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Abstract

Can neural networks systematically capture discrete, compositional task structure
despite their continuous, distributed nature? The impressive capabilities of large-
scale neural networks suggest that the answer to this question is yes. However,
even for the most capable models, there are still frequent failure cases that raise
doubts about their compositionality. Here, we seek to understand what it takes
for a standard neural network to generalize over tasks that share compositional
structure. We find that simply scaling data and model size leads to compositional
generalization. We show that this holds across different task encodings as long as
the training distribution sufficiently covers the task space. In line with this finding,
we prove that standard multilayer perceptrons can approximate a general class of
compositional task families to arbitrary precision using only a linear number of
neurons with respect to the number of task modules. Finally, we uncover that if
networks successfully compositionally generalize, the constituents of a task can be
linearly decoded from their hidden activations. We show that this metric correlates
with failures of text-to-image generation models to compose known concepts.

Code available at https://github.com/smonsays/scale-compositionality

1 Introduction

The ability to understand and produce novel combinations from familiar constituents is a key faculty
of intelligence. It has been debated for decades whether neural networks are ever able to truly achieve
such compositional generalization [1]]. Regardless of these theoretical considerations, scaling neural
networks continues to result in increasingly capable models [2H4]. Naturally, as models are scaled
up, their capacity to memorize grows, and it is perhaps unsurprising that as a result of training on
ever larger datasets their ability to recall more information grows too [5]. However, the nature of
compositionality is an exponential growth and ultimately any attempt to exhaustively capture this
breadth by scaling the training data will be confronted with physical constraints.

Many works therefore advocate that neural network architectures should be explicitly endowed
with compositional structure [e.g.,|6H9]] to allow making infinite use of their finite means [10, [11]].
Capturing the underlying compositional procedure of the data is a more efficient pathway to generalize.
In particular, the algorithmic complexity of this generalizing solution is much smaller than the
complexity of the memorizing solution [12]. But does this mean that architectures need to explicitly
factorize according to the data’s underlying compositional mechanisms [9]]? For instance, monolithic
networks have been shown to discover modular subnetworks which may enable compositionality
without specialized symbolic mechanisms [[13]]. Maybe simply scaling the data and size of neural
networks is then enough to achieve compositionality. Here, we attempt to answer this question:

Do neural networks compositionally generalize at scale?
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Figure 1: Scaling can lead to compositional generalization. We consider compositional task
families that compose K out of M modules into tasks, each of which is modeled as a function. This
gives rise to an exponential number of O (M) tasks. We train standard feedforward networks on a
subset of tasks and evaluate compositional generalization on held-out tasks. We find that scaling the
size of the model and the data leads to compositional generalization.

Our main contributions are as follows

* We demonstrate that standard multilayer perceptrons compositionally generalize on a variety of
tasks as data and model size are scaled across task encodings if the training distribution sufficiently
covers the task space.

* We prove that multilayer perceptrons can approximate a general class of compositional task families
to arbitrary precision using only a linear number of neurons with respect to the number of task
modules.

* We show that task constituents can be (linearly) decoded from the hidden activations of models
that compositionally generalize, and demonstrate that this metric correlates with failures of image
generation models to compose known concepts.

2 Compositionality and compositional generalization

We begin by formalizing compositionality and compositional generalization with the goal of capturing
a variety of compositional data types including visual scenes, abstract reasoning and behavior policies.

2.1 Compositional task family

Specifically, we will consider compositional task families that specify a generative procedure over
tasks with shared compositional structure. In a similar vein to [14]], our definition uses algorithmic
complexity theory, in particular the notion of Kolmogorov complexity, see [[15] for a formal treatment.
This definition is a modified version of the definition introduced by [16]]

Definition 2.1 (Compositional task family). A compositional task family is a tuple 7 = (C,p : z —
p(z),p: x+— p(x)), where:

* The task constituent space is a set Z C {z € [0,1]™ : 1 < ||z||o < K < M} with corresponding
task distribution p(z). K is the number of task components and M is the number of task modules.
* A task is a function f, : X — ) that labels data points « ~ p(x).
* The composition operator is a mapping C : Z — (X — Y) that takes as input task constituents
z € Z and maps them to a task, C'(z) := f, for which the following conditions hold:
(i) C(z) # C(2) forall z # 2’ with z, 2’ € Z,i.e. C is injective.
(ii) The length of the shortest program that implements C as a function of K grows sub-
exponentially in K.

In the discrete case, where Z C {z € {0,1}™ : 1 < ||2|¢ £ K < M} is restricted to the set of
binary, K-hot vectors, Definition [2.T|essentially states that a compositional task family compactly
captures exponentially many tasks. Condition (i) ensures that all task components functionally

"For the sake of simplicity, we are stating the definition slightly informally. For the asymptotic behavior over
K used in condition (ii) to be defined, we are technically considering a family of compositional task families.



enter the composition, while condition (ii) excludes the case where compositions are purely context-
sensitive, ensuring that there is shared structure between tasks. For a more detailed discussion of this
definition, please refer to [[16].

The notion of a task is used in a general sense here and allows to capture different types of composi-
tional data. For instance, a task could refer to a visual scene, where modules are the set of possible
objects and the composition operator renders a selection of such objects into a scene. Similarly, a
task could refer to a behavior policy, where modules consist of different reward functions, a subset of
which is combined by the composition operator to induce an optimal policy.

2.2 Task encoding

Before we can continue to define compositional generalization using Definition 2.1, we must first
specify how to present the model with information about its current task, as captured by the task
constituents z. In practice, such a task description might not be the task constituents themselves, but
rather some encoding thereof. For example, a task could be described through a natural language
instruction or by presenting example data points (x;, f(x;));. To model this aspect, we define the
task encoder as the mapping
p:(Z,N)— Z'

that maps task constituents z € Z and a random seed r € N to a task encoding. Throughout the
paper, we mostly focus on settings where the task is unambiguously specified, i.e. where the task
encoding ¢ is information-preserving and therefore injective.

2.3 Compositional generalization

With Definition [2.1] at hand, we can now formalize compositional generalization for a model that
learns to perform tasks from a compositional task family, given a task encoding . This definition is
a slightly modified version of the definition presented in [L16].

Definition 2.2 (Compositional generalization). A model parameterized by 6 is said to compositionally
generalize with respect to the compositional task family 7 = (Z, C, p(z), p(x)) if there exists a
discrete training distribution z + p*#"(2) with finite support such that the number of points in the
support grows sub-exponentially in K and it holds that

0" € argemin B ptrain () [Exp(a) (0, x, 2)]]
= 0" cargmin  E,_, ) [Emwp(m) [Z(O,w,z)]} ,
0

where [(0, x, z) = [ (f»(x), go(x, p(2)) is a loss function that measures the discrepancy between
model predictions and the outputs of a task f, (x) for a given datum @ and task encoding p(z).

Note, that we are not considering fixed-size datasets but are sampling directly from the data distribu-
tion which reflects the nowadays common single-epoch training regime of large-scale foundation
models [e.g., 3].

2.4 Hyperteachers: A general class of compositional task families

For the purpose of this study, it will be useful to instantiate a concrete but nevertheless general
class of compositional task families according to Definition 2.1} Given that neural networks are
flexible function approximators and thus able to cover a wide range of behaviors, we parameterize
both the composition operator as well as the task functions using neural networks. The resulting
system, a composable neural network that generates another neural network, can be interpreted as
a hypernetwork [17]. Indeed, hypernetworks have previously been used to study compositional
generalization [[18]].

