the default assumption is that the LLM processes
one token per second, with the prefill effect ignored. (b) Response length distribution of Qwen3-14B
on a subset of NuminaMath dataset.

A widely adopted scheduling strategy is first-come-first-served (FCFS), which is simple to implement
but suffers from head-of-line blocking (Kaffes et al., 2019) due to the long-tail phenomenon, as
shown in Figure 2. In this setting, a few long requests may delay the execution of many shorter
ones, resulting in severe inefficiencies. To address this challenge, an increasing body of research has
explored predicting request lengths and scheduling accordingly (Cheng et al., 2024; Hu et al., 2024;
Zheng et al., 2024b; Hua et al., 2025; Fu et al., 2024). These methods typically employ auxiliary
models such as regression predictors, lightweight LMs, or embedding-based classifiers to estimate
generation length prior to decoding. Although effective in controlled settings, such approaches face
two key limitations. First, they introduce additional training overhead, thereby increasing system
complexity. Second, their generalization capacity is limited: when request distributions or application
domains shift, retraining or fine-tuning is often required, as illustrated in Figure 1. This lack of
adaptability poses a significant barrier to real-world deployment.

LLMs, however, possess powerful reasoning capabilities, as demonstrated in tasks such as LLM-
as-a-Judge (Li et al., 2025), which has been widely applied across diverse scenarios. Building on
this observation, we propose a new paradigm: Training-Free Self-Scheduling for LLM inference.
Rather than relying on external predictors, we directly leverage the reasoning ability of the LLM
itself to assist in scheduling decisions. This approach eliminates the need for additional training
or auxiliary models, making it lightweight, adaptive, and easy to deploy. We further introduce a
self-scheduling-aware starvation mitigation mechanism to ensure fairness in cases where requests
might otherwise be indefinitely delayed.

Extensive and fine-grained experimental analyses demonstrate that our method is both simple and
effective: it generalizes seamlessly across domains and achieves substantial improvements in TTFT,
TPOT, and overall latency. Beyond performance gains, our study offers a broader insight: LLMs can
function not only as inference engines but also as intelligent schedulers of their own workloads. This
work thus opens a new direction for intelligent scheduling in LLM systems.

To summarize, our contributions are as follows:

• Training-Free Self-Scheduling: We introduce a novel scheduling paradigm that eliminates
the reliance on auxiliary models and retraining.

• Strategy Design and Evaluation: We systematically develop and assess multiple strategies
for leveraging the reasoning capabilities of LLMs, thoroughly exploring the feasibility and
effectiveness of self-scheduling.

• Empirical Validation: We demonstrate that our approach yields substantial improvements
in TTFT, TPOT, and latency across diverse workloads, domains, and decoding modes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Future Research Directions: We present a practical and intelligent solution that not only
addresses current challenges in LLM inference scheduling but also opens a promising
direction for future research.

2 RELATED WORKS

While our work introduces LLM self-scheduling as a lightweight and adaptive paradigm, it is closely
related to prior efforts on inference scheduling and generation length prediction. In this section, we
review existing approaches, highlighting their strengths and limitations, and position our method in
relation to two major directions: (a) LLM Inference Scheduling, (b) scheduling methods based on
length prediction, and (c) the emerging paradigm of LLMs as self-evaluators.

2.1 LLM INFERENCE SCHEDULING

The rapid growth of LLM applications has heightened the need for efficient inference scheduling
(Miao et al., 2023; Yuan et al., 2024; Zhou et al., 2024). Various approaches have been proposed to
improve efficiency, such as iterative scheduling (Yu et al., 2022), along with a range of open-source
frameworks, including vLLM (Kwon et al., 2023), TensorRT-LLM (NVIDIA, 2023), SGLang (Zheng
et al., 2024a), TGI (HuggingFace, 2023), DeepSpeed-MII (Microsoft, 2022), and llama.cpp (ggml
org, 2022). In most of these frameworks, FCFS remains the default scheduling policy, highlighting
the necessity of exploring more efficient alternatives.

2.2 LENGTH PREDICTION APPROACHES

The uncertainty of generation length poses one of the greatest challenges in request scheduling,
making accurate length prediction a fundamental requirement. Prior studies have proposed a variety
of prediction techniques that can be broadly classified into three categories (Zhen et al., 2025).

Exact prediction methods estimate the token count directly using approaches such as BERT em-
beddings with random forest regression (Cheng et al., 2024), lightweight OPT models (Hu et al.,
2024), or constrained regression techniques (Qiu et al., 2024b). Range-based classification methods
instead partition requests into length bins, either by predicting ranges from prompts (Zheng et al.,
2024b; Jin et al., 2023; Jain et al., 2024; Qiu et al., 2024a; Stojkovic et al., 2024; Hua et al., 2025) or
by employing real-time classifiers over token embeddings (Shahout et al., 2024). Relative ranking
methods focus on ordering requests according to expected lengths; for example, Fu et al. (2024)
predicts pairwise relationships within the same batch to enhance robustness and mitigate overfitting.

