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ABSTRACT

Unsupervised domain adaptation (UDA) aims to transfer knowledge from one or
more well-labeled source domains to improve model performance on the different-
yet-related target domain without any annotations. However, existing UDA algo-
rithms fail to bring any benefits to source domains and neglect privacy protection
during data sharing. With these considerations, we define Privacy Protected Multi-
Domain Collaborative Learning (P2MDCL) and propose a novel Mask-Driven
Federated Network (MDFNet) to reach a “win-win” deal for multiple domains
with data protected. First, each domain is armed with individual local model via
a mask disentangled mechanism to learn domain-invariant semantics. Second, the
centralized server refines the global invariant model by integrating and exchanging
local knowledge across all domains. Moreover, adaptive self-supervised optimiza-
tion is deployed to learn discriminative features for unlabeled domains. Finally,
theoretical studies and experimental results illustrate rationality and effectiveness
of our method on solving P2MDCL.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) (Tang et al., 2020; Jiang et al., 2020; Zhang et al., 2020)
attempts to transfer knowledge from well-labeled source domains to annotate unlabeled target sam-
ples, which have significant domain discrepancy with source domains due to the various data col-
lection manners and devices. Recent explorations (Na et al., 2021; Dong et al., 2020) suppose the
model to be trained has access to both source and target data during the training stage. With such
basic assumption, it becomes possible to measure the domain discrepancy and adopt metric-based
solutions (Kang et al., 2020) or domain confusion (Cui et al., 2020; Tang & Jia, 2020) to generate
domain-invariant features. However, the hypothesis violates the concerns of practical application on
privacy protection, and fails to be deployed to small devices with limited storage.

This requirement motivates source-free domain adaptation (SFDA), where the source-supervised
model is available to assist the target domain without any source data (Liang et al., 2020; Li et al.,
2020; Kundu et al., 2020). Generally, SFDA either adapts target samples to source-like ones (Liang
et al., 2020) or generates fake source samples from source-model by subsequently taking UDA
strategies (Kurmi et al., 2021). To improve the training efficiency, FADA (Peng et al., 2020) em-
ploys a federated learning paradigm (Karimireddy et al., 2020; Chen et al., 2020) by allocating the
target domain on a centralized server while keeping multiple source ones as clients. However, this
approach is vulnerable to attacks as the source features transition to target domain. Further, these
domain adaptation works ignore the improvement of model generalization on source domain, which
is inconsistent with requirement of reality. For example, the long-standing hospitals already have
well-annotated patients’ data, while other newly-built hospitals just collected data without annota-
tion, which need help from long-standing hospitals with well-annotated data due to the huge labeling
cost. Besides, with geographical restriction, different hospitals only record their local patients’ data
resulting in various population statistics, causing model bias for long-standing hospitals.

Inspired by the above observation, we introduce a more practical scenario called Privacy Protected
Multi-Domain Collaborative Learning (P2MDCL) (shown in Figure 1). Specifically, P2MDCL
assumes that the well-annotated source and unlabeled target domains are distributed across different
clients and there exists a global server merely communicating with each client and integrating the
received model parameters from clients. Finally, the server broadcasts the consensus model to all
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clients for their use to reach the win-win deal. The key challenge for P2MDCL is to learn a more
generic model by solving two core issues: 1) how to achieve domain alignment during iterative
communication; and 2) how to enhance discriminative feature learning.

source data target dataUDA

source model
Client

target model
Client

SFD
A

P2MDCL
Server

Figure 1: Comparisons of UDA, SFDA and P2MDCL.

In this paper, we propose a novel
Mask-Driven Federated Network
(MDFNet) to address P2MDCL.
First, our MDFNet introduces two
orthogonal masks following high-level
features in each client to activate
domain-invariant and domain-specific
semantics respectively. In practice, we
minimize the confusion of these two
masks to achieve high-quality feature
separation and semantic complemen-
tary. Second, the unlabeled target
client adopts adaptive self-supervised
optimization to learn more discrimina-
tive representations via pseudo labels generation. Finally, MDFNet adopts a progressive weighting
scheme to balance the effect of each client in model integration on the server, which discoveries
more knowledge of the labeled client to adjust the model of unlabeled client during the initial
communication rounds, then the mature unlabeled client model also yields positive effect on the
feature learning of labeled client. The main contributions of our work are summarized as:

• First, we are the pioneers to take into account the “win-win” and privacy requirements
under unsupervised domain adaptation scenarios by introducing Privacy Protected Multi-
Domain Collaborative Learning (P2MDCL).

