
Published as a workshop paper at FPI Workshop (ICLR 2025)

EFFICIENT ASYNCHRONIZE STOCHASTIC GRADIENT
ALGORITHM WITH STRUCTURED DATA

Zhizhou Sha∗ Zhao Song† Mingquan Ye‡

ABSTRACT

Deep neural networks have demonstrated remarkable success across various do-
mains, including computer vision, natural language processing, and bioinformat-
ics. However, the increasing depth and complexity of these networks have led
to significant computational and storage challenges. While prior research has ad-
dressed these issues through techniques such as network pruning and the use of
high-dimensional data structures like locality-sensitive hashing (LSH) and space-
partitioning trees, the computational cost per iteration during training remains lin-
ear in the data dimension d. In this work, we explore the potential of leveraging
special structures in the input data to reduce this cost. Specifically, we consider
input data points that can be represented as tensor products of lower-dimensional
vectors, a common scenario in applications. We present a novel stochastic gra-
dient descent algorithm that, under mild assumptions on the input data structure,
achieves a per-iteration training cost that is sublinear in the data dimension d. To
the best of our knowledge, this is the first work to achieve such a result, marking
a significant advancement in the efficiency of training deep neural networks. Our
theoretical findings demonstrate that the proposed algorithm can train a two-layer
fully connected neural network with a per-iteration cost independent of d.

1 INTRODUCTION

Deep neural networks have achieved great success in many fields, e.g., computer vision LeCun et al.
(1998); Krizhevsky et al. (2012); Szegedy et al. (2015); Simonyan & Zisserman (2015); He et al.
(2016), natural language processing Collobert et al. (2011); Devlin et al. (2018); Peters et al. (2018);
Radford et al. (2018); Yang et al. (2019), and bioinformatics Min et al. (2017), just to name a few.
Despite the excellent performances in a variety of applications, deep neural networks have brought
intensive computation and occupied large storage with the growth of layers. For example, the ResNet
proposed by He et al. (2016) has 152 layers and the parameters of VGG-16 Simonyan & Zisserman
(2015) take 552MB memory Han et al. (2015a). To get around these problems, a lot of relevant
approaches have been proposed. In terms of the storage issue, Han et al. (2015a;b) compressed
the deep networks significantly without loss of accuracy by pruning redundant connections between
layers, and deployed the compressed networks on embedded systems. For the intensive computation
issue, researchers have focused on reducing training time for deep networks. Total training time
involves the number of iterations and the time cost per iteration. We focus on the latter aspect of our
work.

To execute faster computation in each iteration, one natural choice is to utilize some high-
dimensional data structures that can query points in some geometric regions efficiently. The first
kind of method is based on locality-sensitive hashing (LSH) Indyk & Motwani (1998) which returns
a point from a set that is closest to a given query point under some metric (e.g., ℓp norm). Chen et al.
(2020a) built an end-to-end LSH framework MONGOOSE to train neural networks efficiently via a
modified learnable version of data-dependent LSH. Chen et al. (2020b) proposed SLIDE that signifi-
cantly reduces the computations in both training and inference stages by taking advantage of nearest
neighbor search based on LSH. Sima & Xue (2021) proposed a unified framework LSH-SMILE that

∗ shazz20@mails.tsinghua.edu.cn. Tsinghua University.
† magic.linuxkde@gmail.com. The Simons Institute for the Theory of Computing at UC Berkeley.
‡ mye9@uic.edu. UIC.

1

Published as a workshop paper at FPI Workshop (ICLR 2025)

scales up both forward simulation and backward learning by the locality of partial differential equa-
tions update. The second kind of method utilizes the data structures on space partitioning, including
k-d tree Bentley (1975); Chan (2019), Quadtree Finkel & Bentley (1974), and partition tree Agarwal
et al. (1992); Matousek (1992a;b); Afshani & Chan (2009); Chan (2012), etc. Song et al. (2021) em-
ployed the Half-Space Reporting (HSR) data structures Agarwal et al. (1992), which can return all
the points having large inner products and support data updates, and improved the time complexity
of each iteration in training neural networks to sublinear in network width.

The above-mentioned works have tried to accelerate the training time of deep networks from the
perspective of data structures. In this paper, we try doing that from the perspective of input data. A
natural question to ask is that.

Is there some mild assumption on the input data so that each iteration only takes sublinear time in
the data dimension in training neural networks?

In this work, we answer this question positively. To the best of our knowledge, all the previous
work needs to pay linear in data dimension d at each iteration Li & Liang (2018); Du et al. (2019b);
Allen-Zhu et al. (2019a;b); Du et al. (2019a); Song & Yang (2019); Song et al. (2021). This is the
first work that achieves the cost per iteration independent of dimensionality d.

We are motivated by the phenomenon that the training data often have a variety of features extracted
from different methods or domains. To enhance robustness and discrimination, researchers combine
various features into one holistic feature using tensor products before training. Specifically, given
two vectors u ∈ Rd1 and v ∈ Rd2 representing different features, the tensor product u ⊗ v gives a
d1 × d2 matrix, which can be vectorized to a (d1 × d2)-dimensional vector. In the bioinformatics
field Ben-Hur & Noble (2005), the fusion of different features of proteins can help us analyze their
characteristics effectively. Smalter et al. (2009) employed tensor product feature space to model
interactions between feature sets in different domains and proposed two methods to circumvent the
feature selection problem in the tensor product feature space. For click-through rate prediction Juan
et al. (2016); Naumov et al. (2019), the accuracy can be improved by the fusion of two features. In
computer vision, Zhou et al. (2012) combined three features HOG Dalal & Triggs (2005), LBP Ojala
et al. (2002), and Haar-like Babenko et al. (2010) by tensor products and applied the new feature
to visual tracking. Apart from the above-mentioned applications, the Kronecker structure has also
been widely applied to deep neural networks Gao et al. (2020); Jagtap et al. (2022); Feng & Yang
(2022); Patro et al. (2023).

1.1 OUR RESULTS

We try improving the cost of per iteration when the input data has some special structures. Assume
that the input data points satisfy that for any i ∈ [n], xi = vec(xix

⊤
i) ∈ Rd with xi ∈ R

√
d. For this

setting, we have the following theorem, which is our main contribution.
Theorem 1.1 (Informal version of Theorem E.1). Given n training samples {(xi, yi)}ni=1 such that
for each i ∈ [n], xi = vec(xix

⊤
i) ∈ Rd, there exists a stochastic gradient descent algorithm that

can train a two-layer fully connected neural network such that each iteration takes time o(m) · n,
where m is the width of the neural network, that is independent of the data dimension d.

The conclusion also holds for the general case: for each i ∈ [n], xi = bi ⊗ ai ∈ Rd with ai ∈ Rp,
bi ∈ Rq and p, q = O(

√
d).

2 RELATED WORK

Kernel Matrix. Let X := [x1, · · · , xn] ∈ Rd×n, then the Gram matrix G ∈ Rn×n of the n
columns of X satisfies that Gi,j = x⊤

i xj , i.e., G = X⊤X . The Gram matrix K ∈ Rn×n with
respect to the n columns of X such that Ki,j = k(xi, xj) is called a kernel matrix, where k is
referred to as a kernel function.

Daniely (2017) showed that in polynomial time, the stochastic gradient descent algorithm can learn a
function which is competitive with the best function in the conjugate kernel space of the network, and
established connection between neural networks and kernel methods. Jacot et al. (2018) proved that

2

Published as a workshop paper at FPI Workshop (ICLR 2025)

for a multi-layer fully connected neural network, if the weight matrix of each layer has infinite width,
then the convergence of gradient descent method can be described by the Neural Tangent Kernel
(NTK). Du et al. (2019b) researched a two-layer neural network with ReLU activation function,
which is not smooth, and proved that the Gram matrix, which is the kernel matrix in Jacot et al.
(2018), keeps stable in infinite training time.

Convergence of Neural Network. There have been two lines of work proving the convergence of
neural networks: the first is based on the assumption that the input data are from Gaussian distribu-
tion; the other follows the NTK regime Jacot et al. (2018); Li & Liang (2018); Du et al. (2019b);
Allen-Zhu et al. (2019a;b); Gu et al. (2024); Shi et al. (2021; 2024). In Jacot et al. (2018), the
NTK is first proposed and is central to characterize the generalization features of neural networks.
Moreover, it is proven that the convergence of training is related to the positive-definiteness of the
limiting NTK. Li & Liang (2018) observed that in the training of a two-layer fully connected neural
network, a fraction of neurons are not activated over iterations, i.e., wr(t)

⊤xi ≤ τ , where r ∈ [m]
and τ ∈ R is the threshold of the shifted ReLU activation function. Based on this observation,
Li & Liang (2018) obtained the convergence rate by using stochastic gradient descent to optimize
the cross-entropy loss function. However, the network width m depends on poly(1/ϵ), where ϵ is
the desired accuracy, and approaches infinity when ϵ approaches 0. In Du et al. (2019b), the lower
bound of m is improved to poly(n, 1/ρ, log(m/ρ)), where ρ is the probability parameter, by setting
the amount of over-parameterization to be independent of ϵ.

Roadmap This paper is organized as follows: In Section 3, we define notations used in the pa-
per. In Section 4, we illustrated the gradient descent formula for shifted ReLU activated neural
network. In Section 5, we introduced the functionality of proposed data structure. For Section 6, we
demonstrated the informal version of training algorithm and presented the convergence theorem. In
Section 7, we introduced the formal training algorithm and cost analysis for each iteration. Then we
provide a discussion on our technical novelty in Section 8.