Notably, Zheng et al. (2023) introduced the earliest attempt to leverage LLMs for directly predicting
request lengths. However, at that time, LLMs lacked the strong instruction-following ability of
current models and still required additional post-training to perform length prediction effectively.

They either rely on auxiliary models or require additional training, which imposes limitations on both
generalizability and usability.

2.3 LLM AS A JUDGE AND SELF-EVALUATION

The paradigm of using LLMs as evaluators has become a widely adopted reward mechanism (Li
et al., 2025). Typical approaches include assigning scores to individual responses (Li et al., 2024a;
Xie et al., 2025), ranking multiple candidates (Li et al., 2024c), or selecting one or more options from
a given set (Yao et al., 2023; Li et al., 2024b). In this work, we primarily adopt scoring and ranking
strategies.

Overall, existing solutions reduce latency but remain constrained by training overhead and poor
generalization. Inspired by LLM-as-a-Judge, our work is the first to systematically explore LLM
self-scheduling, which leverages the model’s own reasoning ability for scheduling without auxiliary
predictors.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Scheduler

Queue b | 1

tail

Rank Prompt
You are an content difficulty analyst ...
TASK: Analyze the complexity of...
GOAL: Rank queries by difficulty ...
...
OUTPUT FORMAT:
<<
(ranks here, e.g., 2,1,3)
>>
Now analyze these queries:
{request list}

e | 2d | 1 c | 2

Queue b | 1 e | 2d | 1 c | 2 a | 3 f | - g | - h | -

a | 3

Queue b | 1 e | 2d | 1 c | 2 a | 3 f | - g | - h | -i | 0

Pack every N requests
for ranking operation.

highest priority

Queue b | 1 e | 2d | 1 c | 2 a | 3 f | 2 g | 1 h | 3

get rank prompt response, and change rank_id

Queue b | 1 c | 2d | 1 g | 1 e | 2 f | 2 a | 3 h | 3

sort by (rank_id, arrival_time)

a | 3running waiting request_id | rank_id

time

Figure 3: An illustrative example of a simple self-scheduling mechanism without starvation control.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We consider the problem of scheduling a set of requestsR = {r1, r2, . . . , rn} submitted to an LLM
inference server. Each request ri produces a response of unknown length L(ri) measured in tokens.
Since the true lengths are not available prior to decoding, a scheduling policy must rely on estimates
L̂(ri) to decide the execution order. The goal is to minimize tail latency by avoiding head-of-line
blocking caused by long requests.

Formally, the scheduling task can be expressed as learning a ranking function f : R → Rn that
outputs a permutation over requests. The ideal ranking R∗ is obtained by sorting requests in ascending
order of their true lengths L(ri).

3.2 LLM SELF-SCHEDULING

Instead of training auxiliary predictors, we leverage the reasoning ability of the LLM itself to estimate
request characteristics. Given a set of requests, we prompt the LLM to provide a relative ranking of
their expected response lengths. The LLM outputs a predicted rank R̂, where ties are allowed (i.e.,
multiple requests may be assigned the same rank).

This approach is lightweight and adaptive: no additional training is required, and the same method
can be applied across different domains without retraining.

3.3 EVALUATION METRIC: KENDALL’S TAU-B WITH TIES

Since the predicted ranking R̂ may contain ties, we evaluate agreement with the gold ranking R⋆

using Kendall’s tau-b:

τb(Ra, Rb) =
nc − nd√

(n0 − na)(n0 − nb)
, (1)

where nc and nd are the numbers of concordant and discordant pairs, n0 =
(
n
2

)
is the total number of

pairs, and na, nb are the numbers of tied pairs in Ra and Rb. This extension ensures ties are handled
fairly, making τb a robust measure for our setting.

Thus, τb ranges from −1 (completely reversed order) to +1 (perfect agreement), with ties properly
handled.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Predict the shorest response via
prefill logits

PrefillOnly

Rank request by response
difficulty

RankOnly

Predict response length
LengthOnly

Large Language Model

​​D
i
f
f
i
c
u
l
t
y​​

Input Output

logit values:
{‘3’:0.4, ‘1’:0.2, ‘2’:0.15, ‘\n’: 0.1}
→ rank is 3,1,2

Ranked:
response: 3, 2, 1

the length is:
450,110,310
→ rank is 2, 3, 1

Figure 4: Overview of our LLM-based scheduling methods.

3.4 CONSTRUCTING THE GOLD RANKING WITH TIES

Goal. We seek a gold ranking R⋆ of requests by true response length that (i) orders requests from
short to long and (ii) treats near-equal responses as ties. This is necessary because our evaluation
metric (Kendall’s τb) explicitly accounts for ties, and because tiny length differences should not
induce artificial strict orderings.

Setup. Let R = {r1, . . . , rn} be requests with true response lengths L(ri) ∈ R≥0. We first sort
requests in non-decreasing order of length:

(r(1), . . . , r(n)) s.t. L(r(1)) ≤ · · · ≤ L(r(n)).