Following [18]], we consider a linear hypernetwork that sums K out of M possible weight matrices
to parameterize a single hidden layer task network. We define the task constituent space to be
Z C{2€{05,06,...,1.0}M :1 < |2]op < K < M} and the composition operator as

C(z) =z — Q ReLU Z 2Oz | | 1)
k:z #0
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Figure 2: Scaling data and model size leads to compositional generalization. Top-left Scaling the
number of training tasks by increasing the number of modules, task components or decreasing the
fraction of tasks held-out from training leads to compositional generalization on the hyperteacher task
family. Top-right The number of training tasks required to achieve compositional generalization, here
defined as a R? > 0.95, scales sub-exponentially as the number of total tasks in the task family grows.
Bottom Scaling model size by increasing the number of hidden neurons and the number of hidden
layers leads to compositional generalization on the hyperteacher across different task encodings.
Error bars denote SEM over three seeds.

where we have M sets of neural network parameters {©,,, € R’*#}M | with I input neurons and

H hidden neurons, £2 € R¥*© is a shared readout projection with O output neurons and we sample
x € R! from the uniform distribution p(z) = U[—1, 1]¢. Each module ©,, also has an associated
bias vector which we omit here for conciseness. The resulting task functions, f, : R — RO, are
thus single hidden layer ReL.U networks.

3 Scaling can lead to compositional generalization

In the following, we will investigate if and under what circumstances standard multilayer perceptrons
compositionally generalize. We will show that simply scaling the number of tasks in the training
distribution as well as scaling model size leads to compositional generalization. The results presented
in this section focus on various parameterizations of the hyperteacher compositional task family
presented in Section[2.4] We reproduce all findings of this section on the compositional preference
task family introduced by [18]. This task family requires learning optimal policies in a grid world
with compositional reward functions. We present the corresponding results in Appendix [B.T] in
Figures|[7] 8] [0]and Table[2] For additional experimental details, please refer to Appendix [C}

While there exist various architectures specialized for compositionality, here we are interested in un-
derstanding if a standard fully connected neural network, a multilayer perceptron, can compositionally
generalize. Fully connected layers are common building blocks of virtually all standard architectures,
including transformers or recurrent neural networks. Specifically, we consider a multilayer perceptron
with ReLU nonlinearities that accepts the concatenation of @ and ¢ (z, ) as input.

xr

olerr 3| ReLUMLP | —

In order to measure a model’s ability to compositionally generalize, we will hold out tasks from
training and evaluate the model’s performance on these tasks.



3.1 Scaling the number of compositional tasks leads to compositional generalization

To investigate the main question of how scale affects compositional generalization, we will vary
both data and model size. The former can be accomplished along two different dimensions: We
can vary the total number of tasks in the compositional task family by changing both the number of
modules M and the number of components K, and we can vary the fraction of distinct tasks that
are held-out from training. Since the number of possible tasks grows exponentially, O(MX), the
compositional task families we consider can easily contain a very large number of distinct tasks.
The top-left of Figure [2] shows that as we scale the number of tasks, compositional generalization
improves. Notably, the required number of training tasks to achieve compositional generalization
grows more slowly than the total number of tasks as shown on the top-right of Figure [2| This implies
that compositional generalization with a sub-exponential number of tasks, as in Definition [2.2] is
indeed achievable at scale. In Appendix [B] we further demonstrate that this scaling relationship is
even more favorable for transformers and similarly holds for the compositional preference task family
as well as a hyperteacher with a deep target network.

In addition to scaling the data, we would like to understand how scaling model size affects composi-
tional generalization. Shown at the bottom of Figure[2] we vary both the number of hidden layers
and the size of the hidden layers for various possible task encodings ¢(z,r) (more details on the
task encodings will follow in Section[3.3). We find that, given sufficient data, increasing model size
consistently improves compositional generalization. This is noteworthy, given that increasing model
size in principle increases the capacity to memorize training tasks without capturing the underlying
compositional structure required for compositional generalization. As we will argue in the following
however, these results can be interpreted as evidence that deep neural networks tend to prefer solutions
of low algorithmic complexity [19].

3.2 Complexity of generalizing solution dominates memorizing solution asymptotically

Memorizing all tasks of a compositional task family by definition requires exponential network
capacity. Intuitively, a solution that captures the underlying compositional structure and thus gen-
eralizes should be more efficient. A priori, it is however not clear whether such a solution exists
for a finite-sized, multilayer perceptron. As we have argued before, hyperteachers can be regarded
as a general class of compositional task families. It is therefore instructive to consider whether a
finite-sized multilayer perceptron can implement any hyperteacher without having to memorize the
exponential number of possible tasks. The following theorem answers this question in the affirmative.

Theorem 3.1. Let (@m € RIxXH ) be a sequence of uniformly bounded matrices. Then, for any
M €N, € > 0, and on any compact input set, X x Z with Z = {z : ||z||1 < 1}, there exists a ReLU
multilayer perceptron that approximates a hyperteacher to within € error in the || - || o norm using

O (% + M) neurons.

The corresponding constructive proof is presented in Appendix [A.2] along with an extension to
hyperteachers with multiple layers. Theorem [3.1|notably states that the number of neurons required
for the generalizing solution scales linearly in the number of modules M. Consistent with our
experimental findings, this means that as M grows, the simplicity of the fully generalizing solution
will increasingly dominate the naive memorizing solution.

3.3 Compositional generalization emerges across task encodings

We now turn to the question, to what extent the way in which the task is specified to the model
matters for its ability to compositionally generalize. Specifically, one might suspect that certain ways
of encoding a task are better suited to leveraging compositional structure than others. For instance,
[20] argue that language in particular encodes task structure in a way that is beneficial for learning
compositional representations. To study this question in the context of our setup, we experiment with
different task encodings ¢(z, r) illustrated in Figure

Generally, we find that all task encodings lead to compositional generalization, including nonlinear
encodings, although some require more model capacity as shown at the bottom of Figure[2]and Table/[T]
(also see Table [2|in the appendix for corresponding results on the compositional preference task
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Figure 3: Task encodings. Illustration of the different task encodings (2, r) used in Table The
first three encodings are linear with respect to the task constituents while the last three are nonlinear.

Table 1: Compositional generalization emerges across task encodings. Comparison of the
decodability of the task constituents from the hidden activations of the third layer (Task decoder)
and compositional generalization performance for various task encodings for a hyperteacher with
M = 16, K = 3. We additionally show the linear decodability of the task constituents directly
from the task encoding itself (Input decoder), which allows to distinguish linear from nonlinear task
encodings. = SEM over three seeds.

Task encoding  Task decoder (R?) Input decoder (R?) Comp. gen. (R?)
Identity 0.95 +0.012 1.00 = 0.000 1.00 + 0.000
Orthogonal 0.96 £ 0.002 1.00 + 0.000 1.00 4+ 0.000
Language 0.99 + 0.000 1.00 = 0.000 1.00 + 0.000
Invertible NN 0.94 + 0.001 0.56 £ 0.000 0.95 £+ 0.000
Interval shuffie 0.96 £ 0.011 0.73 +£0.082 0.98 £0.010
Few shot 0.90 + 0.004 —0.23 £0.008 0.97 £ 0.001

family). Specifically, we observe no benefit of directly using the identity task encoding ¢(z,r) = z,
over a random but fixed orthogonal projection (2, 7) = Qz where Q € RM*M s an orthogonal
matrix. In the same way, encoding each task through a language instruction poses no issues. The
latter is consistent with the observation that the task constituents can be linearly decoded from such
instructions. Interestingly, even nonlinear encodings such as specifying the task through examples
(denoted fewshot), via an invertible neural network or from the highly nonlinear interval shuffle
function (see Algorithm[T]in the appendix for a definition) lead to compositional generalization if
the model size is sufficiently large. One possible explanation for these findings is that regardless
of the task encoding, the model internally infers the task constituents up to a linear transformation
after which Theorem [3.1] guarantees that a generalizing solution that scales linearly in the number of
modules M exists.