3 NOTATION

For a positive integer n, let [n] represent the set {1, 2, · · · , n}. Let vec(·) denote the vectorization
operator. Specifically, for a matrix A = [a1, · · · , ad] ∈ Rd×d, vec(A) = [a⊤1 , · · · , a⊤d]⊤ ∈ Rd2

.
For the vec(·) operator, let vec−1(·) be its inverse such that vec−1(vec(A)) = A. For a matrix
A ∈ Rd×n and a subset S ⊂ [n], Ai,j is the entry of A at the i-th row and the j-th column, and
A:,S represents the matrix whose columns correspond to the columns of A indexed by the set S.
Similarly, for a vector x ∈ Rn, xS is a vector whose entries correspond to the entries in x indexed
by the set S. Let ∥·∥2 and ∥·∥F represent the ℓ2 norm and Frobenius norm respectively. The symbol
1(·) represents the indicator function. For a positive integer d, Id denotes the d× d identity matrix.
For two vectors a, b ∈ Rn, let a⊙ b ∈ Rn represent the entry-wise product of a and b. For any two
matrices A and B, A⊗B represents the Kronecker product of A and B.

4 PROBLEM FORMULATION

Our problem formulation is similar to that of Du et al. (2019b); Song & Yang (2019); Song et al.
(2021). Define the shifted ReLU function to be ϕτ (x) := max{x − τ, 0}, where x, τ ∈ R and
τ ≥ 0 is the threshold. We consider a two-layer shifted ReLU activated neural network with m
neurons in the hidden layer f(W,a, x) := 1√

m

∑m
r=1 ar · ϕτ (w

⊤
r x), where x ∈ Rd is the input,

W = {w1, · · · , wm} ⊂ Rd are weight vectors in the first layer, and a1, · · · , am ∈ R are weights
in the second layer. For simplicity, we only optimize the m weight vectors w1, · · · , wm without
training a. Then for each r ∈ [m], we have ∂f(W,a,x)

∂wr
= 1√

m
ar · 1(w⊤

r x > τ) · x. Given n training
samples {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ R for each i ∈ [n], the objective function L(W) is
defined by L(W) := 1

2

∑n
i=1(f(W,a, xi)− yi)

2.

3

Published as a workshop paper at FPI Workshop (ICLR 2025)

Additionally, for a specific batch S ⊆ [n], the objective function denoted as L(W,S) is defined to
be

L(W,S) :=
n

|S|
· 1
2

∑
i∈S

(f(W,a, xi)− yi)
2.

Gradient Descent (GD). We defined the standard GD optimizer as follows: for each r ∈ [m],
let wr(t) represent the weight vector wr at the t-th iteration. Then we have the update for t + 1,
wr(t+ 1) = wr(t)− η · ∂L(W (t))

∂wr(t)
, r ∈ [m], where η is the step size and ∂L(W (t))

∂wr(t)
has the following

formulation

∂L(W (t))

∂wr(t)
=

1√
m

n∑
i=1

(f(W (t), a, xi)− yi) · ar · 1(wr(t)
⊤xi > τ) · xi.

Stochastic Gradient Descent (SGD). We use the SGD optimizer defined as follows:

wr(t+ 1) = wr(t)− η · ∂L(W (t), St)

∂wr(t)
, r ∈ [m], (1)

where the batch set St is a uniform sub-sample of [n]. For simplicity, we define

Gt,r :=
∂L(W (t), St)

∂wr(t)
=

n

|St|
· 1√

m

∑
i∈St

(f(W (t), a, xi)− yi) · ar · 1(wr(t)
⊤xi > τ) · xi. (2)

At iteration t, let u(t) := [u1(t), · · · , un(t)]
⊤ ∈ Rn be the prediction vector, where each ui(t)

satisfies that ui(t) = f(W (t), a, xi), i ∈ [n].

5 ASYNCHRONIZE TREE

In this section, we will briefly describe the outline of the proposed algorithm.

Asynchronize Tree Data Structure. In each iteration of the training algorithm, there are two
main parts: forward computation and backward computation. The goal of forward computation is
to compute the prediction vector. By the property of the shift ReLU function, for each sampled data
point xi, we need to find which nodes in hidden layer are activated, which is a query operation. In
backward computation, we need to compute the gradient vectors and then update the weight vectors,
which is an update operation.

In view of this situation, we propose the ASYNCHRONIZETREE data structure which is a binary tree.
It mainly supports query and update operations. Since the inner product of each weight vector wr,
r ∈ [m] and input data point xi, i ∈ [n] is frequently compared with the threshold τ , we maintain n
trees T1, · · · , Tn for the n data points respectively. For the i-th tree Ti, the leaf nodes of Ti are the
inner products of the m weight vectors with xi and the value of each inner node is the maximum
of the values of its two children. Hence, when executing the query operation in Ti, we start with
the root of Ti and recurse on its two children. Let the number of satisfactory items be Q, then the
time for query operation would be O(Q · logm) because the depth of each tree is O(logm). When
some weight vector wr, r ∈ [m] changes, we need to recompute the inner products between wr

and the n data points and then update the n corresponding trees, so the time for update operation is
O(n · (d+ logm)).

Note that the above statements are for the general case, that is, there are no requirements for the
input data. Since we use the stochastic gradient descent method, each iteration randomly selects a
batch St from the set [n]. The query operation is executed for the trees whose indexes are in the set
St but not all the n trees, that is why this data structure is called ASYNCHRONIZETREE.

Kronecker Structured Data. Recall that in the update operation of data structure ASYNCHRO-
NIZETREE, we need to compute the inner products between wr and the n data points, i.e., the
quantity X⊤wr, where X = [x1, · · · , xn]. When the data points have Kronecker property such that

4

Published as a workshop paper at FPI Workshop (ICLR 2025)

xi = vec(xix
⊤
i) ∈ Rd for each i ∈ [n], it would be efficient to compute the matrix-vector multipli-

cation X⊤wr. In particular, we have the following equation (X⊤wr)i = (X
⊤ · vec−1(wr) ·X)i,i,

where X = [x1, · · · , xn] and vec−1(·) is the inverse vectorization operator. Then the computing of
X⊤wr is transferred to the fast matrix multiplication.

At the t-th iteration, we need to compute the gradient vector denoted as δt,r to update the weight
vector wr with r ∈ [m], that is, wr(t+1) = wr(t)+ δt,r. When wr changes, we need to recompute
w⊤

r xi for i ∈ [n]. Since wr(t)
⊤xi is already known, in order to compute wr(t + 1)⊤xi, we only

need to compute δ⊤t,rxi. To be specific, the vector δt,r has such form δt,r = X:,St
· c with c ∈ R|St|,

then we have δ⊤t,rxi = c⊤X⊤
:,St

xi, where for j ∈ [|St|], (X⊤
:,St

xi)j = (X
⊤
:,St
· (xix

⊤
i) ·X :,St)j,j .

Hence, the computation of vector X⊤
:,St

xi is reduced to the pairwise inner products x⊤
i xj for i, j ∈

[n], which can be precomputed at the initialization, and takes time only O(|St|). Now the update
operation can be completed by computing δ⊤t,rxi for all i ∈ [n] and then updating the n trees, and
thus takes time O(n · (|St|+ logm)), which is faster than the fast matrix multiplication.

6 CONVERGENCE ANALYSIS

In this section, we present the convergence theorem for training a two-layer fully connected neural
network using SGD. We first give the informal version of the training algorithm (see Algorithm 1).
Since we analyze the convergence in this section, the formal training algorithm with the asynchro-
nize tree data structure will be shown in the next section. In Section 6.1, we introduce the definition
of data-dependent matrix H and give the bound for its smallest eigenvalue which is an important pa-
rameter in the proof of convergence theorem. The convergence theorem is presented in Section 6.2.

Algorithm 1 Accelerate computation in each iteration using asynchronize tree data structure (infor-
mal version of Algorithm 2)

1: procedure OURALGORITHM(X = [x1, · · · , xn] ∈ Rd×n, y ∈ Rn)
2: Initialize the weight vector wr(0) ∼ N (0, Id) for each r ∈ [m]
3: Construct an ASYNCHRONIZETREE data structure AT
4: Let AT call the procedure INIT to build the n trees T1, · · · , Tn and compute the pairwise

inner products x⊤
i xj for i, j ∈ [n]

5: for t = 1 to T do
6: Sample a set St ⊂ [n] with size Sbatch uniformly at random
7: for each i ∈ St do
8: Let AT call the procedure QUERY to return the set of neurons Li that are activated

with respect to xi

9: Compute the prediction value ui(t)
10: end for
11: Let ℓ(t) be the union of Li for all the i ∈ St

12: for each r ∈ ℓ(t) do
13: Initialize the vector v with zero vector and for i ∈ St assign the entry vi with value

ηn
Sbatch

√
m
· ar · 1(wr(t)

⊤xi > τ)

14: Compute the vector δt,r by multiplying matrix X:,St with vector vSt ⊙ (y − u(t))St

15: Let AT call the procedure UPDATE to update the n trees T1, · · · , Tn since wr(t)
increased by δt,r

16: end for
17: end for
18: return u(T)
19: end procedure

6.1 ESSENTIAL CONCEPTS

We start with the definition of the Gram matrix, which can be found in Du et al. (2019b).
Definition 6.1 (Data-dependent matrix H). Given a collection of data points {x1, · · · , xn} ⊂ Rd

and m weight vectors {w1, · · · , wm} ⊂ Rd, the continuous (resp. discrete) Gram matrix denoted as

5

Published as a workshop paper at FPI Workshop (ICLR 2025)

Hcts (resp. Hdis) is defined by

Hcts
i,j := E

w∈N (0,Id)
[x⊤

i xj · 1(w⊤xi > τ,w⊤xj > τ)],

Hdis
i,j :=

1

m

m∑
r=1

x⊤
i xj · 1(w⊤

r xi > τ,w⊤
r xj > τ).