• Second, we propose an effective algorithm MDFNet to fight off the domain shift in a fed-
erated training mechanism, which reaches the win-win deal for all involved domains.

• Finally, we derive the generalized error bound for our method, which theoretically testifies
the rationality of MDFNet. Moreover, extensive experimental results and analysis empiri-
cally illustrate the effectiveness of our method on solving P2MDCL.

2 RELATED WORK

Domain Adaptation. Unsupervised domain adaptation (Cui et al., 2020) attempts to build a model
with well-labeled source and unlabeled target data at hand, by mitigating the domain mismatch.
Along this line, the recent explorations mainly adopt discrepancy metric-based method (Yan et al.,
2017; Tzeng et al., 2014) and adversarial training scheme (Zhang et al., 2019; Tzeng et al., 2017) to
learn domain-invariant features. Although these solutions effectively reduce the influence of domain
discrepancy, the practical applications difficultly permit the co-existence of source and target data
due to the limited storage of small device and data privacy. The demand stimulates the development
of source-free domain adaptation (Liang et al., 2020; Kurmi et al., 2021), which merely provides
the well-trained source model for knowledge adaption on target domain. In addition, Peng et al.
(2020) respectively considers target domain and multiple source domains as the centralized server
and clients and adopts federated learning fashion to achieve domain adaptation with multiple dis-
criminators, which is vulnerable to the attack due to the source and target features transmission into
the discriminators in the centralized target domain. Even though these strategies actually achieve
the comparable transferring ability with the UDA solutions, empirical studies illustrate the current
domain adaptation techniques fail to learn a generalized model for source and target domains. Al-
ternatively, they only focus on the improvement of target performance, yet neglecting any benefit to
source domain. To this end, this paper posts a novel and practical scenario privacy protected multi-
domain collaborative learning (P2MDCL), where source and target domains are both regarded as
clients independently communicating with the server which produces and broadcasts the consensus
model to clients for their use.

Federated Learning (FL). FL allows multi-clients collaboratively to complete the same task with-
out data currency across clients (Yang et al., 2019). Along with this concept, recent works mainly
focus on semi-supervised scenario (FSSL) where FedMatch (Jeong et al., 2021) allocates unlabeled
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Figure 2: Framework of our proposed MDFNet including multiple local clients and one global
server. For each client, there are three components (encoder, decoder, classifier). The encoder
extracts high-level features to achieve domain-specific/invariant feature separation with two orthog-
onal masks, while the decoder takes the combination of separated features to reconstruct the original
data. The server adopts progressive weight to execute the model integration.

data on client side and labeled data in the server while FedIRM (Liu et al., 2021) only deploys them
on various clients. But they both assume the instances across all client are sampled from the identical
distribution. Moreover, Smith et al. (2017); Liu et al. (2020) explore FSSL with non-i.i.d by sup-
posing each client contains several well-annotated instances for training. Differently, our considered
P2MDCL closely approximates the reality, which involves several clients without any annotations
and exists significant domain discrepancy across all clients.

3 THE PROPOSED METHOD

3.1 PROBLEM DEFINITION AND MOTIVATION

The P2MDCL scenario assumes there are L well-annotated source clients Dli = {(xl(i)j , y
l
(i)j)}

nli
j=1

(i ∈ {1, · · · , L}) and U unlabeled target clients Duk
= {xu(k)j}

nuk
j=1 (k ∈ {L+ 1, · · · , L+ U}),

where x and y denote an input sample and its ground-truth label, respectively. The instances of these
clients come from different distributions but share the identical category space and clients are not
allowed to exchange private data with each other. Akin to federated learning, the additional global
server in P2MDCL collects and assembles all clients’ network parameters to form the consensus
model. The main motivation of P2MDCL is addressing the negative effect of insufficient training
samples in Dli and label shortage in Duk

to reach a “win-win” deal across all clients. We face
two challenges to solve P2MDCL: 1) how to reduce the significant distribution discrepancy while
protecting data privacy and 2) how to learn more generic and discriminative representations from un-
labeled target clients. To this end, this work proposes an effective Mask-Driven Federated Network
(MDFNet), which deploys mask-driven disentanglement to locally seek domain-specific/invariant
features, and explores the adaptive self-supervised optimization to promote the discriminative abil-
ity of unlabeled target clients.