For brevity, denote L(i) := L(r(i)).

Tie rule (relative threshold). For each adjacent pair (i − 1, i) with i ≥ 2, we define a pairwise
relative threshold:

εi = α×
L(i−1) + L(i)

2
. (2)

We declare r(i−1) and r(i) tied if
|L(i) − L(i−1)| ≤ εi. (3)

When L(i−1) = L(i) = 0, we set εi = 0; hence zero-length items are tied only if exactly equal.

Rank assignment. Let g(i) be the gold rank of r(i). We use “competition ranking” (a.k.a. 1224
ranking): the first item gets rank 1. For i ≥ 2,

g(i) =

{
g(i−1), if |L(i) − L(i−1)| ≤ εi (tie),

i, otherwise.
(4)

This yields ranks such as 1, 1, 3, 4, 4, 6, . . . , preserving ties and skipping integers after tied groups.

3.5 LLM-BASED RANKING STRATEGIES

Our approach processes a batch of incoming requests (e.g., 10 requests) and uses the LLM to predict
their relative execution order or expected response lengths. We propose three variants, as shown in
Figure 4:

PREFILLONLY: Leverages the logits from the prefill stage. Since the token–probability mapping
reflects the likelihood of each request being the shortest, the highest-probability logit corresponds to
rank 1, the second highest to rank 2, and so on.

RANKONLY: Directly prompts the LLM to output a ranked list of request IDs (e.g., 1,4,3,5,2) with
only a few decoding steps.

LENGTHONLY: Asks the LLM to predict the response length (in tokens) for each request in the
batch, after which the requests are ranked according to the predicted lengths.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Unified Batching and Priority Scheduling

Require: batch_size B, timeout T , threshold, quantum_steps, max_promotions
1: Q← ∅,R ← ∅, timer off
2: while running do
3: if request arrives then
4: init request and push to Q; start timer if off
5: end if
6: if |Q| ≥ B or timer≥ T then
7: make rank_prompt from Q with rank_id= −∞; add toR; clear Q; reset timer
8: end if
9: // Anti-starvation promotion

10: find and promote candidates with starvation ≥ threshold
11: set priority← TRUE, quantum← quantum_steps for promoted requests
12: sortR by (priority, rank_id, arrival_time); select runnable set S
13: for each x ∈ S do
14: run(x); x.starvation← 0
15: if x is rank_prompt AND x finishes then
16: retrieve rank info from x’s response
17: for each request in the original batch, update its rank_id based on the rank info
18: end if
19: if x.priority then
20: x.quantum–; if x.quantum ≤ 0, x.priority← FALSE
21: end if
22: end for
23: for each y ∈ R \ S do
24: y.starvation++
25: end for
26: remove finished fromR
27: end while

3.6 UNIFIED SELF-SCHEDULING WITH ANTI-STARVATION MECHANISM

To prevent requests with longer responses from being blocked for excessive periods, we integrate our
self-scheduling approach with an anti-starvation mechanism, as illustrated in Algorithm 1.

4 EXPERIMENT

4.1 DATASET

To evaluate the robustness of our proposed methods, we selected a diverse set of datasets spanning
both general-purpose and domain-specific tasks, including mathematics and code. These datasets also
cover a wide spectrum of difficulty levels, ensuring that the evaluation reflects performance across
varied and challenging scenarios.

NuminaMath (Beeching et al., 2024): This dataset is specifically designed to evaluate a model’s
mathematical reasoning abilities. It includes a vast collection of competition-level math problems
accompanied by detailed chain-of-thought (CoT) solutions, which help enhance a model’s step-by-
step reasoning for complex tasks.

TACO (Li et al., 2023): Short for “Topics in Algorithmic COde generation dataset”, this is a large-
scale, open-source dataset designed to be a more challenging benchmark for code generation models.
It features competition-level programming questions focused on algorithmic topics, which helps
evaluate a model’s understanding and reasoning in real-world programming scenarios.

ShareGPT (Team, 2023): This is a high-quality, open-source conversational dataset widely used
for training LLMs on instruction-following and dialogue generation tasks. It comprises filtered
conversation samples derived from real-world user interactions with advanced language models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 10 15 20 25 30
Request Rate (seq/s)

0.0

0.2

0.4

0.6

Ke
nd

al
l's

 T
au

NuminaMath

5 10 15 20 25 30
Request Rate (seq/s)

0.0

0.2

0.4

0.6

TACO

5 10 15 20 25 30
Request Rate (seq/s)

0.0

0.2

0.4

0.6

ShareGPT
FCFS
PrefillOnly
RankOnly
LengthOnly

Figure 5: Kendall’s Tau comparison of FCFS, PREFILLONLY, RANKONLY, and LENGTHONLY.

