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ABSTRACT

Recent advancements in safe reinforcement learning (safe RL) have focused on
developing agents that maximize rewards while satisfying predefined safety con-
straints. However, the challenge of learning policies capable of generalizing to
dynamic safety requirements remains largely unexplored. To this end, we propose
a novel COntrastive Safe TAsk Representation (COSTAR) framework for safe
RL, designed to enhance the generalization capabilities of existing algorithms to
dynamic safety constraints, including variable cost functions and safety thresholds.
In COSTAR, we employ a Safe Task Encoder to extract safety-specific representa-
tions from trajectory contexts, effectively distinguishing between various safety
constraints with contrastive learning. It is noteworthy that our framework is com-
patible with existing safe RL algorithms and offers zero-shot adaptation capability
to varying safety constraints during deployment. Comprehensive experiments show
that our COSTAR framework consistently secures high rewards while adhering
to dynamic safety constraints, and demonstrates robust generalization capabilities
when faced with out-of-distribution (OOD) tasks.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated remarkable success across diverse fields such as video
gaming (Silver et al., 2017; Vinyals et al., 2019), finance (Hambly et al., 2023), robotics (Morales
et al., 2021) and recommendation systems (Afsar et al., 2022). These achievements highlight RL’s
robust capability in solving complex sequential decision-making problems and navigating uncertain
and intricate environments. In traditional RL settings, the agent is permitted unrestricted exploration
of the entire state and action space to maximize the expected total reward. Nevertheless, in real-
world scenarios, particularly in safety-critical fields, exploration may be substantially constrained.
Examples of such domains include autonomous driving (Wen et al., 2020), robot control (Brunke
et al., 2022) and aerospace (Dunlap et al., 2023). In these settings, the agent is required to satisfy
certain constraints while maximizing the expected total reward, which is a challenge for traditional
reinforcement learning algorithms.

To address this challenge, Safe RL algorithms have been developed. The objective of safe RL is
to strike a balance between maximizing the expected total reward and satisfying the constraints
throughout the decision-making process. In safe RL problems, constraints are typically quantified
numerically as costs, similar to rewards. The upper bound of the costs is defined as safety threshold,
which significantly influences the agent’s exploration strategy. A higher safety threshold allows the
agent greater latitude to violate constraints and take ‘UNSAFE’ actions for high-risk but potentially
high-reward exploration; Conversely, a lower safety threshold necessitates a more safety-centric
approach from the agent. Recent advancements in safe RL can be primarily categorized into primal-
dual approaches and primal approaches. Primal-dual approaches (Ray et al., 2019; Stooke et al., 2020;
Tessler et al., 2018) employ Lagrangian relaxation techniques where safety constraints are added
to the optimization objective with corresponding Lagrange multipliers. Then they simultaneously
optimize the policy (primal problem) and adjust the importance of safety constraints (dual problem).
Primal approaches (Liu et al., 2020; Xu et al., 2021) embed safety constraints directly within the
policy optimization process.

However, current safe RL algorithms are hindered by a key limitation: their policies are trained
under static safety constraints, requiring retraining from scratch when these constraints change.
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This predominant assumption of static safety constraints overlooks the inherent complexity and
variability of real-world environments, where safety requirements (including cost functions and
safety thresholds) often alter. For instance, considering a self-driving scenario, and when the car is
overspeed, the agent receives a cost. In real world, the speed limit of the road changes depending on
the width and traffic volume, therefore the cost function is changing. Recent works (Liu et al., 2023;
Khattar et al., 2022; Lin et al., 2023; Yao et al., 2024) attempt to address dynamic safety requirements
challenge, yet they are limited to threshold-specific adaptations.

In this paper, we introduce the COntrastive Safe TAsk Representation learning (COSTAR) framework,
specifically designed to enhance the adaptability of safe reinforcement learning (safe RL) algorithms
to dynamic safety constraints, including time-varying cost functions and dynamic safety thresholds.
Drawing inspiration from meta RL(Fakoor et al., 2019; Melo, 2022; Zintgraf et al., 2019; Yuan &
Lu, 2022), COSTAR treats different cost functions within the same environment as distinct tasks.
We leverage a transformer-based Safe Task Encoder to distill task-specific representations from
sequences of transition tuples. To further prioritize safety, we incorporate a Safe Residual Block that
accentuates critical safety-related information within the task representation. These representations,
rich in safety-relevant features, serve as the input for the actor network, facilitating informed decision-
making under variable conditions. The primary goal of the Safe Task Encoder is to maximize the
mutual information between these representations and their respective tasks, achieved through a
contrastive learning strategy that optimizes InfoNCE (Oord et al., 2018), a lower bound for mutual
information. Our framework is compatible with any existing safe RL algorithms, thus enhancing their
adaptability to dynamic safety constraints. For demonstration, we choose CRPO(Xu et al., 2021) as
our baseline . Experiments conducted in Modified Safety-Gymnasium(Ji et al., 2023a) demonstrate
the effectiveness of COSTAR over existing safe RL algorithms in scenarios with dynamic safety
constraints.

