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ABSTRACT

In arbitrary-order language models, it is an open question how to sample tokens
in parallel from the correct joint distribution. With discrete diffusion models, the
more tokens they generate in parallel, the less their predicted distributions adhere
to the originally learned data distribution, as they rely on a conditional indepen-
dence assumption that only works with infinitesimally small timesteps. We find
that a different class of models, any-subset autoregressive models (AS-ARMs),
holds the solution. As implied by the name, AS-ARMs can generate tokens in any
order, and in parallel. Moreover, AS-ARMs support parallelized joint probability
density estimation, allowing them to correct their own parallel-generated token
distributions, via our Any-Subset Speculative Decoding (ASSD) algorithm. ASSD
provably enables generation of tokens from the correct joint distribution, with the
number of neural network calls upper bounded by the number of tokens predicted
– notably, previous speculative decoding algorithms lack our efficiency guaran-
tee. We empirically verify that ASSD speeds up language generation, without
sacrificing quality. Furthermore, we provide a mathematically justified scheme for
training AS-ARMs for generation, and show that AS-ARMs achieve state-of-the-art
performance among sub-200M parameter models on infilling benchmark tasks,
and nearly match the performance of models 50X larger on code generation. Our
theoretical and empirical results indicate that the once-forgotten AS-ARMs are a
promising direction of language modeling.

1 INTRODUCTION

Almost all the SoTA LLMs (Achiam et al., 2023; Touvron et al., 2023; Liu et al., 2024a; Team et al.,
2023) are autoregressive, i.e., they only support left-to-right token generation. As a result, they suffer
from two major problems: (1) they must generate tokens one-by-one, which limits their speed; (2)
they cannot infill sequences in orders besides left-to-right (unless specialized training strategies are
adopted (Bavarian et al., 2022; Fried et al., 2022; Roziere et al., 2023), but these are heuristic and not
guaranteed to output the correct structure).

Regarding models that inherently support infilling, there are discrete diffusion models (Austin et al.,
2021; Campbell et al., 2022; Lou et al., 2023; Sahoo et al., 2024) and any-order autoregressive models
(AO-ARMs) (Yang, 2019; Shih et al., 2022). Discrete diffusion models have the benefit of parallel
sampling of multiple tokens at a time, which potentially speeds up generation, but at the cost of
fidelity to the learned data distribution (Lou et al., 2023). On the other hand, fast sampling schemes
have generally not been explored for AO-ARMs.

We explore the problem of fast parallel sampling from AO-ARMs, without any degradation in output
quality. Particularly, we are inspired by speculative decoding techniques, which have accelerated
generation in standard autoregressive models by using a draft model to quickly generate multiple
tokens. Then, tokens are accepted or rejected based on their fidelity to the joint distribution as
evaluated by the oracle model. Interestingly, the outputted distribution is provably the same as would
have been obtained from sampling only from the expensive oracle model, while usually (but not
always) using fewer neural network forward passes (Chen et al., 2023; Leviathan et al., 2023). Crucial
to speculative decoding are (1) density estimation from the oracle, and (2) a fast draft model. Indeed,
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AO-ARMs, by design, estimate joint probability density of sequences (Yang, 2019). Furthermore,
AO-ARMs can even act as their own draft models; due to their architectural design and training
objective, they can generate tokens in any order and in parallel (Yang, 2019; Shih et al., 2022).

As such, we propose Any-Subset Speculative Decoding (ASSD), an algorithm that combines specula-
tive decoding with AO-ARMs. ASSD provably generates sequences from the true joint distribution
learned by the oracle model. Our method’s chief advantages over previous speculative decoding
algorithms include: (1) It is mathematically guaranteed to never increase the number of function
evaluations (i.e., language model calls); in practice, this means that it speeds up generation without
losing quality (as we empirically verify). In contrast, vanilla speculative decoding has no such guar-
antee on NFEs, and could slow down runtime in some cases. (2) ASSD can handle O(2N ) possible
infilling tasks, exponentially more than the O(N) allowed by traditional speculative decoding. (3)
We get the speculator "for free", without the need to train an auxiliary draft model.

We also provide a mathematically justified training scheme for AO-ARMs. Finally, we show that
appropriately trained AO-ARMs achieve state-of-the-art performance among sub-200M parameter
models (diffusion and autoregressive) on infilling benchmark tasks, and nearly match the performance
of models 50X larger on code generation, while needing less than half the training tokens.

2 BACKGROUND

Autoregressive Models: Given a text sequence x ∼ D, where D is a data distribution, autoregressive
(AR) models learn

p(x) =

|x|−1∏
i=0

p(xi|x0, . . . , xi−1). (1)

The product rule factorization means that an AR model only needs to learn conditional distributions
with support of size O(S), where S is the size of the vocabulary. This factorization also admits
a straightforward generation strategy, where token xi is sampled from p(·|x0, . . . , xi−1), i.e., the
previous tokens are used to produce the next (Achiam et al., 2023). This also means that the prompt
for an AR model must always be the prefix, i.e., x0:i – arbitrarily-located prompts are not supported.

Infilling: We consider infilling tasks, where the prompt is not necessarily the prefix, but can be
arbitrarily-located. Examples of this are code generation, story completion, and scientific data
imputation. Mathematically, this can be formulated as sampling from a joint conditional probability
distribution with discrete state space. That is, we wish to sample from p(xσ(≥m)|xσ(<m)), where σ(i)
is the (zero-indexed) positional index of the i-th ordered item in the sequence of length N . In other
words, σ is a permutation of {0, 1, . . . , N − 1}, and i is the generation order. So, xσ(<m) represents
the prompt tokens, and xσ(≥m) represents the tokens whose distributions we want to predict. In
general, we can have any σ : {0, . . . , N − 1} → {0, . . . , N − 1}, so long as σ is a bijection. As
previously established, regular AR models cannot address this task in general, except when σ(i) = i.

Any-Order Autoregressive Models: Any-order autoregressive models (AO-ARMs) (Shih et al.,
2022; Hoogeboom et al., 2021; Yang, 2019) can be seen as collections of N ! joint distributions
indexed by the factorization order σ:

log p(xσ(≥m)|xσ(<m)) =

N−1∑
i=m

log p(xσ(i)|xσ(<i);σ). (2)

That is, the distribution for each token is calculated one at a time, in order of increasing i, and used as
conditioning for the next token to be predicted. Concretely, each evaluation of the network produces
a probability distribution (for a single token) with support of size O(S), where S is the size of the
vocabulary. The probability of each member of the support is explicitly calculated and stored in
memory, incurring O(S) memory cost per token.

If trained to optimality, all the joint distributions should be equal. However, except with infinite data
and capacity, given different ordering functions α and σ (Shih et al., 2022),

N−1∑
i=0

log p(xσ(i)|xσ(<i);σ) ̸=
N−1∑
i=0

log p(xα(i)|xα(<i);α). (3)
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Any-Subset Autoregressive Models: Any-subset autoregressive models (AS-ARMs) are a subclass
of AO-ARMs that reduce the number of joint distributions (σ) learned from N ! to 2N . This puts less
training burden on the finite model capacity, while keeping strictly the same expressivity as it relates
to conditional joint distributions of the form in Equation 2. To achieve this, AS-ARMs adopt the
recursive binary lattice mask decomposition protocol from (Shih et al., 2022). The idea underlying
this protocol is that we can split every generation task into two parts: the prompt (denoted by xσ(<m))
and the tokens that need to be generated (denoted by xσ(≥m)). Mathematically, we want to estimate
p(xσ(≥m)|xσ(<m)), where m is the number of tokens in the prompt (assuming 0-indexing). Now,
we make two observations.

Firstly, since we never need to evaluate the density of the conditioning xσ(<m), we have every
token attend to every other token within xσ(<m). Secondly, within xσ(≥m), there is no need to
learn all the possible factorization paths, as long as we can get the joint conditional probability
p(xσ(≥m)|xσ(<m)). Taking inspiration from vanilla autoregressive models, we enforce

∀ i ≥ m, j ≥ m : σ(i) > σ(j)⇔ i > j. (4)

That is, we simply process the masked tokens left to right. Thus, given the location of the prompt, we
only have to learn one path to calculate the joint probability of the generation. This also solves the
inconsistency problem in Equation 3. (As later shown, this is crucial to Algorithm 1’s correctness.)

This reduces the number of queries learned by the model from N ! (all possible permutations) to
2N (all possible mask location selections, times one ordering per mask selection). This makes
optimization easier, as noted by (Shih et al., 2022) and verified in our ablations (Figure 3). In
summary, AS-ARMs are a subclass of AO-ARMs incorporating Equation 4’s disambiguated ordering
strategy. The architecture design is typically the same, but the way we query it is different.

3 SAMPLING STRATEGIES FOR JOINT DISTRIBUTIONS

We want to accurately and efficiently sample from the joint conditional distribution in Equation 2.
We assume that we have access to AS-ARMs that explicitly predict single-variable marginals, i.e.,
next-token prediction under some ordering.

One-Step Sampling from the Joint: Sampling directly from this joint distribution in a single step
is typically infeasible, because its support has size O(SN−m), where S is the number of tokens in
the vocabulary. If we wanted to explicitly calculate the probability of every tuple in the support, the
exponential space cost to just store the distribution would quickly exceed memory capacities.

Sequential Sampling via Factorization: We can sample the log p(xσ(i)|xσ(<i)) one-by-one, using
each generated token as the conditioning for the next one. Following Equation 2, we can get samples
from the joint conditional distribution by doing this N −m times, once for each i ∈ [m,N). In
(any-order, any-subset) autoregressive models (Achiam et al., 2023; Touvron et al., 2023; Yang, 2019;
Shih et al., 2022), there is typically O(S) time cost per-token, so the overall time cost would be
O(S ∗ (N −m)). Indeed, this is the dominant generation strategy for autoregressive models like
GPT (Achiam et al., 2023), where σ(i) = i.

Parallel Sampling via Independence Assumption: At another extreme, we can independently
sample multiple single-variable marginals in parallel. That is, we predict log p(xσ(i)|xσ(<m)) for all
i ∈ [m,N). Since N −m generations are done in parallel, computational time cost is only O(S),
which is effectively constant with respect to the number of tokens. The limitation is that∑

i∈[m,N)

log p(xσ(i)|xσ(<m)) ̸= log p(xσ(≥m)|xσ(<m)), (5)

except in the unlikely scenario of true independence, i.e., log p(xσ(i)|xσ(<m)) = log p(xσ(i)|xσ(<i)).