Let λ := λmin(H
cts) be the smallest eigenvalue of the matrix Hcts and assume λ ∈ (0, 1].

Given the two matrices Hcts and Hdis, the following lemma gives the bound of λmin(H
dis).

Lemma 6.2 (implied in Du et al. (2019b); Song et al. (2021)). For any shift threshold τ ≥ 0, let λ :=
λmin(H

cts) and m = Ω(λ−1n log(n/α)) be the number of samples in Hdis, then Pr[λmin(H
dis) ≥

3
4λ] ≥ 1− α.

Besides the two matrices Hcts and Hdis, each iteration t ≥ 0 has a data-dependent matrix H(t)
defined below.
Definition 6.3 (Dynamic data-dependent matrix H(t)). For t ≥ 0, given the m weight vectors
{w1(t), · · · , wm(t)} ⊂ Rd at iteration t, the corresponding data-dependent matrix H(t) is defined
by

H(t)i,j :=
1

m

m∑
r=1

x⊤
i xj · 1(wr(t)

⊤xi > τ,wr(t)
⊤xj > τ).

6.2 CONVERGENCE THEOREM

Finally, we present the convergence theorem for our algorithm.
Theorem 6.4. Given n training samples {(xi, yi)}ni=1 and a parameter ρ ∈ (0, 1). Initialize
wr ∼ N (0, Id) and sample ar from {−1,+1} uniformly at random for each r ∈ [m]. Set
the width of the neural network to be m = poly(λ−1, S−1

batch, n, log(n/ρ)), and the step size
η = poly(λ, Sbatch, n

−1), where λ = λmin(H
cts) and Sbatch is the batch size, then with prob-

ability at least 1−O(ρ), the vector u(t) for t ≥ 0 in Algorithm 1 satisfies that

E[∥u(t)− y∥22] ≤ (1− ηλ/2)t · ∥u(0)− y∥22. (3)

The proof for this theorem is deferred to Section C. Theorem 6.4 means that the error between u(t)
and the target y decays exponentially as a function of time. Specifically, the error decreases at a
rate determined by the parameter λ, which is linked to the spectrum of the underlying problem,
and the step size η, which controls how much the update rule affects u(t) in each iteration. The
term (1 − ηλ/2)t signifies the rate of convergence, showing that after each iteration, the error is
reduced by a factor of (1 − ηλ/2). Thus, the theorem guarantees that, under the given conditions,
the algorithm will converge to the target with an error that shrinks over time, at least as fast as this
exponential rate.

7 DATA WITH KRONECKER STRUCTURE

In this section, we present the formal training algorithm and analyze the cost for each iteration. In
Section 7.1, we show the training algorithm using the asynchronize tree data structure. In particular,
when the input data points have special properties, e.g., the Kronecker structure, the cost for each
iteration can be obviously improved. We introduce some useful properties when the input data points
have Kronecker structure in Section 7.2.

7.1 TRAINING ALGORITHM USING ASYNCHRONIZE TREE

The formal algorithm for training a two-layer fully connected neural network using SGD and asyn-
chronize tree data structure (see Section D) is shown in Algorithm 2 which has two main parts:
the initialization step and the for loop of iterations. The initialization step initializes the m weight
vectors w1, · · · , wm ∈ Rd and computes the inner products w⊤

r xi for r ∈ [m] and i ∈ [n]. At each

6

Published as a workshop paper at FPI Workshop (ICLR 2025)

iteration t ≥ 0, the forward step (Line 6-10) computes the prediction vector u(t) ∈ Rn; given the
sampled set St ⊂ [n], for some xi with i ∈ St, we need to look up the activated neurons such that
w⊤

r xi > τ , which is implemented by the QUERY procedure of the asynchronize tree data structure;
in addition, the set of activated neurons Li has the size bound shown in Lemma 7.2. The backward
step (Line 11-17) updates the weight vectors; the set of weight vectors that would be changed is de-
noted as ℓ(t), whose size has a relationship with the the size of Li (see Lemma 7.3); the incremental
vector for weight vector wr is denoted as δt,r. Since wr changes, we need to update all the inner
products w⊤

r xi for i ∈ [n], which is executed by the UPDATE procedure of the asynchronize tree
data structure.

Algorithm 2 Accelerate computation in each iteration using asynchronize tree data structure (formal
version of Algorithm 1)

1: procedure OURALGORITHM(X = [x1, · · · , xn] ∈ Rd×n, y ∈ Rn)
2: Initialize wr(0) ∼ N (0, Id) for each r ∈ [m]
3: Construct a ASYNCHRONIZETREE data structure AT
4: AT.INIT({wr(0)}r∈[m], {xi}i∈[n], n, m, d)
5: for t = 1 to T do
6: Sample a set St ⊂ [n] with |St| = Sbatch uniformly at random
7: for each i ∈ St do
8: Li ← AT.QUERY(i, τ) ▷ |Li| ≤ Q
9: ui(t)← 1√

m

∑
j∈Li

aj · ϕτ (j.value) ▷ ui(t) is the i-th entry of vector u(t)
10: end for
11: ℓ(t)← ∪i∈St

Li▷ ℓ(t) ⊂ [m] is the index set such that wr changes for each r ∈ ℓ(t) and
|ℓ(t)| ≤ K

12: for each r ∈ ℓ(t) do
13: v ← 0n and vi ← ηn

Sbatch
√
m
· ar · 1(wr(t)

⊤xi > τ) for i ∈ St

14: ▷ The factor of n is to normalize the sum of the losses across all samples
15: δt,r ← X:,St · (vSt ⊙ (y − u(t))St) ▷ δt,r = −η ·Gt,r

16: AT.UPDATE(δt,r, r)
17: end for
18: end for
19: return u(T)
20: end procedure

The set of neurons that are activated (i.e., w⊤
r xi > τ) in Algorithm 2 denoted as Li is formally

defined in the following definition.
Definition 7.1 (Fire set). For each i ∈ [n] and 0 ≤ t ≤ T , let Si,fire ⊂ [m] denote the set of neurons
that are “fired” at time t, i.e., Si,fire(t) := {r ∈ [m] | wr(t)

⊤xi > τ}.

Let ki,t := |Si,fire(t)|, then the following lemma gives the upper bound of ki,t.
Lemma 7.2 (Lemma C.10 in Song et al. (2021)). For 0 < t ≤ T , with probability at least 1 −
n · exp(−Ω(m) ·min{R, exp(−τ2/2)}), we have the following holds for all i ∈ [n] ki,t = O(m ·
exp(−τ2/2)) where R is a parameter that depends on m, n, and λ.

By Lemma 7.2, in our setting, we have that with high probability, Q = O(m · exp(−τ2/2)). More-
over, the set of changed weight vectors denoted as ℓ(t) in Algorithm 2 satisfies that the upper bound
of its size K has the following relationship with the quantity Q.
Lemma 7.3. The parameters K and Q in Algorithm 2 satisfy that K = O(Sbatch ·Q).

Proof. In Algorithm 2, the weight vector wr is updated if Gt,r ̸= 0, then there exists at least one
i ∈ St such that wr(t)

⊤xi > τ . Since for each i ∈ [n], there are at most Q neurons that are activated;
in addition, |St| = Sbatch, thus there are at most Sbatch ·Q weight vectors that are changed.

7.2 PROPERTIES OF KRONECKER STRUCTURE AND RELATED COMPUTATION FACTS

Before proving the formal version of Theorem 1.1, we provide some background about matrix mul-
tiplication and the Kronecker product. Let the time of multiplying two matrices in Ra×b and Rb×c

7

Published as a workshop paper at FPI Workshop (ICLR 2025)

be Tmat(a, b, c). In particular, we use ω to denote the exponent of matrix multiplication, which
means that Tmat(n, n, n) = nω . Currently, ω ≈ 2.373 Williams (2012); Le Gall (2014). For the
time of matrix multiplication Tmat(a, b, c), we have the two following properties.

Fact 7.4 (Bürgisser et al. (1997); Bläser (2013)). Tmat(a, b, c) = O(Tmat(a, c, b)) =
O(Tmat(c, a, b)).

Fact 7.5. For any c ≥ d > 0, Tmat(a, b, c) ≥ Tmat(a, b, d).

By the property presented in Claim A.2, given L ⊆ [n], we can compute (Uh)L efficiently using the
following lemma.

Lemma 7.6 (Improved running time via tensor trick). Let U and h be defined same as in Claim A.2,
given L ⊆ [n], then computing (Uh)L takes time{

Tmat(d, |L|, d) if |L| ≤ d,
(|L|/d) · Tmat(d, d, d) otherwise.