Our main contributions are summarized as:

• We propose a novel safe task representation learning framework that treats dynamic safety
constraints as different tasks, incorporating the idea of meta-learning to enhance the adapt-
ability of Safe RL algorithms to dynamic safety constraints.

• We design an efficient Safe Task Encoder, which employs a contrastive learning approach
to extract safe task representations from the exploration trajectory and distinguish between
various safety constraints.

• Extensive experiments demonstrate that our COSTAR presents superior performance over
existing safe RL algorithms with zero-shot adaption capability to dynamic safety constraints
without re-training.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

A reinforcement learning problem is typically formalized as a Markov Decision Process (MDP),
represented by the tuple M = ⟨S,A,P,P0,R, γ⟩, where S is the state space; A is the action space;
P : S ×A× S → [0, 1] is the transition dynamics of the environment, with P(s′|s, a) denoting the
probability of transitioning to state s′ from previous state s given an action a; P0 : S → [0, 1] is
the initial state distribution; R(s, a) : S × A → R is the reward function; γ ∈ [0, 1) is the factor
discounting the future reward. The agent has a policy π : S → P(A) mapping from the state space
to a probability distribution over the actions, with π(a|s) denoting the probability of selecting action
a in state s. Starting from the initial state, at each timestep, the agent observes the current state
s, selects an action a by policy π, after which the environment transitions to a new state based on
transition dynamics P and returns a reward r. The state distribution at timestep t, under policy π, is
denoted as µt

π(s). To facilitate the optimization of policy π, we define the state value function Vπ(s)
and the state-action value function Qπ(s, a) as follows:

Vπ(s) = Eat∼π,st∼µt
π(s)

[ ∞∑
t=0

γtR(st, at)

]
(1)
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Qπ(s, a) = R(s, a) + γEs′∼P (s′|s,a)

[
Vπ(s)

]
(2)

The objective of the agent is to maximize the expected cumulative reward defined as follows:

J 0
M (π) = Es0∼P0,at∼π,st∼µt

π(s)

[ ∞∑
t=0

γtR(st, at)

]
(3)

2.2 CONSTRAINED MDP WITH DYNAMIC SAFETY CONSTRAINTS

The safe RL problem is formulated within the framework of a Constrained Markov Decision Process
(CMDP), represented by the tuple M c = ⟨S,A,P,P0,R, γ, C, T ⟩. Compared with original MDP,
CMDP is augmented with a set of cost functions, C = C1, · · · , Cm, where each Ci(s, a) : S ×A → R
maps a given state and action pair to a cost. The costs each have upper bounds defined as safety
thresholds T : τ1, · · · , τm. In the CMDP framework, when the agent executes an action a, it receives
reward R and costs C. Similar to reward, the expected cumulative cost function with respect to i-th
cost function Ci is expressed as:

J i
Mc(π) = Es0∼P0,at∼π,st∼µt

π(s)

[ ∞∑
t=0

γtCi(st, at)

]
(4)

The objective of the agent is to maximize the expected cumulative reward while satisfying safety
constraints:

max
π

J 0
Mc(π),

s.t. J i
Mc(π) ≤ τi,∀i = 1, · · · ,m.

(5)

In COSTAR, we consider safe RL under dynamic safety constraints by extending the cost functions
Ci(s, a) to time-varying functions Ci(s, a, t), and by sampling safety thresholds from a predefined
distribution. We conceptualize this setup as a meta-RL problem, assuming that the CMDP follows
a distribution p(M c) : M c → [0, 1], where M c

i = ⟨S,A,P,P0,R, γ, C, T ⟩. While these tasks
maintain a consistent CMDP framework, they differ in the cost functions C and safety threshold T .
Accordingly, the task distribution can be expressed as p(M c) = p(C, T ). During meta-training, the
agent interact with a sampled CMDP M c

i ∼ p(M c) from task distribution and get updated; During
meta-testing, the trained policy is applied to a task sampled from the same distribution p(M c). The
objective is to learn a policy that can maximize the expected return while satisfying safety threshold
under meta-testing tasks:

max
π

EMc∼p(Mc)J 0
Mc(π),

s.t. J i
Mc(π) ≤ τi,∀M c ∼ p(M c), i = 1, · · · ,m.

(6)

2.3 CONTEXT-BASED META LEARNER

Context-based meta learner solves meta-RL problem from the perspective of partially observable MDP.
The variation in CMDPs (cost functions C and safety threshold T ) are considered as the unobservable
part of the state, with the context-based meta-learner aiming to derive task representations using
contextual information. Specifically, context-based meta learner employs task encoder to gather
information from history trajectories:

zt = E({si, ai, ri, si+1, ci, τi}ti=0) (7)

where X = {si, ai, ri, si+1, ci, τi}ti=0 is the history trajectories; E is the task encoder; zt is safe task
representation to express task information. Subsequently, the policy π(a|s, z) is conditioned on the
latent task representation z, facilitating informed decision-making by inferring speculations of the
current CMDP M c. During meta-testing, as the agent interacts with the sampled task, it encodes the
collected trajectories into the task representation z, which helps the policy to adapt to new tasks.

