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ABSTRACT

The ability to deliver fast responses under strict latency requirements is critical
for Large Language Model (LLM) inference serving. Most existing systems
rely on a first-come-first-served (FCFS) scheduling policy, which often suffers
from head-of-line blocking. While a number of solutions have been proposed,
they typically require training additional models or auxiliary predictors, such
as BERT, to estimate decoding lengths. These approaches limit generalization
and necessitate retraining for new domains or distributions. To address these
limitations, we propose self-scheduling with LLM, a novel approach that leverages
the reasoning capabilities of the LLM itself without requiring extra training or
auxiliary models. We systematically investigate a range of feasible strategies and
conduct extensive analyses. Experimental results show that our method achieves
up to a 5× improvement in TTFT, a 3× improvement in TPOT, a 6× reduction in
latency, and a 9× increase in throughput under both general and domain-specific
workloads, with negligible overhead. This work offers a lightweight yet intelligent
scheduling paradigm, demonstrating both practicality and strong potential for LLM
inference serving.
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Figure 1: Comparison of traditional scheduling methods and the proposed approach.

1 INTRODUCTION

Large Language Models (LLMs) and their applications such as ChatGPT (OpenAI, 2025), DeepSeek
(DeepSeek-AI et al., 2025), Qwen (Yang et al., 2025), Gemini (Google, 2025), and Cursor (Cursor,
2025) are increasingly integrated into daily life, processing massive volumes of user requests. This
demand poses substantial challenges to meeting Service Level Objectives (SLOs), particularly with
respect to maintaining low latency. Since users expect rapid responses, measuring and optimizing key
performance metrics is essential. The primary metrics of concern are Time to First Token (TTFT),
Time per Output Token (TPOT), and Total Latency (Agarwal et al., 2023; Zhong et al., 2024; Qin
et al., 2024; Yu et al., 2022; Agrawal et al., 2024). Improving these metrics remains a central objective
in LLM optimization research, with efficient scheduling for LLM inference emerging as a critical
direction for addressing these challenges (Zhou et al., 2024; Zhen et al., 2025).
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Figure 2: Illustration of head-of-line blocking and real-world data distributions. (a) Prioritizing
shorter requests improves overall efficiency. Here, the default assumption is that the LLM processes
one token per second, with the prefill effect ignored. (b) Response length distribution of Qwen3-14B
on a subset of NuminaMath dataset.

A widely adopted scheduling strategy is first-come-first-served (FCFS), which is simple to implement
but suffers from head-of-line blocking (Kaffes et al., 2019) due to the long-tail phenomenon, as
shown in Figure 2. In this setting, a few long requests may delay the execution of many shorter
ones, resulting in severe inefficiencies. To address this challenge, an increasing body of research has
explored predicting request lengths and scheduling accordingly (Cheng et al., 2024; Hu et al., 2024;
Zheng et al., 2024b; Hua et al., 2025; Fu et al., 2024). These methods typically employ auxiliary
models such as regression predictors, lightweight LMs, or embedding-based classifiers to estimate
generation length prior to decoding. Although effective in controlled settings, such approaches face
two key limitations. First, they introduce additional training overhead, thereby increasing system
complexity. Second, their generalization capacity is limited: when request distributions or application
domains shift, retraining or fine-tuning is often required, as illustrated in Figure 1. This lack of
adaptability poses a significant barrier to real-world deployment.

LLMs, however, possess powerful reasoning capabilities, as demonstrated in tasks such as LLM-
as-a-Judge (Li et al., 2025), which has been widely applied across diverse scenarios. Building on
this observation, we propose a new paradigm: Training-Free Self-Scheduling for LLM inference.
Rather than relying on external predictors, we directly leverage the reasoning ability of the LLM
itself to assist in scheduling decisions. This approach eliminates the need for additional training
or auxiliary models, making it lightweight, adaptive, and easy to deploy. We further introduce a
self-scheduling-aware starvation mitigation mechanism to ensure fairness in cases where requests
might otherwise be indefinitely delayed.

Extensive and fine-grained experimental analyses demonstrate that our method is both simple and
effective: it generalizes seamlessly across domains and achieves substantial improvements in TTFT,
TPOT, and overall latency. Beyond performance gains, our study offers a broader insight: LLMs can
function not only as inference engines but also as intelligent schedulers of their own workloads. This
work thus opens a new direction for intelligent scheduling in LLM systems.

To summarize, our contributions are as follows:

• Training-Free Self-Scheduling: We introduce a novel scheduling paradigm that eliminates
the reliance on auxiliary models and retraining.