This is analogous to how discrete diffusion models take large discretized timesteps in the reverse
CTMC to predict tokens in parallel, even though the predictions at each position are actually generated
with a conditional independence assumption that only holds for an infinitesimally small timestep (i.e.,
one-by-one generation) (Lou et al., 2023; Sahoo et al., 2024).

Best of Both Worlds: Any-Subset Speculative Decoding: We seek a way to combine the
runtime benefits of parallel sampling with the fidelity of sequential sampling. That is, can we
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(b) Density Estimation Attention Mask

Figure 1: Attention Masks in AS-ARMs: Red means that attention is not allowed, while green
means that attention is allowed from the query to the key/value. The numbers on each token represent
the generation order, where lower-numbered tokens come first. Panel 1a shows how, by attending to
the same conditioning ("This", "is"), the tokens "machine" and "learning" can be generated in parallel.
They do not attend to themselves nor each other. Panel 1b shows how we can conduct one-step
density estimation on a sequence, with a permuted causal-like attention mask. The mask enforces the
order "is", "This", "learning", "machine", where each token only attends to those decoded before it.

achieve O(S) time complexity for arbitrary-subset generation, while recovering true samples from
log p(xσ(≥m)|xσ(<m))? The key insight here is that if we had an oracle model that could evaluate
the joint density of a sequence with a singular function evaluation, we could leverage the quick speed
of independent parallel generation and use these samples log p(xσ(i)|xσ(<m)) as estimates for the
true log p(xσ(i)|xσ(<i)). Then, via some rejection sampling scheme which uses as an oracle the joint
density evaluation of this newly generated sequence, we could keep only the samples that adhere to
log p(xσ(≥m)|xσ(<m)). In principle, this could take best-case o(S) time (parallelized), if the oracle
accepts all the samples, and worst-case O(S ∗ (N −m)) time.

Speculative decoding is one such method that guarantees fidelity to the true distribution. It is
mathematically proven to generate samples from the target distribution, and the empirical results
show a stark decrease in the number of function evaluations required (Leviathan et al., 2023; Chen
et al., 2023). However, prior to our work, speculative decoding has only been shown to work for
left-to-right (Achiam et al., 2023) autoregressive models.

4 ARCHITECTURAL DESIGN OF AS-ARMS

Towards the goal of fast, principled parallel sampling in any order, we seek any-subset autoregressive
models (AS-ARMs) that can support our Any-Subset Speculative Decoding (ASSD) algorithm (which
is fully described in Section 5). To recap, the criteria are: (1) generates arbitrarily-ordered tokens in
parallel; (2) evaluates joint density with only one forward pass. We now describe how AS-ARMs/AO-
ARM architectures should be designed to fulfill these criteria.

Parallel Sampling via Arbitrary Positional Queries: With one function evaluation, we should
be able to simultaneously predict in parallel (conditionally independent) distributions for all the
masked tokens xσ(≥m), conditioned on the prompt xσ(<m). This allows the network to act as a
quick "draft" model. Concretely, we should be able to pass in arbitrary positional queries σ(≥ m)
of not-yet-predicted tokens to condition on the visible prompt tokens xσ(<m). As implied by the
"any-order" moniker, there is no constraint on which positions we query: we could query the leftmost,
rightmost, or even a randomly selected unfilled position. Furthermore, the positional queries all
attend to the same prompt tokens, but the prompt tokens cannot attend to the positional queries. So,
no matter how many positions we query in parallel, each query cannot change the representations of
the prompt tokens, and therefore cannot change the outcomes of the other simultaneous queries. See
Figure 1a.

Density Estimation via Causal-Like Attention Masking: Another crucial ingredient of speculative
decoding is density estimation – this allows the "oracle" model to correct the mistakes of the draft
model. As such, discrete diffusion models trained with an ELBO (Lou et al., 2023; Sahoo et al., 2024;
Deschenaux & Gulcehre, 2024) are not readily adaptable to this scheme. In contrast, the training
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objective of AO-ARMs/AS-ARMs (Shih et al., 2022; Yang, 2019) teaches them to evaluate joint
densities of sequences.

Care must be taken, however, to pick an architecture that evaluates the joint density of a sequence in
one function evaluation, i.e., O(S) time. Some architectures (Shih et al., 2022; Hoogeboom et al.,
2021) take O(S ∗N) steps, as only logits of masked tokens are predicted at each function evaluation
– they are unable to predict the logits of visible tokens. To get an architecture that can calculate the
logits for all visible and masked tokens in a single function evaluation with O(S) time, we can design
the attention masks for each token to only allow attention (i.e., conditioning) to the preceding tokens
in the ordering. Then, we can construct a factorization as in Equation 2. We process tokens in parallel
with this attention mask, giving us the desired O(S) time. Mathematically,

Aσ(i),σ(j) =

{
0 i ≤ j

1 i > j
, (6)

where Aσ(i),σ(j) is the masking matrix for the attention maps – 0 means that the query token at index
σ(i) is not allowed to attend to the key/value token at index σ(j); 1 means that token σ(i) can attend
to token σ(j). Such an attention mask can yield faithful estimates of log p(xσ(≥i)|xσ(<i)). See
Figure 1b, and Appendix D for further discussion.

Two-for-One Model: Streamlined Drafting: Ideally, we do not want to train a separate draft
model, because it takes extra memory on the hardware and additional training cost. Furthermore, the
computations from the separate draft model cannot necessarily be re-used for the oracle. If the draft
model was the same as the target/oracle model, we would not incur extra memory nor training cost,
and could cache computations from the draft model to accelerate the target calculations.

Suitable Architectures: Many popular architectures actually satisfy the aforementioned constraints,
as they essentially boil down to being able to specify flexible attention masks according to the desired
factorization of the distribution. One suitable architecture family is XLNet encoders (Yang, 2019)
(discussed further in Appendix D). GPT-style decoders (Achiam et al., 2023; Touvron et al., 2023)
can also be minimally modified with specialized positional encodings to become suitable AS-ARM
architectures (Pannatier et al., 2024). We run the following experiments with XLNet.

5 HOW TO MODIFY SPECULATIVE DECODING FOR AS-ARMS?

We present Any-Subset Speculative Decoding (ASSD), and prove some of its properties. See Algorithm
1. See Appendix A for proofs. In the resampling step, we use the notation (f(x))+ = max(0,f(x))∑

x max(0,f(x)) .

Lemma 1. The first token speculated in each loop iteration will always be accepted. That is, Line
19’s conditional always evaluates to true when i = n.

Theorem 1. Algorithm 1 requires no more than N −m total function evaluations of p(·|·). That is,
there will never be more calls to a neural network than the number of tokens returned on Line 28.

Theorem 2. Algorithm 1 produces samples from the true joint distribution p(xσ(≥m)|xσ(<m)).

Based on Lemma 1 and Theorem 1 (see proof), we should always set k > 2 (where k is the number
of speculated tokens per call to the draft model). We also present a variant of ASSD in Appendix E.5
with a context-derived n-gram as the draft model (Stewart et al., 2024). However, this variant does
not fulfill Lemma 1.

Comparison to Speculative Decoding: Superficially, ASSD’s instructions are similar to vanilla
speculative decoding (Chen et al., 2023; Leviathan et al., 2023). However, our ASSD actually has
an important theoretical guarantee that vanilla speculative decoding lacks, in that Theorem 1 upper
bounds the NFEs (draft + oracle) to the number of tokens generated. In contrast, vanilla speculative
decoding has no such guarantee: Leviathan et al. (2023) note that if the draft model is particularly
poor and/or expensive, vanilla speculative decoding can theoretically increase the total NFEs and
therefore runtime (particularly when the drafts keep getting rejected). Furthermore, our algorithm
has exponentially larger capacity in infilling patterns it can handle: O(2N ), while vanilla speculative
decoding can only handle O(N) patterns, due to the any-subset versus left-to-right natures of the
algorithms. Finally, we do not require auxiliary draft models, as they come for free with AS-ARMs.
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Algorithm 1: Any-Subset Speculative Decoding
Input: k: number parallel tokens; N : target sequence length; σ: mapping of decoding order to

0-based positional index; p(·|·): any-order autoregressive model; xσ(<m): prompt tokens
Output: xσ(≥m): the predicted tokens

1 n← m // number of tokens we’ve already decoded
2 while n < N do
3 t← min(n+ k,N)
4 // speculate the next t tokens
5 (Parallelized): for i ∈ [n : t) do
6 x̃σ(i) ∼ p(·|xσ(<n)) // sample from partially conditioned distribution
7 pσ(i) ← p(x̃σ(i)|xσ(<n)) // get partially conditioned density
8 end
9 if n == T - 1 then

10 xσ(n) ← x̃σ(n) // accept the proposal
11 return xσ(≥m)

12 end
13 (Parallelized): for i ∈ [n : t) do
14 qσ(i) ← p(x̃σ(i)|xσ(<n), x̃σ[n:i)) // get ground truth density
15 end
16 // rejection sampling
17 for i ∈ [n : t) do
18 r ∼ U [0, 1]
19 if r < min(1, qσ(i)

pσ(i)
) then

20 xσ(i) ← x̃σ(i) // accept the proposal
21 else
22 xσ(i) ∼

(
p(·|xσ(<n), x̃σ[n:i))− p(·|xσ(<n))

)
+

// resample
23 exit from for loop
24 end
25 end
26 n← i+ 1 // update number of decoded tokens
27 end
28 return xσ(≥m)

6 TRAINING AND IMPLEMENTATION

Architectural Instantiation: We use the 110M parameter case-sensitive version of XLNet from
Huggingface (Wolf et al., 2019), which is one of many architectures that satisfies the criteria in
Section 4. We finetune starting from the pretrained weights (Yang, 2019). Hyperparameters and
datasets are in Appendix E.