To verify this hypothesis, we train a linear decoder to predict the task constituents based on the hidden
activations of the model solving the task. We report the ability of this task decoder to predict the task
constituents on the held-out compositional generalization tasks in Table[T] Indeed, we find that also
for nonlinear task encodings the task constituents can be linearly decoded from the hidden activations
providing evidence that the models internally linearize the task constituents to achieve compositional
generalization. We will expand on this finding in Section

3.4 The support of the training distribution needs to sufficiently cover the task space

In principle, it is easy to come up with degenerate training distributions that make compositional
generalization impossible. For instance, if a module is consistently absent from all training tasks, the
model has no opportunity to learn this module and will generally fail to generalize to tasks that contain
this module. In this sense, the support of the training distribution p**#"(2) needs to sufficiently cover
the full constituent space for compositional generalization to succeed. In this section we investigate
how various conditions over the training support affect compositional generalization.

Prior work has studied how the training distribution affects compositional generalization [e.g.,
18, 21} 22]]. Following [21]] we refer to the condition of having non-zero support for each module
in the training distribution as compositional support . For the class of hyperteacher task families,
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Figure 4: The support of the training distribution needs to sufficiently cover the task space.:
Left Tllustration of the different types of task support for the special case of a compositional task
family with two components. Turquoise tiles denote module combinations that are part of the training
distribution, red tiles are reserved for evaluation. Right Compositional generalization as a function of
the different types of task support on the hyperteacher for M = 16 and K = 3.

the additional condition of connected support needs to be satisfied, which states that no subset of
modules should appear solely in isolation from the rest. [[18] show that in a teacher-student setting
where both the teacher and the student are hypernetworks, this condition is required to guarantee
compositional generalization. We can extend this result to the more general case of any kind of
student, including the ReLU multilayer perceptron. The proof follows immediately by constructing
examples of multiple different hyperteachers that have an identical training distribution if the training
support is not connected. Please refer to Appendix [A.T]|for more details.

Figure 4] illustrates the different types of training support we consider here as well as their effect
on compositional generalization in the hyperteacher. For a more detailed description for how each
training support is constructed, please refer to Appendix [C.3] Our findings empirically confirm
that violating compositional and connected support interferes with compositional generalization.
Interestingly, having a small set of popular modules who appear more frequently poses no issue for
achieving compositional generalization. The converse of having a small set of unpopular modules
that are rarely encountered however does lead to a noticeable drop. These findings are consistent with
prior work that find that module imbalance hampers compositional generalization [23, 24]. However,
our experiments further suggest that such failures are due to underrepresentation of certain modules
and not simply due to an asymmetry in module popularity. Intuitively, if a module is seen only a
constant number of times during training, it can be memorized with constant capacity.

4 Task constituents are linearly decodable in models that compositionally
generalize

Section has revealed that in cases where compositional generalization succeeds, the task con-
stituents can be linearly decoded from the hidden activations. This prompts the question whether
models that succeed to compositionally generalize typically form an internal linear representation
of the task constituents. Generally speaking, we can show that for any model that compositionally
generalizes to most tasks, the task constituents must be decodable.

Theorem 4.1 (Decodability under compositional generalization). For any § > 0, assume we have
a student g that predicts labels f,(x) = y given a task encoding ©(z,r) and inputs x. Then there

exists a decoder map ¢ that decodes p(z,r) to z with probability at least 1 — Vo, if:

(l) Pz,m[g(@(z,'r),w) = C(Z)((E)] >1-90
(ii) Foreach z # 2', P,[C(2)(x) = C(2')(z)] < 1 —2V8
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Figure 5: Compositional generalization correlates with linear decodability of task constituents.
Top Relationship between linear decodability of the task constituents and compositional generalization
across hyperteachers with M = 8 modules and varying K. Bottom Relationship between linear
decodability of the task constituents and compositional generalization across different task encodings
for varying model sizes on the hyperteacher with M = 16, K = 3. Error bars denote SEM over
three seeds. Top/Bottom We report the R? and corresponding p-value for an ordinary least square
estimator in the facet titles.

We provide the proof in Appendix[A.3] In practice, we observe an even stronger version of this
statement, namely that the task constituents are linearly decodable from the hidden activations in
multilayer perceptrons that successfully compositionally generalize.

4.1 Compositional generalization correlates with linear decodability of task constituents

To further illuminate the connection between the observed linear decodability of the task constituents
and compositional generalization, we attempt to decode the task constituents in models that (partially)
fail to fully compositionally generalize. Figure [5] shows a remarkably clear correlation between
decodability and compositional generalization across different data scales (top) and model sizes and
task encodings (bottom). Particularly interesting is the case where the unmodified task constituents are
provided to the model, i.e. where the task encoding is the identity. In this case, the task constituents
are of course trivially linearly decodable from the input. However, training the decoder on the hidden
activations of deeper layers, this information is lost in networks that do not compositionally generalize.
In line with previous research, this implies that having access to a disentangled task representation is
by itself not sufficient to achieve compositional generalization [25} [26].

4.2 Task constituents can be linearly decoded when image composition succeeds

Finally, can we leverage the decodability of task constituents to gain insights into the successes and
failures of image generation models at composing scenes from text prompts? E] Image generation
models have come a long way, displaying impressive abilities in creating novel compositions of
known concepts [24]. Nevertheless, there are still systematic failure cases [27, 28]. Can such failures
be related to the ability to infer the task constituents from the model’s hidden activations?

To answer this question, we construct a large number of compositional tasks that require composing
several concepts. Two examples are shown in the top-left of Figure[6] For an extensive list of all the
tasks we consider, as well as more details on the task construction, see Appendix Using these
tasks, we evaluate the ability of several diffusion-based image generation models to systematically
generate image compositions [29, [30]. We use a vision-language model to label whether a given
generation was successful and train a linear decoder to decode the task constituents based on the

’Code for image composition experiments available at https://github.com/florian-toll/
compgen-vision
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Figure 6: Task constituents can be linearly decoded when image composition succeeds. Top
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average constituent decodability and image generation success rate across image composition task
families for four different image generation models. We report the ?? and corresponding p-value for
an ordinary least square estimator in the facet titles.

model’s hidden activations. The full pipeline is shown in the top-right of Figure[6] Please refer to
Appendix [C.7] for further details. The results of this analysis are shown at the bottom of Figure [6]
We observe a clear correlation between the average task constituent decodability and the average
generation success rate across models, with the relative task difficulty being similar across models,
as shown in Figure [I2] of the Appendix. This provides evidence that models which succeed at
systematically composing known concepts into scenes form an internal representation of the task
constituents.

5 Related work

The study of compositional generalization in neural networks has a long and rich history, with
early critiques highlighting the challenges of connectionist models to exhibit systematicity and
compositionality [e.g., [1, 31H33] and numerous work that in response explored mechanisms for
representing and processing structured information using distributed representations [e.g., 34, 35]].
In recent years, theoretical progress has been made in showing that compositional generalization
can provably be achieved with neural networks in specific settings [18 22, [36H39]. This typically
requires constraining the model architecture and the data generating process. Consistent with our
results, the statistics of the training data play a crucial rule in enabling compositional generalization
(18} 21} 221 39].