4.2 ENVIRONMENT

All experiments were conducted on a server equipped with eight NVIDIA A100 GPUs, each with 40
GB of memory. The software environment was configured with CUDA 12.8 and vLLM version 0.9.2.
We employed vLLM version 0.9.2 with the following configuration: starvation_threshold_steps = 4,
priority_quantum_steps = 32, and max_promotions_per_round = 16. To ensure the generalizability
of our results, each experiment was repeated four times with different random seeds, and the reported
values correspond to the average across these runs. With respect to preemption and swapping
operations, we followed the default implementation provided in vLLM. In addition, we did not
employ chunked prefill in our experiments.

5 ANALYSES

5.1 KENDALL’S TAU

As illustrated in Figure 5, Kendall’s Tau varies across the three proposed approaches in different
domains. the performance improves progressively from FCFS to PREFILLONLY, RANKONLY,
and finally LENGTHONLY. This progression is logically consistent. PREFILLONLY relies on the
probability distribution over the first token, which does not fully capture the model’s generative
behavior. RANKONLY implicitly leverages the model’s ability to predict sequence length for ranking,
but this indirect approach leads to some performance degradation. In contrast, LENGTHONLY directly
predicts the decoding length and constructs the ranking offline, making it the most straightforward
and effective strategy. Intuitively, mathematical problems are relatively easier to predict, conversation
queries in ShareGPT are more complex, and code-related tasks fall in between.

The small fluctuations observed at lower request rates can be attributed to the reduced batch size
in those settings. As the request rate increases, the batch size approaches its maximum (i.e., 10),
stabilizing the performance trends.

In terms of computational overhead, PREFILLONLY incurs the least cost as it requires only prefilling,
RANKONLY demands a moderate amount of decoding overhead (∼ 20 tokens), while LENGTHONLY
has the highest decoding overhead (∼ 40 tokens). We provide additional experiments to validate this
extra-cost analysis in Sec 5.4.

5.2 PERFORMANCE

For a comprehensive evaluation of our three methods (PREFILLONLY, RANKONLY, and LENGTH-
ONLY), we report TTFT, TPOT, and latency per request at P95 across NuminaMath, TACO, and
ShareGPT (Figure 6).

At request rates below 10 (Poisson Distribution), some fluctuations appear. This occurs because a
larger proportion of small requests are batched with rank prompts, thereby increasing the number of
ranking operations. In addition, sorting multiple requests together is more effective than handling
them sporadically, as it introduces more comparative relationships.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 10 15 20 25 30
Request Rate (seq/s)

1

2

3

4
m

s

1e5 TTFT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

2

4

6

8

m
s

1e2 TPOT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

0.25

0.50

0.75

1.00

1.25

m
s

1e3 Latency (P95)
FCFS
PrefillOnly
RankOnly
LengthOnly

5 10 15 20 25 30
Request Rate (seq/s)

3.0

3.5

4.0

4.5

5.0

5.5

m
s

1e5 TTFT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

0.5

1.0

1.5

m
s

1e3 TPOT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

1

2

3

m
s

1e3 Latency (P99)(a) NuminaMath

5 10 15 20 25 30
Request Rate (seq/s)

3

4

5

m
s

1e5 TTFT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

2

3

4

5

m
s

1e2 TPOT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

0.4

0.6

0.8

1.0

m
s

1e3 Latency (P95)
FCFS
PrefillOnly
RankOnly
LengthOnly

5 10 15 20 25 30
Request Rate (seq/s)

3.5

4.0

4.5

5.0

5.5

6.0

m
s

1e5 TTFT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

0.2

0.4

0.6

0.8

1.0

m
s

1e3 TPOT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

0.50

0.75

1.00

1.25

1.50

1.75

m
s

1e3 Latency (P99)(b) TACO

5 10 15 20 25 30
Request Rate (seq/s)

0

2

4

6

8

m
s

1e4 TTFT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

2

3

4

5

m
s

1e2 TPOT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

1.0

1.5

2.0

2.5

3.0

m
s

1e2 Latency (P95)
FCFS
PrefillOnly
RankOnly
LengthOnly

5 10 15 20 25 30
Request Rate (seq/s)

0.2

0.4

0.6

0.8

1.0

m
s

1e5 TTFT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

0.2

0.4

0.6

0.8

1.0

1.2

m
s

1e3 TPOT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

2

4

6

8

m
s

1e2 Latency (P99)(c) ShareGPT

Figure 6: Performance of NuminaMath, TACO, and ShareGPT on TTFT, TPOT, and latency at P95.

As the request rate increases, performance gradually stabilizes. Among the proposed methods,
LENGTHONLY consistently achieves the best results across all metrics. This observation aligns with
Sec. 5.1, confirming that ranking accuracy is directly correlated with overall performance.

For TTFT, improvements are most pronounced on the math (5×) and code (1.6×) datasets but
relatively modest on ShareGPT. This is because math and code exhibit stronger long-tail effects:
longer requests can be deferred while shorter ones are prioritized, thereby reducing delays. In contrast,
ShareGPT shows a weaker long-tail distribution, so reordering yields less benefit.

