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Abstract—Deep learning-based video quality assessment (deep
VQA) has demonstrated significant potential in surpassing
conventional metrics, with promising improvements in terms
of correlation with human perception. However, the practical
deployment of such deep VQA models is often limited due
to their high computational complexity and large memory
requirements. To address this issue, we aim to significantly
reduce the model size and runtime of one of the state-of-the-
art deep VQA methods, RankDVQA, by employing a two-phase
workflow that integrates pruning-driven model compression with
multi-level knowledge distillation. The resulting lightweight full
reference quality metric, RankDVQA-mini, requires less than
10% of the model parameters compared to its full version (14%
in terms of FLOPs), while still retaining a quality prediction
performance that is superior to most existing deep VQA methods.
The source code of the RankDVQA-mini has been released
at https://chenfeng-bristol.github.io/RankDVQA-mini/ for public
evaluation.

Index Terms—Video quality assessment, deep learning, model
compression, knowledge distillation, RankDVQA -mini

I. INTRODUCTION

Objective video quality assessment plays an essential role
in many video processing applications [1]. It can, for example,
be used for comparing the performance of compression algo-
rithms, or within these algorithms to guide model optimisation
(e.g., in rate-quality optimisation or as a loss function for
training learning-based methods) [2, 3]. Over the last two
decades, VQA methods have experienced significant advances,
from the conventional quality metrics based on classic signal
measures to more recent contributions optimised using deep
learning techniques.

The most commonly used conventional quality metrics' are
PSNR and SSIM [4], which measure pixel-wise distortions
and the similarity between the test and reference content,
respectively. To improve their correlation with visual percep-
tion, many perceptual-inspired objective quality metrics have
been developed, including SSIM variants [5-7], VQM [8],
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In this work, we solely focus on full reference scenarios where the
reference content of the distorted video is available.
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Fig. 1. Complexity (in terms of either FLOPs or model size) versus correlation
performance (in SROCC) plot for benchmarked deep VQA methods. FLOPs
are calculated for inference on a 256256 sequence of 12 frames.

MOVIE [9], PVM [10] and MAD [11]. Enhanced methods
exist [12, 13] that integrate these perceptual quality metrics
together with video features into a regression-based framework
to further improve the overall correlation with subjective
opinions. One important metric in this class is VMAF [14].
VMATF has been widely adopted for evaluating the perfor-
mance of video compression and processing algorithms due
to its excellent and consistent performance.

More recently, VQA metrics have been further enhanced
through deep learning techniques. Various metrics have been
reported, which have been built using Convolutional Neural
Networks (CNNs); notable examples include DeepVQA [15],
C3DVQA [16], LPIPS [17] and DISTS [18]. Although these
methods have been reported to offer promising results com-
pared to conventional and regression-based VQA methods,
they are constrained by the lack of reliable large and diverse
training databases (the model is typically trained on a small
video quality dataset with limited subjective ground truth
labels) and do not show consistent generalisation performance.
To address this issue, RankDVQA [19] was proposed that
employs a ranking-inspired training methodology. This sup-
ports the use of a large scale training database for model
optimisation, and achieves the state-of-the-art generalisation
performance compared to other existing methods.

Although deep VQA methods offer the potential to out-
perform conventional and regression-based quality metrics,
they are often associated with high computational complex-
ity, which restricts their deployment in practical applications
[20]. To address this challenge, network pruning [21] and
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knowledge distillation [22, 23] techniques can be employed
to prune a large network (denoted by “teacher”) and transfer
its knowledge to the pruned smaller model (the “student”).
Such techniques have been applied in numerous fields [24-26],
demonstrating that a compact model can achieve comparable
performance to its larger counterpart.

In this work, we apply these techniques to deep VQA,
producing a lightweight network that achieves competitive
performance without the need to incorporate additional mod-
ules. Specifically, we employ a two-stage pipeline to condense
the RankDVQA [19] network. RankDVQA is selected due
to its state-of-the-art performance and model generalisation
capabilities. Inspired by previous work [24, 27], we first
apply a sparsity-inducing pruning technique to substantially
reduce the number of RankDVQA parameters - retaining only
10% of the original model’s parameters. The pruned model is
then trained using a multi-level knowledge distillation strategy
[28], learning from the teacher model, a pre-trained original
RankDVQA. As shown in Fig. 1, the final compact model,
RankDVQA-mini, retains 96% of RankDVQA’s performance
in terms of SROCC, while removing 90.12% of its parameters.
Moreover, RankDVQA-mini reduces the Floating Point Oper-
ations (FLOPs) count of the original model by 86.42% (from
10.731G to 1.457G). We believe that this is the first time that
model pruning and knowledge distillation have been used to
optimise a deep VQA metric — a step towards low-complexity
deep VQA.

