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Abstract

Aspect-based Sentiment Analysis (ABSA) eval-001
uates sentiment expressions within a text to002
comprehend sentiment information. Previous003
studies integrated external knowledge, such as004
knowledge graphs, to enhance the semantic fea-005
tures in ABSA models. Recent research has006
examined the use of Graph Neural Networks007
(GNNs) on dependency and constituent trees008
for syntactic analysis. With the ongoing devel-009
opment of ABSA, more innovative linguistic010
and structural features are being incorporated011
(e.g. latent graph), but this also introduces012
complexity and confusion. As of now, a scal-013
able framework for integrating diverse linguis-014
tic and structural features into ABSA does not015
exist. This paper presents the Extensible Multi-016
Granularity Fusion (EMGF) network, which017
integrates information from dependency and018
constituent syntactic, attention semantic , and019
external knowledge graphs. EMGF, equipped020
with multi-anchor triplet learning and orthog-021
onal projection, efficiently harnesses the com-022
bined potential of each granularity feature and023
their synergistic interactions for a cumulative024
effect. Experimental findings on SemEval 2014025
and Twitter datasets confirm EMGF’s superior-026
ity over existing ABSA methods 1.027

1 Introduction028

The primary objective of the Aspect-Based Senti-029

ment Analysis(ABSA) task is to assess the senti-030

ment polarity associated with specific aspects or031

entities in a text, enabling a more comprehensive032

understanding of the text’s sentiment information.033

For example, give a laptops review "Looks nice034

, but has a horribly cheap feel ." and the senti-035

ment polarity of the two aspects "Looks" and "feel"036

are positive and negative, respectively. Therefore,037

ABSA accurately identifies the sentiment orienta-038

tion for individual aspects, rather than assigning039

1Code and datasets are available at https://anonymous.
4open.science/r/EMGF-E7A6
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Figure 1: An example sentence with its dependency tree
and constituent tree. This sentence from the laptops re-
views, contains two aspects but with opposite sentiment
polarities.

a general sentiment label to a whole sentence in 040

sentence-level sentiment analysis. The main chal- 041

lenge of ABSA is to model the relationship be- 042

tween aspects and their associated opinions. 043

To this end, previous studies (Ma et al., 2018; 044

Zhou et al., 2020; Zhong et al., 2023) leveraged 045

external knowledge to enhance semantic features 046

in ABSA models. For example, Zhou et al. (2020) 047

employed words related to knowledge graphs to 048

build subgraphs as seed nodes. Zhong et al. (2023) 049

incorporated external knowledge graphs into low- 050

dimensional embeddings to efficiently represent 051

aspect-specific knowledge. 052

More recent studies (Sun et al., 2019; Chen et al., 053

2020; Liang et al., 2020; Wang et al., 2020; Li et al., 054

2021; Liang et al., 2022) have extensively investi- 055

gated the use of Graph Neural Networks (GNNs) 056

on dependency trees (Dep.Tree) and constituent 057

trees (Con.Tree) to explicitly leverage sentence 058

syntactic structures. While constituency and de- 059

pendency trees share common sentential syntactic 060

information, they capture syntactic details from 061

distinct perspectives (Dong et al., 2022). 062

Dependency trees (Dep.Trees) can establish con- 063

nections among words in a sentence (Li et al., 064

2021), while constituent trees (Con.Trees) pro- 065
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vide precise phrase segmentation and hierarchical066