3
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Figure 1: The proposed COSTAR framework. Dashed lines indicate the training process.

3 METHOD

To address safe RL problem with dynamic safety constraints, we propose COntrastive Safe TAsk
Representation learning (COSTAR), a novel framework for safe task representation learning in safe
RL that accommodates tasks with dynamic safety constraints effectively. For dynamic cost functions,
we utilize a safe task encoder to extract information from trajectories; For dynamic safety thresholds,
a safe residual block is employed to emphasize safety information. The overall structure of COSTAR
is illustrated in Figure 1.

3.1 SAFE TASK ENCODER

A trajectory context X = {si, ai, ri, si+1, ci, τi}ti=0 encapsulates the entire process of a CMDP’s
transitioning from one state to another, containing critical information that characterizes the specific
CMDP. Denoting context encoder as Eθ, we define the CMDP M c as a distribution over encoded
latent representation z = Eθ(X):

M c(z) : Z → [0, 1] (8)

where Z is the context embedding space. In COSTAR, we treat dynamic safety constraints as different
CMDPs. Therefore, an important objective of our encoder is to differentiate among CMDPs within
the context embedding space Z . For CMDPs that significantly differ, a clear distinction allows the
agent to implement CMDP-specific policies; conversely, for similar CMDPs, the agent can effectively
leverage shared knowledge. We aim to find an encoder capable of contextualizing trajectory context
and distinguishing between CMDPs.

Recently, transformers have demonstrated exceptional performance in the domain of long sequence
modeling (Devlin et al., 2018; Dettmers et al., 2022; Wang et al., 2023). Intuitively, given that the
trajectory context is presented as a time series, we consider that transformers are well-suited for
effectively capturing the underlying relationships between expected cumulative rewards and dynamic
safety constraints across various trajectories. In COSTAR, we design a transformer-based encoder to
delineate temporal correlations and capture CMDP information within the trajectory context. The
proposed safe task encoder comprises a transformer encoder Eθ1 and a safety residual block Eθ2 ,
each characterized by parameters θ1 and θ2 respectively. In the transformer encoder Eθ1 , two pivotal
modules are integral: Multi-Head Self-Attention (MHSA) and Feed-Forward Network (FFN). Each
head within the MHSA is designed to focus on different segments of the contextual information, thus
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allowing the encoder to comprehensively grasp diverse information dimensions. Subsequently, the
FFN introduces non-linearity to the processed features, thereby enhancing the encoder’s modeling
capabilities. Given the trajectory context X , the latent representation h is expressed as

h = Eθ1(X) (9)

where X = {si, ai, ri, si+1, ci, τi}ki=0 and k is the context window size. In safe residual block, a skip
connection is established from the safety information Xs = {ci, τi}ki=1 to transformer encoder output
h, thereby generating the safe task representation z. This approach aligns with the core advantage
of residual blocks, known for their capacity to maintain and amplify essential information across
layers, thereby guaranteeing that critical safety elements are fully preserved and enhanced during the
model’s learning process. The encoded safe task representation z is formulated as:

z = h+ Eθ2(Xs) (10)

where the architecture of safe residual block Eθ2 is a simple multi-layer perceptron.

3.2 SAFE TASK REPRESENTATION LEARNING

To effectively link the safe task representation z with its corresponding sampled Constrained Markov
Decision Process (CMDP), we leverage mutual information, a metric quantifying the informational
gain about one variable upon observing another. This mutual information serves as a bridge to
maximize the association between z and the CMDP M c. Such maximization ensures the encoder not
only captures but also preserves critical information, thereby minimizing the uncertainty inherent in
the CMDP. More specifically, for a CMDP sampled from CMDP distribution M c ∼ p(M c), we define
the safe task encoder as a probabilistic encoder z ∼ p(z|X), where X = {si, ai, ri, si+1, ci, τi}ki=0
is the trajectory context. During the CMDP process, X is jointly determined by the sampled CMDP
M c and the agent’s policy. The learning objective of the safe transition encoder is:

max I(M c; z) = EMc,z

[
p(M c, z) log

(p(M c|z)
p(M c)

)]
(11)

However, optimizing this objective in practice is infeasible, as we have no access to the joint
probability distribution p(M c, z). Following CPC(Oord et al., 2018), we transform the optimization
of mutual information into a binary classification problem as shown in Theorem 3.1.
Theorem 3.1. Consider a set of CMDPs Mc = {M c

1 ,M
c
2 , · · · ,M c

N} sampled from p(M c). Given
trajectory context X = {si, ai, ri, si+1, ci, τi}ki=0 obtained under M c

p , where M c
p ∈ Mc. The

probability that M c
p is recognized from Mc given task representation z = Eθ(X) can be derived as:

p(M c
p |Mc, z) =

p(Mc
p |z)

p(Mc
p)∑

Mc
i ∈Mc

p(Mc
i |z)

p(Mc
i )