Proof. For the case |L| = d, it can be computed in Tmat(d, d, d) = dω time. To see that, without
loss generality, assume L = [d]. By Claim A.2, for each i ∈ [d], we have (Uh)i = (V ⊤HV)i,i.
Therefore, the computation of (Uh)L is reduced to computing V ⊤HV first and then taking the
diagonal entries, which takes time dω that is faster than d3. In a similar way, For |L| < d, we can
compute it in Tmat(|L|, d, d) + Tmat(|L|, d, |L|) time, which is equal to Tmat(d, |L|, d) by Fact 7.4
and Fact 7.5. For |L| > d, we can divide L into |L|/d groups and each one is reduced to |L| = d
case. Thus it can be computed in |L|/d · Tmat(d, d, d) time.

8 DISCUSSION

In this section, we would like to highlight the advantage of our algorithm when input data has
Kronecker product structure. The running time of the update stage is O(n · (d + logm)) without
Kronecker structure. When one of the m weights changes, say wr, we need to re-compute the dot
product between the updated wr and each of the n data. Moreover, we need to update all logm parent
nodes of the leaf node with the updated dot product value. With the Kronecker structure, one could
utilize the form of the gradient to write the update as learning an |St|-dimensional coefficients for
the diagonal of a covariance matrix of the data, which could be precomputed. Hence, one only needs
to read |St| entries from the precomputed covariance matrix then linearly combine them with |St|
coefficients. In contrary, without the Kronecker structure, we no longer have the nice decomposition
of gradient updates into a linear combination of diagonals of a covariance matrix, hence we would
have to spend d time to recompute the inner product, hence an update time of O(n(d+ logm)).

Moreover, we would like to emphasize the importance of getting rid of the factor d in the update
time with the Kronecker structure. Note that since we assume the input is from a product space
where d = d1 × d2, d could be prohibitively large. Even for d1 = d2 = 384 where there are
standard choices of dimensions one encounters in practice, d = 3842 ≈ 150, 000 which is much
larger than individual dimensions. Hence, it’s crucial to design an algorithm whose update time does
not depend on d at all. On the other hand, |St| is the batch size, which could be as small as 1 (for
SGD). Thus, in most scenarios, one would prefer an algorithm that depends on |St| instead of d.
The dependence on d in turn appears at the initialization phase, where we spend O(mnd(ω−1)/2)
time to initial the data structure. We would like to examine this runtime under two settings: 1). in
practice where ω = 3, our initialization time is O(mnd), we note that this is the size of input data
if data is given to us in their Kronecker product form, or the per-iteration runtime of prior works Du
et al. (2019b). In contrast, we only need to pay this runtime once instead for each iteration. 2). in
theory, the common belief is that ω = 2, in this setting, our initialization time is O(mnd1/2), this
is precisely the size of input data if we assume d1 = d2 = d1/2. A simple information theoretical
argument would reveal that one has to spend mnd1/2 to read the input data. Hence, in this setting,
our initialization time is nearly optimal.

8

Published as a workshop paper at FPI Workshop (ICLR 2025)

REFERENCES

Peyman Afshani and Timothy M Chan. Optimal halfspace range reporting in three dimensions. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pp. 180–186,
2009.

Pankaj K Agarwal, David Eppstein, and Jiri Matousek. Dynamic half-space reporting, geometric
optimization, and minimum spanning trees. In Annual Symposium on Foundations of Computer
Science, volume 33, pp. 80–80, 1992.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019b.

Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Robust object tracking with online multiple
instance learning. IEEE transactions on pattern analysis and machine intelligence, 33(8):1619–
1632, 2010.

Asa Ben-Hur and William Stafford Noble. Kernel methods for predicting protein–protein interac-
tions. Bioinformatics, 21(suppl 1):i38–i46, 2005.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM, 18(9):509–517, 1975.

Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula of laplace.
Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

Markus Bläser. Fast matrix multiplication. Theory of Computing, pp. 1–60, 2013.

Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory,
volume 315. Springer Science & Business Media, 1997.

Timothy M Chan. Optimal partition trees. Discrete & Computational Geometry, 47(4):661–690,
2012.

Timothy M Chan. Orthogonal range searching in moderate dimensions: kd trees and range trees
strike back. Discrete & Computational Geometry, 61(4):899–922, 2019.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
neural network training. In International Conference on Learning Representations, 2020a.

Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In
defense of smart algorithms over hardware acceleration for large-scale deep learning systems.
Proceedings of Machine Learning and Systems, 2:291–306, 2020b.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of machine learning research,
12(ARTICLE):2493–2537, 2011.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05), volume 1,
pp. 886–893, 2005.

Amit Daniely. Sgd learns the conjugate kernel class of the network. Advances in Neural Information
Processing Systems, 30, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

9

Published as a workshop paper at FPI Workshop (ICLR 2025)

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning (ICML),
2019a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In ICLR, 2019b.

Long Feng and Guang Yang. Deep kronecker network. arXiv preprint arXiv:2210.13327, 2022.

Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on composite keys.
Acta informatica, 4(1):1–9, 1974.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Kronecker attention networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 229–237, 2020.

Jiuxiang Gu, Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers
of softmax: Provable optimization, applications in diffusion model, and beyond. arXiv preprint
arXiv:2405.03251, 2024.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963. ISSN 01621459.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Ameya D Jagtap, Yeonjong Shin, Kenji Kawaguchi, and George Em Karniadakis. Deep kronecker
neural networks: A general framework for neural networks with adaptive activation functions.
Neurocomputing, 468:165–180, 2022.

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factorization machines
for ctr prediction. In Proceedings of the 10th ACM conference on recommender systems, pp.
43–50, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation (ISSAC), pp. 296–303, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In NeurIPS, 2018.

Jiri Matousek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–334, 1992a.

Jiri Matousek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186, 1992b.

10

Published as a workshop paper at FPI Workshop (ICLR 2025)

Seonwoo Min, Byunghan Lee, and Sungroh Yoon. Deep learning in bioinformatics. Briefings in
bioinformatics, 18(5):851–869, 2017.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundara-
man, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al.
Deep learning recommendation model for personalization and recommendation systems. arXiv
preprint arXiv:1906.00091, 2019.

Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and rotation invari-
ant texture classification with local binary patterns. IEEE Transactions on pattern analysis and
machine intelligence, 24(7):971–987, 2002.

Kiran Kumar Patro, Jaya Prakash Allam, Bala Chakravarthy Neelapu, Ryszard Tadeusiewicz, U Ra-
jendra Acharya, Mohamed Hammad, Ozal Yildirim, and Paweł Pławiak. Application of kronecker
convolutions in deep learning technique for automated detection of kidney stones with coronal ct
images. Information Sciences, 640:119005, 2023.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2021.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via gradient
feature learning. Advances in Neural Information Processing Systems, 36, 2024.

Chonghao Sima and Yexiang Xue. Lsh-smile: Locality sensitive hashing accelerated simulation and
learning. Advances in Neural Information Processing Systems, 34, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations (ICLR), 2015.

Aaron Smalter, Jun Huan, and Gerald Lushington. Feature selection in the tensor product feature
space. In 2009 Ninth IEEE International Conference on Data Mining, pp. 1004–1009. IEEE,
2009.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34, 2021.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceed-
ings of the forty-fourth annual ACM symposium on Theory of computing (STOC), pp. 887–898,
2012.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Yu Zhou, Xiang Bai, Wenyu Liu, and Longin Latecki. Fusion with diffusion for robust visual
tracking. Advances in Neural Information Processing Systems, 25, 2012.

11

Published as a workshop paper at FPI Workshop (ICLR 2025)

Appendix
Roadmap. We present the notations and tools used throughout the appendix A. The missing proofs
for some technical claims are shown in Section B. In Section C, we complete the proof of conver-
gence theorem (Theorem 6.4). Finally, the asynchronize tree data structure is presented in Section D.
We provide the proof of the main theorem in Section E.

A NOTATIONS AND TOOLS

The section organized as follows: In Section A.1, we introduce notations that are used frequently in
the appendix. Then, we introduce concentration inequality tools in Section A.2. Finally we present
the tensor tools relevant to our research in Section A.3.

A.1 NOTATIONS

For a positive integer n, let [n] represent the set {1, 2, · · · , n}. For a matrix A ∈ Rd×n and a subset
S ⊂ [n], Ai,j is the entry of A at the i-th row and the j-th column, and A:,S represents the matrix
whose columns correspond to the columns of A indexed by the set S. Similarly, for a vector x ∈ Rn,
xS is a vector whose entries correspond to the entries in x indexed by the set S. Let ∥ · ∥2 and ∥ · ∥F
represent the ℓ2 norm and Frobenius norm respectively. The symbol 1(·) represents the indicator
function. For a positive integer d, Id denotes the d× d identity matrix. For a random variable X , let
E[X] denote the expectation of X . The symbol Pr[·] represents probability.

A.2 PROBABILITY TOOL

We state a general concentration inequality tool, which can be viewed as a more general version of
Chernoff bound Chernoff (1952) and Hoeffding bound Hoeffding (1963).

Lemma A.1 (Bernstein inequality Bernstein (1924)). Let X1, · · · , Xn be independent zero-mean
random variables. Suppose that |Xi| ≤M almost surely, for all i. Then, for all positive t,

Pr[

n∑
i=1

Xi > t] ≤ exp(− t2/2∑n
j=1 E[X2

j] +Mt/3
).