structures, which facilitate precise alignment of as-067

pects with sentiment-indicative words (Liang et al.,068

2022). We illustrate this with an example in Figure069

1: (1) A dependency relation exists between the070

aspect term "Looks" and the opinion term "nice";071

(2) The phrase segmentation term "but" segments072

"Looks nice" from "has a horribly cheap feel".073

Most of the previous work has already estab-074

lished the effectiveness of single-granularity in-075

formation for the ABSA task. However, single-076

granularity features are insufficient to fully cap-077

ture the rich information contained in the raw078

data. Li et al. (2021) incorporating SynGCN and079

SemGCN networks through a Mutual BiAffine080

module, demonstrating the effectiveness of inte-081

grating these two granularity levels for the ABSA082

task.083

However, most current methods use complex and084

inefficient techniques to integrate diverse types of085

knowledge. Currently, there is no scalable frame-086

work capable of combining various granularity fea-087

tures to enhance model performance. In this con-088

text, a fundamental question arises: How can we089

ensure that the combination of multiple gran-090

ularity features achieves a cumulative effect 2091

and addresses the problem of model scalability?092

In this paper, we introduce a novel architecture093

called the Extensible Multi-Granularity Fusion094

Network model (EMGF) to address the aforemen-095

tioned challenges. Firstly, we enhance the acquisi-096

tion of affective representations in ABSA tasks by097

integrating information from dependency syntax,098

constituent syntax, semantic attention, and external099

knowledge graphs. Secondly, we have developed100

an Extensible Multi-Stage Fusion (EMSF) module101

designed to capture profound and intricate interac-102

tions among features at various granularities. To103

elaborate, our module comprises two stages: the104

"preprocessing stage" and the "fusion stage." In the105

"preprocessing stage," we employ a multi-anchor106

triplet learning approach to combine dependency107

and constituent syntactic information, enhancing108

their mutual complementarity. We also utilize an or-109

thogonal projection layer to acquire refined syntac-110

tic and semantic discriminative features. Finally,111

external knowledge graphs offer supplementary in-112

formation support during the "fusion stage."113

2Combining multiple features from various granularity
levels results in incremental effects. Specifically, with each
additional feature included, the effect improves compared to
the previous combination.

Our contributions are highlighted as follows: 114

1) For the ABSA task, we present an Extensible 115

Multi-Granularity Fusion Network designed to cap- 116

ture intricate interactions among features at various 117

granularities, thus achieving the cumulative effect. 118

2) This network can fuse an arbitrary number of 119

features of different granularities in an expandable 120

manner. 121

3) We present multi-anchor triplet learning to 122

enable mutual learning between dependency syn- 123

tax and constituent syntax, and employ orthogonal 124

projection techniques to obtain refined syntactic 125

and semantic features. 126

4) Our experimental findings establish that our 127

EMGF model surpasses the current state-of-the-art 128

methods when evaluated on the SemEval 2014 and 129

Twitter datasets, demonstrating the effectiveness of 130

our EMGF model. 131

2 Related Work 132

ABSA is an entity-level and fine-grained task for 133

sentiment analysis (Li et al., 2021; Ma et al., 2023). 134

Early research in ABSA makes use of attention- 135

based neural models for the purpose of capturing 136

semantic interactions (Wang et al., 2016; Ma et al., 137

2017; Xu et al., 2019). 138

Dependency with GNNs: Another emerging 139

trend is the effective incorporation of dependency 140

trees with Graph Neural Networks (GNNs). Xu 141

et al. (2020) introduce a GCN model with a hetero- 142

geneous graph, merging sentence and aspect nodes 143

via four relationship types, Liang et al. (2021) 144

propose a novel dependency syntactic knowledge 145

augmented interactive architecture with multi-task 146

learning, Zhang et al. (2022) enhance attention 147

score matrices with syntactic mask matrices for 148

integrating syntax and semantics, Zhao et al. 149

(2023) introduce RDGCN to better calculate depen- 150

dency importance, tackling syntactic ambiguities 151

in aspect-opinion analysis. 152

Constituent with GNNs: Structural syntax 153

knowledge has been proven effective for seman- 154

tic role labeling (SRL) (Marcheggiani and Titov, 155

2020; Fei et al., 2021). Marcheggiani and Titov 156

(2020) showcases the utilization of GCNs to en- 157

code constituent structures in an SRL system, Fei 158

et al. (2021) jointly learns phrasal boundaries ex- 159

tracted from constituency and semantic relations 160

from dependency to explore the integration of di- 161

verse syntactic representations for SRL. For ABSA, 162

Liang et al. (2022) first focus on effectively har- 163
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Figure 2: The overall architecture of our EMGF model.

