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ABSTRACT
SurvQ is a video monitoring system appropriate for surveillance
applications such as those found in security and law enforcement.
It performs real time object property identification and stores all
data in a scalable DBMS. Standing queries implemented as database
triggers are supported. SurvQ contains novel adaptive machine
learning and algorithmic property classification. The application
of SurvQ to assist the West Lafayette (IN) police department at
identifying suspects in video is described. This paper also describes
the basics of the SurvQ architecture and its human-in-the-loop
interface designed to accelerate everyday police investigations.
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1 INTRODUCTION
Urban areas havemany video cameras continuously recording some
field of view. There are fixed cameras on light poles, cameras on city
vehicles, and cameras on police personnel. In addition, there are
surveillance cameras on private property, NEST doorbells, interior
spaces, and many private vehicles. The resulting video streams are
crucial for police officers when solving a range of everyday crimes,
but often entail hours of tedious manual examination, thereby wast-
ing scarce police resources that could be put to better use.

MIT and Purdue researchers have developed a Surveillance Video
Querying system, SurvQ, for surveillance video information. The
Chesterfield, NH police department is assisting in providingmission
requirements. The West Lafayette,IN police department has pro-
vided video data from cameras in the downtown area plus redacted
police dispatch reports. The SurvQ prototype must operate at suf-
ficient scale to handle the West Lafayette use case (about 200 fixed
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Figure 1: An example of surveillance footage from West
Lafayette, IN.

and mobile cameras), and with an analysis loop that gives rapid an-
swers to busy law enforcement officers. SurvQ has been designed
so it is readily adaptable to larger deployments and other surveil-
lance applications, such as those found in securing military bases
and disaster recovery.

The Detective In the Loop – The primary focus of SurvQ is to
assist humans performing analytical tasks: that is, police detectives
solving crimes and tracking individual suspects. A typical scenario
is an incident report of the form “assault reported at time XXX
in location YYY. Suspect is of medium height, wearing jeans and
a baseball cap”. In this particular use case from West Lafayette,
a suspect matching the description was spotted on a public bus
camera, and that led to his arrest. At the present time, examining
video footage is a manual process for police, and takes hours and
hours of time. The request from both police departments is simple:
“please help us bemore efficient at searching video to track suspects”.
The general use case is to find video frames matching a given
description in a given geographic area and time range. Detectives
want both an off-line system to search historical data and a real-
time (standing query) facility with short response time (under 60
seconds). An example video frame from a West Lafayette street is
shown in Figure 1. In addition to accepting video queries via direct
human input, one way to make detectives more effective would be
to draw query specifications from multiple fused sources, such as
tweets or hand-written police reports.

Surveillance Video and Detective Use Cases – Surveillance
video has a collection of notable characteristics. First, it is often
fairly low resolution and therefore difficult to process with sophis-
ticated techniques. Second, the lighting is usually poor, because
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White Black Hispanic Asian
Male Female Tattoos Beard
Bald Hair color Sandals Shoes
Boots Jeans Pants Shorts
T-shirt Baseball hat Jacket Tall
Shorts Walking Running Motorcycle
Bicycle Truck Passenger car Skateboard
Smoking Backpack Headphones

Table 1: Video properties of interest to law enforcement.

of glare, night conditions, fog, rain, or snow. Third, interesting
objects are often in the background, often facing away from the
camera, and are usually closer to thumbnails than images. Fourth,
interesting objects often have properties that are rarely observed,
so obtaining training data may be a challenge for building machine
learning (ML) systems.

The West Lafayette Police department shared the 31 object prop-
erties they are most interested in, and these are shown in Table 1.
Several things should be noted about this property set.

Some properties are relatively rare. For example, smoking is
rare on college campuses and sandals are very rare in December
in Indiana. Trying to find rare events by using traditional machine
learning techniques that depend on obtaining large amounts of
training data is not likely to succeed.

Some properties are visually very small. Tattoos in surveillance
video are a few pixels. Of course, this makes recognition difficult.