Teacher-Forced Joint Loss: For our training objective, we maximize the joint conditional probability
in Equation 2 with cross-entropy loss:

maxθ Em∼f(·),σ∼s(·|m)

[
log pθ(xσ(≥m)|xσ(<m))

]
, (7)

where f(·) is a distribution over integers from [0, N) (i.e., sampling prompt length m), and s(·|m) is
a distribution of permutations of integers from [0, N) conditioned on prompt length m (i.e., sampling
token ordering σ), where N is the sequence length. The loss has three major components: (1) joint
conditional distribution; (2) expectation over token orderings; (3) expectation over prompt lengths.

Joint Conditional Objective: To justify the joint conditional distribution log p(xσ(≥m)|xσ(<m)),
assume m and σ are fixed. We define a discrete time (absorbing state) Markov chain
x,xσ(<N−1),xσ(<N−2), . . . ,xσ(<m+1),xσ(<m), with time index t ∈ {0, 1, 2, . . . , N −m−1, N −
m}, as in Figure 2. That is, Xt = xσ(<N−t). To generate data, we follow the time reversal of this
Markov chain. To obtain the time reversal, first consider reversing a singular time step, from t to
t− 1. This corresponds to learning

log pθ(Xt−1|Xt) = log pθ(xσ(<N−(t−1))|xσ(<N−t)) = log pθ(xσ(N−t+1)|xσ(<N−t)). (8)
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Sampler Gen PPL Entropy Model NFE Aux NFE Time (s)
Sequential 107.9± 1.6 7.65± 0.01 486.0± 0.0 0.0± 0.0 18.21± 0.00
ASSD (N-Gram) 111.7± 2.0 7.64± 0.01 422.0± 0.7 422.0± 0.7 16.80± 0.03
ASSD (Self) 107.6± 1.6 7.64± 0.01 434.1± 0.4 0.0± 0.0 16.50± 0.02

Table 1: Comparison of Speculative and Sequential Decoding: Left-to-right, entries show mean
and standard error of generative perplexity (judge: GPT-2 Large), Shannon entropy, number of
AS-ARM function evaluations, number of auxiliary draft model calls, and wall clock time. ASSD
(Self) is from Algorithm 1. We also modify Algorithm 1 with context-derived N-Grams (Stewart
et al., 2024) as a draft model (see Appendix E.5). We set k = 5 for ASSD.

That is, we predict the next token’s density. To reverse the whole process, we sum for each timestep:

N−m∑
t=1

log pθ(xσ(<N−t+1)|xσ(<N−t)) = log pθ(xσ(<N)|xσ(<m))

= log pθ(xσ(<m),xσ(≥m)|xσ(<m)) = log pθ(xσ(≥m)|xσ(<m)),

(9)

which gives us Equation 7’s joint conditional probability. This loss is different than the conditionally
independent losses used in (Shih et al., 2022) and discrete diffusion models (Sahoo et al., 2024; Lou
et al., 2023). Notably, their architectures, due to the lack of causal-like attention masking, could not
support joint losses.

Expectations over Token Orderings and Prompt Lengths: In the objective (Equation 7), we do not
make assumptions about the distribution of the prompt length m ∼ f(·) nor the distribution of the
prompt ordering σ ∼ s(·|m) (so long as σ follows the decomposition protocol laid out in Equation 4.
In general, these distributions are task-dependent. For instance, in regular autoregressive tasks, σ
would be deterministic, i.e., the identity function. See Appendices E.2 and G for our realizations of
m ∼ f(·) and σ ∼ s(·|m).

7 EXPERIMENTS

Our first experiment (Section 7.1) empirically verifies that ASSD with AS-ARMs indeed preserves the
output distribution while being faster, as predicted by our theoretical analysis. Our other experiments
(Section 7.2) show that on both natural language and coding benchmarks, AS-ARMs, even with a
fraction of the training resources, beat other model classes of comparable size, and are competitive
with models orders of magnitude larger.

7.1 CORRECTNESS AND SPEED OF ANY-SUBSET SPECULATIVE DECODING

We prompt the model with 640 masked sequences from the WikiText test dataset (Merity et al., 2016).
As in training, sequences are packed together into chunks of 512 tokens. We randomly mask out 95%
of each sequence, leaving 5% of tokens (uniformly scattered throughout the sequence) as the prompt.
We evaluate our finetuned model. See Table 1 for results. Appendix K shows sample outputs.

Empirical Correctness of Distribution: As expected from Theorem 2, the output distribution from
speculative decoding is statistically the same as the output distribution from sequential decoding,
measured by generative perplexity and entropy.

Speed-Up: Finally, both variants of ASSD (parallel sampling from self as draft, context n-gram
(Stewart et al., 2024) as draft) provide a statistically significant speedup over regular sequential
decoding, as predicted by Lemma 1. (When decoding sequentially, the number of calls to the neural
network is the same as the number of masked tokens.) ASSD with paralllel sampling is the fastest
method, and requires the least total NFEs. ASSD with context n-gram is not that far behind: the
intuition is that although it gives lower-quality drafts, it is very cheap. This was also observed in
similar studies for AR models (Stewart et al., 2024). However, only 1.15 tokens get generated per
iteration when using context n-gram, as opposed to 2.24 tokens with parallel sampling as draft.
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Model Size Code Tokens Lang. Tokens Pass @ 1
XLNet-Code 110M 15B 0B 38.59
DiffuLLaMA 6738M 19B 46B 40.68

Table 2: Performance on HumanEval Infilling: Comparison of code infilling abilities of XLNet
finetuned on code versus DiffuLLaMA (Gong et al., 2024). We use HumanEval’s single-line infilling
task (Bavarian et al., 2022), evaluated by pass@1 (each attempt counts, instead of only the best
attempt) on 5165 trials.

Model Size Tokens Infill 1/5 Infill 3/5
ROUGE 1/2/L NFE ROUGE 1/2/L NFE

GPT2-S 127M n/a 9.5/0.4/8.7 10.7± 2.8 13.5/0.6/10.2 31.8± 6.0
SEDD-S 170M 210B 11.6/0.8/10.7 32.0± 0.0 16.2/1.3/12.2 64.0± 0.0
MDLM 130M 262B 11.6/1.1/10.7 32.0± 0.0 13.3/1.0/10.4 64.0± 0.0
DiffuGPT-S 127M 130B 14.0/1.5/13.0 32.0± 0.0 16.4/2.0/14.2 64.0± 0.0
AS-ARM-PT 110M 33B 14.4/1.7/13.1 8.7± 2.5 7.7/0.6/6.4 18.5± 6.8
AS-ARM-FT 110M 12B 13.1/1.1/12.0 10.4± 2.8 18.0/1.4/13.2 30.4± 6.0

Table 3: Performance on ROCStories Infilling: We test on 1871 short stories of five sentences each,
and get 5 completions (trials) per story. We compare ROUGE (↑). "Tokens" is the number of training
tokens (excluding those for the pretrained initialization). "Infill 1/5" inputs sentences {1, 2, 4, 5} and
infills {3}. "Infill 3/5" inputs sentences {1, 5} and infills {2, 3, 4}. We report µ± σ NFEs.

7.2 INFILLING BENCHMARK TASKS

Code Generation: In coding, bidirectional context is crucial, making an appealing use case for
AS-ARMs. Table 2 shows that AS-ARMs finetuned on code are competitive with models that are
orders of magnitude larger. Furthermore, AS-ARMs use fewer training tokens. We evaluate against
DiffuLLaMA as a representative baseline, as other discrete diffusion and autoregressive models of
comparable size were shown to be non-competitive (Gong et al., 2024). See Appendix E.7.

Natural Language: We also investigate whether AS-ARMs can outperform discrete diffusion models
and regular autoregressive models on natural language infilling tasks, in which bidirectional context
is key. We follow Gong et al. (2024)’s setup on ROCStories (Mostafazadeh et al., 2016). Table
3 shows that AS-ARMs are generally better than the baselines, while using the fewest parameters
and training resources. AS-ARM-PT (pretrained XLNet weights (Yang, 2019) from Huggingface,
without finetuning) is the best at infilling a single missing sentence. This corresponds to a ∼ 20%
masking ratio, which is roughly what it was pretrained on (see Appendix E.3). Finetuning on a wider
distribution of masking ratios as in Equation 7 splits finite model capacity among multiple tasks.
Unsurprisingly, when infilling three out of five sentences, our AS-ARM-FT (finetuned AS-ARM)
surpasses all the other models on ROUGE-1, and is behind only DiffuGPT-S on ROUGE-2 and
ROUGE-L. Overall, AS-ARMs are best on four out of six metrics in Table 3.

7.3 OTHER EXPERIMENTS

See Appendices G and F for more experiments, including: ablation on k hyperparameter, extension
to sequential benchmark tasks, ablation on sequence length, ablation on acceptance threshold, KV
caching, increased model size, training setup ablation.

8 RELATED WORKS

Any-Order Autoregressive Models: The defining characteristic of any-order autoregressive models
is their ability to estimate the probability density of arbitrary marginal and/or conditional queries.
This generalizes vanilla autoregressive models. We primarily base our work off of XLNet (Yang,
2019) and MAC (Shih et al., 2022). From XLNet, we adopt the idea of causal attention: crucially,
this allows us to estimate probability density in a parallelized single step, i.e., O(1) time (Yang,
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2019). From MAC, we adopt recursive decomposition of queries on a binary lattice, which reduces
the permutations needed to be learned from N ! to 2N (Shih et al., 2022): this made MAC the first
any-subset autoregressive model.

More recent AO-ARMs (Hoogeboom et al., 2021; Strauss & Oliva, 2021; Shih et al., 2022) abandoned
causal attention, in favor of full attention with absorbing state tokens to represent "masked" queries.
This increases runtime of joint density estimation from O(1) to O(N): to satisfy the factorization
rule, each token’s density is estimated one-by-one so it conditions only on the preceding tokens.

Discrete Diffusion: Discrete diffusion models data generation as the reversal of an inhomogeneous
continuous-time Markov chain (CTMC). Empirically, the best performing CTMC is an absorbing
state process. Discrete diffusion can generate tokens in parallel, with arbitary prompt locations.
The seminal work is D3PM (Austin et al., 2021). Later, LDR (Campbell et al., 2022) formalized
discrete diffusion under the lens of CTMC theory. More recently, SEDD (Lou et al., 2023), MDLM
(Sahoo et al., 2024), DiffuLLaMA (Gong et al., 2024), and LLaDA (Nie et al., 2025) created discrete
diffusion models that rivaled or surpassed autoregressive models.