We aim to complement this work by showing how scaling generic neural networks can lead to
compositional generalization in the absence of stronger architectural constraints. This is motivated by
the finding that scaling neural networks can break the curse of dimensionality [40]], and consistently
results in improvements in model performance [241] with new capabilities emerging as models are
scaled up [3} 4} 42]]. Compositional abilities in particular have therefore seemingly moved within
grasp in practice [43H48]. However, even at larger scales, models often display a compositional
generalization gap which does not close as scale increases [49H57], despite standard transformers
showing compositionality in controlled settings [S8H60].

Image generation models in particular have made impressive leaps in their ability to create novel
image compositions [29, 30, 61} 62]]. Compositional abilities have been shown to emerge in such
diffusion-based models on synthetic tasks in an order determined by the underlying data processes and
with performance showing sudden emergence due to multiplicative dependencies [24,63]]. Consistent



with our finding that the task constituents are linearly decodable in models that successfully composi-
tionally generalize, [64] find that diffusion image generation models learn factorized representations
on a number of synthetic tasks. However, as the number of concepts that need to be composed
grows, the performance of image generation models starts to deteriorate, showing the limits of their
productivity to arbitrarily complex compositions [27} [28].

6 Discussion

We have shown that simply scaling standard multilayer perceptrons can lead to compositional
generalization challenging the position that stronger architectural priors are necessary to endow
neural networks with compositionality [6-9]]. That being said, architectural priors do matter when
it comes to data efficiency, as highlighted by the improved scaling of transformers over multilayer
perceptrons (see Appendix [B]). Our findings also emphasize that the particular structure of the training
data plays a critical role, demonstrating that not any type of scaling will lead to compositional
generalization.

Interestingly, we find that when the training distribution is appropriately chosen, a wide range of task
encodings support compositional generalization, including language but crucially also nonlinear task
encodings such as specifying each task through examples. Prior work posits that language composi-
tionally structures neural representations and thereby aids rapid adaptation to novel compositional
tasks [20]]. Our results indicate that in fact any information-preserving mapping of the underlying task
constituents suffices to achieve compositional generalization. This might help explain why animals
that do not use sophisticated languages can compositionally generalize [e.g., 65].

Surprisingly, regardless of whether task encodings are linear or nonlinear, we consistently find that
the degree to which a model compositionally generalizes is related to the task constituents being
linearly decodable from its hidden activations. In particular, we show that this metric correlates with
the success rate of image generation models at composing novel scenes from known constituents.
This finding suggests that, even though nonlinear representations would in principle be possible,
successful compositional generalization in neural networks depends on linear representations of
compositional structure.

Limitations While Theoren3.1] reveals the existence of a solution that enables compositional
generalization without requiring an exponential number of neurons, identifying the theoretical
conditions under which one can show that this solution is guaranteed to be discovered by stochastic
gradient descent is an open question. Prior results indicate that deep neural networks trained with
stochastic gradient descent often display a preference towards simple solutions [19,/66H68]. In the
context of compositional generalization, the complexity of the memorizing solution is by definition
exponential in the number of modules which might help explain why empirically we observe the
discovery of the generalizing solution which in contrast scales linearly in the number of modules.

We have focused on settings, where the task is fully specified through the task encoding. In practice, a
task specification might be ambiguous or incomplete, requiring models to handle uncertainty and infer
the task at hand. The strong in-context learning abilities of transformers that might allow extracting
localized, and even cross-modal task vectors could play an important role in this context [69-71]].

More generally, scaling the data in a way that precisely controls the coverage of the training distri-
bution requires an understanding of the true generative process underlying the compositional data.
For this reason, our scaling experiments rely on synthetic data generation that gives us the required
experimental control. On real-world data, the underlying generative process is mostly unknown and
accordingly identifying training distributions that can support compositional generalization remains
an open question.

Broader impacts This paper conducts foundational research aiming to illuminate under what
circumstances neural networks compositionally generalize. While we foresee no immediate negative
societal impact, we hope that it may improve our understanding of this widely deployed technology.
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A Proofs

A.1 Connected support

We briefly state the definition of connected support as introduced by [18]] using our notation.

Definition A.1 (Connected support). Let 7 = (C,p: z — p(z),p : & — p(x)) be a compositional
task family, and let z — p™"(z) be a distribution over Z with discrete support supp(p™") C Z.
We say that supp(p™™) is connected if the graph G = (V, E) is connected, where V = {z € Z |
p™in(2) > 0} is the set of vertices and E = {(2,2') € V x V | 3i € {1,2,..., M} such that z; =
z}'} is the set of edges.

In other words, two training task constituents are connected by an edge if and only if they share at least
one element at the same position. Section A.3 of [18] provides an example that demonstrates how a
student hypernetwork can perfectly fit the training distribution of a different teacher hypernetwork
if the task support is compositional but disconnected. This implies that there exist two distinct
hyperteachers that have the same training distribution. In such cases, any student, including the
multilayer perceptron considered here, is not guaranteed to generalize even when perfectly fitting the
training tasks. To avoid those cases, connected support is generally required for the hyperteacher.

A.2 Proof of Theorem 3.1

In the following, we will show that a multilayer perceptron can approximate a hyperteacher using a
linear number of neurons in the number of task modules. We first state the result for the single layer
hyperteacher we primarily consider in the main text, before extending the result to hyperteachers
with multiple layers.

A.2.1 Single layer hyperteacher

Let us recall the definition of the hyperteacher in Equation [I|with M modules, I input neurons, H
hidden neurons and O output neurons,

M I
(z,z) — Q ReLU (Z Z ®m7izmxi> )
m=1 i=1
where {®,, € RI*H}M_ are the modules, £2 € R is a readout projection and z € [0, 1]M are
the task constituents. We are restating Theorem [3.1] here for convenience.

Theorem Let (@m € RI*H ) be a sequence of uniformly bounded matrices. Then, for any
M €N, € > 0, and on any compact input set, X x Z with Z = {z : ||z||1 < 1}, there exists a ReLU
multilayer perceptron that approximates a hyperteacher to within € error in the || - || o norm using

O (% + M) neurons.

Proof. We will prove the statement, by providing an explicit construction of a ReLU multilayer per-
ceptron that approximates a hyperteacher. The construction relies on two key lemmas: in Lemma[A.2]
we show that the square function can be approximated in a ReLU multilayer perceptron, which we
use in Lemma[A.3|to show how the multiplication of two numbers can be approximated. Based on
these building blocks, we then provide the construction of the full hyperteacher approximation.

Lemma A.2. For any € > 0, there exists a ReLU multilayer perceptron that approximates

{ [0,1] — R
square :=

r = o
to within ¢ error in the || - || oo norm using O(1/&?) neurons.

Proof. Let us first consider how any function f can be approximated by a piecewise linear function

L matching f on z; := X fori € {0,1,...,n}, where n is a fixed integer. We define
f(@it1) ( i) f(@i) — fwiz1)
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f(@o)—f(z—1)

where == — is set to 0 by convention.