For TPOT, we also observe clear improvements, particularly in math is 2.5×. By grouping requests
of similar lengths, reordering enhances GPU parallel utilization and mitigates the drag caused by
long-tail requests, resulting in smoother generation.

Finally, latency shows the most substantial improvement, with math achieving 6×, Code 3×, and
ShareGPT 2×. Short requests are completed more quickly, reducing delay for the majority of tasks,
while longer requests are still efficiently processed in parallel, further improving GPU utilization.

We further evaluate the methods in thinking mode across all datasets (Figure 7), showing that response
lengths in thinking and non-thinking modes remain relatively consistent. This demonstrates the
generalization ability of our approach across both domains and decoding modes.

Note that all reported results are obtained with ranking operations enabled.

5.3 THROUGHPUT

To conduct a comprehensive throughput analysis, we evaluated each method using 3,000 requests
under two experimental settings: (i) a fixed duration of 10 minutes and (ii) a fixed workload of
500 requests. Table 1 summarizes the throughput achieved by the baseline and the LENGTHONLY

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

TTFT-P95 TTFT-P99 TPOT-P95 TPOT-P99 Latency-P95 Latency-P99

0

50

100

150

200

250

Gr
ow

th
 R

at
e

(%
)

82.91%

44.06%

169.28%
183.24%

282.36%
267.94%

109.46%

61.53%

210.42%
220.11%

244.41%

214.41%

-7.05% -10.27%

8.69%
25.63%

97.85%

168.01%

NuminaMath
TACO
ShareGPT

Figure 7: Growth rate comparison of NuminaMath, TACO, and ShareGPT in thinking mode.

Dataset Fixed Duration (10 minutes) Fixed Workload (500 requests)

FCFS LENGTHONLY Speedup FCFS LENGTHONLY Speedup

NuminaMath 211 948 4.49× 28.50 min 3.48 min 9.33×
TACO 202 412 2.04× 38.27 min 11.83 min 3.23×
ShareGPT 689 986 1.43× 6.23 min 4.03 min 1.55×

Table 1: Throughput comparison of scheduling methods across multiple domains.

strategy across multiple datasets. The results show consistent improvements, ranging from modest to
substantial gains, confirming that our method benefits not only end users but also service providers.

5.4 EXTRA COST

Dataset FCFS LENGTHONLY
NuminaMath 11m 6s 530ms 11m 6s 585ms

Table 2: Extra cost in 20 requests.

To evaluate the worst-case scenario, we select
20 math requests with rate = 64 and batch size
= 1, since larger batches naturally mitigate this
effect. In this setting, the system requires two
ranking prompts and a fixed decoding length
of 40 tokens. As shown in Figure 2, LENGTHONLY introduces only 55 ms of additional latency
compared with the baseline, demonstrating that our method incurs negligible overhead.

5.5 STARVATION

TPOT-P99 Latency-P99
0

100

200

300

400

500

m
s

391

465

268

360

Baseline LengthOnly

Figure 8: Starvation ablation.

Our rank-aware starvation prevention method significantly
improves performance. We conducted an experiment com-
paring our method with a no-starvation method. The re-
sults demonstrate a remarkable improvement: a nearly
50% reduction in TPOT-P99 and a nearly 30% reduction
in Latency-P99. Importantly, these improvements were
achieved without compromising performance on other P99
metrics, which remained consistent.

6 CONCLUSION

This work is the first to demonstrate the feasibility of leveraging existing LLMs for self-scheduling
without training additional models. We proposed three scheduling strategies, from decoding-free to
minimally decoding approaches, and showed their effectiveness across diverse domains, including
mathematics, code, and general-purpose datasets, under both thinking and non-thinking modes.
To further mitigate starvation, we incorporated a rank-aware prevention mechanism. Our study
introduces a novel paradigm that opens new directions for intelligent scheduling in LLM inference.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work focuses on improving the efficiency of LLM inference serving through self-scheduling
techniques. Our contributions are primarily methodological and system-level, without introducing
new datasets or collecting human subjects data. All datasets used in this study (NuminaMath, TACO,
and ShareGPT) are publicly available and widely adopted in prior research.

8 REPRODUCIBILITY STATEMENT

This work is conducted using the open-source framework vLLM. We confirm that all hardware
specifications and key hyperparameter details are reported in Sec. 4.2, dataset processing details are
provided in Sec. A.2, and prompt settings are described in Sec. A.4.

REFERENCES

Megha Agarwal, Asfandyar Qureshi, Nikhil Sardana, Linden Li, Julian
Quevedo, and Daya Khudia. Llm inference performance engineering:
Best practices, 2023. URL https://www.databricks.com/blog/
llm-inference-performance-engineering-best-practices.