II. PROPOSED METHOD

RankDVQA has been selected as the anchor VQA model
for complexity reduction in this work. RankDVQA [19] is one
of the latest and best performing learning-based video quality
metrics. It is based on a ranking-inspired training strategy
that enables the development of large and reliable training
databases without performing expensive subjective tests. It
consistently achieves superior performance compared to other
conventional, regression-based and deep VQA methods.

The architecture of RankDVQA consists of two parts: the
PQANet, which uses convolutional and SWIN transformer
[29] layers for feature extraction and local quality prediction,
and the STANet, which refines the assessment using adaptive
spatio-temporal pooling. Since the model size of STANet
(14.0K parameters) is much smaller than that of PQANet
(4.59M), in this work we solely focus on reducing the com-
plexity of the PQANet model.

A. Pruning RankDVQA

Sparsity-inducing Optimisation. Model pruning in the
context of PQANet aims to simplify the network by induc-
ing sparsity in parameters, thereby providing guidance for
removing unnecessary model parameters while maintaining
its performance. This is achieved by adding an L1 norm
regularisation term to the training loss function, £, yne, and
applying the OBProx-SG optimiser [30]:

‘CPT'une =L+ M- H9||1 (1)

Here, L4 represents the original binary cross entropy loss for
training the PQANet [19]. A is a hyper-parameter that controls
the sparsity level (its empirical value equals 0.1). 6 refers to
the parameters of the PQANet model [30].

The optimisation process here is expected to identify any
relatively unimportant parameters. After around 30 epochs, the
sparse model retains those parameters that make a relatively
significant contribution to overall model performance. The
number of non-zero parameters reduces from around 4.59
million to 0.44 million. This compact model serves as a
starting point for subsequent model compression.

Model Pruning. The sparse model obtained above is an
important indicator for model pruning. We define the density
of each layer, Dy, as the proportion of its non-zero parameters:

D number of nonzero parameters in L
L =

total parameters of L ’ @
where L denotes a specific layer with parameters. Conse-
quently, the contribution of each layer to the model perfor-
mance can be identified. In the pruning stage, the density value
is employed as the compression ratio of each layer.

To prune the model, the redundant channels in the original
model are removed, starting from the last layer and proceeding
backwards. The number of input channels C,, 1, for any given
layer, L, is reduced to Dy, - Cy, 1, with Dy, symbolising the
compression ratio equivalent to the layer’s density. Adjacent
layers are then adjusted in tandem to maintain the integrity
of the network. As a result, the number of output channels
in these layers is decreased proportionally. The final compact
PQANet model contains only 9.58% of the original model
weights due to the significant reduction of redundant channels.

B. Multi-level Knowledge Distillation

After model pruning, knowledge distillation is employed to
enhance the performance of the compact PQANet model. Our
approach differs from the traditional knowledge distillation
framework [22-25], which only focuses on the difference
between the output of student and teacher models at the
instance level. Inspired by recent work [28], we adopt a multi-
level logit knowledge distillation strategy, which extends this
process to two additional levels: batch and class, to enhance
the learning efficiency of the student model from the teacher.
Fig. 2 shows the workflow of this approach.

Instance-level Alignment. This level inherits the conven-
tional knowledge distillation method [23-25], which min-
imises the divergence between the outputs of the teacher and
student models at the instance level. During optimisation, the
student model is trained to decrease the difference in predic-
tion from the teacher model for each instance. Specifically,
PQANet takes as input (in the training process - details can
be found in [19]) two distorted sequences D, D, and their
respective references R, Ry, and outputs the probability of
D; having higher quality than Ds. Let piegener denote the
output of the teacher network (the original PQANet) on one
such training instance, and let pgiyqent be the output of the
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Fig. 2. The framework of the RankDVQA-mini with the multi-level knowledge distillation, after the model pruning and compression, obtaining the RankDVQA
(teacher) and RankDVQA-mini (student) predictions. The predictions are matched respectively through multi-level alignment, which consists of instance-level,
batch-level, and class-level alignments. We take batch size B = 4 as an example to demonstrate this approach.

student network (the pruned PQANet) for the same instance.
The instance level loss function reads:

3)

Here the Binary Cross Entropy (BCE) loss measures the
divergence between Pieqcper and Pgyydent,

£Instance - EBCE(pteacherapstudent)-

Lpce = — (pteache'r IOg(pstudent)
+ (1 - pteacher) IOg(l - pstudent))' (4)

Batch-level Alignment. At the batch level, we aim to train
the student to mimic the inner-instance correlation (within
a training batch) predicted by the teacher. Specifically, let
Pteachers Pstudent € (0,1)B*1 denote the outputs of the
teacher and the student on a batch of B training instances,
the batch-level distillation loss is defined as

1 T T 2
EBatch = E”pteacherpteacher - pstudentpstudentH% (5)

BxB models the inner-

where the Gram matrix pp? € (0,1)
instance relationships.