A.3 TENSOR TOOLS

In this subsection, we state tensor tools utilized in our work. It tells us that given U ∈ Rn×d2

and
h ∈ Rd2

, the computation of (Uh)i with i ∈ [n] has an equivalent way when each row of U has the
form U⊤

i,: = vec(xx⊤) for some x ∈ Rd.

Claim A.2 (Tensor trick). Given a matrix H ∈ Rd×d, let h := vec(H) ∈ Rd2

. Given a matrix V ∈
Rd×n, the matrix U ∈ Rn×d2

is defined satisfying that the i-th row of U is equal to (vec(viv
⊤
i))

⊤,
where vi ∈ Rd is the i-th column of V . Then for each i ∈ [n], it holds that

(V ⊤HV)i,i = (U · h)i.

A.4 GENERALIZED TENSOR CASE

More generally, consider the case xi = bi ⊗ ai for some ai ∈ Rp, bi ∈ Rq , and p · q = d. Similar to
Fact A.2, we have the following statement.

Claim A.3. Let A := [a1, · · · , an] ∈ Rp×n, B := [b1, · · · , bn] ∈ Rq×n, and X := [x1, · · · , xn] ∈
Rd×n such that xi = bi ⊗ ai for all i ∈ [n], then for any i, j ∈ [n], it holds that (A⊤ · vec−1(xi) ·
B)j,j = (X⊤xi)j .

Proof. We can show

RHS = x⊤
j xi

12

Published as a workshop paper at FPI Workshop (ICLR 2025)

= (bj ⊗ aj)
⊤(bi ⊗ ai)

= (b⊤j ⊗ a⊤j)(bi ⊗ ai)

= (b⊤j bi)⊗ (a⊤j ai)

= a⊤j aib
⊤
i bj

= LHS,

where the third step follows from the fact (A ⊗ B)⊤ = A⊤ ⊗ B⊤; the fourth step follows from
the fact (A1 ⊗ B1) · (A2 ⊗ B2) = (A1 · A2) ⊗ (B1 · B2); the last step follows from the fact
xi = vec(aib

⊤
i).

B TECHNICAL PREPARATIONS

This section is organized as follows: In Section B.1, we calculate the upper bound of ∥Gt,r∥2. Next,
we finish the proof of Claim C.4 in Section B.2. Then, We derive bounds for C1, C2, C3, C4 in
Section B.3, B.4, B.5, B.6.

B.1 UPPER BOUND OF ∥Gt,r∥2

Firstly, we find the upper bound of the norm of Gt,r.
Lemma B.1. For any t ≥ 0 and r ∈ [m],

∥Gt,r∥2 ≤
n√

m · Sbatch

· ∥u(t)− y∥2.

Proof. Recall the definition of Gt,r,

Gt,r =
n

|St|
· 1√

m

∑
i∈St

(ui(t)− yi) · ar · 1(wr(t)
⊤xi > τ) · xi,

we have

∥Gt,r∥2 =
n

Sbatch
· 1√

m
∥
∑
i∈St

(ui(t)− yi) · ar · 1(wr(t)
⊤xi > τ) · xi∥2

≤ n

Sbatch
· 1√

m

∑
i∈St

∥(ui(t)− yi) · ar · 1(wr(t)
⊤xi > τ) · xi∥2

=
n

Sbatch
· 1√

m

∑
i∈St

|ui(t)− yi| · |ar| · |1(wr(t)
⊤xi > τ)| · ∥xi∥2

≤ n

Sbatch
· 1√

m

∑
i∈St

|ui(t)− yi|

≤ n√
m
· 1√

Sbatch

√∑
i∈St

(ui(t)− yi)2

≤ n√
m · Sbatch

· ∥u(t)− y∥2,

where the second step follows from triangle inequality; the fourth step follows from the facts that
ar ∈ {−1,+1} and ∥xi∥2 = 1; the fifth step follows from Cauchy-Schwarz inequality.

B.2 PROOF OF CLAIM C.4

Then we finish Claim C.4 deferred to here.

Proof. By the formulations of v1,i and v2,i (see Eq. (16) and Eq. (17)), we have that for each i ∈ [n],

ui(t+ 1)− ui(t) = v1,i + v2,i.

13

Published as a workshop paper at FPI Workshop (ICLR 2025)

which has the following vector form

u(t+ 1)− u(t) = v1 + v2. (4)

For v1,i, it holds that

v1,i =
1√
m

∑
r∈Vi

ar(ϕτ (wr(t+ 1)⊤xi)− ϕτ (wr(t)
⊤xi))

=
1√
m

∑
r∈Vi

ar((wr(t+ 1)⊤xi − τ) · 1(wr(t+ 1)⊤xi > τ)

− (wr(t)
⊤xi − τ) · 1(wr(t)

⊤xi > τ)). (5)

By Lemma C.1, we can bound the movement of weight vectors, i.e.,

∥wr(t)− wr(0)∥2 ≤ γ.

By the definition of the set Vi, for each r ∈ Vi, we have that

1(wr(t+ 1)⊤xi > τ) = 1(wr(t)
⊤xi > τ) = 1(wr(0)

⊤xi > τ). (6)

Combining Eq. (5) and Eq. (6), we have

v1,i =
1√
m

∑
r∈Vi

ar((wr(t+ 1)− wr(t))
⊤xi · 1(wr(t)

⊤xi > τ))

= − 1√
m

∑
r∈Vi

ar · η ·G⊤
t,rxi · 1(wr(t)

⊤xi > τ)

= − 1√
m

∑
r∈Vi

ar · η(
n

|St|
· 1√

m

∑
j∈St

(uj(t)− yj) · arxj · 1(wr(t)
⊤xj > τ))⊤xi

· 1(wr(t)
⊤xi > τ)

=
n

Sbatch
· η
m

∑
r∈Vi

∑
j∈St

(yj − uj(t)) · x⊤
i xj · 1(wr(t)

⊤xi > τ,wr(t)
⊤xj > τ)

=
n

Sbatch
· η

∑
j∈St

(yj − uj(t)) ·
1

m

∑
r∈Vi

x⊤
i xj · 1(wr(t)

⊤xi > τ,wr(t)
⊤xj > τ)

=
n

Sbatch
· η

∑
j∈St

(yj − uj(t)) · (H(t)i,j −H(t)⊥i,j),

where the second step follows from the formulation of wr(t+1) (see Eq. (1)); the third step follows
from the definition of Gt,r (see Eq. (2)); the fourth step follows from the fact that ar is sampled
from {−1,+1}; the last step follows from the definitions of H(t)i,j and H(t)⊥i,j (see Eq. (18) and
Eq. (19)). Then the vector v1 ∈ Rn can be formulated as

v1 =
n

Sbatch
· η · [H(t)−H(t)⊥]:,St · [y − u(t)]St

= η · (H(t)−H(t)⊥) ·Dt · (y − u(t)), (7)

where Dt ∈ Rn×n is a diagonal sampling matrix such that the set of indices of nonzero entries is St

and each nonzero entry is equal to n
Sbatch

.

Now we rewrite ∥y − u(t+ 1)∥22 as follows

∥y − u(t+ 1)∥22
= ∥y − u(t)− (u(t+ 1)− u(t))∥22
= ∥y − u(t)∥22 − 2(y − u(t))⊤(u(t+ 1)− u(t)) + ∥u(t+ 1)− u(t)∥22. (8)

For the second term in the above equation, it holds that

(y − u(t))⊤(u(t+ 1)− u(t))

14

Published as a workshop paper at FPI Workshop (ICLR 2025)

= (y − u(t))⊤(v1 + v2)

= (y − u(t))⊤v1 + (y − u(t))⊤v2

= η(y − u(t))⊤ ·H(t) ·Dt · (y − u(t))

− η(y − u(t))⊤ ·H(t)⊥ ·Dt · (y − u(t)) + (y − u(t))⊤v2, (9)

where the first step follows from Eq. (4); the third step follows from Eq. (7). Combining Eq. (8) and
Eq. (9), and the definitions of quantities C1, C2, C3, and C4 (see Eq. (20), (21), (22), and (23)), we
have

∥y − u(t+ 1)∥22 = ∥y − u(t)∥22 + C1 + C2 + C3 + C4.

B.3 BOUND FOR C1

We first introduce the following lemma which is necessary for bounding C1.
Lemma B.2 (Lemma C.2 in Song et al. (2021)). Let τ > 0 and γ ≤ 1/τ . Let c, c′ > 0 be two fixed
constants. If ∥wr(t)− wr(0)∥2 ≤ γ holds for each r ∈ [m], then

∥H(t)−H(0)∥F ≤ n ·min{c · exp(−τ2/2), 3γ}

holds with probability at least 1− n2 · exp(−m ·min{c′ · exp(−τ2/2), γ/10}).

In addition, the random sampling set St has the following fact.
Fact B.3. ESt

[Dt] = I .

Proof. For each i ∈ [n],

E[(Dt)i,i] =
n

Sbatch
·
(

n−1
Sbatch−1

)(
n

Sbatch

) = 1.

This completes the proof.

Now we give the bound for C1.
Claim B.4. Let C1 = −2η(y − u(t))⊤ ·H(t) ·Dt · (y − u(t)), then

E
St

[C1] ≤ −2η · (3λ/4− 3nγ) · ∥y − u(t)∥22

holds with probability at least 1− (1/c+ ρ+ n2 · exp(−m ·min{c′ · exp(−τ2/2), γ/10}) + α).