nessing syntactic information from the sentence’s164

constituent tree to model the sentiment context of165

individual aspects for learning.166

3 Methodology167

In this section, we provide a detailed explanation168

of EMGF. The overview of the EMGF framework169

is shown in Figure 2. The system comprises three170

components: 1) The Text Encoding Module. 2)171

The Granularity Feature Construction Module. 3)172

The Extensible Multi-Stage Fusion Module.173

3.1 Text Encoding Module174

In the ABSA task, give a n-word sentence s =175

{w1, w2, . . . , wn}, along with a specific aspect176

represented as a = {a1, a2, . . . , am}, to deter-177

mine its corresponding sentiment polarity class,178

ca. Here, a is a sub-sequence of s, and ca ∈179

{Positive,Neutral,Negative}. To obtain con-180

textualized representations, we utilize BERT (De-181

vlin et al., 2019). In the BERT encoder, we182

construct a sentence-aspect pair as input, repre-183

sented as x = ([CLS]s[SEP]a[SEP]). The out-184

put provides contextualized representations, de-185

noted as Hbert = BERT(x). In this representation,186

Hbert =
[
hbert
1 , hbert

2 , · · · , hbert
n

]
∈ Rn×d, where d187

represents the dimensionality of the last hidden188

layer of BERT, and hbert
i corresponds to the contex-189

tual representation of the i-th word.190

3.2 Granularity Feature Construction Module191

Dependency GCN The dependency graph con-192

volutional networks (DepGCN) module takes syn-193

tactic encoding as input and utilizes the probability 194

matrix of all dependency arcs from a dependency 195

parser to encode syntax information. The depen- 196

dency graph is embodied as an adjacency matrix 197

Adep ∈ Rn×n, which is defined as follows: 198

A
dep
ij =

{
1, if link(i, j) = 1
0, otherwise

(1) 199

where link(i, j) shows that i-th and j-th words have 200

a dependence link. The dependency graph rep- 201

resentation Hdep = {hdep
1 , h

dep
2 , . . . , h

dep
n } is then 202

obtained from the DepGCN module using the fol- 203

lowing formula: 204

hli = σ
( n∑

j=1

AijW
lhl−1

j + bl
)

(2) 205

here, W l represents a weight matrix, bl denotes a 206

bias term, and σ is an activation function, such as 207

ReLU. 208

Constituent GCN We follow the syntax struc- 209

ture of the Con.Tree in a bottom-up manner, in- 210

spired by BiSyn-GAT+ (Liang et al., 2022). The 211

Con.Tree is composed of multiple phrases (phlu) 212

that make up the input text, and we create corre- 213

sponding graphs based on these phrases phmu . 214

Given the substantial depth of the constituent 215

tree, we choose a total of m layers with alternating 216

intervals 3. We make this choice because the vari- 217

ation in phrase hierarchical information between 218

3For instance, you can choose layer 1, skip one layer, pick
layer 3, and continue this pattern.
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adjacent layers is minimal, and excessive align-219