3.2 MASK-DRIVEN DISENTANGLEMENT

Feature separation is a commonly-used strategy in domain adaptation to disentangle latent represen-
tation into domain-specific features and domain-invariant ones (Bousmalis et al., 2016; Peng et al.,
2019). However, they typically develop two separated networks to extract the corresponding fea-
tures, which increase storage burden for each local device with insufficient computational resources.
Peng et al. (2019) points out the high-level neurons from feature extractor actually involve domain-
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specific and invariant knowledge. Inspired by (Chattopadhyay et al., 2020), we explore the binary
mask to achieve feature disentanglement by activating the interested neurons.

For the brevity, we omit the symbols l/u and (k) in the following illustration. As Figure 2 shows,
each client of our MDFNet contains a basic feature encoder parameterized θe mapping the raw input
into the hidden space via gi = θe(xi) ∈ Rd. Subsequently, two additional parameters m̂s, m̂I ∈ Rd
are introduced into the local network and activated to form the mask probabilities by using the
sigmoid function σ(·) to get ms = σ(m̂s) and mI = σ(m̂I). For each feature gi, based on the mask
probabilities, we sample the binary domain-specific and invariant masks (ms

i ,m
I
i ∈ {0, 1}d) from

the Bernoulli distributions. To this end, we obtain the domain specific and invariant features with the
element-wise multiplication⊗ over binary masks and features, i.e., gsi = ms

i ⊗gi and gIi = mI
i ⊗gi.

Moreover, we adopt three strategies to achieve high-quality feature separation. Concretely, each
client firstly minimizes the semantic overlap between gIi and gsi to store complementary information
in them. Motivated by Rahman & Wang (2016), we design the following soft-interactive loss as:

Ls =
∑

i

〈gsi , gIi 〉
sum(gsi + gIi − gsi ⊗ gIi )

, (1)

where 〈, 〉 means the inner product of two feature vectors, and sum(·) represents the sum of all el-
ements for a vector. This approximately reflects the information overlap of two mask distributions.
The minimization of soft-interactive loss gradually increases the difference between ms

i and mI
i

which activate different neurons. Similar to DSN (Bousmalis et al. (2016)), each client also develops
the individual classifier θc(·) taking domain-invariant features as input to the category probability
distribution θc(gIj ). The cross-entropy loss between ground-truth and prediction intensifies the dis-
criminnative ability of domain-invariant features. On the other hand, we also feed the combination
of gsi and gIi into decoder θd(·) to reconstruct the original input with Lr =

∑
i ‖θd(gsi , gIi ) − xi‖22.

Thus, the overall loss function of mask-driven disentanglement for labeled clients is formulated as:

min
θc,θe,θd,m̂s,m̂I

Llo =
∑

i
−yi log

(
θc(g

I
i )
)

+ Lr + Ls, (2)

where we actually adopt straight-through estimator (Bengio et al., 2013) to progressively optimize
m̂s and m̂I instead of the discrete binary masks leading to the invalid back-propagation.

3.3 ADAPTIVE SELF-SUPERVISED OPTIMIZATION

Due to the availability of annotation in the well-labeled clients, we can easily calibrate the predicted
category distribution to generate discriminative features by using the supervision of ground-truth.
However, we cannot directly adopt the supervised learning manner to optimize the model in unla-
beled clients with the absence of annotation. Inspired by the successful application of pseudo-label
on solving UDA issue (Xie et al., 2018; Gu et al., 2020; Liang et al., 2019; Morerio et al., 2020), we
thus propose the adaptive clustering optimization module to gradually produce the pseudo-label as
“ground-truth” supervision.