One limitation of discrete diffusion models is their inability to do joint density estimation. Also,
although tokens can be generated in parallel with large discretized timesteps, they are generated under
the conditional independence assumption, which may not adhere to the limiting joint distribution.
Furthermore, the architectures perform full attention across all tokens, even the masks (Lou et al.,
2023; Sahoo et al., 2024); due to this lack of causal attention masking, it is not straightforward to
apply KV-caching.

Speculative Decoding: Speculative decoding is an algorithm developed for autoregressive models
that enables quick token generation from an inexpensive draft model. Via some techniques related to
rejection sampling, the outputs provably adhere to the joint distribution of the target language model
(Leviathan et al., 2023; Chen et al., 2023). As compared to other speculative decoding works, our
method has the advantages of: (1) theoretical guarantee to never increase NFEs; (2) provides the
speculator "for free" without training any auxiliary models; (3) addresses the any-subset infilling
problem, which has O(2N ) tasks, exponentially more than the O(N) left-to-right tasks addressed in
other works. Detailed comparison to other related works are in Appendix H.

9 CONCLUSION

Our results suggest that the long-forgotten AS-ARMs are a promising language modeling method-
ology. We theoretically and empirically show that the longstanding problem of principled parallel
token generation from the joint distribution is easily solved once we combine AS-ARMs’ parallelized
density estimation and generation with speculative decoding. Furthermore, benchmark tasks indicate
that AS-ARMs can match or surpass the currently dominant language modeling paradigms. Future
work includes scaling to billion-parameter models.
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A PROOFS

Line numbers refer to Algorithm 1.

Lemma 1. The first token speculated in each loop iteration will always be accepted.

Proof. When i = n on Line 13,

qσ(i) = p(x̃σ(i)|xσ(<n), x̃σ[n:i)) (10)

= p(x̃σ(i)|xσ(<n), x̃σ[n:n)) (11)

= p(x̃σ(i)|xσ(<n)) (12)

= pσ(i). (13)

So, r <
qσ(i)

pσ(i)
= 1 on Line 19, and thus, when i = n, x̃σ(n) will always be accepted on Line 20.

Theorem 1. Algorithm 1 requires no more than N −m total function evaluations of p(·|·). That is,
there will never be more calls to a neural network than the number of tokens decoded.

Proof. The idea underlying this proof is that each iteration of the while loop on Line 2 has two
function evaluations. The first function evaluation is on Lines 5 to 8, to speculate tokens. The second
function evaluation is on Lines 13 to 15, to evaluate the oracle density.

We then just need to show that at least two tokens will be decoded, making for minimum one token
generated per function evaluation.

By Lemma 1, the first token (at i = n) is always accepted. So, we can move on to i = n+ 1.

When i = n+ 1, regardless of whether we accept or reject x̃σ(n+1), we will still obtain a value for
xσ(n), whether it is x̃σ(n) on Line 20 or a resampling from the adjusted ()+ distribution on Line 22
(which does not require additional calls to p(·|·), as it makes use of already calculated distributions
from Lines 6 and 14).

So, on each loop iteration, we are guaranteed to get token values for at least xσ(n), xσ(n+1), thereby
giving us the requisite two tokens.

On the last loop iteration, if n = N − 1, there is an edge case where only one token can be decoded
(Line 9). But, as previously shown in Lemma 1, this speculated token is mathematically guaranteed
to be accepted, since it was the first and only one to be speculated. So, we can forgo the verification
step for this final loop iteration. Thus, to generate this final token, we still only need one function
evaluation, maintaining the lower bound of one token generated per function evaluation.

Theorem 2. Algorithm 1 produces samples from the true joint distribution p(xσ(≥m)|xσ(<m)).

Proof. The only differences between our algorithm and speculative decoding are:

1. The use of p as its own speculator. This is valid, because speculative decoding is agnostic to
the speculator function, as long as it gives probability density estimates.

2. The omission of the verification step when decoding the last token n = T − 1 on Line 9.
This is justified by Lemma 1, which shows that when i = n = T − 1, x̃σ(n) would always
meet the acceptance criteria if it were to go through the verification on Line 19.

3. We do not sample an extra token if all of the speculations are accepted at the end of each
loop iteration. However, this does not affect the distribution of the other tokens outputted.
We skip this extra token sampling because, as shown in Lemma 1, the first token speculated
in the next iteration will always be accepted, which “makes up" for the omission of the extra
sample.
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Other than these differences, this algorithm is simply speculative decoding, but with a different
ordering than σ = [0, 1, 2, . . . , N − 1]. We can permute/sort x in increasing order of σ(i), and define
as the result y. Then, our algorithm is mathematically equivalent to speculative decoding with the
inputs y as the sequence, and the draft model the same as the target model. The rest of the proof of
correctness of our algorithm is therefore the same as in (Leviathan et al., 2023; Chen et al., 2023).
For completeness, we reproduce their proof in Appendix B, with some additional commentary.

B MODIFIED REJECTION SAMPLING CORRECTNESS

We provide an extended proof of correctness for Theorem 2, as it relates to the modified rejection
sampling step in Algorithm 1. Note that the main ideas and layout of this proof are copied from
(Chen et al., 2023) and (Leviathan et al., 2023). We only include it here for the reader’s convenience
and consistency with our notation.

Proof. WLOG, consider the random variable (token) xσ(i), returned by Algorithm 1 (ASSD). Consider
the iteration where n ≤ i < n+ k ≤ N , i.e., the iteration that generates xσ(i).

For the algorithm to be correct, we desire that P(xσ(i) = x) = p(xσ(i) = x|xσ(<i)), where P(xσ(i) =
x) is the probability that ASSD generates token value x at position σ(i), and p(xσ(i) = x|xσ(<i)) is
the probability that regular sequential decoding would generate x at position σ(i). In other words,
the distribution of ASSD is the same as in sequential decoding. Note that xσ(<i) = xσ(<n) ⊕ x̃σ[n:i)

in both sequential decoding and our algorithm, because they both use generations from previous
iterations (in addition to the prompt) as conditioning for future iterations.

Let x̃ (shorthand for x̃σ(i)) be the token value generated from the conditionally independent draft
in Line 6. When xσ(i) = x is true, there are two mutually exclusive and collectively exhaustive
possibilities (from the if-else statement): (1) x̃ was accepted, and x̃ = x (2) x̃ was rejected, and x
was the result of the resampling.

P(xσ(i) = x) = P(x̃ accepted, x̃ = x) + P(xσ(i) = x, x̃ rejected)

= P(x̃ accepted |x̃ = x)P(x̃ = x) + P(x̃ rejected)P(xσ(i) = x|x̃ rejected)
(14)

Analyzing the first term, we look to the "if" (accept) clause on Line 19:

P(x̃ accepted |x̃ = x)P (x̃ = x) = min
(
1,

qσ(i)(x)

pσ(i)(x)

)
pσ(i)(x)

= min
(
pσ(i)(x), qσ(i)(x)

) (15)

Here, qσ(i)(x) = p(xσ(i) = x|xσ(<n), x̃σ[n:i)), i.e., the oracle density from Line 14; and pσ(i)(x) =
p(xσ(i) = x|xσ(<n)), i.e., the speculator density from Line 7.

Regarding the second term, we look at the "else" (reject) clause on Line 21. We analyze each item in
the product separately, as the expressions are long:

P(x̃ rejected) = 1− P(x̃ accepted)

= 1−
∑
x′

P(xσ(i) = x′, x̃ accepted)

= 1−
∑
x′

min
(
pσ(i)(x

′), qσ(i)(x
′)
)

=
∑
x′

qσ(i)(x
′)−

∑
x′

min
(
pσ(i)(x

′), qσ(i)(x
′)
)

=
∑
x′

qσ(i)(x
′)−min

(
pσ(i)(x

′), qσ(i)(x
′)
)

=
∑
x′

max
(
qσ(i)(x

′)− pσ(i)(x
′), qσ(i)(x

′)− qσ(i)(x
′)
)

=
∑
x′

max
(
qσ(i)(x

′)− pσ(i)(x
′), 0

)

(16)
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From Line 22:

P(xσ(i) = x|x̃ rejected) =
(
p(xσ(i) = x|xσ(<n), x̃σ[n:i))− p(xσ(i) = x|xσ(<n))

)
+

=
(
qσ(i)(x)− pσ(i)(x)

)
+

=
max

(
qσ(i)(x)− pσ(i)(x), 0

)∑
x′ max

(
qσ(i)(x′)− pσ(i)(x′), 0

) (17)

Following Equations 16 and 17, we have

P(x̃ rejected)P(xσ(i) = x|x̃ rejected) = max
(
qσ(i)(x)− pσ(i)(x), 0

)
(18)

Putting it all together back into Equation 14,

P(xσ(i) = x) = min
(
pσ(i)(x), qσ(i)(x)

)
+ max

(
qσ(i)(x)− pσ(i)(x), 0

)
= qσ(i)(x)

= p(xσ(i) = x|xσ(<n), x̃σ[n:i))

= p(xσ(i) = x|xσ(<i))

(19)

The last line of Equation 19 is true, because to have gotten to index i in the accept-reject loop (Line
17), we must have accepted x̃σ[n:i), i.e., xσ[n:i) = x̃σ[n:i). Therefore, we have shown that ASSD
gives the same per-token distribution as in sequential decoding. Induction over i ∈ [m : N) will
easily show that ASSD gives the correct joint distribution.

C PROBABILISTIC GRAPHICAL MODEL

See Figure 2 for a probabilistic graphical model of the data generation process.

xσ(<N) xσ(<N-1) xσ(<m+1) xσ(<m)

t = 0: I really love
machine learning

σ(0) = 3, σ(1) = 0, σ(2) = 1, σ(3) = 2, σ(4) = 4
N = 5, m = 1

t = 1: I really love
machine _

t = 3: I _ _
machine _

t = 4: _ _ _
machine _

. . . 

pθ(xσ(<m+1)| xσ(<m))pθ(xσ(<N)| xσ(<N-1))

q(xσ(<N-1)| xσ(<N)) = 1 q(xσ(<m)| xσ(<m+1)) = 1

Forward: Absorbing State DTMC

Backward: Data Generation

Figure 2: Probabilistic Graphical Model: Shows the discrete-time Markov chain for the forward
noising process, and its time reversal (i.e., data generation). This justifies Equation 7.