(12)

The proof of Theorem 3.1 is given in Appendix A.1.1. By optimizing p(M c
p |Mc, z), the safe

task encoder will effectively distinguish between positive CMDP M c
p and the negative CMDP

M c
i ∈ Mc

n = Mc\{M c
p} based on z. Following InfoNCE(Oord et al., 2018), we approximate

p(Mc|z)
p(Mc) with the exponential of a score function s(z∗, z), which evaluates the similarity between two

task representations. The categorical cross-entropy loss of classifying the positive sample correctly is:

LE = − E
Mc

p ,z

[
log

( exp(S(z, zp))

expS(z, zp) +
∑

Mc∈Mc
n

exp(S(z, zn))

)]
(13)

where Mc is the set of sampled training CMDPs, Mc
n = Mc\{M c

p} is the set of CMDPs other
than sampled CMDP M c

p , z and zp are task representations of trajectory context X and Xp, both
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derived from the positive CMDP M c
p , respectively. Conversely, the trajectory context Xn is collected

under M c
n ∈ Mc

n, with corresponding task representation denoted as zn. Following the literature of
contrastive learning, we name (z, zp) a positive pair, and {(z, zn)}Mc

n∈Mc
n

negative pairs. LE aims
to optimize a categorical cross-entropy loss, enhancing the encoder’s ability to distinguish between
(z, zp) and {(z, zn)}Mc

n∈Mc
n

, respectively. This optimization improves the encoder’s capacity to both
extract shared knowledge from trajectory context within the same CMDP and to discern differences
in safety constraints among diverse CMDPs.

Meanwhile, LE optimizes for a lower bound of mutual information as shown in Theorem 3.2.

Theorem 3.2. Giving a set of CMDP Mc = {M c
1 ,M

c
2 , · · · ,M c

N} sampled from p(M c), |Mc| = N ,
the mathematical relationship between mutual information I(M c; z) and loss LE is:

LE ≥ −I(M c; z) + log(N) (14)

The proof of Theorem 3.2 is given in Appendix A.1.2. While not a prerequisite for training, it is
observed that the minimization of LE effectively leads to the maximization of a lower bound on
mutual information, aligning with our underlying motivation.

Algorithm 1 COSTAR with CRPO(Xu et al., 2021) as safe RL algorithm
Initialize: policy π, safety task encoder Eθ, positive buffer B, negative buffer Bn

Input: CMDP distribution Mc, training epochs m
for epoch = 1 to m− 1 do

Sample a positive CMDP M c
p ∼ Mc

Sample a negative CMDP M c
n ∼ Mc\M c

p
Interact with M c

p and M c
n and build buffer B and Bn respectively

Run CRPO optimization and update policy π
Sample z and zp from buffer B, and zn from negative buffer Bn

Take one-step safe task encoder update towards minimize LE according to Eq.13
end for

3.3 SAFE REINFORCEMENT LEARNING ALGORITHM

Our COSTAR framework is compatible with most safe reinforcement learning algorithms. By simply
augmenting the input of actor network and critic networks with safe task representation z, COSTAR
enables a safe RL algorithm to become adaptable to varying safety constraints. We choose CRPO
(Xu et al., 2021) as baseline for demonstration.

For the consistency of notation, we denote state-action critic function in the form of Qi
π(s, z, a),

with i = 0 indicating the reward critic, and i = 1, · · · , p indicating the cost critic. Accordingly, the
expected total critic function is defined as Ji(π) = EP0·π[Q

i
π(s, z, a)], where P0 is the initial state

distribution. At each timestep, we check whether there exists an i ∈ {1, · · · , p} that corresponding
Ji(π) violates the constraints: Ji(π) < bi. If so, the augmented CRPO performs constraint mini-
mization (natural gradient descent on the cost critic) for one of the violated constraints to enforce
the safety. If all of the constraints are satisfied, the augmented CRPO performs policy optimization
(natural gradient ascent on the reward critic). The algorithmic flow is shown in Algorithm 1.

4 EXPERIMENT

In this section, we present an empirical validation of our COSTAR, comparing it with the current state-
of-the-art methods. We aim to demonstrate: (1)The performance of COSTAR on tasks adaptation
in diverse task distributions. (2)The effectiveness of transformer encoder and Safe Residual Block.
(3)The ability to adapt to out-of-distribution(OOD) tasks. All experiments are conducted using 5
seeds on a single Nvidia GeForce RTX 3090 GPU.
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Figure 2: Training results for Modified Safety-Gymnasium benchmarks (Car-Goal, Point-Goal,
Humanoid-Velocity and Swimmer-Velocity) with return on the top and cost on the bottom. All
subplots represent performance on test tasks over the training steps. The shaded region shows
standard deviation across 5 seeds.