Specifically, after each round of communication, the unlabeled client first receives the model
broadcast from the server and uses it to initialize the parameters of θe, θd, θc, m̂s, m̂I . Be-
fore further optimizing, the client annotates its local data with the received global model, i.e.,
ŷj = arg maxk θc(g

I
j )k. With the predictions, the initial centroid of each category is computed

as Ok =
∑

j 1(ŷj=k)gIj∑
j 1(ŷj=k) , where 1(·) is the indicator function. Since the server model integrates

knowledge from multiple clients, the domain shift negatively affects the accuracy of inference ŷj .
To decrease the influence, we adopt an iterative approach to further update the class centers and
pseudo-label with the local data points. The proposed adaptive clustering optimization mainly in-
cludes two operations. The first step is to reassign the label for each instance with the spherical
K-means (Buchta et al., 2012):

ŷj = arg min
k

d̃
(
gIj ,Ok

)
=

1

2

(
1−

〈gIj ,Ok〉
‖gIj ‖ · ‖Ok‖

)
. (3)

With the reattached annotations, the second step is to update the class prototype with Ok =∑
j

1(ŷj=k)gIj
‖gIj ‖

. The above two steps are repeated till convergence.
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After the adaptive self-supervised optimization, we attain the final pseudo-label for each sample and
use them as supervision to optimize the local models. However, not all samples of unlabeled clients
would contribute to the parameter sharing due to the domain mismatch, which in turn causes the low
reliability and uncertainty for some samples. In this way, we consider samples to be positive and
negative samples, identifying their potential benefit for the labeled clients. Therefore, it is crucial
to distinguish positive and negative samples by identifying their potential benefit to the labeled
clients. To this end, we add additional entropy-minimization (EM) to further improve the certainty
of category prediction, reformulate the Eq. (2) for the unlabeled clients as:

min
θc,θe,θd,m̂s,m̂I

Luo =
∑

j

(
−I(max(θc(g

I
j )) ≥ σ)yj log(θc(g

I
j ))−θc(gIj ) log(θc(g

I
j ))
)

+Lr+Ls,

(4)
where I(·) denotes the indicator to filter out samples with θc(gIj ) less than a threshold σ, which is
set as 0.1 by default throughout our experiments.

3.3.1 FEDERATED TRAINING

The overall training of our MDFNet involves two important procedures: a) local clients training,
and b) global sever model integration. The clients and server collaboratively update these steps per
communication round and repeat the process until model convergence or reaching the maximum
communication rounds.

Independent Client Training. In each round, the server broadcasts the consensus model integrated
from the last round to all available clients for the initialization of local models. The well-annotated
clients then employ their local data to optimize all the modules for one epoch via Eq. (2), while
the clients without labels rely on the adaptive clustering optimization to generate pseudo-labels for
their samples and update their models with Eq. (4). The clients will locally store the parameters of
domain-specific mask and decoder and use them to initialize the network in the next round.

Model Integration. After the local training, the clients will send their local models (excluding
the parameters of domain-specific mask and decoder) to the server, where the models are inte-
grated to achieve consensus. However, adopting pseudo-labels as supervision significantly reduce
the reliability of the models, especially in the initial training stages. To avoid the negative effect of
pseudo-labels, the server considers providing different weights to labeled and unlabeled clients as:
θ̃ = 1−ηr

L

∑L
i=1 θ(li) + ηr

U

∑L+U
i=L+1 θ(ui), where θ ∈ {θe, θd, θc, m̂I , m̂s} and ηr = 1−exp(−ρr)

2(1+exp(−ρr)) ,
r is the round of communication and each round means one epoch, and ρ is set as 10 in experiments.

3.4 GENERALIZED ERROR BOUND ANALYSIS

We firstly define the basic notation and employ them to derive the generalization error bound for
P2MDCL from the high-level interpretation and the specific proofs are shown in the supplementary.

Notation. Given the distributions of labeled and unlabeled clients Dli and Duj on the input space
X , we have access to the ground-truth labeling function fli : X → {0, 1} for the clients with
the annotation, while also have the pseudo labeling function fuj : X → {0, 1} available for the
unlabeled clients. A hypothesis is corresponding to a function h : X → {0, 1} with the error, i.e.,
εli(h, fli) := Ex∼Dli

[|h(x − fli(x)|] and εuj
(h, fuj

) := Ex∼Duj
[|h(x − fuj

(x)|]. Thus, the risk
and the empirical risk of hypothesis h on Dli and Duj

are respectively represented as εli(h), ε̂li(h),
and εuj

(h), ε̂uj
(h). Moreover, we define the H-divergence between two arbitrary distributions

D and D′
as dH(D,D′

) = 2 supA∈AH
|PrD(A) − PrD′ (A)|, where H means the hypothesis

class for input space X and AH is the collection of subsets of X that are the support of some
hypothesis inH. The symmetric difference space with the hypothesis class is formulated asH∆H =

{h(x) ∗ h′
(x)|h, h′ ∈ H}, where ∗ denotes the XOR operation.