D CAUSAL-LIKE ATTENTION MASKING

We provide further discussion on the masking introduced in Section 4.

In particular, there is a subtlety in attention mechanisms: even if a token does not attend to itself, it
still "sees" its own content because it constructs a query representation to compare against the keys.
At first glance, this seemingly breaks the ban (Equation 6) on a token attending to itself. The solution
is to separate the positional and content information into two streams, as done in XLNet (Yang, 2019).
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The positional stream (which only has positional representations as input) is used to calculate the
queries, i.e., row index of the attention map. The content stream (which has token value information)
is used to calculate the key/value information, i.e., column index of the attention map. Thus, the
evaluation of the positional queries does not "cheat" by looking at the ground truth content at its
own position. Conceptually, this can be said to be more like cross-attention than the self-attention
common in discrete diffusion models (Austin et al., 2021).

In contrast, architectures commonly used for discrete diffusion models (Lou et al., 2023; Deschenaux
& Gulcehre, 2024; Sahoo et al., 2024; Austin et al., 2021) and other any-order autoregressive models
(Shih et al., 2022; Hoogeboom et al., 2021) do not support this kind of masking. In these architectures,

∀i, j : Aσ(i),σ(j) = 1, (20)

which means that every token is allowed to attend to every token including itself when calculating
its probability. From a probabilistic graphical modeling perspective, the outputted probabilities
very roughly correspond to log p(xσ(i)|x), which would not give us principled estimates on the
already-visible tokens.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 DATASET

We finetune on the OpenWebText dataset (Gokaslan et al., 2019). Following (Sahoo et al., 2024),
we pack the sequences together, and split them into chunks of 512 tokens, based on XLNet’s case-
sensitive tokenizer with a vocabulary of 32, 000 possible tokens. We have separator tokens to delineate
the start of a new document.

E.2 MASK DISTRIBUTION

We are interested in generating text from near-scratch, so we train a model where m ∼ U [0.01 ∗
N, 0.10 ∗ N ]. To get σ, we first sample σpre ∼ U(SN ), where SN represents all the possible
permutations of the integers from [0, N). But, remembering Equation 4’s efficient masking protocol,
we sort each of σpre(< m) and σpre(≥ m) in ascending order to get σ. This eliminates the ambiguity
in paths the model has to learn to calculate a given joint, while still maintaining which positions are
in the prompt and which need to be predicted.

We also use a similar low-discrepancy sampler as (Sahoo et al., 2024) to reduce variance among
prompt lengths within a batch.

E.3 TRAINING HYPERPARAMETERS

The original XLNet (Yang, 2019) was only trained to predict 85 masked tokens in a sequence length
of 512, corresponding to less than 20% of the sequence, which is not ideal for generative modeling
tasks. We wish to have a model that can predict tokens almost from scratch, so we finetune the
off-the-shelf XLNet model.

In finetuning XLNet, we use maximum learning rate 10−4 and batch size 320 (16 per device, 4
accumulations, 5 devices). We have linear learning rate warmup for 5000 steps, and linear learning
rate decay for 70, 000 additional steps, making for a total of 2.4 ∗ 107 samples seen. (Notably, this
is far fewer than the 2.56 ∗ 108 samples that DiffuGPT-S saw (Gong et al., 2024).) We start at 15%
masking rate, then linearly increase the minimum masking rate to 90% and the maximum masking
rate to 99% over 5000 steps.

We train on NVIDIA RTX A6000 Ada devices, which have 48 GB of RAM each. Training lasts
around four days. We calculate validation loop metrics every 500 steps on 64 samples. We use the
AdamW (Loshchilov et al., 2017; Kingma & Ba, 2014) optimizer.

We also tried training for more epochs, but we found that performance saturated after ∼ 10B training
tokens.
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E.4 METRICS

We are focused on generation quality. To that end, we have two metrics.

To quantify how likely the generated outputs of our model are, we calculate generative perplexity,
where lower values are better. It is calculated as

PPLgen =
(
e
∑

i log q(xi|x0...i−1)
)−1/N

, (21)

where q is an oracle language model (we use GPT-2 Large (Radford et al., 2019)), and x is a generated
sequence.

To quantify the diversity in tokens, we calculate Shannon entropy (Shannon, 1948), where higher
values are better. The formula is

H(x) = −
∑
xi∈x

log2(p(xi))p(xi), (22)

where p(xi) =
|{j|xj=xi}|

|x| , i.e., the frequency of a token in the sequence.

Typically, there is a trade-off between generative perplexity and Shannon entropy – highly repetitive
sequences of common words like "a" have low generative perplexity, but also low entropy. Random
sequences of gibberish have high entropy and high generative perplexity. We want to generate
sequences with high entropy and low generative perplexity.

E.5 SPECULATIVE DECODING VARIANTS

We compare sequential decoding to two variants of ASSD: the first is described in Algorithm 1.
The second uses context-based n-grams, which were initially proposed for left-to-right speculative
decoding (Stewart et al., 2024), although they easily fit into our framework. To adopt it to arbitrary
order, we replace the speculator p(·|·) in Lines 5-8 of Algorithm 1 with a context-based n-gram model
c(·|·), as in Algorithm 2. There, c(a|b) is the probability over the partially decoded sequence that a
bigram starting in b ends in a, as in Equation 23:

c(a|b) =
∑

i,xi ̸=MASK,xi+1 ̸=MASK 1[xi,i+1 = (a, b)]∑
j,xj ̸=MASK 1[xj = b]

, (23)

We initialize c(·|·) by sweeping over the prompt, then update it iteratively, as the sequence is decoded.

Algorithm 2: Speculation with Context-Based N-Grams
Input: same as Algorithm 1
Output: see Algorithm 1

1 for i ∈ [n : t) do
2 if xσ(i)−1 ̸= MASK then
3 xcond ← xσ(i)−1

4 else
5 xcond ← x̃σ(i)−1

6 end
7 x̃σ(i) ∼ c(·|xcond) // sample from partially conditioned distribution
8 pσ(i) ← c(x̃σ(i)|xcond) // get partially conditioned density
9 end

Theorem 3. When i ≥ 1, Algorithm 2 always sets xcond to a valid non-MASK value.

Proof. We conduct strong induction on i ≥ m, where m is the given prompt length.

For a given value of i, we have two cases:

1. xσ(i)−1 ̸= MASK. This case is trivial.
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2. xσ(i)−1 = MASK. This reduces to showing that x̃σ(i)−1 ̸= MASK. Firstly, there exists some
j such that σ(j) = σ(i)− 1, which trivially means σ(j) < σ(i). From Equation 4, this is
equivalent to saying j < i. By the inductive hypothesis, x̃σ(j) ̸= MASK should have been
speculated for all j < i.

We note that context-based n-grams lack the guarantees of Lemma 1, so they could increase the total
number of function evaluations (AS-ARMs + n-gram draft) beyond the sequence length. However,
n-grams are typically cheap to evaluate, which could make up for the increased function evaluations.

E.6 INFILLING BENCHMARK

We run 5 trials over the dataset of 1871 stories, making for 9355 samples per masking level (short
or long) per model. The models compared are: GPT-2 (Radford et al., 2019), MDLM (Sahoo et al.,
2024), SEDD (Lou et al., 2023), DiffuGPT (Gong et al., 2024), AS-ARM-PT (pretrained XLNet
weights) (Yang, 2019), and AS-ARM-FT (finetuned by us, starting from Huggingface initialization).
We do not compare against models like LLaDA (Nie et al., 2025) because they have access to
significantly more training budget than us, not to mention their orders-of-magnitude larger model
size.

For the AS-ARM models, we use ASSD. We set k = 15 for our speculative decoding. Without
speculative decoding on AS-ARMs, "Infill 1/5" requires 10.9±2.9, and "Infill 3/5" requires 32.4±6.2
evaluations. For GPT, we use sequential decoding, since it cannot be its own speculator. Following
(Gong et al., 2024), we only give GPT the left conditioning, as it is not straightforward to give it
rightward conditioning without instruction-tuning. This experiment can be run on a 16GB GPU.

E.7 CODE GENERATION

We finetune our AS-ARM on 14.7 billion tokens from Starcoder’s Python data (Li et al., 2023). This
corresponds to 75, 000 training steps with a batch size of 384 (16 per device, 4 accumulation steps, 6
GPUs) of 512 tokens each. We started from learning rate 0, warmed up for 20, 000 steps to learning
rate 1.2∗10−4, then scheduled to decay linearly for 63, 333 steps (which corresponds to 32∗106 total
samples seen), although the run crashed slightly earlier than this. We start from a 5% masking rate,
then warm up over 20, 000 steps to a 15% minimum masking rate, and a 99% maximum masking
rate, sampled uniformly.

Since the XLNet tokenizer does not support whitespaces, we replace whitespace tokens with special
characters during training (\n : <cls>, \t : <sep>, "_ _" : <unk>, "_ _ _" : <pad>), where _ is the
space. When generating code, we reverse the special character mapping and truncate the leading
space from the generated lines, since the tokenizer by default inserts a leading space to each word.

We evalute on the HumanEval single-line infilling task on 1033 Python test cases, following (Gong
et al., 2024). We generated 5 completions for each test case, for a sample size of 5165. We evaluate
with the pass@1 metric, i.e., we count the failure or success of each of the five completions for a test
case (rather than taking the best out of the five completions).

For the baseline, we compare the publicly available DiffuLLaMA (Gong et al., 2024) model. We
find that the results from (Gong et al., 2024) are actually under-reported. When manually inspecting
the outputs, we found that there were often generations that were correct, except that the number of
leading spaces was off by one. Our investigation suggests that the LLaMA 7B tokenizer also seems
to have an issue with counting prefix spaces, etc. Since this is not a problem with model capacity, we
relaxed the evaluation, and manually inserted the ground truth indentation (i.e., correct number of
leading spaces) to DiffuLLaMA’s outputs. After doing so, the pass@1 rate increased from about 16%
to 40%.