4.1 EXPERIMENTAL SETTINGS

Task. The environments are modified from a publicly available benchmark Safety-Gymnasium(Ji
et al., 2023a)1. We consider two tasks (Goal and Velocity) and two agents for each task (Point
and Car for Goal task, Humanoid and Swimmer for Velocity task). In the Goal task, agents earn
rewards for successfully navigating to a designated goal location but incur costs upon entering
hazardous areas. In the Velocity task, agent is required to move as quickly as possible while adhering
to velocity constraint. These tasks have significant implications in various domains, including
robotics, autonomous vehicles, and industrial automation. Based on the original Safety Gymnasium
environment, we modified the cost functions and the safety threshold to be dynamic, aligning with our
motivation. For comprehensive details on modification and environments, please refer to Appendix
A.2. We name the tasks as Car-Goal, Point-Goal, Humanoid-Velocity and Swimmer-Velocity.

Baselines. The existing safe RL algorithms only support training at a fixed safety threshold, which is
a weakness because in our setting the safety threshold is dynamic and is sampled from a distribution.
To make the experiment results comparable, we design a varying safety thresholds extension of
traditional safe RL algorithms CRPO(Xu et al., 2021) and CUP(Yang et al., 2022a). During training,
their safety thresholds are sampled from the same distribution as COSTAR, which enhance their
adaption to varying safety constraints. The modified algorithms are named as MCRPO and MCUP,
respectively. We build COSTAR, MCRPO and MCUP on top of the Omnisafe framework (Ji et al.,
2023b).

Metrics. We compare the methods in terms of episodic reward and episodic cost.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Comparison Evaluation. We compare our COSTAR with MCRPO and MCUP. The evaluation results
throughout the training process are shown in Figure 2. COSTAR consistently outperforms the baseline
algorithms in most experiments, particularly by achieving higher rewards and maintaining lower
costs under dynamic safety constraints. Specifically, in Car-Goal, Point-Goal and Humanoid-Velocity,
COSTAR achieves optimal performance, i.e. obtaining the highest rewards while maintaining the
lowest costs. In Swimmer-Velocity, COSTAR still achieves the highest reward compared to the
baselines, despite incurring higher costs. Notably, COSTAR’s costs remain within the established
threshold, demonstrating that COSTAR effectively maximizes the use of the safety threshold. Overall,
these results underscore COSTAR’s effectiveness in adapting to dynamic safety conditions and
enhancing performance across varied tasks.

1The github url of Safety-Gymnasium:https://github.com/PKU-Alignment/
safety-gymnasium. We use version 1.2.0 with Apache-2.0 license.
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Figure 3: Ablation results on Car-Goal. "T" represents the original COSTAR framework; In the left
figure, "F" indicates replacing the transformer with a MLP. In the right figure, "F" indicates removing
Safe Residual Block from COSTAR.

Ablation Evaluation. To verify the effectiveness of the transformer encoder and the Safe Residual
Block, we conducted ablation experiments. For the transformer encoder ablation, we replaced the
transformer encoder with a multi-layer perceptron (MLP). For the safe residual block ablation, we
removed the safe residual block from the COSTAR framework. The ablation experiment results
are shown in Figure 3. We can observe significant performance degradation in both ablation re-
sults, demonstrating the significance of both the transformer encoder and the Safe Residual Block.
Compared to MLP, transformer encoder is better at capturing complex time-series dependencies
and utilizing complex patterns in trajectory. Additionally, removing the Safe Residual Block from
COSTAR leads to higher costs and increased instability, highlighting its vital role in reinforcing
the integration of safety-related information into the decision-making process. The transformer’s
sophisticated data processing capabilities and the Safe Residual Block’s focus on safety information
are both integral to the robust performance of the COSTAR framework.

Out-of-Distribution Evaluation. Another critical scenario is how strategies perform in out-of-
distribution (OOD) safety constraints. We evaluated the performance of COSTAR with cost functions
and safety thresholds that were not encountered during training. The evaluation results for OOD cost
functions are shown in Tab 1, where we introduce two new cost functions. Under these conditions,
COSTAR exhibits excellent generalizability and stability, achieving maximum rewards without
breaching predefined thresholds, and maintaining a minimal standard deviation. This performance un-
derlines COSTAR’s robustness and its effectiveness in dynamic environments, consistently delivering

Figure 4: OOD evaluation results for safety threshold in Swimmer-Velocity.
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Table 1: OOD Evaluation for Cost Functions in Car-Goal. All values are presented as mean ± std for
20 episodes. The safety threshold is fixed at 30.

Cost Function COSTAR MCRPO MCUP
Return Cost Return Cost Return Cost

OOD Function A 12.7± 3.5 28.6± 34.3 7.0± 4.3 36.3± 70.9 −1.2± 0.71 45.6± 117.2
OOD Function B 10.1± 4.2 29.4± 35.9 6.8± 4.8 41.9± 44.4 −1.3± 0.73 19.7± 51.0

positive returns even in challenging conditions. The evaluation results for OOD safety thresholds are
shown in Fig 4. COSTAR demonstrates a remarkable capability to enhance performance significantly
when safety constraints are relaxed, particularly with thresholds above 30, without compromising on
safety. Notably, COSTAR not only achieves the highest rewards in evaluations but also adeptly aligns
its cost responses to the varying safety thresholds, ensuring an efficient balance between reward
optimization and cost management. In contrast, MCRPO and MCUP struggle with adapting to OOD
safety constraints, often violating constraints in OOD cost functions and failing to utilize safety
thresholds effectively. The details of OOD environments are shown in Appendix A.2.3.