Our model aims to learn a consensus model through the communication between the server and
all available clients. Such learning strategy actually attempts to minimize a convex combination
of empirical risks over all clients with parameters αi (

∑L+U
i=1 αi = 1) as ε̂α =

∑L
i=1 αiε̂li(h) +∑L+U

i=L+1 αiεui(h). Similarly, we obtain the weighted combination of the risks over all clients as
εα(h). In addition, since each client independently trains the model with its specific data, we denote
the optimal hypothesises achieving the minimum risk on the labeled and unlabeled clients as h∗li :=
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arg minh∈H εli(h) and h∗uj
:= arg minh∈H εuj

(h). With these definitions, it still is intractable to
directly deduce the generalized error bound under this scenario. Therefore, we alternatively divide
the entire problem into multiple sub-problems and solve them in each client.

Concretely, we first explore the relationship between εα and εli or εuj
with Lemma 1. Second, we

drive the upper bound of the difference between εα and ε̂α via Lemma 2. Thus, we easily deduce
the generalized error bound of a hypothesis per client in Theorem 1.

Lemma 1. Suppose the h is a hypothesis of classH, for each unlabeled client, we then achieve:

|εα(h)− εuj (h)| ≤
L∑
i=1

αi(
1

2
dH∆H(Dli ,Duj ) + λli) +

L+U∑
i=L+1,i6=j

αi(
1

2
dH∆H(Dui ,Duj ) + λui),

where λli := εli(h
∗) + εuj

(h∗) and h∗ is the hypothesis which achieves the minimum risk on Dli
and Duj

, and λui
similarly means the risk of optimal hypothesis on the mixture of Dui

and Duj
.

Akin to unlabeled clients, we also derive the analogous inequality in clients with ground-truth as:

|εα(h)− εlj (h)| ≤
L∑

i=1,i6=j

αi(
1

2
dH∆H(Dli ,Dlj ) + λli) +

L+U∑
i=L+1

αi(
1

2
dH∆H(Dui

,Dlj ) + λui
),

where λli is the risk of optimal hypothesis of Dli and Dlj , and λui
:= εui

(h∗) + εlj (h∗).

Lemma 2. Given a hypothesis spaceH of VC-dimension d, if a random sample of size n is generated
by selecting nβj data points from Dlj or Duj , and annotating them through flj and fuj , then with
probability at least 1− δ, ∀h ∈ H, we have:

|ε̂α(h)− εα(h)| ≤

√∑L+U

j=1

α2
j

βj

√
d log(2n)− log δ

2n
.

Theorem 1. Suppose given nβi labeled instances from client Dli for i = 1, · · · , L, and nβj unla-
beled instances from client Duj

in a federated learning system, we define ĥ = arg minh∈H ε̂α(h),
h∗li := arg minh∈H εli(h) and h∗uj

:= arg minh∈H εuj
(h). Then, ∀αi ∈ R+,

∑L+U
i=1 αi = 1, with

probability at least 1− δ over the choice of samples from each client:

εuj (ĥ) ≤εuj (h∗uj
) + 2

√∑L+U

j=1

α2
j

βj

√
d log(2n)− log δ

2n

+ 2
(∑L

i=1
αi(

1

2
dH∆H(Dli ,Duj

) + λli) +
∑L+U

i=L+1,i6=j
αi(

1

2
dH∆H(Dui

,Duj
) + λui

)
)
.

For the annotated client, we can achieve the similar inequality. From Theorem 1, we explicitly
observe the risk of a hypothesis with the federated training manner on the client is determined by
three components: the error of the optimal hypothesis h∗uj

on its own samples, the VC-dimension
constraint and the distribution discrepancy across various clients. To effectively reduce the risk of
a hypothesis on all clients, we should not only learn the discriminative features by the independent
client training, but also attempt to solve the domain shift with the constraint of data privacy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Image-CLEF collects visual signals from three domains: Caltech-256 (C), ImageNet
ILSVRC 2012 (I) and Pascal VOC 2012 (P) with the same number of samples. Concretely, arbitrary
subset includes 600 images evenly distributed in 12 categories. Office-Home (Venkateswara et al.,
2017) consists of four domains: Artistic images (Ar, 2,183), Clip Art (Cl, 4,365), Product images
(Pr, 4,439) and Real-World images (Rw, 4,357), which share the identical 65 object categories. To
verify the “win-win” deal, we randomly split the original data of labeled client into the training and
test sets evenly, and repeat this operation for ten times1.