Class-level Alignment. The class-level alignment in [28],
matches the category correlation modelled by the student
and the teacher, i.e. the relationship between different classes
(e.g. the 1000 classes in ImageNet [31]). In our case, the

classification is binary, and the loss function is written as:

(6)

Multi-level Loss. Three levels of loss functions will be
combined to act as the knowledge distillation term in the
training loss function:

T T 2
['CIass = (pteacherpteache’r - pstudentpstudent) b

)
®)

where Lg; denotes the original loss function [19] for the
PQANet as mentioned in Equation (1), and « is a hyperparam-
eter to allocate weight to the distillation loss term (set as 0.1).
Our method combines three losses at different levels, guiding
the student model to mimic the teacher model’s behaviour
across instance-level, batch-level and class-level predictions.

EMultiflevel = £Ins‘cance + EBatch + LClaSS7

‘Ctotal = EMulti—level + a£51>

III. RESULTS AND DISCUSSION

The compact version of PQANet was trained for 30 epochs
on the same training set as the original model [19], which
consists of approximately 20K patch pairs from the CVPR
2022 CLIC video compression challenge [35] and BVI-DVC
[36] datasets. The STANet used for spatio-temporal pooling
in the second stage remains the same, and has been retrained
based on the output of PQANet, also with the same training
databases as in [19]. We use AdaMAX optimisation [37]
with hyper-parameters 51=0.9 and (52=0.999 in the training
process. Training and evaluation were executed on the compute
cluster [38] at the University of Bristol (GPU nodes with
2.4GHz Intel CPUs and two NVIDIA P100 graphic cards).

To evaluate model generalisation performance, we followed
the same experiment setup as in [19], using eight different
HD VQA datasets for performance benchmarking: NFLX [14],
NFLX-P [14], BVI-HD [39], CC-HD [40], CC-HDDO [41],
MCL-V [42], SHVC [43], VQEGHD3 [44]. These databases
contain various distortion types produced by spatial resolution
adaptation and video compression.

To benchmark the performance of RankDVQA-mini we
compared its correlation performance with eleven full refer-
ence quality assessment methods, including three conventional
quality metrics: PSNR, SSIM [4], MS-SSIM [5]%; and seven
deep quality assessment methods®: WaDIQA [32], DeepQA
[33], DeepVQA [15], C3DVQA [16], DISTS [18], LPIPS [17],
RankDVQA [19], and two regression-based VQA approach,
ST-GREED [34] and VMAF [14].

To assess the correlation performance of these VQA meth-
ods with subjective ground truth, the Spearman Rank Order
Correlation Coefficient (SROCC) was calculated, for each
database, between predicted quality indices and subjective
scores. Additionally, to test the significance of performance
difference, an F-test was performed between the proposed
method, RankDVQA-Mini, and other tested metrics based on

%It is noted that these image quality metrics are calculated based on luma
components only.

3The selection of deep VQA methods is based on the performance reported
in their original publications and on the availability of their pre-trained models.
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TABLE I
PERFORMANCE AND COMPLEXITY FIGURES OF THE PROPOSED METHOD AND OTHER BENCHMARK APPROACHES ON EIGHT TEST DATABASES. THE
VALUES IN EACH CELL X(Y) CORRESPOND TO THE SROCC VALUE (X) AND F-TEST RESULT (Y) AT 95% CONFIDENCE INTERVAL. Y=1 SUGGESTS THAT
THE METRIC IS SUPERIOR TO RANKDVQA-MINI (Y=-1 IF THE OPPOSITE IS TRUE), WHILE Y=0 INDICATES THAT THERE IS NO SIGNIFICANT DIFFERENCE.