This experiment can be run on a 16GB GPU.
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Sampler Gen PPL Entropy NFEs Time (s)
Sequential 59.08± 5.61 3.119± 0.065 486.0± 0.0 18.04± 0.00
Speculative 59.12± 5.26 3.206± 0.064 247.3± 1.8 9.36± 0.07

Difference +0.08% +2.78% −49.12% −48.09%

Table 4: Comparison of ASSD (Algorithm 1) and Sequential Decoding in Off-the-Shelf Model:
The entries show mean and standard error of generative perplexity (judge: GPT-2 Large), Shannon
entropy, number of network function evaluations, and wall clock time. Metrics are calculated over
640 decoded WikiText sequences of length 512, where 95% is randomly masked out. We set k = 5
in speculative decoding.

F ADDITIONAL RESULTS

F.1 ANY-SUBSET SPECULATIVE DECODING: COMPARISON OF FINETUNED AND
OFF-THE-SHELF

See Table 4. This shows extended results from Table 1, with the off-the-shelf model from Hugging-
face.

While the generative perplexity of the off-the-shelf model is much lower than the generative perplexity
of our finetuned model, this comes at the cost of very low entropy. Indeed, when we manually
inspected the outputs, we found that the off-the-shelf model generated highly repetitive, nonsensical
sequences of a few common words (see Appendix J). On the other hand, the finetuned model generated
sentences that were, for the most part, coherent both semantically and syntatically (see Appendix K).

Additionally, the off-the-shelf model gains a larger boost in runtime from speculative decoding. Ex-
amining the outputted sequences, it again appears to be due to its highly repetitive output distributions,
as these would be easier to speculate with a mean field model.

F.2 HOW MANY TOKENS TO SPECULATE?

k 2 3 4 5 6 8 10 15 20
Length: 128
Speedup (%) -4.0 6.7 8.8 8.9 9.1 8.7 8.4 9.0 9.0
PPL p-Value 0.66 0.37 0.22 0.49 0.12 0.41 0.48 0.22 0.83
Entropy p-Value 0.14 0.20 0.73 0.48 1.00 0.28 0.76 0.52 0.17

Length: 256
Speedup (%) -2.7 6.6 8.4 8.8 9.3 8.9 8.4 8.5 8.2
PPL p-Value 0.31 0.03 0.32 0.13 0.47 0.74 0.77 0.39 0.78
Entropy p-Value 0.43 0.60 0.49 0.15 0.17 0.48 0.56 0.95 0.22

Table 5: Tuning k: Generally, ASSD is not sensitive to the value of k (number of tokens speculated
per call to draft model), so long as it is at least 4.

We have ablations on the effect of k in Table 5. Generally, our selected value of k = 5 was a
close-to-optimal choice. The difference in perplexity and entropy, according to t-tests, is also not
statistically significant (see p-values), as predicted by Theorem 2 (which does not depend on k).
Results in the below tables are calculated from 750 sequences, where we infill 95% of the tokens per
sequence of length 128 and 256.

As we had predicted in Section 5, a choice of k = 2 slowed down the algorithm, since the algorithm,
no matter what, is guaranteed to generate at least two tokens (with two function evaluations: speculate
and verify) per loop iteration. So, if only two tokens are speculated, there could never be a speedup
over the sequential capabilities, and in fact, the overhead time from running speculative decoding
would slow it down.
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F.3 EFFECT OF SEQUENCE LENGTH

Length Speedup (%) PPL p-value Entropy p-value
128 8.94 0.49 0.48
256 8.84 0.13 0.15
512 9.44 0.71 0.96
640 10.45 0.23 0.24
768 10.59 0.80 0.35
896 10.90 0.94 0.48

1024 11.00 0.78 0.50

Table 6: Effect of Sequence Length on Speedup: Set k = 5, infill 95% of the sequence.

As we increase the sequence length, the speedup becomes more pronounced. The differences in
output distribution from sequential decoding are not statistically different, as predicted by Theorem 2.
See Table 6.

F.4 KV-CACHE

We generally found that KV caching was not helpful for smaller model sizes and sequence lengths.
But, it does help as we scale up the problem size. When using a 340M parameter XLNet (off-the-shelf,
as we did not have the resources to retrain) to infill 128 tokens out of sequence length 1024 (as
opposed to 110M parameter on sequence length 512), we observe that KV caching yields a 50%
speedup in model inference time. See Table 7.

Caching Time (s)
KV Cache 0.0706± 0.0006
No Cache 0.1407± 0.0004

Table 7: KV Cache Benefits: Average inference time of the model (per parallel speculation NFE),
averaged over 100 trials (KV cache, versus not using KV cache). Results on 340M-parameter XLNet
to infill 128 out of 1024 tokens.

F.5 EPSILON-TOLERANCE

On line 19 (Algorithm 1), we tried adding a small absolute tolerance to the qσ(i)

pσ(i)
acceptance threshold,

such that the decision is r < min(1, qσ(i)

pσ(i)
+ ϵ). Intuitively, having higher tolerance will lead to more

speculations being accepted, at the cost of quality.

See Table 8. We do 500 trials filling in 95% of a 256 token sequence, with k = 5. (They were run
with different model weights than in the other experiments, but given that the results align with our
expectations, we don’t think they would change much on different model weights.) Basically, while
we could get a little more speed boost by increasing the error threshold, the generative perplexity gets
a lot worse.

ϵ Tolerance Speedup (%) Spec PPL Spec Entropy Seq PPL Seq Entropy PPL p-Val Entropy p-Val
0 8.28 122.70 ± 2.85 6.98 ± 0.01 127.31 ± 3.13 6.99 ± 0.01 0.20 0.32

1 ∗ 10−4 8.46 120.72 ± 2.61 6.97 ± 0.01 121.76 ± 2.76 6.98 ± 0.01 0.77 0.39
1 ∗ 10−3 8.30 123.28 ± 3.40 6.97 ± 0.01 120.84 ± 2.97 6.97 ± 0.01 0.54 0.67
1 ∗ 10−2 9.28 128.89 ± 2.65 6.99 ± 0.01 124.17 ± 3.12 6.98 ± 0.01 0.18 0.20
5 ∗ 10−2 11.05 152.95 ± 3.92 6.99 ± 0.01 116.96 ± 2.69 6.96 ± 0.01 0.00 0.00
1 ∗ 10−1 14.22 185.26 ± 4.53 7.02 ± 0.01 119.03 ± 2.63 6.99 ± 0.01 0.00 0.00

Table 8: Effect of ϵ tolerance in Algorithm 1, Line 19: "Spec" is short for speculative, "Seq" is
short for sequential, "PPL" is short for generative perplexity, "p-Val" is short for p-value from the
t-test.
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F.6 LEFT-TO-RIGHT RESULTS

Our results extend to left-to-right prompting tasks. Firstly, the speculative decoding scheme still
speeds up inference time without losing quality when evaluated with a prefix prompt and being asked
to fill in the right. See Table 9.

Method Time (s) NFE Gen PPL Entropy
Sequential 14.3± 0.0 383.0± 0.0 61.2± 1.2 7.35± 0.02
Speculative 13.3± 0.1 349.5± 0.7 60.0± 1.1 7.36± 0.02

Table 9: Sequential versus Speculative Decoding in Left-to-Right Prompting: Over 700 trials
on WikiText (Merity et al., 2016), we prompt with a 128 token prefix, and have it complete the 384
token suffix.

Results on left-to-right benchmark tasks are in Table 10. On Lambada (Paperno et al., 2016), AS-
ARM-PT performs the best out of all the models, supporting our claim that AS-ARMs are a powerful
model class. SEDD-S (Gong et al., 2024) performs the worst. Something interesting we see is that for
both DiffuGPT (which was finetuned from GPT) and AS-ARM-FT (which was finetuned from AS-
ARM-PT’s XLNet weights), performance on Lambada drops after finetuning. We hypothesize that
the drop-off comes from the fact that the original models were already well-suited for the Lambada
task. Lambada is a task to predict the last word (one or a few tokens) in a passage. GPT, with the
left-to-right next token prediction objective, is well-suited for that. Similarly, AS-ARM-PT, being
trained to infill 20% of a sequence, is well-suited to tasks with dense context. On the other hand,
when one fine-tunes DiffuGPT and AS-ARM-FT, the desired output distribution shifts away from that.
DiffuGPT now is trained to do any-order prediction (via CTMC diffusion process), and AS-ARM-FT
shifts the focus to language generation from near-scratch (i.e., sparse context). Since models have
finite capacity, it makes sense that the performance on the specialized last-word prediction task would
drop. On HellaSwag (Zellers et al., 2019), AS-ARMs are a bit behind the baselines, but not extremely
so. Overall, the results on sequential tasks suggest that our method is valid, even in settings different
then it was intended for.

Model Lambada HellaSwag
GPT-S (Gong et al., 2024) 25.9 29.9
DiffuGPT-S (Gong et al., 2024) 21.6 33.4
SEDD-S (Gong et al., 2024) 12.4 30.2
AS-ARM-PT 26.6 28.0
AS-ARM-FT 14.1 28.3

Table 10: Left-to-Right Benchmark Tasks: Comparing AS-ARMs to baselines (both autoregressive
and discrete diffusion) on left-to-right benchmark tasks.

G ABLATION

G.1 MASK DECOMPOSITION ABLATION

Figure 3 shows the ablation of mask decomposition protocol described in Equation 4. The en-
tropy (generation diversity) is consistently better when training with the recursive binary mask
decomposition protocol, while the generative perplexity is about the same.

G.2 IMPACT OF MASKING DISTRIBUTION

Figure 4 shows the effect of the realization of the distribution of prompt (i.e., masking) length from
Section E.2. Since the validation task is to infill 95% of a masked sequence, it is expected that training
the model exclusively on shorter prompt lengths would be better than training the model on a mixture
of long and short prompt lengths (which would dilute its capacity). Indeed, we see that, with respect
to generative perplexity, the model trained with m ∼ U [0.01, 0.10] outperforms the model trained
with m ∼ U [0.01, 0.85], where m is the percentage of the source text that is given as prompt (i.e.,
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(a) Entropy (↑) (b) Generative Perplexity (↓)

Figure 3: Fixed (Recursive Binary Lattice) Versus Any Permutation Mask Decomposition:
Validation loop metrics on generated sequences from each training strategy. The curves shown are for
models trained with an effective batch size of 96 across four NVIDIA RTX A4000 devices. Each
validation iteration has 36 sequences of length 512 tokens.