The set of interesting properties for the police application is
surprisingly modest. To meet their needs, it is easy for computer
scientists to hypothesize all the possible data values that might
be extracted from an image. Also, police queries — as we saw in
interviews with police officers and by examining police reports —
are driven by a relatively small number of query types. We believe
this fact can help both in designing an efficient system and in
addressing citizens’ privacy concerns.

Design Considerations – Training data is challenging. In an early
experiment we demonstrated that building a classifier to find people
wearing jeans by training on high quality web images failed to
recognize jeans in surveillance video. Hence, transfer learning may
not work well. In addition, many of the properties in Table 1 are
subjective, and humans may differ on whether they are present. In
other words, the input is very noisy.

We face problems of scale. West Lafayette has more than 100
cameras. The administration wishes to retain all video for months.
This quickly becomes a terascale to petascale problem.

Traditional deep learning is expensive at scale. We anticipate
there will be additional properties of interest to the police beyond
those in Table 1. As we have demonstrated, our transfer learning
attempt failed to find jeans. Building a training set for the properties
of Table 1 is a tedious manual process. In addition, model runtime
at scale is costly. It is not clear that a deep learning solution is
affordable by the City of West Lafayette.

Overall Approach – SurvQ applies property recognizers to the
video streams and loads both video and the properties into a Post-
gres database [3]. To achieve scalability, it can be optionally be
loaded into Citus[1], a parallel multi-node terascale extension of

Postgres. The detective spends his or her time querying and navi-
gating this database. In addition, Purdue researchers are working
on parsing text from tweets and police reports. Data from Bureau
of Motor Vehicles records and exchange of messages among police
officers could be included in the future.

Nontechnical Deployment Concerns – This paper is focused on
technical questions, but there are substantial nontechnical issues
around deploying such a system. Some countries have deployed
digital surveillance systems that are totalitarian. Some communities
face overpolicing. Although there are some technical approaches
that could possibly limit abuse, such as recent work in fairness
in machine learning models, the challenges are quite broad and
unlikely to be solved solely by technical measures. It is not possible
to address them adequately in a short paper, nor solely from a
computing perspective. Obtaining the efficiency benefits of systems
like this one, while limiting the potential for abuse, is a broad
challenge for both the field and society overall.

Organization of this paper – We cover related work in Section 2,
then discuss basic SurvQ architecture in Section 3. We describe the
user’s workflow in Section 4 and provide some initial experimental
results in Section 5.

2 RELATEDWORK
Querying over video is a substantial research problem that draws
on work in several areas of computer science.

Although queryable video monitoring systems have existed for
some time, the neural network revolution in image processing has
changed many of the system opportunities as well as research chal-
lenges. Earlier systems were limited to recognizing simpler objects,
such as license plates or faces [5, 14]. One line of work assumes that
video frames will be processed by a convolutional neural network
(CNN) and is primarily concerned with optimizing their execu-
tion. NoScope [8] offers several optimizations, including training
of inexpensive proxy models and selective frame differencing. The
Tahoma [4] system creates multiple physical representations of
videos, combined with creation of proxy models, in order to choose
the most efficient one at query time. BlazeIt [7] offers optimizations
for aggregation and limit queries that again rely on proxy model
training. Focus [6] achieves runtime gains with a combination of
inexpensive but low-quality CNNs to build an approximate query
index, plus expensive high-quality CNNs after using the prebuilt
index.

Many of these systems assume the existence of CNN-training
capacity that would not be reasonable in our police use case. Their
applications also focus heavily on traffic video use cases (whether
fixed-camera or car-mounted) where they must detect (1) many
examples of (2) common and (3) visually clear phenomena for down-
stream use by (4) analytical pipelines. In contrast, we are concerned
with a human who often needs (1) a single example of (2) rare
and (3) visually obscure phenomena for downstream use by (4) a
human-intensive investigation. As a result, SurvQ does not have
to generate huge quantities of results; it can exploit the natural
duplication of imagery common in video in order to find a small
number of difficult but high-value query results.
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Figure 2: SurvQ video ingestion and retrieval architecture