0—T-1
It can easily be verified that L is linear on any interval [z;, 2;11] for i € {0,1,...,n}, and coincides
with fon {£,i € {0,1,...,n}}. We now want to bound || f — L||oc. While more general results

can be shown for f € C2, for f = square we can derive our result in the following simple way: for
any x on any interval [2;, z;41],

f(iv1) — f(x:)

L) = =P = @) + fa)
SO
L(z) - f(z)] = M(m—mm%—f
Ti+1 — T4
= (z - 2)(®it1 — @)
<e forn >1//¢

O

An immediate corollary is that this result holds on any fixed bounded set. We now show how to
multiply two numbers using a ReLU multilayer perceptron:

Lemma A.3. For any e > 0, there exists a ReLU multilayer perceptron that approximates

. 0,1 — R
multiply := o,

Py { (x,y) — ay
to within € error in the || - || oo norm using O(1/e?) neurons.

Proof. Using the polarization identity zy = W

with a ReLU multilayer perceptron as follows:

(z,y) = (+y,z—y)— (z+y)* (z—y)?) — a2y

, we can approximate multiply(z, y)

Again, this result holds on any fixed bounded set.

We can now state a construction for a multilayer perceptron that approximates the preactivation of

the hyperteacher, namely (x, z) — an\le Zle 0O,,,;Zmx; using a linear number of neurons in the
number of task modules.

Lemma A.4. Let (@m € RIXH ) be a sequence of uniformly bounded matrices. Then, for any
M €N, e > 0, and on any compact input set, X x Z with Z = {z : ||z||y < 1}, there exists a ReLU

multilayer perceptron that approximates (x, z) — Z%zl Z£:1 ©,, i2mT; to within ¢ error in the

||l oo nOTrM using O ( == + M ) neurons.
NG

Proof. We construct our multilayer perceptron layer by layer, tracking the number of neurons required
for each layer and the error it incurs in the approximation:

* The first layer copies the input « and computes (x, z) (Z:\le 2m©Om.i.n)in for each i €
{1,...,I}and h € {1,..., 0}, canceling the ReLUs by adjusting the biases accordingly given
that the input is bounded. This requires O (M) neurons.

* Using Lemma with error £, the next three layers multiply Z%Zl 2m©m.i,n Y x; for each
ie{l,...,I]}and h € {1,...,0}, using O(1/+/¢) neurons.

* The next layer sums over 7 for each h € {1,..., 0}, again canceling the ReLU nonlinearity by
adjusting the biases. This requires M neurons and incurs a final error of at most € since each output
neuron sums the error coming from / neurons.
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In total, this construction uses O(M) + O (%) +0M)=0 (% + M) neurons. O

Since ReLLU is a contracting function, the output error after applying the ReLLU activation is also ¢.
Finally, we can straightforwardly apply the output projection €2 using a constant number of neurons,
scaling the error by a constant. O

A.2.2 Multilayer hyperteacher

We now consider a multilayer hyperteacher, where a linear hypernetwork configures a multilayer
perceptron with L layers, H; neurons for layer [, Hy = I input neurons and H;, = O output neurons.
In this case, we have C(z) := Qh, a sequence of hidden layers,

M
hl+1 = ReLU( Z Z'm@l,m hl)7

m=1
| —
=W;(z)

with input by = , a sequence of modules for each layer, {© ,, € RF>*Hi+11 ) | and output
m=1,..., M
projection 2 € RAL-1x0,

Theorem A.5. Let (®l,m € RH: XH’“) be a sequence of uniformly bounded matrices. Then, for
any M € N, € > 0, fixed L and on any compact input set, X x Z with Z = {z : ||z|1 < 1}, there
exists a ReLU multilayer perceptron that approximates an L-layer hyperteacher to within € error in

the H . ||C>o norm using O (% + M) neurons.

Proof. First, observe that we can copy the task constituents z to each layer using M neurons per
layer. Because of this, we will assume that we have access to the task constituents at each layer. The
proof then follows a similar approach to the proof of the single layer case of Theorem [3.1]but we
must now consider how the error propagates through each layer. For the sake of simplicity, we will
ignore the readout projection (i.e. assume 2 = I), since this part of the proof is identical.

We prove by induction on the number of layers L that we can approximate hj, to within € error
in the || - ||oo norm with O (% + M) neurons. The base case for L = 0 holds by definition, i.e.

hy = x. Now, assume the result holds for an L-layer hyperteacher. Let € > 0 and X, Z be compact
sets with Z = {z : ||z||s < 1}. By the induction hypothesis, let h;, be a multilayer perceptron that

approximates h, on the compact set X' x Z, up to error ¢ in the || - ||oc norm.
. . M
By Lemma let g be a multilayer perceptron that approximates (x,2) — > | 2O 111 T on

B. x Z, where B. is the closed e-ball around hz, (X x Z). Since the image of a compact set formed by
a continuous map is compact and the closed epsilon ball around a compact set in a finite-dimensional
space is compact, B; is also a compact set.

Let us now show that (x, z) — ReLU (g(fLL(w7 z), z)) approximates k1 on X’ X Z up to error
O(e). We define A, := hy(x, z) — hy, for L layers. Then, for L + 1 layers it holds that,
[AL+1lloc = [[ReLU(g(hr + AL, 2)) — bt
= |lglhy + AL,z) — Wr(2)h| (since ReLU is contracting)
=llglhr + AL, z) = Wi(2)(hr + AL) + WL(2) AL
<llglhr + AL, z) = Wi(2)(hr + AL)llso + [IWL(Z)]lcomool[ALlls
=ec+0(e) =0(e),

where || - || co— oo 1S the operator norm induced by the || - || norm. The final error can be reduced to
be at most € by adjusting the number of neurons by a constant factor.

Finally, let us bound the number of neurons required for the full construction. We used O(M ) neurons

for copying z to each layer, O (ﬁ + M ) neurons for the construction of /1, and O (# + M )

neurons for the construction of g, which sums up to O (% + M ) neurons. O
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A.3 Proof of Theorem

Proof. Let X, Z, R be independent random variables sampled according to their respective distribu-
tions. We define the event made of the set of pairs of task constituents z and seeds r such that the

accuracy is higher than 1 — \/6:
A= [E[L{g(¢(Z,R), X) = C(Z)(X)}Z,R] = 1 - Vo]
={(z,1) € Zx N[ Plg(p(z,7), X) = C(2)(X)] > 1 - V3

where the expectation is taken over X. By Markov’s inequality, and the first assumption, this set
can’t be too small. Indeed,

E[1{g(»(Z, R), X) # C(Z)(X)}]
Ve
<Vo by the first assumption

P[-A4] < by Markov’s inequality

We now show that for all (z,7), (2/,7) € AC Zx N

o(z,r) = (2", 7)) = z=2".
Indeed, let (z,7), (2',1") € A C Z x N, with 2 .= p(z,71) = o(2’,1').
We have, by definition of A,

Plg(2,X) = C(2)(X)] > 1 - V5

Plg(2,X) = C(2/)(X)] > 1 - V3

so by union-bound, it holds

P[O(2)(X) = O(z')(X)] > 1 - 2V5

which is only possible if z = z’ given the second assumption.

We now define

~

forany (z,7) € p~1(2) if 2 € p(A)
otherwise

<
W N
on N

_>
—
H
¢ is uniquely defined because of the previous property.

We have
Plo(¢(Z.R)) = Z) = Pl(Z,R) € A] > 1 - V3

which proves our statement. O
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Figure 7: Scaling data and model size leads to compositional generalization. 7op Scaling the
number of training tasks by increasing the number of modules, task components or decreasing the
fraction of tasks held-out from training leads to compositional generalization on the compositional
preference task family. Botfom Scaling model size by increasing the number of hidden neurons or
the number of hidden layers leads to compositional generalization on the compositional preference
task family across different task encodings. Error bars denote SEM over three seeds.
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Compositional generalization as a function of the different types of task support on the compositional
preference task family for M = 16 and K = 3.