ment would be an inefficient use of computational220

resources. Additionally, the chosen value of m221

aligns with the number of ConGCN layers.222

The constituent graph is embodied as an adja-223

cency matrix Acon ∈ Rlc×n×n, which is defined as224

follows:225

Acon(m)
i,j =

{
1 if wi and wj are in same phmu ,
0 otherwise

(3)
226

where m denotes the level of the phrase227

within the selected lc layers, while u denotes228

the constituent label associated with the phrase,229

such as S, NP, VP, and so on. Subsequently230

yields the output hidden representation Hcon =231

{hcon
1 , hcon

2 , . . . , hcon
n } is then obtained from the232

ConGCN module using Eq. (2).233

Semantic GCN To construct the attention score234

matrix Asem, we employ the Multi-Head Attention235

(MHA) mechanism on the hidden state features236

Hbert derived from the BERT encoder. The MHA237

computes attention scores among words, and the238

formulation of the attention score matrix Asem ∈239

Rn×n is as follows:240

Asem
ij = Softmax(MHA(hbert

i , hbert
j )) (4)241

Subsequently yields the output hidden represen-242

tation Hsem = {hsem
1 , hsem

2 , . . . , hsem
n } is then ob-243

tained from the SemGCN module using Eq. (2).244

External Knowledge The introduction of an ex-245

ternal knowledge graph (KG) aims to enhance the246

model’s understanding of text sentiment by sup-247

plementing domain-specific knowledge. Drawing248

inspiration from the work of Zhong et al. (2023),249

we incorporate external knowledge into our model250

in the form of embeddings, facilitating the fusion251

of knowledge and textual information. Specifically,252

entities and relationships from the external knowl-253

edge graph are transformed into low-dimensional254

embedding vectors Hkge = {hkge
1 , h

kge
2 , . . . , h

kge
n }.255

3.3 Extensible Multi-Stage Fusion Module256

In previous studies, it is common to combine only257

two granularity features, so when trying to combine258

additional features, the model is no longer applica-259

ble. To address this challenge and capture intricate260

interactions among features at different granular261

levels while efficiently integrating diverse granu-262

lar information, we introduce the extensible multi-263

granularity fusion (EMGF) module. This innova- 264

tive approach allows for the expansion and effec- 265

tive exploration of interrelationships among multi- 266

granular features. It achieves this by cascading 267

multiple Extensible Multi-Stage Fusion (EMSF) 268

blocks, each comprising a "preprocessing stage" 269

and a "fusion stage." During the preprocessing 270

stage of EMSF, four features from different lev- 271

els serve as inputs, namely Hcon, Hdep, Hsem, and 272

Hkge. 273

3.3.1 Preprocessing Stage 274

Con.Tree and Dep.Tree share syntactic informa- 275

tion from different viewpoints (Dong et al., 2022). 276

(Ata et al., 2021; Dong et al., 2022) use multi- 277

view learning to study three relationship categories: 278

intra-node intra-view, intra-node inter-view, and 279

inter-node inter-view. We collectively label nodes 280

in these scenarios as "important nodes." However, 281

there is currently no research addressing how to 282

handle "non-important nodes," which could poten- 283

tially disrupt the complementary learning of "im- 284

portant nodes." Moreover, to handle these three 285

types of collaboration, it’s necessary to design three 286

distinct loss functions, adding complexity to the 287

model. To this end, we propose Multi-Anchor 288

Triplet Learning to address the two categories of 289

issues mentioned above. 290

Additionally, inspired by Qin et al. (2020), we 291

utilize orthogonal projection techniques to encour- 292

age the DepGCN and ConGCN networks to acquire 293

distinct syntactic features from the semantic fea- 294

tures generated by the SemGCN network. This 295

results in refined and more discriminative syntactic 296

and semantic features.granularity levels. 297

Within this stage, we combine Multi-Anchor 298

Triplet Learning and Orthogonal Projection Tech- 299

niques to effectively capture the complementary 300

and discriminative aspects of features across vari- 301

ous granularity levels. 302

Multi-Anchor Triplet Learning We choose a 303

node from the con-view graph as the "Anchor" 304

node and consider three scenarios: 1) In the con- 305

view, nodes directly connected to the chosen An- 306

chor are tagged as "pos" nodes, highlighting their 307

syntactic relevance, 2) In the dep-view, nodes shar- 308

ing the same linguistic entity as the Anchor in the 309

con-view are also considered "pos" nodes, ensur- 310

ing cross-view consistency, 3) Nodes identified as 311

"pos" within the con-view are matched with their 312

counterparts in the dep-view based on linguistic 313

4



identity, ensuring alignment. Even in cases where314

these matched nodes in the dep-view aren’t directly315

linked to the Anchor, they remain classified as316

"pos". This rule underlines the principle of syn-317

tactic and semantic continuity across different ana-318

lytical perspectives, bridging the constituency and319

dependency views by recognizing inherent node320

equivalences. All other cases are labeled as "neg"321

nodes. The same procedure is applied in the dep-322

view when the Anchor node is located there, as323

illustrated in Figure 2.324

It is vital to stress that nodes do not possess325

equal significance. Designating all graph nodes326

as Anchor nodes would undermine differentiation327

and precision. Additionally, drawing inspiration328

from the work of MP-GCN (Zhao et al., 2022), we329

employ the Multi-Head S-Pool to select Anchor330

nodes. Specifically, we use the attention matrix331

Asem to conduct both average and maximum pool-332

ing from two distinct perspectives, resulting in the333

selection of the Top-K important nodes with the334

highest scores.335

Our goal is to have the "Anchor" node stay336

close to the "pos" nodes to acquire complementary337

knowledge, while minimizing interference from338

"neg" nodes. Specifically, we accomplish this goal339

by minimizing the following loss function:340

Ltriplet =
∑

i∈Anchor

σ
( ∑

j∈pos

fa(||hzi − hz
′

j ||
2
)