Amey Agrawal, Anmol Agarwal, Nitin Kedia, Jayashree Mohan, Souvik Kundu, Nipun Kwatra,
Ramachandran Ramjee, and Alexey Tumanov. Etalon: Holistic performance evaluation framework
for llm inference systems, 2024. URL https://arxiv.org/abs/2407.07000.

Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina, Kashif
Rasul, Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 7b cot. https://
huggingface.co/AI-MO/NuminaMath-7B-CoT, 2024.

Ke Cheng, Wen Hu, Zhi Wang, Peng Du, Jianguo Li, and Sheng Zhang. Enabling efficient batch
serving for lmaas via generation length prediction. arXiv preprint arXiv:2406.04785, 2024.

Cursor. cursor, 2025. URL https://cursor.com/.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,

10

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://arxiv.org/abs/2407.07000
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://cursor.com/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Stoica, and Hao Zhang. Efficient llm scheduling
by learning to rank. arXiv preprint arXiv:2408.15792, 2024.

ggml org. llamacpp, 2022. URL https://github.com/ggml-org/llama.cpp.

Google. google, 2025. URL https://gemini.google.com/.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. Inference without
interference: Disaggregate llm inference for mixed downstream workloads, 2024. URL https:
//arxiv.org/abs/2401.11181.

Wenyue Hua, Dujian Ding, Yile Gu, Yujie Ren, Kai Mei, Minghua Ma, and William Yang Wang. Se-
mantic scheduling for llm inference, 2025. URL https://arxiv.org/abs/2506.12204.

HuggingFace. Tgi (text generation inference), 2023. URL https://github.com/
huggingface/text-generation-inference.

Kunal Jain, Anjaly Parayil, Ankur Mallick, Esha Choukse, Xiaoting Qin, Jue Zhang, Íñigo Goiri,
Rujia Wang, Chetan Bansal, Victor Rühle, Anoop Kulkarni, Steve Kofsky, and Saravan Rajmohan.
Intelligent router for llm workloads: Improving performance through workload-aware scheduling,
2024. URL https://arxiv.org/abs/2408.13510.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. s3: Increasing gpu utilization during
generative inference for higher throughput. Advances in Neural Information Processing Systems,
36:18015–18027, 2023.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières, and Christos
Kozyrakis. Shinjuku: Preemptive scheduling for µsecond-scale tail latency. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19), pp. 345–360, Boston,
MA, February 2019. USENIX Association. ISBN 978-1-931971-49-2. URL https://www.
usenix.org/conference/nsdi19/presentation/kaffes.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Dawei Li, Zhen Tan, and Huan Liu. Exploring large language models for feature selection: A
data-centric perspective, 2024a. URL https://arxiv.org/abs/2408.12025.

Dawei Li, Shu Yang, Zhen Tan, Jae Young Baik, Sukwon Yun, Joseph Lee, Aaron Chacko, Bojian
Hou, Duy Duong-Tran, Ying Ding, Huan Liu, Li Shen, and Tianlong Chen. Dalk: Dynamic
co-augmentation of llms and kg to answer alzheimer’s disease questions with scientific literature,
2024b. URL https://arxiv.org/abs/2405.04819.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, Kai Shu, Lu Cheng, and Huan Liu.
From generation to judgment: Opportunities and challenges of llm-as-a-judge, 2025. URL
https://arxiv.org/abs/2411.16594.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset, 2023. URL https://arxiv.org/
abs/2312.14852.

Ruosen Li, Teerth Patel, and Xinya Du. Prd: Peer rank and discussion improve large language model
based evaluations, 2024c. URL https://arxiv.org/abs/2307.02762.

11

https://arxiv.org/abs/2501.12948
https://github.com/ggml-org/llama.cpp
https://gemini.google.com/
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2506.12204
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://arxiv.org/abs/2408.13510
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2405.04819
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2312.14852
https://arxiv.org/abs/2312.14852
https://arxiv.org/abs/2307.02762

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi Chen, and Zhihao
Jia. Towards efficient generative large language model serving: A survey from algorithms to
systems. arXiv preprint arXiv:2312.15234, 2023.

Microsoft. Deepspeed-mii, 2022. URL https://github.com/microsoft/
deepspeed-mii.

NVIDIA. Tensorrt-llm, 2023. URL https://github.com/NVIDIA/TensorRT-LLM.

OpenAI. chatgpt, 2025. URL http://chat.openai.com/.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran
Xu. Mooncake: A kvcache-centric disaggregated architecture for llm serving, 2024. URL
https://arxiv.org/abs/2407.00079.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew Kalbarczyk, Tamer Başar, and Ravishankar K Iyer. Power-aware deep learning model
serving with {µ-Serve}. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pp.
75–93, 2024a.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew T Kalbarczyk, Tamer Başar, and Ravishankar K Iyer. Efficient interactive llm serving
with proxy model-based sequence length prediction. arXiv preprint arXiv:2404.08509, 2024b.