• Strategy Design and Evaluation: We systematically develop and assess multiple strategies
for leveraging the reasoning capabilities of LLMs, thoroughly exploring the feasibility and
effectiveness of self-scheduling.

• Empirical Validation: We demonstrate that our approach yields substantial improvements
in TTFT, TPOT, and latency across diverse workloads, domains, and decoding modes.
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• Future Research Directions: We present a practical and intelligent solution that not only
addresses current challenges in LLM inference scheduling but also opens a promising
direction for future research.

2 RELATED WORKS

While our work introduces LLM self-scheduling as a lightweight and adaptive paradigm, it is closely
related to prior efforts on inference scheduling and generation length prediction. In this section, we
review existing approaches, highlighting their strengths and limitations, and position our method in
relation to two major directions: (a) LLM Inference Scheduling, (b) scheduling methods based on
length prediction, and (c) the emerging paradigm of LLMs as self-evaluators.

2.1 LLM INFERENCE SCHEDULING

The rapid growth of LLM applications has heightened the need for efficient inference scheduling
(Miao et al., 2023; Yuan et al., 2024; Zhou et al., 2024). Various approaches have been proposed to
improve efficiency, such as iterative scheduling (Yu et al., 2022), along with a range of open-source
frameworks, including vLLM (Kwon et al., 2023), TensorRT-LLM (NVIDIA, 2023), SGLang (Zheng
et al., 2024a), TGI (HuggingFace, 2023), DeepSpeed-MII (Microsoft, 2022), and llama.cpp (ggml
org, 2022). In most of these frameworks, FCFS remains the default scheduling policy, highlighting
the necessity of exploring more efficient alternatives.

2.2 LENGTH PREDICTION APPROACHES

The uncertainty of generation length poses one of the greatest challenges in request scheduling,
making accurate length prediction a fundamental requirement. Prior studies have proposed a variety
of prediction techniques that can be broadly classified into three categories (Zhen et al., 2025).

Exact prediction methods estimate the token count directly using approaches such as BERT em-
beddings with random forest regression (Cheng et al., 2024), lightweight OPT models (Hu et al.,
2024), or constrained regression techniques (Qiu et al., 2024b). Range-based classification methods
instead partition requests into length bins, either by predicting ranges from prompts (Zheng et al.,
2024b; Jin et al., 2023; Jain et al., 2024; Qiu et al., 2024a; Stojkovic et al., 2024; Hua et al., 2025) or
by employing real-time classifiers over token embeddings (Shahout et al., 2024). Relative ranking
methods focus on ordering requests according to expected lengths; for example, Fu et al. (2024)
predicts pairwise relationships within the same batch to enhance robustness and mitigate overfitting.

Notably, Zheng et al. (2023) introduced the earliest attempt to leverage LLMs for directly predicting
request lengths. However, at that time, LLMs lacked the strong instruction-following ability of
current models and still required additional post-training to perform length prediction effectively.

They either rely on auxiliary models or require additional training, which imposes limitations on both
generalizability and usability.

2.3 LLM AS A JUDGE AND SELF-EVALUATION

The paradigm of using LLMs as evaluators has become a widely adopted reward mechanism (Li
et al., 2025). Typical approaches include assigning scores to individual responses (Li et al., 2024a;
Xie et al., 2025), ranking multiple candidates (Li et al., 2024c), or selecting one or more options from
a given set (Yao et al., 2023; Li et al., 2024b). In this work, we primarily adopt scoring and ranking
strategies.

Overall, existing solutions reduce latency but remain constrained by training overhead and poor
generalization. Inspired by LLM-as-a-Judge, our work is the first to systematically explore LLM
self-scheduling, which leverages the model’s own reasoning ability for scheduling without auxiliary
predictors.
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Figure 3: An illustrative example of a simple self-scheduling mechanism without starvation control.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We consider the problem of scheduling a set of requestsR = {r1, r2, . . . , rn} submitted to an LLM
inference server. Each request ri produces a response of unknown length L(ri) measured in tokens.
Since the true lengths are not available prior to decoding, a scheduling policy must rely on estimates
L̂(ri) to decide the execution order. The goal is to minimize tail latency by avoiding head-of-line
blocking caused by long requests.

Formally, the scheduling task can be expressed as learning a ranking function f : R → Rn that
outputs a permutation over requests. The ideal ranking R∗ is obtained by sorting requests in ascending
order of their true lengths L(ri).