−
∑
j∈neg

fa(||hzi − hz
′

j ||
2
) + margin

) (5)341

342
Anchor = TopK (fa (A

sem) + fm (Asem)) (6)343

where z and z
′

belong to the set {dep, con}, we344

determine the size of the anchor set k based on345

Bourgain’s Theorem-1 (You et al., 2019). Here, k346

is expressed as k = c log2 n, with c representing a347

constant, and n denoting the total number of nodes348

in the graph. Our approach employs functions fa349

for average pooling and fm for maximum pooling.350

The "margin" hyperparameter defines the minimum351

boundary between the distance of positive (pos)352

samples to the anchor (Anchor) and the distance353

of negative (neg) samples to the anchor, and σ354

corresponds to the non-linear activation function355

ReLU.356

Orthogonal Projection Techniques Mathemat-357

ically, we first project dependency syntax feature358

Hdep onto semantic feature Hsem:359

Hdep∗ = Proj
(
Hdep, Hsem) (7)360

where Proj is a projection function. 361

Proj(x, y) =
x · y
|y|

y

|y| (8) 362

where x and y are vectors. Next, we perform the 363

projection in the orthogonal direction of the pro- 364

jected feature Hdep to obtain a purer classification 365

feature vector. 366

H̃dep = Proj
(
Hdep, (Hdep −Hdep∗)

)
(9) 367

Correspondingly, the terms H̃con in the formula 368

can be expressed as follows: 369

H̃con = Proj
(
Hcon, (Hcon −Hcon∗)

)
(10) 370

3.3.2 Fusion Stage 371

Building on the preprocessing stage, we utilize the 372

purified dependency syntatic H̃dep, the purified con- 373

stituent syntactic H̃con, the semantic feature Hsem, 374

and the extra knowledge feature Hkge as inputs 375

during the fusion stage. Furthermore, inspired by 376

the multimodal fusion method MAMN (Xue et al., 377

2023a,b), we adopt the extended multimodal fac- 378

torized bilinear pooling mechanism from MAMN 379

in fusion stage to fuse H̃dep, H̃con, Hsem, and ex- 380

ternal knowledge feature Hkge. The Fusion Stage 381

is calculated as: 382

Z i
m = Norm

(
ŨT

depH̃
dep ◦ ŨT

conH̃
con

◦ŨT
semH

sem ◦ ŨT
kgeH

kge
) (11) 383

Where all Ũ are weight parameters optimized in 384

conjunction with the model, ensuring adaptive in- 385

tegration of features, Norm denotes the normal- 386

ization layer, and Z i
m represents the outputs of the 387

fusion stages within the i-th EMSF block. Addi- 388

tionally, we have introduced residual connections 389

between different blocks. Subsequently, we calcu- 390

late the average of the outputs from these le EMSF 391

blocks (where le indicates the number of EMSF 392

blocks) to obtain the feature r with four distinct 393

granularity fusions. The specific formula is as fol- 394

lows: 395

Z i+1
m = Z i

m + EMSF(

Z i
m, H̃dep, H̃con, Hsem, Hkge)

(12) 396

To obtain the final output, denoted as r for the 397

EMGF, we concatenate the output features from 398

the lm EMSF blocks and apply average pooling. 399

r = Mean
(
Z1
m,Z2

m, . . . ,Z lm
m

)
(13) 400
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Dataset
#Positve #Negative #Neutral

Train Dev Test Train Dev Test Train Dev Test
Laptop 976 - 337 851 - 128 455 - 167

Restaurant 2164 - 727 807 - 196 637 - 196
Twitter 1507 - 172 1528 - 169 3016 - 336
MAMS 3380 403 400 2764 325 329 5042 604 607

Table 1: Satistics of four datasets.