Rana Shahout, Eran Malach, Chunwei Liu, Weifan Jiang, Minlan Yu, and Michael Mitzenmacher.
Don’t stop me now: Embedding based scheduling for llms, 2024. URL https://arxiv.org/
abs/2410.01035.

Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha Choukse. Dynamollm: Design-
ing llm inference clusters for performance and energy efficiency. arXiv preprint arXiv:2408.00741,
2024.

ShareGPT Team. Sharegpt, 2023. URL https://sharegpt.com/.

Tinghao Xie, Xiangyu Qi, Yi Zeng, Yangsibo Huang, Udari Madhushani Sehwag, Kaixuan Huang,
Luxi He, Boyi Wei, Dacheng Li, Ying Sheng, Ruoxi Jia, Bo Li, Kai Li, Danqi Chen, Peter
Henderson, and Prateek Mittal. Sorry-bench: Systematically evaluating large language model
safety refusal, 2025. URL https://arxiv.org/abs/2406.14598.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for Transformer-Based generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/yu.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu,
Zhikai Li, Qingyi Gu, Yong Jae Lee, et al. Llm inference unveiled: Survey and roofline model
insights. arXiv preprint arXiv:2402.16363, 2024.

12

https://github.com/microsoft/deepspeed-mii
https://github.com/microsoft/deepspeed-mii
https://github.com/NVIDIA/TensorRT-LLM
http://chat.openai.com/
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2410.01035
https://arxiv.org/abs/2410.01035
https://sharegpt.com/
https://arxiv.org/abs/2406.14598
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2305.10601
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ranran Zhen, Juntao Li, Yixin Ji, Zhenlin Yang, Tong Liu, Qingrong Xia, Xinyu Duan, Zhefeng
Wang, Baoxing Huai, and Min Zhang. Taming the titans: A survey of efficient llm inference
serving, 2025. URL https://arxiv.org/abs/2504.19720.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024a. URL https://arxiv.
org/abs/2312.07104.

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You. Response length
perception and sequence scheduling: An llm-empowered llm inference pipeline, 2023. URL
https://arxiv.org/abs/2305.13144.

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You. Response length
perception and sequence scheduling: An llm-empowered llm inference pipeline. Advances in
Neural Information Processing Systems, 36, 2024b.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving. arXiv preprint arXiv:2401.09670, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

13

https://arxiv.org/abs/2504.19720
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2305.13144

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LLMS

We employed ChatGPT (OpenAI, 2025) and Gemini (Google, 2025) for the following purposes:

• polishing selected sentences to improve readability,

• exploring effective formats for figures and tables, and

• filtering useful requests in the ShareGPT dataset.

A.2 DATASET DETAILS

ShareGPT: We use ChatGPT to filter useful requests and remove uninformative or nonsensical ones.

TACO: In thinking mode, we select requests containing fewer than 100 words, since excessively long
requests are likely to produce generations exceeding 16,384 tokens, the default maximum length for
all datasets in thinking mode.

A.3 LLM GENERALIZATION

To further examine generalization, we also evaluate Qwen-32B and DeepSeek-V3.1, with Kendall’s
Tau values reported in Table 9. In the mathematics domain, both models perform nearly identically,
suggesting comparable mathematical reasoning abilities. For code, Qwen-32B performs better,
whereas DeepSeek-V3.1 shows a slight decline. In contrast, on general-domain tasks, DeepSeek-V3.1
achieves strong results. These findings indicate that our method remains effective across models of
different scales and families.

Qwen-14B Qwen-32B DeepSeek-V3.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ke
nd

al
l's

 Ta
u

0.64
0.61

0.63

0.50

0.55

0.410.41

0.46

0.54

NuminaMath
TACO
ShareGPT

Figure 9: Kendall’s Tau comparison of Qwen-14B, Qwen-32B, and DeepSeek-V3.1.

A.4 PROMPT TEMPLATES

We provide math prompts for PREFILLONLY, RANKONLY, and LENGTHONLY. For the code and
ShareGPT settings, the same templates are applied by simply replacing the math content with code or
conversational tasks.

Math System Prompt (PrefillOnly)

CRITICAL FORMAT: Output ONLY a number, no extra text.
You are an expert at predicting response lengths and identifying the

shortest query for math reasoning problems.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Math Prompt (PrefillOnly)

TASK: From the {mini_size} queries below, identify the SINGLE
shortest one for math reasoning problems.

Return ONLY its position ID (0-9).

OUTPUT FORMAT:
<A NUMBER> (e.g. 5)

Problems:
Position 0: ...
Position 1: ...

Math System Prompt (RankOnly)

CRITICAL FORMAT: Output ONLY between markers, no extra text.
You are an expert in ranking math reasoning problems by difficulty.
Easier = faster = higher priority; harder = slower = lower priority.

Math Prompt (RankOnly)

TASK: Given {mini_size} problems, assign each a rank: 1=easiest {
mini_size}=hardest.

Ranks can repeat if difficulty is similar.

Difficulty guide:
1-3 easy, 4-6 moderate, 7-8 hard, 9+ hardest.