(a) Entropy (↑) (b) Generative Perplexity (↓)

Figure 4: Narrow (1%→ 10%) Versus Wide (1%→ 85%) Prompting Rates: Validation loop
metrics on generated sequences from each training strategy, as it relates to the distribution of prompt
lengths in the train set. The curves shown are for models trained with an effective batch size of 320
across five NVIDIA RTX 6000 Ada devices. Each validation iteration has 64 sequences of length
512 tokens from OpenWebText, where the task is to infill 95% of the masked sequence given a 5%
prompt.
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unmasked). On entropy, the short prompt training strategy performs marginally better at low training
steps, but the gap closes as training continues.

H ADDITIONAL RELATED WORKS

H.1 ANY-ORDER AUTOREGRESSIVE MODELS

There are some works from the pre-transformer era (Vaswani et al., 2017) that deal with the problem
of arbitrary density estimation, namely NADE (Uria et al., 2014) and MADE (Germain et al., 2015).
AO-ARMs also bear some resemblance to generative, transformer-based, masked image models
(Chang et al., 2022; Du et al., 2024).

H.2 DISCRETE DIFFUSION MODELS

There is also work on improving sampling. EDLM (Xu et al., 2024) learns a partition function to
allow parallel sampling, while ensuring that the generated tokens adhere to a desired joint distribution.
DDPD (Liu et al., 2024b) learns a planner network to optimize the step size taken with uniform
diffusion models. JYS (Park et al., 2024) also works on optimizing the step schedule, although their
method involves an optimization problem over (part of) the training dataset. (Zhao et al., 2024)
work on predictor-corrector methods and introduce the k−Gillespie sampling algorithm. SDTT
(Deschenaux & Gulcehre, 2024) distilled discrete diffusion models to achieve comparable generative
performance with fewer sampling steps. However, (Zheng et al., 2024)’s work revealed a numerical
precision error with discrete diffusion sampling that leads to unintentional low-temperature sampling.

H.3 SPECULATIVE DECODING

Simple draft models include context-based and model-based n-grams (Stewart et al., 2024). Looka-
head Decoding also relies upon parallel generation of n-grams, and does not need to train an additional
draft model (Fu et al., 2024). Hydra (Ankner et al., 2024) and Medusa (Cai et al., 2024) augment the
target language model with lightweight heads (which require additional training) to quickly predict
additional tokens. The advantage of this approach, like ours, is that at least two tokens are guaranteed
to be accepted on each loop iteration: the first token comes from the base model; if the next token
is rejected, it is resampled from a combination of the proposal and oracle distributions. There are
also works (Zhang et al., 2023) that, similar to ours, use the same model for drafting and verification;
one such work is LayerSkip (Elhoushi et al., 2024). This is known as self-speculative decoding. A
difference is that these methods skip model layers, while we skip inputs. There is also speculative
diffusion decoding (Christopher et al., 2024), which uses a discrete diffusion model as the drafter
for a larger autoregressive model. However, all these works are limited to the left-to-right regime,
since the autoregressive oracle can only process O(N) (all prefixes) prompting patterns - this is
exponentially less than the O(2N ) (all subsets) prompting patterns our method can handle.

The only work that we know of that uses a speculative decoding-like algorithm for non-left-to-right
models is σ-GPT (Pannatier et al., 2024). However, their algorithm actually violates Theorem 1 and
Theorem 2, meaning that it is not theoretically guaranteed to produce tokens from the correct target
distribution, and can slow down sampling. See Appendix I for details.

H.4 CONSTRAINED DECODING

In principle, constrained decoding techniques can be combined with vanilla AR models to accomplish
infilling. Some recently popular approaches to constrained decoding model the constraint as a formal
grammar (Geng et al., 2023; Beurer-Kellner et al., 2024) and only allow the left-to-right LLM to
decode sequences that are valid under this grammar’s parser. Other approaches use constrained beam
search with trie data structures (De Cao et al., 2020) and Metropolis-Hastings Sampling (Miao et al.,
2019). Recently, Ye et al. (2025) created an asymptotically unbiased constrained decoding algorithm
based on importance sampling and GPU parallelism. However, while technically compatible with
infilling, these works generally focus on other tasks, like entity retrieval or information extraction.
Furthermore, constrained decoding incurs computational time overhead on top of the AR model, and
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biases the output distribution. In contrast, AS-ARMs natively handle arbitrary infilling tasks without
overhead and directly estimate unbiased conditional probabilities.

I COMPARISON TO SIGMA GPT

Algorithm 3: Token-based rejection sampling, reprinted from σ-GPT (Pannatier et al., 2024)
Input: T : minimum target length, y: any-order autoregressive model, No: number of orderings

to sample, X: prompt of length t0
1 t← t0
2 while t < T do
3 In parallel, compute distribution conditioned on prompt p(xi|X), ∀i ∈ t, . . . , T
4 In parallel, sample at every position x̃i ∼ p(xi|X), ∀i ∈ t, . . . , T

5 Draw No random order σ and in parallel, compute all logits q
(
xi|X, x̃σ(<i)

)
, ∀i ∈ t, . . . , T

6 In parallel sample T − t variables ui ∼ U [0, 1],∀i ∈ t, . . . , T from a uniform distribution.

7 In parallel, compute the acceptance decision ai = ui < min
(
1,

q(x̃i|X,x̃σ(<i))
p(x̃i|X)

)
for every

order.
8 Select the order that accepts the most tokens before seeing a first rejection.
9 Keep that order and add the a accepted tokens before the first rejection to the prompt.

10 Set t = t+ a
11 end

σ-GPT is a work that superficially seems to have a similar sampling algorithm as ours for any-order
autoregressive models (Pannatier et al., 2024). However, as we will see, their algorithm (Algorithm 3)
actually has subtle yet critical mistakes that lead to violations of Theorem 1 and Theorem 2, removing
the theoretical guarantees.

I.1 AMBIGUOUS FACTORIZATION ORDER AND JOINT DISTRIBUTION

Firstly, their algorithm does not provably give the correct joint distribution, because they randomly
sample multiple factorization orders (Lines 5, 8) at each draft-accept cycle, given a prompt. This
would re-introduce the consistency problem in Equation 3, i.e., different orderings give different joint
distributions. Thus, it is unclear what the true target distribution they are trying to match actually is,
violating Theorem 2.

Another consequence of the multiple factorization orders sampled is that the number of NFEs could
exceed the number of tokens eventually accepted, if the multi-order oracle evaluations all reject the
speculated tokens. So, Theorem 1 is violated, which means that this scheme could potentially slow
down sampling.

I.2 LACK OF RESAMPLING STEP

Furthermore, their algorithm also does not have a resampling step in case of rejection. This decreases
the number of tokens each iteration is guaranteed to accept from two to one (see Theorem 1’s proof).
This means that their algorithm is not mathematically guaranteed to reduce the number of function
evaluations, and can in theory increase it: in the case that only the first conditionally independent
token from the draft is accepted, the function evaluation of the oracle did not lead to an extra token
being accepted. This violates Theorem 1.

Furthermore, the lack of resampling potentially once again violates Theorem 2’s guarantee that the
returned distribution will match the joint. Using the notation and ideas from Appendix B, they have
the "accept" (first) term in Equation 14, but they do not have the "reject" (second) term to balance
the probability out. In fact, their Line 7 cannot even be considered to be proper rejection sampling,
because it lacks the proper normalization for the decision threshold (Leviathan et al., 2023).
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I.3 ANY-ORDER SPECULATIVE DECODING ADDRESSES PROBLEMS

In contrast, by enforcing (Shih et al., 2022)’s recursive binary lattice mask decomposition, we ensure
that given a prompt, there is only one correct path to calculating the joint conditional probability of
the missing tokens. This makes it clear in our Algorithm 1 what the target distribution actually is, and
our output provably matches that distribution (Theorem 2). Furthermore, we have resampling in Line
22. Combined with the single-path evaluation, this mathematically guarantees that we never increase
the number of function evaluations above the number of masked tokens (Theorem 1).

J OFF-THE-SHELF MODEL OUTPUTS

Text comes from the WikiText dataset (Merity et al., 2016). This is from the default XLNet model
provided on Huggingface (not our finetuned), which was only trained to predict around 20% of
tokens.

Original Text

<sep><cls></s> = Robert Boulter =<sep><cls></s><sep><cls></s> Robert Boulter is an
English film , television and theatre actor . He had a guest @-@ starring role on the television
series The Bill in 2000 . This was followed by a starring role in the play Herons written
by Simon Stephens , which was performed in 2001 at the Royal Court Theatre . He had
a guest role in the television series Judge John Deed in 2002 . In 2004 Boulter landed
a role as " Craig " in the episode " Teddy ’s Story " of the television series The Long
Firm ; he starred alongside actors Mark Strong and Derek Jacobi . He was cast in the
2005 theatre productions of the Philip Ridley play Mercury Fur , which was performed
at the Drum Theatre in Plymouth and the Menier Chocolate Factory in London . He was
directed by John Tiffany and starred alongside Ben Whishaw , Shane Zaza , Harry Kent ,
Fraser Ayres , Sophie Stanton and Dominic Hall .<sep><cls></s> In 2006 , Boulter starred
alongside Whishaw in the play Citizenship written by Mark Ravenhill . He appeared on
a 2006 episode of the television series , Doctors , followed by a role in the 2007 theatre
production of How to Curse directed by Josie Rourke . How to Curse was performed
at Bush Theatre in the London Borough of Hammersmith and Fulham . Boulter starred
in two films in 2008 , Daylight Robbery by filmmaker Paris Leonti , and Donkey Punch
directed by Olly Blackburn . In May 2008 , Boulter made a guest appearance on a two
@-@ part episode arc of the television series Waking the Dead , followed by an appearance
on the television series Survivors in November 2008 . He had a recurring role in ten
episodes of the television series Casualty in 2010 , as " Kieron Fletcher " . Boulter starred
in the 2011 film Mercenaries directed by Paris Leonti .<sep><cls></s><sep><cls></s>
= = Career = =<sep><cls></s><sep><cls></s><sep><cls></s> = = = 2000 – 2005 = =
=<sep><cls></s><sep><cls></s> In 2000 Boulter had a guest @-@ starring role on the
television series The Bill ; he portrayed " Scott Parry " in the episode , " In Safe Hands " .
Boulter starred as " Scott