3.2 LLM SELF-SCHEDULING

Instead of training auxiliary predictors, we leverage the reasoning ability of the LLM itself to estimate
request characteristics. Given a set of requests, we prompt the LLM to provide a relative ranking of
their expected response lengths. The LLM outputs a predicted rank R̂, where ties are allowed (i.e.,
multiple requests may be assigned the same rank).

This approach is lightweight and adaptive: no additional training is required, and the same method
can be applied across different domains without retraining.

3.3 EVALUATION METRIC: KENDALL’S TAU-B WITH TIES

Since the predicted ranking R̂ may contain ties, we evaluate agreement with the gold ranking R⋆

using Kendall’s tau-b:

τb(Ra, Rb) =
nc − nd√

(n0 − na)(n0 − nb)
, (1)

where nc and nd are the numbers of concordant and discordant pairs, n0 =
(
n
2

)
is the total number of

pairs, and na, nb are the numbers of tied pairs in Ra and Rb. This extension ensures ties are handled
fairly, making τb a robust measure for our setting.

Thus, τb ranges from −1 (completely reversed order) to +1 (perfect agreement), with ties properly
handled.
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Figure 4: Overview of our LLM-based scheduling methods.

3.4 CONSTRUCTING THE GOLD RANKING WITH TIES

Goal. We seek a gold ranking R⋆ of requests by true response length that (i) orders requests from
short to long and (ii) treats near-equal responses as ties. This is necessary because our evaluation
metric (Kendall’s τb) explicitly accounts for ties, and because tiny length differences should not
induce artificial strict orderings.

Setup. Let R = {r1, . . . , rn} be requests with true response lengths L(ri) ∈ R≥0. We first sort
requests in non-decreasing order of length:

(r(1), . . . , r(n)) s.t. L(r(1)) ≤ · · · ≤ L(r(n)).

For brevity, denote L(i) := L(r(i)).

Tie rule (relative threshold). For each adjacent pair (i − 1, i) with i ≥ 2, we define a pairwise
relative threshold:

εi = α×
L(i−1) + L(i)

2
. (2)

We declare r(i−1) and r(i) tied if
|L(i) − L(i−1)| ≤ εi. (3)

When L(i−1) = L(i) = 0, we set εi = 0; hence zero-length items are tied only if exactly equal.

Rank assignment. Let g(i) be the gold rank of r(i). We use “competition ranking” (a.k.a. 1224
ranking): the first item gets rank 1. For i ≥ 2,

g(i) =

{
g(i−1), if |L(i) − L(i−1)| ≤ εi (tie),

i, otherwise.
(4)

This yields ranks such as 1, 1, 3, 4, 4, 6, . . . , preserving ties and skipping integers after tied groups.

3.5 LLM-BASED RANKING STRATEGIES

Our approach processes a batch of incoming requests (e.g., 10 requests) and uses the LLM to predict
their relative execution order or expected response lengths. We propose three variants, as shown in
Figure 4:

PREFILLONLY: Leverages the logits from the prefill stage. Since the token–probability mapping
reflects the likelihood of each request being the shortest, the highest-probability logit corresponds to
rank 1, the second highest to rank 2, and so on.

RANKONLY: Directly prompts the LLM to output a ranked list of request IDs (e.g., 1,4,3,5,2) with
only a few decoding steps.

LENGTHONLY: Asks the LLM to predict the response length (in tokens) for each request in the
batch, after which the requests are ranked according to the predicted lengths.
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Algorithm 1 Unified Batching and Priority Scheduling

Require: batch_size B, timeout T , threshold, quantum_steps, max_promotions
1: Q← ∅,R ← ∅, timer off
2: while running do
3: if request arrives then
4: init request and push to Q; start timer if off
5: end if
6: if |Q| ≥ B or timer≥ T then
7: make rank_prompt from Q with rank_id= −∞; add toR; clear Q; reset timer
8: end if
9: // Anti-starvation promotion

10: find and promote candidates with starvation ≥ threshold
11: set priority← TRUE, quantum← quantum_steps for promoted requests
12: sortR by (priority, rank_id, arrival_time); select runnable set S
13: for each x ∈ S do
14: run(x); x.starvation← 0
15: if x is rank_prompt AND x finishes then
16: retrieve rank info from x’s response
17: for each request in the original batch, update its rank_id based on the rank info
18: end if
19: if x.priority then
20: x.quantum–; if x.quantum ≤ 0, x.priority← FALSE
21: end if
22: end for
23: for each y ∈ R \ S do
24: y.starvation++
25: end for
26: remove finished fromR
27: end while

3.6 UNIFIED SELF-SCHEDULING WITH ANTI-STARVATION MECHANISM

To prevent requests with longer responses from being blocked for excessive periods, we integrate our
self-scheduling approach with an anti-starvation mechanism, as illustrated in Algorithm 1.