B Additional results

B.1 Compositional generalization on the preference grid

The findings in Section[3]and Section .| focus on the hyperteacher task family. In the following, we
show that all findings can be reproduced on the compositional preference family introduced by [18]].

In Figure[7] we show, that scaling data and model size leads to compositional generalization on the
compositional preference task family. This holds for various linear and nonlinear task encodings
as further shown in Table |Zl Note, that we are not able to evaluate the fewshot task encoding of
the main text since the resulting input dimension is prohibitively large. Figure [§]shows that non-
compositional and disconnected task support as well as rarely encountering a few modules interferes
with compositional generalization. And finally, Figure 0] demonstrates that also on the compositional
preference task family, compositional generalization and linear decodability of the task constituents
from the hidden activations of the model are correlated.
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Table 2: Compositional generalization emerges across task encodings. Comparison of the
decodability of the task constituents from the hidden activations (Task decoder) and compositional
generalization performance for linear and nonlinear task encodings on the compositional preference
task family with M = 16, K = 3. For the linear Identity, Orthogonal and Language task encoding,
we report the decodability of task constituents from the first layer whereas for the nonlinear Invertible
NN (with 2 layers) and Interval shuffle encodings we report it for the second layer. As opposed to
linear task encodings, for nonlinear task encodings the decodability of task constituents is higher in
the second layer compared to the first layer suggesting that the first layer is used to linearize the task
constituents. We additionally show the linear decodability of the task constituents directly from the
task encoding itself (Input decoder), which allows to distinguish linear from nonlinear task encodings.
+ SEM over three seeds.

Task encoding  Task decoder (R?) Embedding decoder (R?) Comp. gen. (acc.)
Identity 0.95+£0.012 1.00 £ 0.000 0.92 £+ 0.004
Orthogonal 0.96 £ 0.008 1.00 £ 0.000 0.92 £ 0.006
Language 0.98 £ 0.004 1.00 £ 0.000 0.92 £ 0.004
Invertible NN 0.93 £0.005 0.74 £0.018 0.82 £ 0.009
Interval shuffle 0.90 £ 0.022 0.72 £0.083 0.84 £0.017

— Fraction of tasks held-out from training e 0125 e 025 e 05 e 075 e 09 0.95 098

E 3 task components 4 task components 5 task components 6 task components 7 task components

§ R*=0.82 (p=0.013) R?=0.88 (p=0.002) ! R?=0.93 (p<0.001) -' R*=0.86 (p=0.003) l‘ R?*=0.91 (p<0.001) '

08

2 I? * B i "

Eno.a E &

3

=3 T T T T T T T T T T T T T T T

£ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

o Task decoder (R?) Task decoder (R?) Task decoder (R?) Task decoder (R?) Task decoder (R?)

g Task encoding:

& Identity Orthogonal Language Invertible NN Interval shuffle Model size

g 19 R*=0.87 (p=0.002) 1 R*=0.95 (p<0.001) R?=0.96 (p<0.001) R?=0.99 (p<0.001) R?=1.00 (p<0.001)

= b o M a* ™

s 2] kA IS 2 fio ol

o H = ] =

o =]

505 " (S ] =]

oo (=] (2] 0.5M

2 |k ] n

kel

E 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1

3 Task decoder (R?) Task decoder (R?) Task decoder (R?) Task decoder (R?) Task decoder (R?)

Figure 9: Compositional generalization correlates with linear decodability of task constituents.
Top Relationship between linear decodability of the task constituents and compositional generalization
across instantiations of the compositional preference task family with M = 8 preferences and varying
K. Bottom Relationship between linear decodability of the task constituents and compositional
generalization across different task encodings for varying model sizes on the compositional preference
task family with M = 16, K = 3. Error bars denote SEM over three seeds. Top/Bottom We report
the R? and corresponding p-value for an ordinary least square estimator in the facet titles.

B.2 Scaling data leads to compositional generalization in transformers

In addition to using multilayer perceptrons as done in the main text, we investigate whether the widely
used transformer architecture similarly achieves compositional generalization through scale. For this
purpose, we train a decoder-only transformer that takes a sequence consisting of the task constituents
followed by the task inputs as input and predicts the corresponding labels. Given that the transformer
contains multilayer perceptrons in the feedforward blocks, we expect it to be similarly capable of
compositional generalization at scale.

The top of Figure [I0] confirms this, showing that scaling data similarly leads to compositional
generalization in transformers. Compared to the multilayer perceptron, the transformer requires less
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Figure 11: Scaling data leads to compositional generalization on a deep hyperteacher. Scaling
the number of training tasks by increasing the number of modules, task components or decreasing the
fraction of tasks held-out from training leads to compositional generalization on the hyperteacher
task family with a deep task network with three hidden layers.

distinct training tasks to achieve compositional generalization, as can be observed at the bottom of

Figure[10]

B.3 Scaling data leads to compositional generalization in a deep hyperteacher

In the main text, we focus on a hyperteacher with a task network with a single hidden layer. A natural
question is how increasing the difficulty of the hyperteacher by equipping the task network with
multiple hidden layers affects our results. For this purpose, we reproduce the data scaling plot shown
in Figure [2] of Section [3]for a hyperteacher with three hidden layers, each with 16 hidden neurons.
Figure |l I|demonstrates that while this makes the task noticeably more difficult, it reproduces our
finding that scaling data leads to compositional generalization.
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Figure 12: Image composition task difficulties sorted by linear decodability of task constituents.
Left Average image generation success for each image composition task family for different text-to-
image generation models. Left Average linear decodability of constituents from hidden activations
for each image composition task family for different text-to-image generation models.

B.4 Difficulty of image composition task family

To complement Figure [f of the main text, Figure[I2]shows the task difficulty as well as the average
linear decodability of the task constituents from the hidden activations for all the image composition
task families and text-to-image generation models we consider.

C Experimental details

C.1 Task families

We create the hyperteacher task family described in Section 2.4]with I = 16 input neurons, H = 16
hidden neurons and O = 16 output neurons to create a family of compositional regression tasks to
be learned by a student. We sample teacher modules from a truncated normal distribution with zero

mean and standard deviation 4/ \/Tg Each teacher module also has a bias term that is sampled from
the uniform distribution over the interval [0, 0.5]. We sample the fixed readout matrix shared by all

tasks from a truncated normal distribution with zero mean and standard deviation 4/ \/ﬁg These values
have been picked as to ensure that the hyperteacher creates tasks of sufficient diversity and difficulty.

For the definition of the compositional preference task family, please refer to [18]. Following the
notation of the hyperteacher, we denote the number of possible preferences as M and the maximum
number of preferences combined into a task as K. [I8] uses M = 8 number of possible preferences
throughout. We increase the difficulty of the tasks by increasing the number of preference features to
M = 16 in Figure[7|bottom, Figure[§|and Figure[9and to M = 32 in Figure[7top.