3.4 Model Training401

Softmax Classifier Subsequently, the fusion fea-402

ture r, obtained from the granularity fusion module,403

is used to calculate the sentiment probability dis-404

tribution ŷ(s,a) via a linear layer equipped with a405

softmax function:406

ŷ(s,a) = Softmax (Wpr + bp) (14)407

where (s, a) is a sentence-aspect pair.408

Our training goal is to minimize the following409

overall objective function:410

L(Θ) = Lc + βLtriplet (15)411

where Θ denotes all the trainable model parameters,412

while β are hyperparameters. The cross-entropy413

loss Lc for the primary classification task is defined414

as follows:415

Lc =
∑

(s,a)∈D

y(s,a) log ŷ(s,a) (16)416

where D contains all sentence-aspect pairs and417

y(s,a) is the real distribution of sentiment.418

4 Experiments419

4.1 Datasets420

Our model was evaluated using four bench-421

mark datasets: Laptop and Restaurant from Se-422

mEval2014 Task 4 (Pontiki et al., 2014), Twitter423

(Dong et al., 2014), and the large-scale multi-aspect424

MAMS dataset (Jiang et al., 2019). Consistent with425

prior studies (Chen et al., 2017; Li et al., 2021; Tang426

et al., 2022) and others, we excluded instances la-427

beled as "conflict." The statistics of these datasets428

are presented in Table 1.429

4.2 Implementation Details430

We utilized SuPar 4 as our parser to acquire both the431

dependency and constituent tree. For constructing432

our model, we employed the uncased base version433

4https://github.com/yzhangcs/parser

of BERT 5 with a dropout rate of 0.3. The training 434

process was conducted with a batch size of 16, uti- 435

lizing the Adam optimizer with a learning rate of 436

2e-5. For the four datasets, we set the ConGCN, 437

DepGCN, and SemGCN layers to (6, 3, 6, 6), (3, 438

3, 9, 3), and (3, 3, 1, 3), respectively, with β co- 439

efficients of (0.12, 0.12, 0.07, 0.12). We selected 440

3 layers (lc) for the constituent tree and optimized 441

its performance. Additionally, we determined that 442

6 layers (le) are optimal for EMSF blocks. The 443

hyper-parameter margin was set to 0.2. Each exper- 444

iment is replicated three times, with the results then 445

averaged for consistency. Our primary evaluation 446

metrics include accuracy (Acc.) and macro-f1 (F1). 447

4.3 Baseline Methods 448

We compare our EMGF with state-of-the-art base- 449

lines, described as follows: 450

1) BERT-SRC (Devlin et al., 2019) represents the 451

fine-tuning of BERT to incorporate aspect-specific 452

representations. 2) DGEDT (Tang et al., 2020) 453

iteratively integrates representations from Trans- 454

formers and dependency graphs. 3) DualGCN (Li 455

et al., 2021) simultaneously considers the comple- 456

mentarity of syntax structures and semantic correla- 457

tions. 4) dotGCN (Chen et al., 2022) introduces a 458

compact, aspect-specific, language-agnostic model 459

using discrete latent opinion trees. 5) MGFN (Tang 460

et al., 2022) utilize a latent graph to leverage depen- 461

dency relation and semantic information. 6) TF- 462

BERT (Zhang et al., 2023) examines span-level 463

consistency in multi-word opinion expressions. 7) 464

HyCxG (Xu et al., 2023) introduce construction 465

grammar (CxG) to enrich language representation. 466

4.4 Main Results 467

Table 2 showcases our main experimental out- 468

comes. The EMGF model outperforms the current 469

state-of-the-art (SOTA), HyCxG (Xu et al., 2023), 470

across all tested benchmarks. Models that incor- 471

porate syntactic dependency information tend to 472

outperform those that do not, but relying solely 473

on syntactic information may lead to subpar per- 474

formance, particularly with informal or complex 475

sentences. Leveraging richer syntax dependency 476

labels and incorporating affective semantic infor- 477

mation, as demonstrated by models such as (Li 478

et al., 2021; Tang et al., 2022), generally outper- 479

forms syntax-only models, highlighting the effec- 480

tiveness of integrating diverse feature information. 481

5https://github.com/huggingface/transformers
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Model Laptop Restaurant Twitter MAMS
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

BERT-SRC (Devlin et al., 2019) 78.99 75.03 84.46 76.98 73.55 72.14 82.34 81.94
DGEDT (Tang et al., 2020) 79.80 75.60 86.30 80.00 77.90 75.40 84.21 83.65
DualGCN (Li et al., 2021) 81.80 78.10 87.13 81.16 77.40 76.02 84.51 84.18
dotGCN (Chen et al., 2022) 81.03 78.10 86.16 80.49 78.11 77.00 84.95 84.44
MGFN (Tang et al., 2022) 81.83 78.26 87.31 82.37 78.29 77.27 - -
TF-BERT (Zhang et al., 2023) 81.49 78.30 86.95 81.43 77.84 76.23 - -
HyCxG (Xu et al., 2023) 82.29 79.11 87.32 82.24 - - 85.03 84.40
Our EMGF 82.11 79.24 88.42 83.20 78.87 78.06 85.48 84.73

Table 2: Experimental results on ABSA datasets with BERT encoder. The best result on each dataset is in bold.