1We further report the comparison under the original protocol of SHOT in supplemental materials, where
all source samples are used for training and the evaluation is only on target domain.
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Baselines. To the best of our knowledge, we are the pioneers to consider P2MDCL scenario, and we
aim to assess if our algorithm can learn a server model with higher generalization ability to enhance
the performance across all clients via federated training. To explicitly testify the generalization of
model on each client, this section focuses on P2MDCL with a labeled client and an unlabeled one.
Noted that we report the P2MDCL with more clients in supplementary material. Since this scenario
is similar with UDA and source-free DA, we not only select CDAN (Long et al., 2017) and SRDC
(Tang et al., 2020) achieving the state-of-the-art results on UDA problem as the benchmarks and also
regard the SHOT (Liang et al., 2020) as one important competitor. In addition, we also consider the
source-only method merely training the model on the labeled client. For the mentioned baselines,
we use their released code with the suggested parameters to carry out each task for ten times

Evaluation Metric. In terms of the data organization, the labeled client includes the training and
testing sets without any overlap, while all samples of the unlabeled client participant the model
training and evaluation. For UDA and source-free solutions, the training set of labeled client is
considered as the source domain and the unlabeled client servers as the target domain. During the
test stage, the final model learned by each method is not only evaluated on the test set of labeled
client with the corresponding source accuracy ACCs but also tested on the unlabeled client with
the target accuracy ACCt. Moreover, to comprehensively reflect the generalization of model, we
adopt the Harmonic Mean (HM) (Dixon & Chapman, 1980) defined as HM = 2×ACCs×ACCt

ACCs+ACCt
.

Implementation Details. We implement our MDFNet with Pytorch as platform. The encoder of
each client includes ResNet-50 pre-trianed on ImageNet dataset (Krizhevsky et al., 2012) without
the last FC layer and two new additional FC layers (2,048→512→128) followed the ResNet-50.
The decoder consists of two FC layers (256→512→2,048) and the classifier only includes one FC
layer. The dimensions of m̂s and m̂I are both 2,048. For the training period, we fix the parameters
of the pre-trained ResNet-50 and adopt the stochastic gradient descent (SGD) as the optimizer with
momentum 0.9. Following (Zhang et al., 2019), the learning rate is adjusted by ζr = ζ0

(1+10r)0.75

where ζ0 = 0.01 and r is the communication round. The code is available in the supplementary.

4.2 RESULT ANALYSIS

Table 1 and Table 2 report the average image recognition results in terms of random data split
and various model training. According to the results, we achieve four meaningful and interesting
conclusions as below.

Table 1: Comparisons of Object Recognition Rate (%) for P2MDCL on
Image-CLEF benchmark. We adopt bold to highlight the best perfor-
mance and underline to emphasis the second highest result.

Method C-I C-P I-C I-P P-C P-I Avg.

A
C
C

s

Src-Only 97.98 97.98 95.33 95.33 73.70 73.70 89.00
CDAN 96.67 93.33 90.00 91.00 68.00 68.00 84.50
SRDC 95.00 95.33 93.00 94.33 72.67 76.33 87.78
SHOT 97.33 96.00 94.33 94.67 73.19 77.99 88.92
Ours 98.50 98.33 97.00 97.00 77.30 80.67 91.47

A
C
C

t

Src-Only 82.00 69.83 92.00 76.17 87.90 85.46 82.23
CDAN 86.17 73.66 96.83 76.50 93.33 85.67 85.36
SRDC 91.50 75.16 94.16 76.83 93.33 90.33 86.89
SHOT 90.00 74.67 94.83 78.17 94.83 90.86 87.23
Ours 93.00 77.33 96.00 79.33 94.58 92.83 88.85