C.2 Task encoding

We employ the invertible neural network introduced by [72] with 5 layers (3 for the compositional
preference task family) that consists of a series of bijective transformations, to obtain a nonlinear
but information-preserving encoding of the task constituents. In addition, we use the Interval Shift
function defined in Algorithm|[T]as another example of a nonlinear but bijective task encoding.
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Algorithm 1 Interval Shift

1: Number of intervals: N
2: function ¢(z, r)

3: 7 + GeneratePermutation(N, r) > Generate permutation of [0,N-1] using seed r
4: i+ |N-z] > Determine which interval z belongs to
5: a—N-z—1 > Fractional position within interval
6: j <« m(7) > Apply permutation
7: return ”TO‘ > Preserve relative position within new interval
8: end function

C.3 Training task support

We investigate the effect of various procedures to construct the training task support on compositional
generalization, which we describe in the following. For this purpose, consider the graph G = (V, E)
where V = {z € Z | p"™"(z) > 0} is the set of vertices and F = {(z,2') ¢ V. xV | Ji €
{1,2,..., K} such that z; = 2.} is the set of edges.

* Random: Samples a random subset of vertices until a graph that is both compositional and
connected is found.

* Balanced: Similar to Random, but ensures that each module appears with equal frequency in the
training distribution using a greedy search over vertices.

* Non-compositional: Holds out all tasks that contain one random but fixed module.

* Disconnected: Divides modules into two disjoint subsets and only uses vertices that use modules
from either subset but do not contain modules from both subsets.

* Popular modules: Defines a set of P popular modules and only includes vertices that contain
at least one popular module. P is determined such that the fraction of held-out tasks can be
satisfied as specified. If it cannot be exactly satisfied, one module that is not in the set of popular
modules receives additional vertices. Additionally ensures that the resulting set is compositional
and connected.

* Unpopular modules: Defines a set of U unpopular modules and includes all vertices that do not
contain any unpopular module. For each unpopular module, one vertex that includes the unpopular
module and otherwise only not unpopular modules is added. U is determined such that the fraction
of held-out tasks can be satisfied as specified. If it cannot be exactly satisfied, one unpopular
module receives additional vertices. Additionally ensures that the resulting set is compositional
and connected.

C4 Task constituent decoding

On the hyperteacher and compositional preference task family, we fit a linear decoder using ridge
regression to predict the task constituents given the hidden activations of a particular layer of the
multilayer perceptron solving the task. For this purpose, we train on pairs of hidden activations and
ground truth task constituents from the training distribution, p™"(z), and evaluate the performance
of the decoder on held-out tasks, reporting the coefficient of determination (R? score). Throughout,
we employ a regularizer of A = 1.0 for the ridge regression.

C.5 Architecture

Unless specified otherwise, we use a multilayer perceptron with four hidden layers with 1024 hidden
neurons each for the hyperteacher and with two hidden layers for the compositional preference task
family.

The transformer in Section [B|is causally masked and consists of 4 layers with 4 attention heads, a
model dimension of 256, a feedforward dimension of 1024 and separate projection matrices for the
task constituents, inputs and the output.
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C.6 Hyperparameters

Throughout our experiments, we use the AdamW optimizer [[73|] with a batch size of 128. On the
hyperteacher task family, we use a mean-squared error loss, on the compositional preference task
family, we use a cross-entropy loss. We performed an initial grid search over the learning rate and
weight decay to find a common set of hyperparameters for all experiments on the hyperteacher task
family and a common set of hyperparameters for all experiments on the compositional preference
tasks respectively. We report the search grid in Table[3]

Table 3: Hyperparameters for experiments on the hyperteacher task family and compositional
preference task family. Lists of values denote parameters explored via grid search with a bold number
indicating the value found to perform best and used throughout the experiments.

Parameter Hyperteacher Compositional preferences
learning_rate [0.001,0.003,0.0001,0.0003] [0.001,0.003,0.0001,0.0003]
weight_decay [0.003,0.001, 0.0003] [0.003,0.001, 0.0003]

C.7 Compositional text-to-image generation

Models We compare four open-weight text-to-image generation models: FLUX. 1-dev [29, FLUX.1
dev Non-Commercial License], SD XL base 1.0 [74, Open RAIL++-M License], SD 3.0 medium
[75, Stability AT Community License] SD 3.5 medium [76] Stability Al Community License].

Experimental setup In the following, we describe the experimental setup illustrated in Figure [6]
For each image composition task family listed below, we prompt each model on all possible image
combinations to generate an image using 40 inference steps. During this process, we collect their
hidden activations to be used by the image constituent decoder (see below). We then prompt a VLM to
judge whether the image constituents have been correctly combined into a coherent image by asking
it to readout the image constituents given the image and the full set of possible constituents. We
count an image generation as successful if the image constituents generated by the VLM exhaustively
match the ground truth constituents. Here, we report results using Gemini 2.0 Flash [77] as the judge.

Image constituent decoder We train standard logistic regression classifiers to predict image
constituents given the hidden activations of the text-to-image generation models and report their
F1 scores on held-out image compositions. Not all layers of the respective models contain this
information and we need to carefully choose layers depending on the model architecture. In particular,
the image constituents can trivially be linearly decoded from early layers of the model that encode the
text prompt, as well as any layers that are directly connected to the text encoding either via residual
connections or via cross-attention. For this reason, we select layers that require the model to explicitly
learn to pass information about image constituents to. In the transformer-based models FLUX. 1-dev,
SD 3.5 mediumand SD 3.0 medium, we probe the hidden activation of the penultimate transformer
block’s MLP. SD XL base 1.0 contains a bottleneck block, so we probe the hidden activations at
the final layer of the bottleneck. Since the models we are considering are diffusion models that run
inference over several time steps, we must specify at what time during the inference process to collect
the hidden activations. In our experiments, we run 30 inference steps and collect hidden activations
at time steps 9, 15, 21, and 30, as well as the average hidden activation over all time steps. We
concatenate all hidden activations for a given model and image and use them as the input to the linear
decoder.

Image composition task families We create a variety of image composition task families that each
consist of a combinatorial space of objects and attributes that need to be combined into a coherent
image. Specifically, each task has the following structure with a corresponding prompt template:

» task_name: Prompt template specifying how to compose {componentl} and {component2).

— componentl: modulel, module2, ...
— component2: modulel, module2, ...

We list all the tasks in the following:

30



animals_with_colours: A {colour} {animal}

— animal: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger
— colour: red, blue, green, yellow, orange, purple, pink, brown, black, white
animals_with_style: A {animal} illustrated in {style} style

— animal: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— style: watercolor, pixel art, oil painting, sketch, cartoon, origami, stained glass, pop art, charcoal,
clay sculpture

animals_with_locations: A {animal} in the {location}

— animal: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— location: top left, top center, top right, middle left, center, middle right, bottom left, bottom
center, bottom right

animals_with_descriptor: A {descriptor} {animal}

— animal: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— descriptor: furry, scaly, feathered, leathery, smooth, wrinkled, young, old, three-legged, spotted

animals_with_adjectives: A image of a {adjective} {animal}

— adjective: happy, sad, angry, sleepy, curious, playful, scared, proud, surprised, bored

— animal: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

fruits_with_verbs: A {fruit} is {verb}

— fruit: apple, banana, orange, grape, strawberry, watermelon, pineapple, mango, blueberry, peach

— verb: dancing, flying, bouncing, sleeping, swimming, rolling, climbing, stretching, spinning,
hiding

counting_animals: An image with exactly {number} {animal}

— number: one, two, three, four, five, six, seven, eight, nine, ten

— animal: lions, elephants, giraffes, crocodiles, bears, snakes, eagles, cows, zebras, tigers

animals_with_verbs: A {animal} is {verb)

— animal: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— verb: eating, sleeping, running, jumping, flying, swimming, climbing, dancing, playing, hiding

counting_objects: An image with exactly {number} {object}

— number: one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen,
fifteen, sixteen, seventeen, eighteen, nineteen, twenty