SROCC(F-test) || NFLX NFLX-P BVI-HD CC-HD CC-HDDO  MCL-V SHVC VQEGHD3 | Overall | FLOPs (G) | #P (M)
PSNR || 0.6218 (-1)  0.6596 (-1) 0.6143 (-1) 0.6166 (-1)  0.7497 (-1)  0.4640 (-1) 0.7380 (-1)  0.7518 (-1) | 0.6520 | — | —
SSIM [4] || 0.5638 (-1)  0.6054 (-1) 0.5992 (-1)  0.7194 (-1)  0.8026 (-1) 04018 (-1) 0.5446 (-1) 0.7361 (-1) | 0.6216 | — | —
MS-SSIM [5] || 0.7136 (-1)  0.7394 (-1) 07652 (0) ~ 0.7534 (-1) 0.8321 (0)  0.6306 (-1)  0.8007 (0) ~ 0.8457 (0) | 0.7601 | — | —
WaDIQA [32] || 0.5713 (-1)  0.6593 (-1)  0.6646 (-1)  0.6516 (-1)  0.7041 (-1)  0.6072 (-1) 0.6731 (-1) 0.6910 (-1) | 0.6528 | 104.04 | 6.287
DeepQA [33] || 0.7298 (-1)  0.6995 (-1)  0.7106 (-1) ~ 0.6202 (-1)  0.6705 (-1)  0.6832 (-1) 0.7176 (-1)  0.7881 (-1) | 0.7024 | 14976 | 0.131
LPIPS [17] || 0.6793(-1)  0.7859 (-1)  0.6670 (-1)  0.6838 (-1)  0.7678 (-1)  0.6579 (-1)  0.6360 (-1)  0.8075(0) | 0.7107 | 20.857 | 2472
DeepVQA [15] || 0.7352 (-1)  0.7609 (-1)  0.7330 (-1)  0.6924 (-1) 0.8120 (0) ~ 0.6142 (-1) 0.8041 (0)  0.7805 (-1) | 0.7540 | 14.990 | 0.144
C3DVQA [16] || 0.7730 (-1)  0.7714 (-1) 07393 (-1)  0.7203 (-1)  0.8137 (0) ~ 0.7126 (0) ~ 0.8194 (0) ~ 0.7329 (-1) | 0.7641 | 11236 | 0.227
DISTS [18] || 0.7787 (-1)  0.9325(0)  0.7030 (-1)  0.6303 (-1)  0.7442 (-1) 0.7792 (0) 07813 (0) ~ 0.8254 (0) | 0.7718 | 48107 | 14715
ST-GREED [34] || 0.7470 (-1)  0.7445 (-1)  0.7769 (0) ~ 0.7738 (0) ~ 0.8259 (0)  0.7226 (0)  0.7946 (0)  0.8079 (0) | 0.7842 | — | —
VMAF 0.6.1 [14] || 09254 (0) 09104 (0)  0.7962 (0) ~ 0.8723 (0) ~ 0.8783 (0)  0.7766 (0) ~ 0.9114 (0)  0.8442 (0) | 0.8644 | — | —
FR-RankDVQA [19] || 0.9393 (0)  0.9184 (0)  0.8659 (0)  0.8991 (0) ~ 0.9037 (0)  0.8391 (0) ~ 0.9142 (0)  0.8979 (0) | 0.8972 | 10.731 | 4.608
RankDVQA-mini || 0.8846 0.8748 0.8135 0.8479 0.8890 0.7592 0.8819 0.8661 | 0.8521 | 1457 | 0455

the residuals between the predicted quality indices (after a non-
linear regression) and the subjective ground truth [10, 45].

Table I summarises the quantitative results of all tested
VQA methods in terms of SROCC values, F-test results and
complexity figures (number of model parameters and Floating
Point Operations (FLOPs)). Note that the model size figures
presented for RankDVQA and RankDVQA-mini are for both
PQANet and the STANet. It can be observed that, with only
9.87% of the parameters and 13.57% of FLOPs compared
to the original RankDVQA, RankDVQA-mini still achieves
competitive correlation performance, outperforming all other
deep VQA methods, including DISTS, C3DVQA and LPIPS,
and conventional quality metrics: PSNR, SSIM and MS-SSIM.
It is noted that RankDVQA-mini does not outperform VMAF
(although the overall SROCC is competitive). However, this
is the first step towards reducing the complexity of deep
VQA metrics (which are the state of the art in terms of
performance) for their practical use and we show a promising
trade-off between complexity and performance. It is our hope
to inspire further work on developing compact and efficient
deep VQA models that surpass VMAF. Finally, according
to the F-test, RankDVQA-mini shows significant advantage
over most compared methods on various test sets, and its
differences from VMAF and the original RankDVQA are
insignificant.

Figure 1 provides a more intuitive comparison between
RankDVQA-mini and other deep VQA methods in terms
of performance and complexity. It can be observed that the
proposed method achieves an excellent trade off between cor-
relation performance and complexity (model size and FLOPs)
- it requires a similar level (in the same order of magnitude) of
model size and FLOPs as DeepVQA, C3DVQA and DeepQA,
but achieves evident performance improvement (confirmed by
the F-test results in TABLE I).

IV. CONCLUSION

In this work, we present a new lightweight and effective
deep video quality assessment method, RankDVQA-mini, by
applying a two phase complexity reduction workflow to the
state-of-the-art deep quality metric, RankDVQA. The resulting
compact model retains the superior performance of its original
counterpart, but with a reduction of 90% in terms of model
parameters and 14% of FLOPs. Future work should focus
on further runtime reductions and more effective knowledge
distillation to improve model performance.
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