5 RELATED WORK

Safe Reinforcement Learning endeavors to address reinforcement learning problem through con-
strained Markov decision processes(CMDP)(Altman, 2021) to mitigate catastrophic exploration
behaviors. Currently both primal-dual and primal approaches are commonly employed to accomplish
the objective. The primal-dual approaches (Achiam et al., 2017; Tessler et al., 2018; Yang et al., 2020;
Stooke et al., 2020) transform constrained optimization problems into a unified formulation through
Lagrangian multipliers, optimizing the primal problem (maximizing expected total reward) and the
dual problem (embodying safety constraints) simultaneously. Conversely, primal approaches (Liu
et al., 2020; Xu et al., 2021; Sootla et al., 2022) focus on the design of objective functions and training
process, integrating safety constraints into the optimization process. However, most existing methods
are limited by considering fixed safety constraints during training, posing challenges for deployment
under dynamic safety constraints. In our work, while our COSTAR utilizes CRPO(Xu et al., 2021) as
baseline, our framework can be potentially adapted to most of existing Safe RL algorithms.

Meta Reinforcement Learning strives to quickly adapt to new tasks by leveraging training across a
distribution of tasks. Optimization-Based approaches(Finn et al., 2017; Gupta et al., 2018; Rothfuss
et al., 2018; Al-Shedivat et al., 2017) focus on learning optimal policies across tasks by explicitly
modeling the learning process itself, with the goal of finding a meta-policy that can quickly adapt to
new tasks with minimal additional learning. Context-Based approaches(Duan et al., 2016; Zintgraf
et al., 2019; Fakoor et al., 2019; Rakelly et al., 2019) seek to infer the context of the task through
interaction with environment, using this contextual information to guide decision-making. The agent
is trained to embed observations from the environment into a context space capturing relevant task
information, facilitating policy adaptation to new tasks. In our work, we integrating meta-RL into
safe RL, treating dynamic safety constraints as distinct tasks for enhanced adaptability.

Safe RL with Dynamic Safety Constraints. Despite significant process in safe RL in recent
years, research focusing on the adaptation to varying safety thresholds are scarce(Khattar et al.,
2022; Liu et al., 2023). CDT(Liu et al., 2023) employs a decision transformer architecture to allow
an agent to dynamically adjust to varying constraint thresholds, though it necessitates additional
safety information as input. CWOF(Khattar et al., 2022) employs optimization-based meta-RL
techniques to focus on minimizing the upper bounds of task-average optimality gaps and constraint
violations. Contrasting with the aforementioned approaches, our COSTAR leverages context-based
meta-RL, conditioning the policy on episodic memory generated by the Safe Task Encoder from past
experiences. This approach enables us to achieve zero-shot adaptation capability to dynamic safety
constraints.

Contrastive Learning is a popular method for self-supervised representation learning. It seeks
to maximize the similarity between correlated samples and to minimize the similarity between
uncorrelated samples for effective data representation learning. (Oord et al., 2018; Grill et al., 2020;
Yeh et al., 2022; Wang & Qi, 2022) introduce efficient loss functions in different scenarios. Based
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on prior work, contrastive learning has been applied in varieties of domains like computer vision
(Wu et al., 2021; Wang et al., 2021; Xie et al., 2021), recommendation (Xie et al., 2022; Yang et al.,
2022b; Qiu et al., 2022; Wei et al., 2021), reinforcement learning(Eysenbach et al., 2022; Laskin
et al., 2020; Yuan & Lu, 2022). Our goal is to employ contrastive learning for acquiring identifiable
task representations for different safety constraints, thereby enhancing the convergence and efficiency
of the training process.

6 CONCLUSION

The COSTAR framework presents a significant advancement in safe reinforcement learning, offering
enhanced adaptability to dynamic safety constraints through a novel transformer-based Safe Task
Encoder and a Safe Residual Block. It is noteworthy that COSTAR is compatible with existing safe
RL algorithms and possesses zero-shot adaptation capability to varying safety thresholds without
re-training. However, the computational requirements may increase because we use transformer to
extract safe task representation. Additionally, while COSTAR shows promising results in simulated
settings, its performance in real-world applications and under extreme conditions remains to be fully
explored. These limitations highlight important areas for future research, particularly in optimizing
the framework’s efficiency and testing its scalability and robustness in more diverse and challenging
environments.
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A APPENDIX

A.1 PROOF OF THEOREM

A.1.1 PROOF OF THEOREM 3.1

Proof. Consider a set of CMDPs Mc = {M c
1 ,M

c
2 , · · · ,M c

N} sampled from p(M c). Given trajec-
tory context X = {si, ai, ri, si+1, ci, τi}ki=0 obtained under M c

p , where M c
p ∈ Mc. The probability

that M c
p is recognized from Mc given task representation z = Eθ(X) can be derived as:

p(M c
p |Mc, z) =

p(M c
p |z)