Other video query systems focus on traditional systems-centric
optimization methods. SVQ (Streaming Video Queries) [15] is a
system for running declarative SQL-style video stream queries,
with a focus on counts and spatial constraints on objects in a frame.
It optimizes query execution by applying a set of inexpensive filters
(such as object counts) on video frames before running expensive
object detection algorithms, thereby eliminating frames that have
low potential of being a match for the query. Optasia [12] is a
large-scale relational video query processing system that focuses
on surveillance camera data. Its optimizations mainly focus on
deduplicating work and choosing chunks for parallelization. Some
of its approaches might be useful for SurvQ. VideoStorm [16] is an
analytics system that uses a compute cluster to process thousands
of concurrent analytical queries. It is primarily concerned with
scheduling and resource allocation questions around those queries.

Some researchers have focused on detecting a larger set of items
in video imagery. The Panorama system [17] represents the prob-
lem of unknown objects as an unbounded vocabulary problem. This
system uses an ML-heavy approach that asks users to manually
label unknown objects before automatically retraining novel image
classifiers. This is an interesting human annotation problem, but
is both computationally heavyweight and likely unnecessary in
a concrete application with a relatively fixed set of objects. Tech-
niques such as zero-shot [10] and one-shot [9] learning have been
proposed for supporting new object properties, but they require
significant manual intervention for model retraining as well as the
provision of metadata and/or more labels, i.e., identifying more
object properties. As video surveillance applications usually have
time-starved and non-technical users, these techniques are difficult
to implement.

All of the above systems focus on the data system, without
extensive attention paid to the human in the visual analytical loop.

3 ARCHITECTURE
The architecture of SurvQ is divided into ingestion and retrieval
systems. These two systems may be operating in parallel.

3.1 Data Ingestion
Figure 2 shows the initial data ingress step. SurvQ consumes video
feeds in real time or retrospectively. When video data arrives at
the Video Server, SurvQ archives it in storage and then applies a a
pipeline of processing steps:

(1) Video is converted to MP-4 (if it is not already captured in
this format) and down-sampled to one frame per second

(there is no sense running property identification more often
than this, and we may be able to run less frequently).

(2) YOLO [13] is used to identify people objects in each frame.
YOLO was chosen because it is very efficient at run time and
has the best chance of “keeping up” with the large number
of video streams. YOLO also has built-in detection for some
of the properties from Table 1, for example bicycles.

(3) Each YOLO-detected object is then further examined to dis-
cern its object properties, initially the features in Table 1.

Next, property identification is performed using three different
approaches:

• Color analysis. The combination of YOLO class and some
color analysis can yield a simple but effective property detec-
tor. We have segmented all YOLO-detected person objects
into “sections” (e.g. lower half, upper 10% etc.). If the domi-
nant color of the lower half is “blue” then chances are the
person is wearing jeans. Between shape analysis, color anal-
ysis and common sense reasoning, we can detect about half
of the objects in Table 1.

• Traditional deep learning. Purdue is applying traditional
deep learning to the object property identification problem.
This requires tagging imagery from West Lafayette with la-
bels to construct training data. We have found that a suitable
detector requires O(1000) images to be successful. Student
labor is being used for this substantial task.

• Transfer learning. Purdue trained a CNN-based attribute
detection classifier on the PA-100K dataset [11]. PA-100K
dataset contains 100,000 pedestrian images from real out-
door surveillance cameras annotated with 26 attributes. We
use YOLO as our backend before the frames are passed to
the pretrained classifier. We created a mapping between 26
features from PA100K dataset and 31 features of interest in
Table 1 based on whether they are visually synonymous: for
example, short sleeves in the PA-100K dataset is mapped to
T-shirt in our taxonomy. All of the features from PA100K are
similar to some properties of interest to us, and we could find
an exact mapping for more than one-third of the properties.