Proof. By the definition of C1, we have

E[C1] = − 2η(y − u(t))⊤ ·H(t) · E
St

[Dt] · (y − u(t))

= − 2η(y − u(t))⊤ ·H(t) · E
St

[Dt] · (y − u(t))

= − 2η(y − u(t))⊤ ·H(t) · I · (y − u(t)),

where the third step follows from Fact B.3.

Lemma C.1 gives us that with probability at least (1− 1/c) · (1− ρ) for all r ∈ [m],

∥wr(t)− wr(0)∥2 ≤ γ. (10)

Combining Eq. (10) and Lemma B.2, we have with probability at least 1− n2 · exp(−m ·min{c′ ·
exp(−τ2/2), γ/10}),

∥H(0)−H(t)∥F ≤ 3nγ. (11)

Moreover, it holds that

∥H(0)−H(t)∥2 ≥ λmax(H(0)−H(t)) ≥ λmin(H(0))− λmin(H(t)). (12)

15

Published as a workshop paper at FPI Workshop (ICLR 2025)

Note that H(0) = Hdis, by Lemma 6.2, with probability at least 1− α,

λmin(H(0)) ≥ 3

4
λ. (13)

Then Eq. (12) becomes

λmin(H(t)) ≥ λmin(H(0))− ∥H(0)−H(t)∥2
≥ λmin(H(0))− ∥H(0)−H(t)∥F
≥ 3λ/4− 3nγ,

where the second step follows from ∥H(0) − H(t)∥2 ≤ ∥H(0) − H(t)∥F ; the third step follows
from Eq. (13) and Eq. (11). Therefore, we have

(y − u(t))⊤H(t)(y − u(t)) ≥ (3λ/4− 3nγ) · ∥y − u(t)∥22
with probability at least 1− (1/c+ ρ+n2 · exp(−m ·min{c′ · exp(−τ2/2), γ/10}) +α) by union
bound.

B.4 BOUND FOR C2

Before bounding C2, we present the following claim.
Claim B.5 (Claim C.11 in Song et al. (2021)). Let γ ≤ 1

τ , then for each r ∈ [m],

Pr[r ∈ V i] ≤ min{γ,O(exp(−τ2/2))}.

The following fact gives the upper bound of ∥H(t)⊤∥2F , which is used in the following proof.
Fact B.6.

∥H(t)⊥∥2F ≤
n

m2

n∑
i=1

(

m∑
r=1

1(r ∈ V i))
2.

Proof. We have

∥H(t)⊥∥2F =

n∑
i=1

n∑
j=1

(H(t)⊥i,j)
2

=

n∑
i=1

n∑
j=1

(
1

m

∑
r∈V i

x⊤
i xj · 1(wr(t)

⊤xi > τ,wr(t)
⊤xj > τ))2

=

n∑
i=1

n∑
j=1

(
1

m

m∑
r=1

x⊤
i xj · 1(wr(t)

⊤xi > τ,wr(t)
⊤xj > τ) · 1(r ∈ V i))

2

=

n∑
i=1

n∑
j=1

(
x⊤
i xj

m
)2(

m∑
r=1

1(wr(t)
⊤xi > τ,wr(t)

⊤xj > τ) · 1(r ∈ V i))
2

≤ 1

m2

n∑
i=1

n∑
j=1

(

m∑
r=1

1(wr(t)
⊤xi > τ,wr(t)

⊤xj > τ) · 1(r ∈ V i))
2

=
n

m2

n∑
i=1

(

m∑
r=1

1(r ∈ V i))
2.

Now we give the bound for C2.
Claim B.7. Let C2 = 2η(y − u(t))⊤ ·H(t)⊥ ·Dt · (y − u(t)), then

E
St

[C2] ≤ 6nηγ · ∥y − u(t)∥22

holds with probability 1− n · exp(−9mγ/4).

16

Published as a workshop paper at FPI Workshop (ICLR 2025)

Proof. Similarly as before, we have

E[C2] = E
St

[2η · (y − u(t))⊤ ·H(t)⊥ ·Dt · (y − u(t))]

= 2η · (y − u(t))⊤ ·H(t)⊥ · E
St

[Dt] · (y − u(t))

= 2η · (y − u(t))⊤ ·H(t)⊥ · I · (y − u(t)),

where the last step follows from Fact B.3. Furthermore,

E[C2] ≤ 2η · ∥H(t)⊥∥2 · ∥y − u(t)∥22.

Therefore, it suffices to upper bound ∥H(t)⊥∥2.

For each i ∈ [n], we define Zi :=
∑m

r=1 1(r ∈ V i). Note that the m random variables {1(r ∈
V i)}mr=1 are mutually independent since 1(r ∈ V i) only depends on wr(0). In addition, for each
r ∈ [m], it trivially holds that |1(r ∈ V i)| ≤ 1. By Claim B.5, we have E[1(r ∈ V i)] ≤ γ. In
particular,

E[1(r ∈ V i)
2] = E[1(r ∈ V i)] ≤ γ. (14)

Applying Bernstein inequality (see Lemma A.1) gives us

Pr[Zi ≥ a] ≤ exp(− a2/2∑m
r=1 E[1(r ∈ V i)2] + a/3

)

≤ exp(− a2/2

mR+ a/3
),

where the last step follows from Eq. (14). Setting a = 3mγ, we have

Pr[Zi ≥ 3mγ] ≤ exp(−9mγ/4).

Moreover, by union bound, we have that

∀i ∈ [n], Zi ≤ 3mγ,

with probability at least 1− n · exp(−9mγ/4).

By Fact B.6, we know that

∥H(t)⊥∥2F ≤
n

m2

n∑
i=1

(

m∑
r=1

1(r ∈ V i))
2

=
n

m2

n∑
i=1

Z2
i

≤ 9n2γ2,

where the second step follows from the definition of Zi; the third step follows with probability at
least 1− n · exp(−9mγ/4). Furthermore, we have

∥H(t)⊥∥2 ≤ ∥H(t)⊥∥F ≤ 3nγ

with probability at least 1− n · exp(−9mγ/4). Then we have

E[C2] ≤ 6nηγ · ∥y − u(t)∥22.

This completes the proof.

B.5 BOUND FOR C3

In this subsection, we derive the upper bound for C3 by bounding ∥E[v2]∥2.

17

Published as a workshop paper at FPI Workshop (ICLR 2025)

Claim B.8. Let C3 = −2(y − u(t))⊤v2, then

E[C3] ≤
6n3/2ηγ√
Sbatch

· ∥y − u(t)∥22

with probability at least 1− n · exp(−9mγ/4).

Proof. Using Cauchy-Schwarz inequality, we have

E[C3] = − E[2(y − u(t))⊤v2]

= − 2(y − u(t))⊤ E[v2]
≤ 2∥y − u(t)∥2 · ∥E[v2]∥2.

We can upper bound ∥E[v2]∥2 in the following sense

∥E[v2]∥22 ≤
n∑

i=1

(
η√
m

∑
r∈V i

|G⊤
t,rxi|)2

=
η2

m

n∑
i=1

(

m∑
r=1

1(r ∈ V i) · |G⊤
t,rxi|)2

≤ η2

m
· max
r∈[m]

∥Gt,r∥22 ·
n∑

i=1

(

m∑
r=1

1(r ∈ V i))
2

≤ η2

m
· (n√

m · Sbatch

· ∥u(t)− y∥2)2 ·
n∑

i=1

(

m∑
r=1

1(r ∈ V i))
2

≤ η2

m
· (n√

m · Sbatch

· ∥u(t)− y∥2)2 ·
n∑

i=1

(3mγ)2

=
9η2n3γ2

Sbatch
· ∥u(t)− y∥22,

where the first step follows from the definition of v2 (see Eq. (17)) and the property of function ϕτ ;
the third step follows from Cauchy-Schwarz inequality and the fact that ∥xi∥2 = 1; the fourth step
follows from Lemma B.1; the fifth step follows from the fact that

∑m
r=1 1(r ∈ V i) ≤ 3mγ holds

with probability at least 1− n · exp(−9mγ/4) which is proven in Claim B.7.

B.6 BOUND FOR C4

Now, we calculate the upper bound of C4 to prepare for the proof of convergence in Section C.

Claim B.9. Let C4 = ∥u(t+ 1)− u(t)∥22, then

C4 ≤
n3η2

Sbatch
· ∥y − u(t)∥22.

Proof. We need to upper bound

∥u(t+ 1)− u(t)∥22

=

n∑
i=1

(
1√
m

m∑
r=1

ar · (ϕτ ((wr(t)− η ·Gt,r)
⊤xi)− ϕτ (wr(t)

⊤xi)))
2

≤
n∑

i=1

(
1√
m

m∑
r=1

|η ·G⊤
t,r · xi|)2

≤ η2n · 1
m
· (

m∑
r=1

∥Gt,r∥2)2

18

Published as a workshop paper at FPI Workshop (ICLR 2025)

≤ n3η2

Sbatch
· ∥y − u(t)∥22,

where the first step follows from the definition of wr(t + 1); the second step follows from the
property of shifted ReLU and ar ∈ {−1,+1}; the fourth step follows from triangle inequality; the
last step follows from Lemma B.1.

C PROOF OF CONVERGENCE

In this section, we give the proof of Theorem 6.4. The proof mainly consists of two parts: (1)
showing that the weight vector wr with r ∈ [m] does not move too far from initialization; (2)
showing that as long as the weight vector does not change too much, then the error ∥u(t)−y∥2 decays
linearly with extra error term. We proceed the proof via a double induction argument, in which we
assume these two conditions hold up to iteration t and prove that they also hold simultaneously for
iteration t+ 1.