∏
l ̸=p p(M

c
l )∑N

j=1 p(M
c
j |z)

∏
l ̸=p p(M

c
j )

(15)

=

p(Mc
p |z)

p(Mc
p)∑

Mc
i ∈Mc

p(Mc
i |z)

p(Mc
i )

(16)

A.1.2 PROOF OF THEOREM 3.2

Proof. Giving a set of CMDP Mc = {M c
1 ,M

c
2 , · · · ,M c

N} sampled from p(M c), |Mc| = N .
Let Mc

n = Mc\{M c
p} denote CMDPs other than M c

p , and z is obtained under CMDP M c
p . The

mathematical relationship between mutual information I(M c
p ; z) and loss LE is:

LE = −EMc log

[ p(Mc
p |z)

p(Mc
p)

p(Mc
p |z)

p(Mc
p)

+
∑

Mc
j ∈Mc

n

p(Mc
j |z)

p(Mc
j )

]
(17)

= EMc log

[
1 +

p(M c
p)

p(M c
p |z)

∑
Mc

j ∈Mc
n

p(M c
j |z)

p(M c
j )

]
(18)

≈ EMc log

[
1 +

p(M c
p)

p(M c
p |z)

(N − 1)EMc
j

p(M c
j |z)

p(M c
j )

]
(19)

= EMc log

[
1 +

p(M c
p)

p(M c
p |z)

(N − 1)

]
(20)

≥ EMc log

[
p(M c

p)

p(M c
p |z)

N

]
(21)

= −I(M c
p , z) + log(N) (22)
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A.2 ENVIRONMENT DETAILS

A.2.1 TASK

Goal. On a 2D plane of size 3 by 3, there is an agent, a goal and a number of hazards. The agent
aims to move towards the goal position while avoiding the hazards. When the agent reaches a goal,
the goal’s position is randomly reset while preserving the general layout. At each time step, the agent
receives a positive reward when approaching the goal, and receives a negative reward when moving
away. Each time the Goal is reached, the agent get a positive value of the completed goal reward. If
the agent enters hazards area or touches vases, costs will be incurred.

• Reward Function The reward function of Goal is defined as:
(1) reward-distance: At each time step, when the agent is closer to the Goal, it gets a positive
value of REWARD, and getting farther will cause a negative REWARD, the formula is
expressed as follows

rt = (Dlast −Dnow)β (23)
Obviously when Dlast > Dnow, rt > 0. Where rt denotes the current time step’s reward,
Dlast denotes the distance between the agent and Goal at the previous time step, Dnow

denotes the distance between the agent and Goal at the current time step, and β us a discount
factor.
(2) reward-goal: Each time the Goal is reached, get a positive value of the completed goal
reward: Rgoal

• Cost Function The cost function of Goal is defined as cost-hazards: When the distance
of the agent from the center of the hazards hdist ≤ self.size, the cost is generated:
self.cost× (self.size− hdist).

• Modifications In the original Safety Gymnasium, the position of hazards are fixed through-
out one episode, which means that the cost function is also fixed. To implement dy-
namic cost functions, we designed two sets of hazards layouts and switched layouts
halfway through the episode. Specifically, at timestep 500(the episode length is 1000),
the environment changes from layout A to layout B. In this way, the modified cost
function is a dynamic time-varying cost function. The coordinates of layout A are:
(0, 0), (1.1, 0), (0.6,±0.8), (−0.2,±1.0), (−0.8,±0.4). The coordinates of layout B are
: (−0.5, 0), (0.5, 0), (−1.0,±1.0), (0,±1.0), (1.0,±1.0).
For dynamic safety budgets, the training safety thresholds are sampled from a uniform
distribution in the interval [20, 30] per episode.

Figure 5: Goal Task. a: The red car is the agent; The green cylinder is the goal; The purple circle is
the hazards. b and c are two designed layout A and B respectively.

Velocity. The Safe velocity tasks introduce velocity constraints for agents based on the Gymnasium’s
MuJoCo-v4 series, requiring an agent to move as quickly as possible while adhering to velocity con-
straint. These tasks have significant implications in various domains, including robotics, autonomous
vehicles, and industrial automation.

• Reward Function The reward function varies depending on the specific agent, which will
be introduced in Appendix A.2.2.
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• Cost Function The cost function is defined as follow: If velocity of current step exceeds the
threshold of velocity, then receive an scalar signal 1, otherwise 0. Formulated as

cost = bool(Vcurrent ≤ Vthreshold)

• Modifications In the original Safety Gymnasium, the threshold of velocity is fixed through
out one episode, which means the cost function is also fixed. To implement dynamic cost
functions, we cut the velocity threshold in half at timestep 500(the episode length is 1000).
In this way, the modified cost function is a dynamic time-varying cost function.
For dynamic safety budgets, the training safety thresholds are sampled from a uniform
distribution in the interval [20, 30] per episode.