Currently, all three classifiers are being actively improved. How-
ever, a few results are already apparent. First, color/shape analysis
works well and has the great advantage that training data is not re-
quired. Second, transfer learning is proving difficult, because of the
variance in quality of frames between training data set and surveil-
lance video. This same issue was a problem in transfer learning to
identify jeans. Our experience is that data derived from dissimilar
video is not useful in helping to solve our problem. We are hope-
ful, however, that our classifiers trained on West Lafayette video
will work successfully on New Hampshire video. Lastly, training a
novel deep learning system is a challenge because of the amount of
training data required. Without a ready data set of tagged images,
generating training data is a very expensive proposition. Without
student labor, the cost could well be prohibitive.

Active Learning and Color Management – Active learning is
well understood in a deep learning context. However, of particular
interest to us is feedback to our color algorithms for automatic
improvement. Colors perceived by the camera can be influenced
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by the time of day, weather, and other physical properties in the
scene so that simply detecting "blue" on a person figure requires
some adjustment. To perform color analysis in a segmented area,
the RGB value at each pixel is retrieved. The set of RGB values for
the standard colors (red, green, yellow, etc.) is defined in a reference
color map. To infer the color of a pixel, we calculate the color
distance to each standard color and choose the closest one [2].

The color for any region of interest was then found by majority
vote. To incorporate active learning, we plan to test moving the
reference colors in color space based on user feedback.

Finally, the output of the classifiers is stored in Postgres along
with suitable metadata, and pointers to the archived raw video.

3.2 Data Retrieval
The right-hand side of Figure 2 shows the simple architecture we
use for querying video. At run time, our system expects a user
query, most likely derived from information in a police incident
report, such as the West Lafayette document seen in Figure 3. (We
also have code that parses the actual incident reports to extract
the description of the incident.) The user’s query is converted to
SQL and defined as a trigger to the Postgres DBMS. In this way, a
historical query is run to find the data of interest in the past, and
a Postgres trigger will find data of interest as it is loaded into the
DBMS in the future. Section 4 describes in detail the query and
interaction cycle from the user’s perspective.

We currently ingest parsed tweets into the database. In the future,
we expect to search both video and tweets for the properties of
interest in Table 1. Note that the scope of a trigger system can be
multiple tables, so joining multiple data sources is straightforward.

4 USERWORKFLOW: THE POLICE
DETECTIVE IN THE LOOP

Police detectives receive information about events they need to
investigate in the form of an incident report, like that of Figure 3.
These reports contain information about the event that occurred,
often including details of any suspects involved. We have two in-
terfaces to obtain data about an incident. The first is a form-based
UI shown in Figure 4. With it, detectives can input the incident
details easily. The form has fields to filter on time, location and
suspect characteristics. The results are translated into SQL queries
and triggers, allowing non-programmers to easily interact with the
system. The second system automatically parses West Lafayette
incident reports to obtain required information.

An example of the analytical interaction steps a detective may
take with SurvQ is shown in Figure 5. In (1) the user will visit
the creation page for the incident and enter the appropriate details.
Upon submission, the user is redirected to an investigation page that
can be revisited at any time. The investigation page contains all the
details relevant for the incident. This includes event information,
processing progression and matching video clips. In (2) there are
three possible viewpoints the user can choose:

• List: Displays all returned results compactly so the user can
quickly view all matches.

• Map: Aggregates video that occurred in close proximity and
displays the resulting clusters on a map

Figure 3: The populated incident report

Figure 4: The incident creation form.

• Timeline: Aggregates video that occurred close in time and
displays the bucketed groups in order

These three different viewpoints are shown in Figure 6. In step
(3), the investigator will search through the returned video. When
an investigator finds a video useful, they mark it as important. Each
viewpoint can apply a filter to display only marked video. In step
(4), after they’ve gone through the video, they can select a differ-
ent viewpoint to make additional passes over the video data. This
search-and-mark process comprises much of the detective’s analyt-
ical work. In the future, we believe that moving cameras (mounted,
say, on a police car) may be a potential source of novel video data,
and will pose new interaction challenges for investigators attempt-
ing to find suspects in the video database.
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Figure 5: Example actions a user might take with SurvQ.