We prove Theorem 6.4 by induction. The base case is i = 0 and it is trivially true. Assume that
Eq. (3) is true for 0 ≤ i ≤ t, then our goal is to prove that Eq. (3) also holds for i = t+ 1.

From the induction hypothesis, we have the following lemma which states that the weight vectors
should not change too much.
Lemma C.1. If Eq. (3) holds for 0 ≤ i ≤ t, then with probability at least (1− 1/c) · (1− ρ) where
c > 1, it holds that for all r ∈ [m],

∥wr(t+ 1)− wr(0)∥2 ≤
2
√
cn

λ
√
m · Sbatch

· ∥u(0)− y∥2 ≤ γ,

where the parameter γ is determined later.

Proof. We first define the two events E1 and E2 to be

E1 : Eq. (3) holds for 0 ≤ i ≤ t,

E2 : ∥u(t)− y∥22 ≤ c · (1− ηλ/2)t · ∥u(0)− y∥22 holds for 0 ≤ i ≤ t,

where c > 1 is a constant. By Markov’s inequality, we have Pr[E2 | E1] ≥ 1− 1/c. Furthermore, it
holds that

Pr[E2] ≥ Pr[E2 | E1] · Pr[E1] ≥ (1− 1/c) · (1− ρ). (15)

For t+ 1, we have

∥wr(t+ 1)− wr(0)∥2 = ∥η
t∑

i=0

Gi,r∥2

≤ η

t∑
i=0

∥Gi,r∥2

≤ η

t∑
i=0

n√
m · Sbatch

· ∥u(i)− y∥2

≤
√
cηn√

m · Sbatch

t∑
i=0

(1− ηλ/2)i/2 · ∥u(0)− y∥2

≤ 2
√
cn

λ
√
m · Sbatch

· ∥u(0)− y∥2,

where the first step follows from Eq. (1) and Eq. (2); the second step follows from triangle inequality;
the third step follows from Lemma B.1; the fourth step follows from Eq. (15); the last step follows
from the truncated geometric series.

For the initial error ∥u(0)− y∥2, we have the following claim.

19

Published as a workshop paper at FPI Workshop (ICLR 2025)

Claim C.2 (Claim D.1 in Song et al. (2021)). For β ∈ (0, 1), with probability at least 1− β,

∥y − u(0)∥22 = O(n(1 + τ2) log2(n/β)).

Next, we calculate the difference of predictions between two consecutive iterations. For each i ∈ [n],
we have

ui(t+ 1)− ui(t)

=
1√
m

m∑
r=1

ar · (ϕτ (wr(t+ 1)⊤xi)− ϕτ (wr(t)
⊤xi))

=
1√
m

m∑
r=1

ar · (ϕτ (
(
wr(t)− η ·Gt,r

)⊤
xi)− ϕτ (wr(t)

⊤xi)).

The right hand side can be divided into two parts: v1,i represents one term that does not change and
v2,i represents one term that may change. For each i ∈ [n], we define the set Vi ⊂ [m] by

Vi := {r ∈ [m] : ∀w ∈ Rd such that ∥w − wr(0)∥2 ≤ γ, 1(wr(0)
⊤xi > τ) = 1(w⊤xi > τ)},

and V i := [m] \ Vi. Then the quantities v1,i and v2,i are defined as follows

v1,i :=
1√
m

∑
r∈Vi

ar(ϕτ (
(
wr(t)− η ·Gt,r

)⊤
xi)− ϕτ (wr(t)

⊤xi)), (16)

v2,i :=
1√
m

∑
r∈V i

ar(ϕτ (
(
wr(t)− η ·Gt,r

)⊤
xi)− ϕτ (wr(t)

⊤xi)). (17)

Given the definition of matrix H(t) ∈ Rn×n such that

H(t)i,j :=
1

m

m∑
r=1

x⊤
i xj · 1(wr(t)

⊤xi > τ,wr(t)
⊤xj > τ), (18)

we define the matrix H(t)⊥ ∈ Rn×n such that

H(t)⊥i,j :=
1

m

∑
r∈V i

x⊤
i xj · 1(wr(t)

⊤xi > τ,wr(t)
⊤xj > τ). (19)

Given H(t), H(t)⊥ ∈ Rn×n, we need the following four quantities which are components of ∥y −
u(t+ 1)∥22.
Definition C.3. Define the quantities C1, C2, C3, and C4 by

C1 := − 2η(y − u(t))⊤H(t) ·Dt · (y − u(t)), (20)

C2 := + 2η(y − u(t))⊤H(t)⊥ ·Dt · (y − u(t)), (21)

C3 := − 2(y − u(t))⊤v2, (22)

C4 := ∥u(t+ 1)− u(t)∥22, (23)

where Dt ∈ Rn×n is a diagonal sampling matrix such that the set of indices of the nonzero entries
is St and each nonzero entry is equal to n

B .

Now we can decompose the error term ∥y − u(t + 1)∥22 into the following components and bound
them later.
Claim C.4. The difference between u(t+ 1) and y can be formulated as

∥y − u(t+ 1)∥22 = ∥y − u(t)∥22 + C1 + C2 + C3 + C4.

The proof for Claim C.4 is deferred to Appendix B.2.

Armed with the above statements, now we prove the convergence theorem. For the sake of com-
pleteness, we include Theorem 6.4 below.

20

Published as a workshop paper at FPI Workshop (ICLR 2025)

Theorem C.5 (Restatement of Theorem 6.4). Given n training samples {(xi, yi)}ni=1 and a param-
eter ρ ∈ (0, 1). Initialize wr ∼ N (0, Id) and sample ar from {−1,+1} uniformly at random for
each r ∈ [m]. Set the width of neural network to be

m = poly(λ−1, S−1
batch, n, log(n/ρ)),

and the step size η = poly(λ, Sbatch, n
−1), where λ = λmin(H

cts) and Sbatch is the batch size,
then with probability at least 1−O(ρ), the vector u(t) for t ≥ 0 in Algorithm 2 satisfies that

E[∥u(t)− y∥22] ≤ (1− ηλ/2)t · ∥u(0)− y∥22. (24)

Proof. By the linearity of expectation, applying Claim B.4, B.7, B.8, and B.9 gives us

E[∥y − u(t+ 1)∥22]
=∥y − u(t)∥22 + E[C1] + E[C2] + E[C3] + E[C4]

≤(1− 2η(3λ/4− 3nγ) + 6nηγ + 6n3/2ηγ/
√

Sbatch + n3η2/Sbatch) · ∥y − u(t)∥22.

Parameter Settings. In order to satisfy Eq. (24) for iteration t+ 1, let

1− 2η(3λ/4− 3nγ) + 6nηγ + 6n3/2ηγ/
√
Sbatch + n3η2/Sbatch ≤ 1− ηλ/2. (25)

For the probability, we have

1/c+ n2 · exp(−m ·min{c′ · exp(−τ2/2), γ/10}) + α+ 2n · exp(−9mγ/4) = O(ρ). (26)

Lemma B.2 and Claim B.5 require that

2
√
cn

λ
√
m · Sbatch

· ∥u(0)− y∥2 ≤ γ ≤ 1/τ, (27)

where Claim C.2 gives that with probability at least 1− β,

∥y − u(0)∥22 = O(n(1 + τ2) log2(n/β)). (28)

Eq. (25) implies that the step size η satisfies that

η = O(
λ · Sbatch

n3
)

and γ satisfies that

γ = O(
λ

n
). (29)

By setting τ = O(
√
logm) and combining Eq. (27), (28) and (29), we have

m = Ω̃(
n5

λ4 · Sbatch
).

Taking the probability parameter ρ in Eq. (26) into consideration, we have that

m = Ω̃(
n5 · logC(n/ρ)
λ4 · Sbatch

), (30)

where C > 0 is a constant and the notation Ω̃(·) hides the factors logm and log n.

Thus, we complete the proof of Theorem 6.4.

21

Published as a workshop paper at FPI Workshop (ICLR 2025)

D ASYNCHRONIZE TREE DATA STRUCTURE

In this section, we present the asynchronize tree data structure that has three procedures: INIT,
UPDATE, and QUERY, which are shown in Algorithm 3, 4, and 5 respectively.

• The INIT procedure constructs n trees T1, · · · , Tn for the n data points x1, · · · , xn. The
tree Ti with i ∈ [n] has m leaf nodes and the r-th leaf node with r ∈ [m] has value w⊤

r xi.
The value of each inner node of Ti is the maximum of the values of its two children.

• The UPDATE procedure updates the n trees since the weight vector wr changes by δt,r. It
starts with the r-th leaf node of each Ti whose value is added by δ⊤t,rxi, and backtracks
until to the root of Ti.

• The QUERY procedure returns the set of activated neurons for data point xi by searching
the values in tree Ti recursively from the root of Ti.

For the asynchronize tree data structure, we have the following theorem and its proof is omitted.
Note that the time complexity given in Theorem D.1 is for the general case, i.e., the input data has
no special structures. When the data points have Kronecker structure, the time complexity for the
initialization step and each iteration can be significantly accelerated.
Theorem D.1 (ASYNCHRONIZETREE data structure). There exists a data structure with the follow-
ing procedures:

• INIT({w1, · · · , wm} ⊂ Rd, {x1, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given a series
of weight vectors w1, · · · , wm and data vectors x1, · · · , xn in d-dimensional space, the
preprocessing step takes time O(n ·m · d).