— object: tomatoes, onions, oranges, wolves, bears, apples, bananas, carrots, cucumbers, strawber-
ries, lemons, cherries, grapes, peaches, pears, foxes, rabbits, cats, dogs, sheep

nested_containment_animals: A {animal_outer} containing a {animal_middle} containing an

{animal_inner}

— animal_outer: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_middle: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_inner: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

three_animals_three_materials: {animal_fire} made of fire, {animal_ice} made of ice, and

{animal_wood} made of wood

— animal_fire: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_ice: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_wood: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

three_animals_three_verbs: {animal_singing} singing, {animal_eating} eating, and {ani-

mal_sleeping} sleeping

— animal_singing: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_eating: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_sleeping: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger
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three_animals_three_adjectives: A sad {animal_happy}, a happy {animal_sad}, and an
angry {animal_angry}

— animal_happy: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_sad: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_angry: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger
animals_with_clothes: {animal} wearing {clothing}

— animal: cat, dog, bear, lion, elephant, giraffe, monkey, zebra, tiger, panda

— clothing: hat, pair of sunglasses, scarf, bowtie, jacket, crown, tie, cape, sweater, necklace

animals_with_clothes_and_food: {animal} wearing {clothing} eating {food}

— animal: cat, dog, bear, lion, elephant, giraffe, monkey, zebra, tiger, panda

— clothing: hat, pair of sunglasses, scarf, bowtie, jacket, crown, tie, cape, pair of pants, pair of
boots

— food: pizza, banana, ice cream, cake, hamburger, apple, watermelon, donut, sandwich, salad
animals_with_food_eyes_and_clothes: A {animal}] with {food} as eyes wearing {clothing}

— animal: cat, bear, lion, elephant, giraffe, monkey, zebra, panda, wolf, rabbit

— food: strawberries, oranges, burgers, watermelons, donuts, cookies, cupcakes, pizza, lemons,
tomatoes

— clothing: crown, cowboy hat, scarf, cape, hawaiian shirt, leather jacket, pair of pants, tuxedo,
raincoat, sunglasses

stacked_foods: {food_top} on top of {food_middle} on top of {food_bottom}

— food_top: burger, pizza, salad, Sushi, taco, donut, Ice cream, pancake, Spaghetti, sandwich

— food_middle: burger, pizza, salad, sushi, taco, donut, ice cream, pancake, spaghetti, sandwich

— food_bottom: burger, pizza, salad, sushi, taco, donut, ice cream, pancake, spaghetti, sandwich

stacked_animals: {animal_top} on top of {animal_middle} on top of {animal_bottom}

— animal_top: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_middle: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_bottom: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

animals_chasing_chain: {animall} chasing {animal2} chasing {animal3}

— animall: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal2: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal3: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

nested_containment: A {containerl} containing a {container2} containing a {object}

— containerl: transparent cube, glass jar, wooden box, metal safe, woven basket, leather bag,
ceramic pot, copper kettle, crystal sphere, rubber ball

— container2: small treasure chest, porcelain teacup, silk pouch, stone bowl, paper envelope,
cardboard tube, tin can, shell, gold locket, velvet case

— object: diamond, living butterfly, ticking clock, miniature planet, flickering flame, drop of
mercury, hologram, glowing ember, snowflake, single cell organism
impossible_materials: A {object} made entirely of {material} sitting on a {surface}

— object: chair, bicycle, bookshelf, piano, computer, refrigerator, watch, umbrella, camera, guitar

— material: liquid water, fire, smoke, mirrors, ice, tree bark, glass noodles, gelatin, paper, soap
bubbles

— surface: clouds, ocean waves, melting ice, sand dunes, moss, broken glass, spiderwebs, lily
pads, autumn leaves, foam

three_animals_three_fixed_styles: A {animal_pixel} in pixel art, a {animal_oil} in oil
painting, and a {animal_cartoon} in cartoon style

— animal_pixel: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_oil: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_cartoon: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger
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* three_animals_three_fixed_descriptors: A {animal_furry} with fur, a {animal_scaly} with
scales, and a {animal_feathered} with feathers

— animal_furry: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger
— animal_scaly: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

— animal_feathered: lion, elephant, giraffe, crocodile, bear, snake, eagle, cow, zebra, tiger

* animals_long: An image with {one {animal}}*-*>

— animals: giraffe, lion, elephant, crocodile, bear, snake, eagle, cow, zebra, tiger, rhino, hippo,
wolf, fox, deer, monkey, panda, koala, kangaroo, penguin

 objects_three_colours: An image with {one {object}}**-3

— objects: red cube, green cube, blue cube, blue sphere, orange sphere, red sphere, green cylinder,
purple cylinder, yellow cylinder, yellow cone, blue cone, green cone, purple pyramid, red
pyramid, orange pyramid, orange cuboid, yellow cuboid, blue cuboid

 fruits_veggies_long: An image with {one {fruit_veggie}}':?:3

— fruits_veggies: apple, banana, orange, grape, strawberry, watermelon, pineapple, mango, blue-
berry, peach, lemon, cherry, carrot, broccoli, tomato, cuacumber, potato, onion, pepper, lettuce

+ animals_vegetables_shapes: An image with {one {element}}'*>

— animals_vegetables_shapes: lion, elephant, giraffe, tiger, bear, zebra, monkey, carrot, broccoli,
potato, tomato, cucumber, onion, pepper, cube, sphere, cylinder, cone, pyramid, triangular prism

D Additional details

D.1 Compute resources

We used a Linux workstation with two Nvidia RTX 3090 GPUs with 24GB of memory each for
development and conducted hyperparameter searches and experiments on an internal Slurm cluster
using Nvidia RTX 4090 GPUs and Nvidia A100 GPUs.

A single run of a hyperteacher experiment takes 4-10 minutes on a RTX 4090 depending on model size,
a single run of a compositional preference experiment takes 50-100 minutes. In total, reproducing
all experiments reported for the hyperteacher task family with around 1000 distinct runs takes about
7 GPU days and reproducing all corresponding experiments for the compositional preference task
family takes about 70 GPU days.

Generating the images for one of the image composition task families takes 8 GPU hours on an A100
for the Flux. 1-dev model and 4 GPU hours on an RTX 4090 for each of the SD models. Running
all 27 tasks for all models takes a total of 23 GPU days.

D.2 Software and libraries

For the results obtained in this paper we built on free and open-source software. We implemented
our experiments in Python using JAX [78, Apache License 2.0], Flax [79, Apache License 2.0],
the Deepmind Jax Ecosystem [80, Apache License 2.0], PyTorch [BSD-style license 81], LLM
[82, Apache License 2.0] and Scikit-learn [83, BSD 3-Clause License]. We utilized WandB [84),
MIT license] to monitor the progress and results of experiments, and Plotly [85, MIT license] for
generating the plots. We use uv for Python project dependency management [86, MIT License].

33



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes the abstract includes all relevant claims and no unsupported claims.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the discussion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes for all proof assumptions are stated.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes],

Justification: All experiments are explained and the code will be made public.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: we will submit the code which allows one to reproduce the results.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental details can be found in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Where applicable at least three seeds with error bars were run.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The details about compute ressources can be found in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes we conformed with the Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: As part of the discussion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no meaningful risk associated with the submission.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Licensees are respected and listed in the appendix.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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14.

15.

16.

Answer: [Yes]
Justification: The code is provide and documented.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects or croudsourcing was used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No humand participants were part of the study.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: Yes we describe how we use LLMs to evaluate image generation success.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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