Additional video may enter the system after initial creation and
investigation. Investigators following an incident in real time can
use SurvQ to subscribe to long-running queries and thereby re-
ceive alerts about new data. Postgres triggers are made on incident
creation to check for property matches. Users can see new notifi-
cations in the investigation view and home page for easy viewing
and access.

5 RUNTIME PERFORMANCE: PRELIMINARY
RESULTS

We have run our ingest system and our query system in parallel
on real and simulated queries and data. To assess performance, we
consider SurvQ as three components: video ingest, YOLO process-
ing, and database activity. Our goal was to make SurvQ performant
enough to handle an urban camera deployment, including the West
Lafayette use case.

We maintain a collection of web servers to handle video upload.
Upsteam processing must generate video in 1-minute MP-4 files.
Future work would be required to handle other video formats. A
low cost web server can support 4-5 concurrent video feeds.

YOLO processing runs well on a GPU-equipped server. A sin-
gle server can perform object recognition and color analysis in
approximately 15 seconds per 1 minute of video. Thus, each YOLO
processing server can handle around 4 incoming feeds.

Our major performance concern was how our use of trigger
functions in Postgres would scale. In SurvQ, a trigger function
for each incident is run every time YOLO results are inserted. We
run YOLO on video at a rate of 1 frame per second, or 60 frames
per minute. West Lafayette surveillance data averages 5 persons
per frame. Since the West Lafayette use case has at most 200 video
sources, we would expect our system to receive around 60 * 5 *
200 = 60000 inserts per minute. We need to be able to handle these
insertions in under 60 seconds worth of time. Figure 7 shows that
trigger invocation can easily keep up.

As such, the dominant cost for West Lafayette is the number
of YOLO servers to process the incoming video load. Given their
computing budget, it is not cost effective to perform ingest-time
property identification on all video. Instead we have implemented

Figure 6: The list,map, and timeline viewpoints.

resource-available classification via a priority system. In this way,
highest priority feeds are classified at ingest time, and deferred pro-
cessing is performed when necessary. Of course, when processing
is deferred, it is performed at query time. Hence, in the worst case,
only video relevant (in space and time) to an incident is classified.
Our current system assigns a priority to a video feed equal to the
number of incidents it matches in space and time. We expect to
investigate more complex schemes in the future.
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Figure 7: Insertion time vs number of trigger functions
present. Insertion times are an average of 5 trials

In our opinion, deferred processing is more reasonable than
trying to do multi-step identification, as in BlazeIt [7]. The BlazeIt
sampling approach can be effective in counting settings but these
do not apply to our surveillance analyst use case; moreover, the
BlazeIt approach requires assumptions about the detected objects
that may not apply for our use case, as well as additional model
training overhead. A better way to performmulti-step identification
for the surveillance analyst use case is to first do coarse temporal
sampling, e.g. down sample to 6 frames a minute from 60 frames
per minute. Then perform finer granularity sampling at query time.

Table 1 indicates running and walking as properties of interest.
To accomplish this, we perform inter-frame analysis. It is straight-
forward to calculate geographic displacement of objects with the
same color properties. With fixed cameras this is working well,
and we plan to expand to cover moving cameras. Also, we expect
to continue this thrust to explore social behavior of suspects and
predict their intentions, for example, a man with a black hood is
wandering back and forth in front of a bank.

We are also looking for techniques to identify rare events, such
as tattoos. Deep learning is difficult in this case because of the
absence of training data. Even color analysis is difficult because of
the dearth of examples to test algorithm design on.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have introduced SurvQ, a human-in-the-loop sys-
tem for analyzing surveillance video. We have described a database
backend that can scale to practical video volumes, as well as an
interface that dramatically lowers the human costs of video-driven
investigations. Although our experimental results are preliminary,
the performance numbers are already promising, and our intended
user base of law enforcement officers have expressed extreme en-
thusiasm for the software artifact. In the future, we plan to grow the
video datasets under management and extend the investigation in-
terface to include mobile cameras, both vehicle- and body-mounted.
We also plan to apply the system to novel investigation scenarios
such as management of warehouses or construction sites. Finally,
we will continue to investigate "minimal user surface" ML deploy-
ments in a video context.
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