• UPDATE(z ∈ Rd, r ∈ [m]). Given a vector z and index r, it updates weight vector wr with
z in time O(n · (d+ logm)).

• QUERY(i ∈ [n], τ ∈ R). Given an index i corresponding to point xi and a threshold τ , it
finds all index r ∈ [m] such that w⊤

r xi > τ in time O(|S̃(τ)| · logm), where S̃(τ) := {r :
w⊤

r xi > τ}.

Algorithm 3 Asynchronize tree data structure
1: data structure ASYNCHRONIZETREE
2: members
3: w1, · · · , wm ∈ Rd ▷ m weight vectors
4: x1, · · · , xn ∈ Rd ▷ n data points
5: Binary trees T1, · · · , Tn ▷ n binary search trees
6: end members
7:
8: public:
9: procedure INIT(w1, · · · , wm ∈ Rd, x1, · · · , xn ∈ Rd, n, m, d) ▷ INIT in Theorem D.1

10: for i = 1→ n do
11: xi ← xi

12: end for
13: for j = 1→ m do
14: wj ← wj

15: end for
16: for i = 1→ n do ▷ Each data point xi has a tree Ti

17: for j = 1→ m do
18: uj ← w⊤

j xi

19: end for
20: Ti ← MAKETREE(u1, · · · , um) ▷ Each node stores the maximum value of its two

children
21: end for
22: end procedure
23: end data structure

22

Published as a workshop paper at FPI Workshop (ICLR 2025)

Algorithm 4 Asynchronize tree data structure
1: data structure ASYNCHRONIZETREE
2: public:
3: procedure UPDATE(z ∈ Rd, r ∈ [m]) ▷ UPDATE in Theorem D.1
4: for i = 1 to n do
5: l← the r-th leaf of tree Ti

6: l.value← l.value + z⊤xi

7: while l is not root do
8: p← parent of l
9: p.value← max{p.value, l.value}

10: l← p
11: end while
12: end for
13: end procedure
14: end data structure

Algorithm 5 Asynchronize tree data structure
1: data structure ASYNCHRONIZETREE
2: public:
3: procedure QUERY(i ∈ [n], τ ∈ R≥0) ▷ QUERY in Theorem D.1
4: return QUERYSUB(τ, root(Ti))
5: end procedure
6:
7: private:
8: procedure QUERYSUB(τ ∈ R≥0, r ∈ T)
9: if r is leaf then

10: if r.value > τ then
11: return r
12: end if
13: else
14: r1 ← left child of r, r2 ← right child of r
15: if r1.value > τ then
16: S1 ←QUERYSUB(τ, r1)
17: end if
18: if r2.value > τ then
19: S2 ←QUERYSUB(τ, r2)
20: end if
21: end if
22: return S1 ∪ S2

23: end procedure
24: end data structure

E PROOF OF MAIN THEOREM

Theorem E.1 (Formal version of Theorem 1.1). Given n training samples {(xi, yi)}ni=1 such that
xi = vec(xix

⊤
i) ∈ Rd and yi ∈ R for each i ∈ [n], there exists an SGD algorithm that can train a

two-layer fully connected neural network such that the initialization takes time O(m ·n · dω−1
2) and

with high probability each iteration takes time S2
batch · o(m) ·n, where Sbatch is the batch size, m is

the width of the neural network, and ω is the exponent of matrix multiplication.

Proof. Let X := [x1, · · · , xn] ∈ R
√
d×n and X := [vec(x1x

⊤
1), · · · , vec(xnx

⊤
n)] ∈ Rd×n. In the

initialization step, there are two main parts: (1) in order to construct the n trees Ti, i ∈ [n], we need
to compute X⊤wr for all r ∈ [m]; (2) the pairwise inner products x⊤

i xj for all i, j ∈ [n], which
will be used in the backward computation.

23

Published as a workshop paper at FPI Workshop (ICLR 2025)

By Claim A.2, given a fixed r ∈ [m], we have that (X⊤wr)i = (X
⊤ · vec−1(wr) ·X)i,i, i ∈ [n].

By Lemma 7.6, we can compute the matrix X
⊤ · vec−1(wr) ·X and then take its diagonal.

Assume that n >
√
d, then we can compute X⊤wr in time (n/

√
d) · Tmat(

√
d,
√
d,
√
d) = O(n ·

d
ω−1

2). Hence the first part takes time O(m · n · dω−1
2). In addition, the second part takes time

O(n2 ·
√
d). Since m = poly(n), the initialization step takes time O(m · n · dω−1

2).

Now we analyze the time complexity of each iteration in Algorithm 2.

Forward Computation. Line 8 takes time O(Q · logm). Line 9 takes time O(Q). Hence the
forward computation takes time O(Sbatch ·Q · logm).

Backward Computation. In Line 15, the computation of vSt
and (y − u(t))St

takes time
O(Sbatch). In Line 16, we need to compute δ⊤t,rxi for each i ∈ [n], in which the core part is
to compute the product X⊤

:,St
xi. By Claim A.2, we have that for each j ∈ St, (X⊤

:,St
xi)j =

(X
⊤
:,St
· (xix

⊤
i) ·X :,St

)j,j , which only needs the pairwise products x⊤
i xj , i, j ∈ [n] that are already

computed in initialization step. Hence, Line 16 takes time O(n ·(Sbatch+logm)) and the backward
computation takes time O(K · n · (Sbatch + logm)).

By Lemma 7.3 and setting τ =
√
(logm)/2, we have that each iteration takes time

O(S2
batch ·m3/4 · n+ Sbatch ·m3/4 · n · logm)

= S2
batch · o(m) · n,

which is independent of the data dimensionality d.

Moreover, we have the following corollary which is a general version of Theorem E.1.
Corollary E.2. Given n training samples {(xi, yi)}ni=1 such that for each i ∈ [n], xi = bi⊗ai ∈ Rd

and ai ∈ Rp, bi ∈ Rq , and p, q = O(
√
d), there exists an SGD algorithm that can train a two-layer

fully connected neural network such that the initialization takes time O(m · n · dω−1
2) and with high

probability each iteration takes time S2
batch · o(m) ·n, where Sbatch is the batch size, m is the width

of the neural network, and ω is the exponent of matrix multiplication.

Proof. Let A := [a1, · · · , an] ∈ Rp×n, B := [b1, · · · , bn] ∈ Rq×n, and X := [x1, · · · , xn] ∈
Rd×n. Similar to Theorem E.1, in the initialization step, there are two main parts: (1) computing
X⊤wr for all r ∈ [m] to construct the n trees Ti, i ∈ [n]; (2) computing the pairwise inner products
a⊤i aj , b⊤i bj for all i, j ∈ [n] that will be used in the backward computation.

By Claim A.3, for a fixed r ∈ [m], it holds that (X⊤wr)i = (A⊤ · vec−1(wr) · B)i,i, i ∈ [n]. By
Lemma 7.6, we can compute the matrix A⊤ · vec−1(wr) ·B and then take its diagonal. Assume that
n = O(

√
d), then we can compute X⊤wr in time

O(n/
√
d) · Tmat(

√
d,
√
d,
√
d) = O(n · d

ω−1
2)

since p, q = O(
√
d). Hence the first part takes time O(m · n · dω−1

2). Furthermore, the second part
takes time O(n2 ·

√
d). Since m = poly(n), the initialization step takes time O(m · n · dω−1

2).

Now we analyze the time complexity of each iteration in Algorithm 2.

Forward Computation. It is same as the forward computation in Theorem E.1, i.e., O(Sbatch ·
Q · logm).

Backward Computation. In Line 15, the computation of vSt and (y − u(t))St takes time
O(Sbatch). In Line 16, we need to compute δ⊤t,rxi for each i ∈ [n], in which the core part is to
compute the product X⊤

:,St
xi. By Claim A.3, we have that for each j ∈ St,

(X⊤
:,St

xi)j = (A⊤
:,St
· vec−1(xi) ·B:,St)j,j = (A⊤

:,St
· ai · b⊤i ·B:,St

)j,j ,

24

Published as a workshop paper at FPI Workshop (ICLR 2025)

where the second step follows by xi = vec(aib
⊤
i). Hence we only need to compute the pairwise

products a⊤i aj , b⊤i bj for i, j ∈ [n] which are already computed in initialization step. Then Line 16
takes time O(n · (Sbatch + logm)) and the backward computation takes time O(K · n · (Sbatch +
logm)). Same as Theorem E.1, each iteration takes time S2

batch · o(m) · n, which is independent of
the data dimensionality d.

25

	Introduction
	Our Results

	Related Work
	Notation
	Problem Formulation
	Asynchronize Tree
	Convergence Analysis
	Essential concepts
	Convergence Theorem

	Data with Kronecker Structure
	Training Algorithm Using Asynchronize Tree
	Properties of Kronecker Structure and Related Computation Facts

	Discussion
	NOTATIONS AND TOOLS
	Notations
	Probability Tool
	Tensor Tools
	Generalized Tensor Case

	TECHNICAL PREPARATIONS
	Upper Bound of
	Proof of Claim C.4
	Bound for
	Bound for
	Bound for
	Bound for

	PROOF OF CONVERGENCE
	ASYNCHRONIZE TREE DATA STRUCTURE
	Proof of Main Theorem