H
M

Src-Only 89.28 81.54 93.64 84.68 80.18 79.15 84.74
CDAN 91.12 82.34 93.29 83.12 78.68 75.82 84.93
SRDC 93.22 84.05 93.58 84.69 81.71 82.74 86.67
SHOT 93.52 84.00 94.58 85.63 82.62 83.93 87.38
Ours 95.67 86.57 96.49 87.28 85.09 86.32 90.13

First, compared with
others, the model learned
by our training strategy
achieves the best classi-
fication accuracy, when
evaluated on the test set
of labeled and unlabeled
clients. In terms of
the average harmonic
metric, our MDFNet
performs better than the
second best SHOT by
3.4% on Office-Home.
It illustrates that even if
the data privacy hinders
the currency of knowl-
edge between these two
clients, our method still
employs the federated
training paradigm to gradually eliminate the domain shift across different clients to improve
the generalization of model. Second, although the UDA based solutions and SHOT effectively
facilitates the well-trained source models to adapt the data distribution of unlabeled client, the
progressive adaptation discards considerable source knowledge and results in performance degra-
dation on the test set of labeled client. For instance, CDAN achieves better average accuracy on
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Table 2: Comparisons of Object Recognition Rate (%) for P2MDCL on Office-Home benchmark.
We adopt bold to highlight the best performance and underline to emphasis the second highest result.

Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg.
A
C
C

s

Src-only 75.45 75.45 75.45 84.31 84.31 84.31 92.90 92.90 92.90 88.57 88.57 88.57 85.31
CDAN 63.83 66.14 67.21 69.62 72.65 70.77 87.28 85.99 88.02 79.26 76.87 81.37 75.75
SRDC 63.50 68.53 70.92 69.53 70.59 70.17 85.94 85.13 88.82 82.19 78.98 82.05 76.36
SHOT 69.28 70.51 74.22 79.98 78.52 79.89 86.26 86.17 90.63 86.00 83.20 88.11 81.06
Ours 76.03 75.12 76.11 85.12 85.35 85.24 93.86 93.42 93.92 88.80 88.91 89.18 85.91

A
C
C

t

Src-only 41.66 60.84 67.20 49.48 59.32 62.66 49.77 41.12 71.08 60.86 46.60 76.08 57.22
CDAN 45.06 63.78 70.78 55.66 65.02 65.46 51.63 45.26 74.77 67.04 53.49 79.14 61.42
SRDC 46.07 70.96 76.32 56.24 72.30 70.69 57.49 49.30 78.17 68.34 52.98 79.47 64.86
SHOT 50.97 72.19 72.69 56.90 70.71 72.18 57.27 48.22 78.13 64.89 53.84 80.58 64.88
Ours 52.22 74.50 77.16 58.05 72.67 72.11 58.91 50.79 79.83 66.84 54.84 81.62 66.63

H
M

Src-only 53.68 67.36 71.09 62.36 69.64 71.89 64.82 57.01 80.54 72.15 61.07 81.85 67.79
CDAN 52.83 64.94 68.95 61.86 68.62 68.01 64.88 59.31 80.86 72.64 63.08 80.24 67.18
SRDC 53.40 69.72 73.52 62.18 71.43 70.43 68.89 62.44 83.16 74.63 63.42 80.74 69.50
SHOT 58.73 71.34 73.45 66.49 74.41 75.84 68.84 61.84 83.92 73.97 65.37 84.18 71.53
Ours 61.91 74.80 76.63 69.03 78.50 78.12 72.38 65.80 86.30 76.27 67.78 85.19 75.00

(a) Src-only (Ar→Rw) (b) SHOT (Ar→Rw) (c) Ours (Ar→Rw)

Figure 3: Comparison of feature visualization achieved by Src-only, SHOT and our MDFNet, where
color red and blue represent the samples of labeled and unlabeled clients, respectively.