4 EXPERIMENT

4.1 DATASET

To evaluate the robustness of our proposed methods, we selected a diverse set of datasets spanning
both general-purpose and domain-specific tasks, including mathematics and code. These datasets also
cover a wide spectrum of difficulty levels, ensuring that the evaluation reflects performance across
varied and challenging scenarios.

NuminaMath (Beeching et al., 2024): This dataset is specifically designed to evaluate a model’s
mathematical reasoning abilities. It includes a vast collection of competition-level math problems
accompanied by detailed chain-of-thought (CoT) solutions, which help enhance a model’s step-by-
step reasoning for complex tasks.

TACO (Li et al., 2023): Short for “Topics in Algorithmic COde generation dataset”, this is a large-
scale, open-source dataset designed to be a more challenging benchmark for code generation models.
It features competition-level programming questions focused on algorithmic topics, which helps
evaluate a model’s understanding and reasoning in real-world programming scenarios.

ShareGPT (Team, 2023): This is a high-quality, open-source conversational dataset widely used
for training LLMs on instruction-following and dialogue generation tasks. It comprises filtered
conversation samples derived from real-world user interactions with advanced language models.
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Figure 5: Kendall’s Tau comparison of FCFS, PREFILLONLY, RANKONLY, and LENGTHONLY.

4.2 ENVIRONMENT

All experiments were conducted on a server equipped with eight NVIDIA A100 GPUs, each with 40
GB of memory. The software environment was configured with CUDA 12.8 and vLLM version 0.9.2.
We employed vLLM version 0.9.2 with the following configuration: starvation_threshold_steps = 4,
priority_quantum_steps = 32, and max_promotions_per_round = 16. To ensure the generalizability
of our results, each experiment was repeated four times with different random seeds, and the reported
values correspond to the average across these runs. With respect to preemption and swapping
operations, we followed the default implementation provided in vLLM. In addition, we did not
employ chunked prefill in our experiments.

5 ANALYSES

5.1 KENDALL’S TAU

As illustrated in Figure 5, Kendall’s Tau varies across the three proposed approaches in different
domains. the performance improves progressively from FCFS to PREFILLONLY, RANKONLY,
and finally LENGTHONLY. This progression is logically consistent. PREFILLONLY relies on the
probability distribution over the first token, which does not fully capture the model’s generative
behavior. RANKONLY implicitly leverages the model’s ability to predict sequence length for ranking,
but this indirect approach leads to some performance degradation. In contrast, LENGTHONLY directly
predicts the decoding length and constructs the ranking offline, making it the most straightforward
and effective strategy. Intuitively, mathematical problems are relatively easier to predict, conversation
queries in ShareGPT are more complex, and code-related tasks fall in between.

The small fluctuations observed at lower request rates can be attributed to the reduced batch size
in those settings. As the request rate increases, the batch size approaches its maximum (i.e., 10),
stabilizing the performance trends.

In terms of computational overhead, PREFILLONLY incurs the least cost as it requires only prefilling,
RANKONLY demands a moderate amount of decoding overhead (∼ 20 tokens), while LENGTHONLY
has the highest decoding overhead (∼ 40 tokens). We provide additional experiments to validate this
extra-cost analysis in Sec 5.4.

5.2 PERFORMANCE

For a comprehensive evaluation of our three methods (PREFILLONLY, RANKONLY, and LENGTH-
ONLY), we report TTFT, TPOT, and latency per request at P95 across NuminaMath, TACO, and
ShareGPT (Figure 6).

At request rates below 10 (Poisson Distribution), some fluctuations appear. This occurs because a
larger proportion of small requests are batched with rank prompts, thereby increasing the number of
ranking operations. In addition, sorting multiple requests together is more effective than handling
them sporadically, as it introduces more comparative relationships.
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Figure 6: Performance of NuminaMath, TACO, and ShareGPT on TTFT, TPOT, and latency at P95.

As the request rate increases, performance gradually stabilizes. Among the proposed methods,
LENGTHONLY consistently achieves the best results across all metrics. This observation aligns with
Sec. 5.1, confirming that ranking accuracy is directly correlated with overall performance.