Prompt

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ the television_ _ _
_ _ _ _ _ _ _ _ _ _ _ in_ _ _ _ _ _ _ _ _ _ ,_ _ _ _ _ _ _ _ Court_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ "_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ and_ _ _ _ _
He_ _ _ _ 2005_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Plymouth_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Stanton and_ _ _ _ _ _ _ _ _ _ _ _ _ starred_ _ _ _ _
play Citizens_ _ _ _ _ _ _ _ _ _ _ a_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Josie_ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ key_ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Merc_ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ =_ _ _ _ _ _ _ _ _ _ _ =_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
the_ _ _ _ _ _ _ portrayed_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ starred_ _ _ _ _
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Off-the-Shelf, Sequential Decoding

300 300 300 300<eop> Ethnic or Ethnic Ethnically Ly Americans or Others or Others Beyond
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly the television Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly in Ly Ly Ly Ly Ly Ly Ly North ), Ly Ly Ly Ly Ly
Ly Ly Ly Court Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly" Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly and Ly Ly Ly Ly Ly He Ly Ly Ly Ly 2005 Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Plymouth Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Stanton
and Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly starred Ly Ly Ly Ly Ly play Citizens Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Ly a Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Josie Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly. Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Lykey Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Merc Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly = Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly = Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly the Ly Ly Ly Ly Ly Ly Ly portrayed Ly Ly Ly Ly Ly Ly Ly
Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly; Ly Ly starred Ly Ly Ly Ly Ly

Off-the-Shelf, Speculative Decoding (Algorithm 1)

series and led starred starred starred starred starred starred starred starred starred starred
starred starred starred starred starred starred starred starred starred starred starred starred
starred starred starred starred starred starred starred starred starred starred starred starred
starred and in the television major starred starred starred starred starred starred starred starred
starred starred when the on in became being the title characters into scene as filming the, and
too happen which came. The Screen Court Movie""""1996)( were cast they are booked cast
to be cast moondicly on set as the movie upon movies too news faint as of taking pres "".
They cast to appear on set as of other celebrities the her shee sheeee heee and and is casting
as the Hee Hee she 2005 """"Uh Uh Uh Uh Uh Uh Uh, Plymouth listed on set the first here
Hee hee she is casting as they are casting to appear as the scheduled here Hee hee he is cast
as previously its scheduled her to appear as Stanton and into the Las Vegas during draft her
seen her can be cast or starred as the backup for the play Citizens Las Vegas are casting ankle
to appear assed or a the next scheduled Las Vegas Las (""""" shortly before after the next
scheduled Las Vegas Las Vegas Las "" Josie Las Vegas Las ""jinohlah,x Vegas Las Vegas
Las Vegas Las Vegas Las Vegas Las Vegas "." Las Vegas Las Vegas Las Vegas Las Vegas Las
Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegaskey Las Vegas Las
Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas
Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las
Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas
Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las
Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Las
Vegas Las Vegas Las Merc Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas
Las Vegas Las Vegas Las Vegas = Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las
= Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las
Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas the Las Vegas Las Vegas Las
Vegas Las portrayed Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las
Vegas Las Vegas Las Vegas Las Vegas Las Vegas Las Vegas starred Las Vegas Las Vegas Las

K FINETUNED MODEL OUTPUTS

Text comes from the WikiText dataset (Merity et al., 2016). Samples correspond to Table 1, with our
model trained from 90%→ 99% masking rate, as described in Appendix E.3.
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Original Text

<cls></s> AFI ’s 10 Top 10 - # 6 Sports Film<sep><cls></s><sep><cls></s> = = Legacy =
=<sep><cls></s><sep><cls></s> In the decades since its release , The Hustler has cemented
its reputation as a classic . Roger Ebert , echoing earlier praise for the performances , direction
, and cinematography and adding laurels for editor Dede Allen , cites the film as " one of
those films where scenes have such psychic weight that they grow in our memories . " He
further cites Fast Eddie Felson as one of " only a handful of movie characters so real that the
audience refers to them as touchstones . " TV Guide calls the film a " dark stunner " offering
" a grim world whose only bright spot is the top of the pool table , yet [ with ] characters [
who ] maintain a shabby nobility and grace . " The four leads are again lavishly praised for
their performances and the film is summed up as " not to be missed . "<sep><cls></s> Paul
Newman reprised his role as Fast Eddie Felson in the 1986 film The Color of Money , for
which he won the Academy Award for Best Actor in a Leading Role . A number of observers
and critics have suggested that this Oscar was in belated recognition for his performance in
The Hustler . In 1997 , the Library of Congress selected The Hustler for preservation in the
United States National Film Registry as " culturally , historically , or aesthetically significant
. " Carroll and Rossen ’s screenplay was selected by the Writers Guild of America in 2006 as
the 96th best motion picture screenplay of all time . In June 2008 , AFI released its " Ten top
Ten " — the best ten films in ten " classic " American film genres — after polling over 1 @,@
500 people from the creative community . The Hustler was acknowledged as the sixth best
film in the sports genre .<sep><cls></s> The Hustler is credited with sparking a resurgence
in the popularity of pool in the United States , which had been on the decline for decades
. The film also brought recognition to Willie Mosconi , who , despite having won multiple
world championships , was virtually unknown to the general public . Perhaps the greatest
beneficiary of the film ’s popularity was a

Prompt

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ <sep>_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ,_ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ direction_ _ _ _ _ _ _ _ _ _ _ _ _ editor_ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ our_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ the_ _ _ _ _ _ _ _ ]_ _ _ _
_ _ _ _ _ _ _ and_ _ _ _ _ _ _ _ _ _ lavish_ _ _ _ _ and_ film_ _ _ _ _ _ not_ _ _ _ _ _ _ _ _ _
_ _ _ _ _ role_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ for_ _ _ _ _ _ _ _ _ _ _ _ _ Library_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ FI_ _ _ _ _ _ Ten_ _
_ _ _ _ _ _ _ ten_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ Hus_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ also_ _ _ Willie_ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ’_ _ _ _
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Finetuned, Sequential Decoding

available to all user accounts. 3. Feel free to throw us a few questions and development
suggestions.<sep><cls></s> GENEVA, Switzerland – The paper will not draft further stories,
and we will, after all, ignore the party of journalistic freedom, which includes the right not to
evaluate claims against anyone, except a dissenting direction from the scientific community. I
assure you that we will continue the editor-in-chief role as a quarterly magazine where there
will be no exemptions for writers of a particular viewpoint. This will lead our competition to
host an active website, WMSU, which will host an automated competition about WMSU as
well as to develop accredited methods of talking, researching and writing editorial articles in
Swedish ("HF") and English (Roban Xismen in German). History [ edit ] Flawed motives
for the art of the book have been debated much.[2] Until 2001, in ten of our 10 articles on
2001 and ’02, we have used scientific forms, lavish rigor and style, and fake film. Since
then, it has not happened to us. ARandom House, in cooperation with Wikipedia, consists in
role-playing games and fantasy series literary novels with a unique approach to artistic media,
including "Jeressande" by Audiom et les Hamerswein. See also [ edit ] Table of contents
of articles for 2001-11 The intensive research effort of the Fabian Society and the Library
and Museum of Great Britain on the RMA 1000 series includes more than nine dazzling
articles, 50 "classics" and other pieces that garnered a mention from the Swedish press, an
astute academic, sergeant d’Hoskin’s Service, an item of art on the rise for WMSU in the
2002 World FI World Games.[3] Ten or more previous articles in February contributed to
a ten-years archive by the L.B. Law Foundation of knowledge-urgent WB02 publications
data. In 2005, Wercd et al. took the first step toward finishing "Moswart Huslas", which was
published in the 1976 edition. In 2007, Munsry et al. repeated "White People’s Rescue" also
published events by Willie Miller and other Al Jazeera fresh and original voices. In a 2003
paper in the sociology of journalism, David Blabas reporteds, "The so called ’white men’s

Finetuned, Speculative Decoding (Algorithm 1)

it learned to leave the visit.” Read the folksy post—in full here...<sep><cls></s> CSI: Drayton,
Part I Sir Ken & Honi Pratt Expedition Expeditions, Ltd Research & Development Canada
U.S. History and Culture 1,200 Games History Remfacile Rerail will provide nine series
of digital direction, redesign and multi-distribution services, leading original biographer
and editor David Tatnow appears in the final stages of return service. “It’s almost as fast
as walking, getting the basics off our shelves,” Chief Creative Officer Tony Paschus said.
“We envy Historic Stadium, Ottawa and the story we can tell with access to our digital
resource. The behind-the-scenes humblings cost the taxpayers more than $14 million last
year and were the costliest part of CSI’s entire qualification process isn’t the only aspect
of our financial problem [yet]. Players will have access to the most advanced titles, and
collectible characters of any franchise. But they will be lavished with additional digital
content and new film releases, in things that will not cut through Rui’s new, toned down,
strong-arm role—for example, when, in those spacesuits and used as rival generals, she
can have dramatic conversations with everyone on her team. (Each character continues to
be introduced during missions.) UK flags are symbolic of support for this transition from
digital play to entertainment. Credit: Beaujorie Library Release date: 2015-01-25 Format:
Remastered digital Download framerate: 57 kbps (a range of 1.2 to 54 kbps) Thumbnail
up to 1920x1080 (16 in., 5 notches at 40.1°C) Planting Function: BFI 16 00 | Twelve
Tens of catchests Producers: tenthreekorea-reports.gl.ca SUBSCRIBE TO Northeastern
University’s CSI: Drayton News & Games Tour: 51 Place (including Canada), Alberta
(including Canada) Huston University University College of Art and Design MacAskill
University of Waterloo (Note: Gamers 3 and under are welcome to sign up) See also: All
About Willie Lewis<sep><cls></s> Posing for AC/DC’s album’s tour in October, D’Angelo
Brakes of British Columbia proceeded with a classic ’DC’ mixta
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