unlabeled client with office-home than source-only method, i.e., 61.42 v.s. 57.22%. However, such
improvement heavily affects the generalization of CDAN on the labeled client, i.e., CDAN (75.75%)
vs Src-only (85.31%). Different from CDAN, our method even attains the more improvement than
the source-only method on the test set, especially for the task P→I of Image-CLEF dataset, where
our MDFNet surpasses the source-only method by 6.9%. Thirdly, even though SHOT and MDFNet
both protect the data privacy of source domains, our MDFNet learns a better hypothesis with lower
error on the unlabeled client. Concretely, for the task Ar→Rw, when assessed on the unlabeled
client, our method fights off SHOT by 4.5%, which means our training manner captures more
knowledge from the labeled client via the frequent communication between server and clients to
improve the discriminative ability of model on recognizing unlabeled instances. Finally, we find
that all methods achieve higher classification accuracy on unlabeled clients than that of labeled
clients for tasks P→C and P→I. Specifically, with P as the source domain, the well-trained Src-Only
model achieves better performance on the target domain than that of source test set. The main
reason lies in the fact that the samples of P domain lie in a more diverse distribution within class,
which makes it difficult to learn a discriminative model to recognize its images. Concretely, P
domain includes many images with multiple objects but one single label. For example, one image
of ”bird” class in P domain involves bird and dog, and another image includes bird and person.
However, there are almost no such multi-object images in C and I domains. Moreover, the same
class in P domain has more animals than that of C or I domain. For instance, besides several
common birds as C and I domains, the bird class of P domain also consists chicken and ostrich,
etc. Thus, the well-trained source model with P domain can easily classify the images of C and I
domains, but difficultly recognize its source test set.

4.3 EMPIRICAL ANALYSIS

Feature Visualization & Confusion Matrix. Our MDFNet aims to eliminate the distribution dis-
crepancy across different clients and improve the generalization of model with the data privacy pro-
tection. Thus, we extract the hidden features from Src-only, SHOT and MDFNet on task Ar→Rw
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(a) Src-only (	P → I) (b) CDAN (P→ I) (c) Ours (P→ I)

Figure 4: Comparison of confusion matrix achieved by Src-only, CDAN and our MDFNet.

(c) Ablation Study(b) Convergence (C→ P)(a) 30% Training Samples
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Figure 5: Ablation study and Convergence with experiments on Image-CLEF dataset.

and follow (Zhang et al., 2019) to draw the the feature embedding of the test samples of labeled client
and those of unlabeled client in 2-D canvas. From Figure 3, we notice that our MDFNet achieves
better alignment across these two clients and significantly promotes the discriminative ability of
model as class boundaries are explicit among various categories. Moreover, we utilize the confusion
matrix to analyse the model performance on the test set of labeled client (P domain of Image-CLEF).
As Figure 4 shows, our method accurately distinguishes several similar objects as bike and motor-
cycle when compared with Src-only, which illustrates our MDFNet transfers the valuable semantic
from unlabeled client to assist model recognizing the samples of labeled client.

Ablation Study & Convergence. To reveal the importance of adaptive self-supervised optimization
module, we attempt to remove the supervisor of pseudo-label and consider it as a variant (Ours-SSO)
of MDFNet and evaluate the model on the unlabeled client. Their comparison is reported in Figure
5 (c) where the variant suffers from the obvious performance degradation, which demonstrates the
self-supervised learning based module effectively facilitates the model to learn more discriminative
features. In addition, we further adjust the number of training samples in the labeled client (training
set/test set = 3:7) and contrast the performances of three methods on the unlabeled client. The
result in Figure 5 (a) reports our MDFNet still beats others in most tasks even with insufficient
well-annotated samples. Finally, we record the relationship between classification accuracy and the
communication round in Figure 5 (b) where the model is assessed on the test set of labeled client
and unlabeled client. The performance means MDFNet rapidly achieves the convergence and has
no negative effect on recognizing samples of labeled client during adaptation.

5 CONCLUSION

Although UDA based methods effectively avoid performance degradation when applying source
knowledge to target domain, the UDA assumption ignores the improvement of model generalization
on source domain and conflicts with privacy protection. Thus, this paper formulates these practical
demands with domain adaptation as a novel scenario P2MDCL and proposes mask-driven federated
network (MDFNet) to address this challenge. Concretely, each individual domain explores mask
disentangle mechanism to learn domain-invariant features, and the unlabeled clients exploits adap-
tive self-supervised optimization to generate high-quality pseudo labels facilitating discriminative
feature learning. Moreover, the centralized server refines the global invariant by assembling lo-
cal knowledge across all domains. Finally, theoretical and experimental analysis demonstrate the
rationality and effectiveness of our MDFNet on solving P2MDCL problem.
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