OUTPUT FORMAT:
<<
r1,r2,...,r{mini_size}
>>

Problems:
Position 0: ...
Position 1: ...

Math System Prompt (LengthOnly)

You are an expert at predicting response token counts for math
reasoning problems.

Task: estimate exact token counts (not ranges).
Output only comma-separated numbers, no extra text.

Math Prompt (LengthOnly)

TASK: Predict token counts for {mini_size} math problems.

GUIDELINES:
- Simple: 80-200
- Standard: 200-400
- Complex: 400-700
- Very complex: 700+

OUTPUT FORMAT:
[number1],[number2],...,[number{mini_size}]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Problems:
Position 0: ...
Position 1: ...

Return only a single line:
n1,n2,...,n{mini_size}

A.5 PERFORMANCE AT P99

For a more comprehensive analysis, we report the performance of TTFT, TPOT, and latency at P99
(Figure 10). The results show that improvements in latency and TPOT are even more substantial,
highlighting the effectiveness of batching requests with similar lengths to mitigate long-tail effects and
enhance parallel efficiency. However, this approach also introduces a drawback, as longer requests
tend to have a negative impact on TTFT.5 10 15 20 25 30

Request Rate (seq/s)

1

2

3

4

m
s

1e5 TTFT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

2

4

6

8

m
s

1e2 TPOT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

0.25

0.50

0.75

1.00

1.25

m
s

1e3 Latency (P95)
FCFS
PrefillOnly
RankOnly
LengthOnly

5 10 15 20 25 30
Request Rate (seq/s)

3.0

3.5

4.0

4.5

5.0

5.5

m
s

1e5 TTFT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

0.5

1.0

1.5

m
s

1e3 TPOT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

1

2

3

m
s

1e3 Latency (P99)

(a) NuminaMath
5 10 15 20 25 30

Request Rate (seq/s)

3

4

5

m
s

1e5 TTFT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

2

3

4

5

m
s

1e2 TPOT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

0.4

0.6

0.8

1.0

m
s

1e3 Latency (P95)
FCFS
PrefillOnly
RankOnly
LengthOnly

5 10 15 20 25 30
Request Rate (seq/s)

3.5

4.0

4.5

5.0

5.5

6.0

m
s

1e5 TTFT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

0.2

0.4

0.6

0.8

1.0

m
s

1e3 TPOT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

0.50

0.75

1.00

1.25

1.50

1.75

m
s

1e3 Latency (P99)

(b) TACO
5 10 15 20 25 30

Request Rate (seq/s)

0

2

4

6

8

m
s

1e4 TTFT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

2

3

4

5

m
s

1e2 TPOT (P95)

5 10 15 20 25 30
Request Rate (seq/s)

1.0

1.5

2.0

2.5

3.0

m
s

1e2 Latency (P95)
FCFS
PrefillOnly
RankOnly
LengthOnly

5 10 15 20 25 30
Request Rate (seq/s)

0.2

0.4

0.6

0.8

1.0

m
s

1e5 TTFT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

0.2

0.4

0.6

0.8

1.0

1.2

m
s

1e3 TPOT (P99)

5 10 15 20 25 30
Request Rate (seq/s)

2

4

6

8

m
s

1e2 Latency (P99)

(c) ShareGPT

Figure 10: Performance of NuminaMath, TACO, and ShareGPT on TTFT, TPOT, and latency at P99.

A.6 THROUGHPUT IN THINKING MODE

For a more comprehensive analysis, we evaluate throughput using 1,000 samples under two settings:
a fixed duration of 20 minutes and a fixed workload of 100 requests. Table 3 presents the results
under thinking mode. All datasets show clear improvements, consistent with the trends observed in
the non-thinking setting.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dataset Fixed Duration (20 minutes) Fixed Workload (100 requests)

FCFS LENGTHONLY Speedup FCFS LENGTHONLY Speedup

NuminaMath 25 124 4.96× 108.23 min 15.02 min 7.21×
TACO 7 22 3.14× 301.17 min 117.63 min 2.55×
ShareGPT 203 250 1.23× 4.45 min 2.80 min 1.59×

Table 3: Throughput comparison of scheduling methods across multiple domains in thinking mode.

17

	Introduction
	Related Works
	LLM Inference Scheduling
	Length Prediction Approaches
	LLM As a Judge and Self-Evaluation

	Methodology
	Problem Formulation
	LLM Self-Scheduling
	Evaluation Metric: Kendall’s Tau-b with Ties
	Constructing the Gold Ranking with Ties
	LLM-Based Ranking Strategies
	Unified Self-Scheduling with Anti-Starvation Mechanism

	Experiment
	Dataset
	Environment

	Analyses
	Kendall's Tau
	Performance
	Throughput
	Extra Cost
	Starvation

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	The Use of LLMs
	Dataset Details
	LLM Generalization
	Prompt Templates
	Performance at P99
	Throughput in Thinking Mode