For TTFT, improvements are most pronounced on the math (5×) and code (1.6×) datasets but
relatively modest on ShareGPT. This is because math and code exhibit stronger long-tail effects:
longer requests can be deferred while shorter ones are prioritized, thereby reducing delays. In contrast,
ShareGPT shows a weaker long-tail distribution, so reordering yields less benefit.

For TPOT, we also observe clear improvements, particularly in math is 2.5×. By grouping requests
of similar lengths, reordering enhances GPU parallel utilization and mitigates the drag caused by
long-tail requests, resulting in smoother generation.

Finally, latency shows the most substantial improvement, with math achieving 6×, Code 3×, and
ShareGPT 2×. Short requests are completed more quickly, reducing delay for the majority of tasks,
while longer requests are still efficiently processed in parallel, further improving GPU utilization.

We further evaluate the methods in thinking mode across all datasets (Figure 7), showing that response
lengths in thinking and non-thinking modes remain relatively consistent. This demonstrates the
generalization ability of our approach across both domains and decoding modes.

Note that all reported results are obtained with ranking operations enabled.

5.3 THROUGHPUT

To conduct a comprehensive throughput analysis, we evaluated each method using 3,000 requests
under two experimental settings: (i) a fixed duration of 10 minutes and (ii) a fixed workload of
500 requests. Table 1 summarizes the throughput achieved by the baseline and the LENGTHONLY
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Figure 7: Growth rate comparison of NuminaMath, TACO, and ShareGPT in thinking mode.

Dataset Fixed Duration (10 minutes) Fixed Workload (500 requests)

FCFS LENGTHONLY Speedup FCFS LENGTHONLY Speedup

NuminaMath 211 948 4.49× 28.50 min 3.48 min 9.33×
TACO 202 412 2.04× 38.27 min 11.83 min 3.23×
ShareGPT 689 986 1.43× 6.23 min 4.03 min 1.55×

Table 1: Throughput comparison of scheduling methods across multiple domains.

strategy across multiple datasets. The results show consistent improvements, ranging from modest to
substantial gains, confirming that our method benefits not only end users but also service providers.

5.4 EXTRA COST

Dataset FCFS LENGTHONLY
NuminaMath 11m 6s 530ms 11m 6s 585ms

Table 2: Extra cost in 20 requests.

To evaluate the worst-case scenario, we select
20 math requests with rate = 64 and batch size
= 1, since larger batches naturally mitigate this
effect. In this setting, the system requires two
ranking prompts and a fixed decoding length
of 40 tokens. As shown in Figure 2, LENGTHONLY introduces only 55 ms of additional latency
compared with the baseline, demonstrating that our method incurs negligible overhead.

5.5 STARVATION

TPOT-P99 Latency-P99
0

100

200

300

400
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m
s

391

465

268

360

Baseline LengthOnly

Figure 8: Starvation ablation.

Our rank-aware starvation prevention method significantly
improves performance. We conducted an experiment com-
paring our method with a no-starvation method. The re-
sults demonstrate a remarkable improvement: a nearly
50% reduction in TPOT-P99 and a nearly 30% reduction
in Latency-P99. Importantly, these improvements were
achieved without compromising performance on other P99
metrics, which remained consistent.

6 CONCLUSION

This work is the first to demonstrate the feasibility of leveraging existing LLMs for self-scheduling
without training additional models. We proposed three scheduling strategies, from decoding-free to
minimally decoding approaches, and showed their effectiveness across diverse domains, including
mathematics, code, and general-purpose datasets, under both thinking and non-thinking modes.
To further mitigate starvation, we incorporated a rank-aware prevention mechanism. Our study
introduces a novel paradigm that opens new directions for intelligent scheduling in LLM inference.
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7 ETHICS STATEMENT

This work focuses on improving the efficiency of LLM inference serving through self-scheduling
techniques. Our contributions are primarily methodological and system-level, without introducing
new datasets or collecting human subjects data. All datasets used in this study (NuminaMath, TACO,
and ShareGPT) are publicly available and widely adopted in prior research.

8 REPRODUCIBILITY STATEMENT

This work is conducted using the open-source framework vLLM. We confirm that all hardware
specifications and key hyperparameter details are reported in Sec. 4.2, dataset processing details are
provided in Sec. A.2, and prompt settings are described in Sec. A.4.
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A APPENDIX

A.1 THE USE OF LLMS

We employed ChatGPT (OpenAI, 2025) and Gemini (Google, 2025) for the following purposes:

• polishing selected sentences to improve readability,

• exploring effective formats for figures and tables, and

• filtering useful requests in the ShareGPT dataset.