A.2.2 AGENT

Point A simple robot constrained to a 2D plane has two actuators, one for rotation and the other for
forward/backward movement. This decomposed control scheme makes it particularly easy to control
the robot’s navigation. It has a small square in front of it, which makes it easier to visually determine
the robot’s orientation

• Action Space (-1.0, 1.0, (2), float64)
• Observation Space (-inf, inf, (24,), float64)

Car A moderately intricate robot designed for movement in three dimensions features two parallel
wheels that can be independently driven, accompanied by a free-rolling rear wheel. In this robot, the
coordination of the two drives is essential for both steering and forward/backward movement. Its
design bears resemblance to a basic educational robot.

• Action Space (-1.0, 1.0, (2), float64)
• Observation Space (-inf, inf, (24), float64)

Humanoid The 3D bipedal robot is designed to simulate a human. It has a torso (abdomen) with a pair
of legs and arms. The legs each consist of three body parts, and the arms 2 body parts (representing
the knees and elbows respectively). The goal of the environment is to walk forward as fast as possible
without falling over.

• Action Space (-0.4, 0.4, (17), float32)
• Observation Space (-inf, inf, (376,), float64)
• Reward Function

(1)healthy-reward: Every timestep that the humanoid is alive (see section Episode Termina-
tion for definition), it gets a reward of fixed value healthy-reward.
(2)forward reward: A reward of walking forward which is measured as forward-reward-
weight * (average center of mass before action - average center of mass after action)/dt. dt is
the time between actions and is dependent on the frame-skip parameter (default is 5), where
the frametime is 0.003 - making the default dt = 5 * 0.003 = 0.015. This reward would be
positive if the humanoid walks forward (in positive x-direction).
(3)ctrl-cost: A negative reward for penalising the humanoid if it has too large of a control
force. If there are nu actuators/controls, then the control has shape nu x 1. It is measured as
ctrl-cost-weight * sum(control2).
(4)contact-cost: A negative reward for penalising the humanoid if the external contact force
is too large. It is calculated by clipping contact-cost-weight * sum(external contact force2)
to the interval specified by contact-cost-range.
The total reward returned is reward = healthy-reward + forward-reward - ctrl-cost - contact-
cost.

Swimmer The environment aims to increase the number of independent state and control variables
as compared to the classic control environments. The swimmers consist of three or more segments
(’links’) and one less articulation joints (’rotors’) - one rotor joint connecting exactly two links to
form a linear chain. The swimmer is suspended in a two dimensional pool and always starts in the
same position (subject to some deviation drawn from an uniform distribution), and the goal is to move
as fast as possible towards the right by applying torque on the rotors and using the fluids friction.
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• Action Space (-1.0, 1.0, (2), float32)
• Observation Space (-inf, inf, (8,), float64)
• Reward Function

(1)forward-reward: A reward of moving forward which is measured as forward-reward-
weight * (x-coordinate before action - x-coordinate after action)/dt. dt is the time between
actions and is dependent on the frame-skip parameter (default is 4), where the frametime is
0.01 - making the default dt = 4 * 0.01 = 0.04. This reward would be positive if the swimmer
swims right as desired.
(2)ctrl-cost: A cost for penalising the swimmer if it takes actions that are too large. It is
measured as ctrl-cost-weight * sum(action2) where ctrl-cost-weight is a parameter set for
the control and has a default value of 1e-4
The total reward returned is reward = forward-reward - ctrl-cost

A.2.3 OUT-OF-DISTRIBUTION SETTINGS

OOD Cost Functions As mentioned in A.2, in Goal environment, we change the layout from layout-
A to layout-B at timestep 500 during training. During OOD evaluations, we designed two new cost
functions.

• OOD Function A We change the layout from layout-A to layout-B at timestep 200.
• OOD Function B We change the layout from layout-B to layout-A at timestep 500.

OOD Safety Thresholds The training thresholds are sampled from a uniform distribution in the
interval [20, 30]. During OOD experiments, we evaluate the performance of trained model under
threshold {10, 15, 35, 40}.

A.3 EXPERIMENT SETTINGS

In Table 2, we list the important configurations and hyperparameters in training process.

Table 2: Configurations and hyperparameters used in training to produce all the experimental results.

Configurations COSTAR MCRPO MCUP

Training steps 1e7 1e7 1e7
Batch size 256 256 256
Gamma 0.99 0.99 0.99

Cost gamma 0.99 0.99 0.99
Safety threshold [20, 30] [20, 30] [20, 30]

Actor type Gaussian policy Gaussian policy Gaussian policy
Actor hidden size [64, 64] [64, 64] [64, 64]
Actor learning rate - - 0.001
Critic hidden size [64, 64] [64, 64] [64, 64]
Critic learning rate 0.001 0.001 0.001
Encoder batch size 64 - -

Encoder hidden size 32 - -
Encoder transformer layers 3 - -
Encoder transformer heads 4 - -

Encoder learning rate 0.0003 - -
Context length 16 - -
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