A.2 DATASET DETAILS

ShareGPT: We use ChatGPT to filter useful requests and remove uninformative or nonsensical ones.

TACO: In thinking mode, we select requests containing fewer than 100 words, since excessively long
requests are likely to produce generations exceeding 16,384 tokens, the default maximum length for
all datasets in thinking mode.

A.3 LLM GENERALIZATION

To further examine generalization, we also evaluate Qwen-32B and DeepSeek-V3.1, with Kendall’s
Tau values reported in Table 9. In the mathematics domain, both models perform nearly identically,
suggesting comparable mathematical reasoning abilities. For code, Qwen-32B performs better,
whereas DeepSeek-V3.1 shows a slight decline. In contrast, on general-domain tasks, DeepSeek-V3.1
achieves strong results. These findings indicate that our method remains effective across models of
different scales and families.
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Figure 9: Kendall’s Tau comparison of Qwen-14B, Qwen-32B, and DeepSeek-V3.1.

A.4 PROMPT TEMPLATES

We provide math prompts for PREFILLONLY, RANKONLY, and LENGTHONLY. For the code and
ShareGPT settings, the same templates are applied by simply replacing the math content with code or
conversational tasks.

Math System Prompt (PrefillOnly)

CRITICAL FORMAT: Output ONLY a number, no extra text.
You are an expert at predicting response lengths and identifying the

shortest query for math reasoning problems.
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Math Prompt (PrefillOnly)

TASK: From the {mini_size} queries below, identify the SINGLE
shortest one for math reasoning problems.

Return ONLY its position ID (0-9).

OUTPUT FORMAT:
<A NUMBER> (e.g. 5)

Problems:
Position 0: ...
Position 1: ...

Math System Prompt (RankOnly)

CRITICAL FORMAT: Output ONLY between markers, no extra text.
You are an expert in ranking math reasoning problems by difficulty.
Easier = faster = higher priority; harder = slower = lower priority.

Math Prompt (RankOnly)

TASK: Given {mini_size} problems, assign each a rank: 1=easiest {
mini_size}=hardest.

Ranks can repeat if difficulty is similar.

Difficulty guide:
1-3 easy, 4-6 moderate, 7-8 hard, 9+ hardest.

OUTPUT FORMAT:
<<
r1,r2,...,r{mini_size}
>>

Problems:
Position 0: ...
Position 1: ...

Math System Prompt (LengthOnly)

You are an expert at predicting response token counts for math
reasoning problems.

Task: estimate exact token counts (not ranges).
Output only comma-separated numbers, no extra text.

Math Prompt (LengthOnly)

TASK: Predict token counts for {mini_size} math problems.

GUIDELINES:
- Simple: 80-200
- Standard: 200-400
- Complex: 400-700
- Very complex: 700+

OUTPUT FORMAT:
[number1],[number2],...,[number{mini_size}]
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Problems:
Position 0: ...
Position 1: ...

Return only a single line:
n1,n2,...,n{mini_size}

A.5 PERFORMANCE AT P99

For a more comprehensive analysis, we report the performance of TTFT, TPOT, and latency at P99
(Figure 10). The results show that improvements in latency and TPOT are even more substantial,
highlighting the effectiveness of batching requests with similar lengths to mitigate long-tail effects and
enhance parallel efficiency. However, this approach also introduces a drawback, as longer requests
tend to have a negative impact on TTFT.5 10 15 20 25 30
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(a) NuminaMath
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(b) TACO
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(c) ShareGPT

Figure 10: Performance of NuminaMath, TACO, and ShareGPT on TTFT, TPOT, and latency at P99.

A.6 THROUGHPUT IN THINKING MODE

For a more comprehensive analysis, we evaluate throughput using 1,000 samples under two settings:
a fixed duration of 20 minutes and a fixed workload of 100 requests. Table 3 presents the results
under thinking mode. All datasets show clear improvements, consistent with the trends observed in
the non-thinking setting.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dataset Fixed Duration (20 minutes) Fixed Workload (100 requests)

FCFS LENGTHONLY Speedup FCFS LENGTHONLY Speedup

NuminaMath 25 124 4.96× 108.23 min 15.02 min 7.21×
TACO 7 22 3.14× 301.17 min 117.63 min 2.55×
ShareGPT 203 250 1.23× 4.45 min 2.80 min 1.59×

Table 3: Throughput comparison of scheduling methods across multiple domains in thinking mode.
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