Model
Laptop Restaurant Twitter MAMS

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
Our EMGF (M4) 82.11 79.24 88.42 83.20 78.87 78.06 85.48 84.73
EMGF-M3 81.26 78.24 87.78 82.23 77.53 76.27 85.11 84.13

EMGF-M2 80.79 77.61 87.33 81.59 76.64 76.12 84.32 83.75

EMGF-M1 80.15 77.07 86.24 80.12 76.49 75.05 83.34 82.73

W/O Ltriplet 80.84 76.83 86.97 81.06 76.93 75.61 83.54 83.21

W/O Orthogonal Projection 79.41 75.24 86.15 80.22 77.83 76.53 84.44 84.13

W/O Dep Project Sem 80.52 76.92 86.15 79.96 76.04 75.20 84.44 83.87

W/O Con Project Sem 80.37 76.47 85.70 79.66 76.19 74.98 83.99 83.48

Table 3: Ablation study experimental results.

Experimental results indicate that our EMGF ef-482

fectively integrates information from four different483

granularities.484

4.5 Ablation Study485

We evaluated the extensibility of EMGF and the486

effectiveness of its fusion approach by investigat-487

ing how the number of granularity features affects488

EMGF’s performance, the results are shown in Ta-489

ble 3. M4 indicates using all granularity features,490

M3 represents selecting three out of four granular-491

ity features (e.g., for features 1, 2, 3, and 4, we492

evaluate combinations like "123", "124", "134",493

and "234"), and averaging all possibilities. M2494

and M1 follow a similar pattern. As we reduced495

the number of granularity features, we observed a496

decrease in performance, highlighting the extensi-497

bility of EMGF and the effectiveness of our fusion498

approach, which cumulative effects. W/O Ltriplet499

result in reduced performance of EMGF, this shows500

that multi-anchor triplet learning can gather com-501

plementary knowledge from various syntactic fea-502

ture information, thereby improving the model’s503

performance. The expression "Dep Project Sem504

(Con Project Sem)" denotes the projection of syn-505

tactic features related to dependency (constituent)506

onto orthogonal spaces associated with semantic507

features. W/O Dep Project Sem, W/O Con Project508

Sem, and W/O Orthogonal Projection Techniques,509

all lead to a decrease in EMGF performance. This 510

implies that omitting the feature projections hin- 511

ders the model’s ability to accurately differentiate 512

between syntactic and semantic information, caus- 513

ing interference from redundant data during the 514

fusion stage. 515

4.6 Case Study 516

Table 4 illustrates our model through four exam- 517

ples. Identifying neutral sentiment is challenging 518

due to a lack of strong sentiment words in neutral 519

texts and data imbalance, with more data available 520

for positive and negative sentiments. In the third 521

sentence, MGFN incorrectly predicted the emo- 522

tional polarity of "chef." This can be attributed to 523

MGFN’s inability to capture its specific opinion 524

words associated with "chef," it incorrectly treated 525

the opinion words from "food" and "service" as 526

its own. The fourth sentence is particularly chal- 527

lenging, as MGFN, like many models, assigns pos- 528

itive sentiment to an aspect word without strong 529

emotional cues, causing three out of four EMGF 530

predictions to be incorrect. Drawing from our anal- 531

ysis, MGFN combines syntactic features derived 532

from the latent graph with semantic features. How- 533

ever, similar to other models, MGFN does not fully 534

capitalize on the potential offered by a variety of 535

granularity features. In juxtaposition, our EMGF 536

effectively leverages these features and their syner- 537

7



Sentence MGFN (Tang et al., 2022) EMGF(Ours)

I know real [Indian food]neg and this wasn’t it. (neu ) (neg )

Our [waiter]pos was friendly and it is a shame that he didnt

have a supportive [staff]neg to work with.
(pos , pos ) (pos ,neg )

Even when the [chef]neu is not in the house, the [food]pos
and [service]pos are right on target.

(pos , pos ,pos ) (neu , pos ,pos )

We started with the [scallops]neu and [asparagus]neu and also

had the [soft shell crab]neu as well as the [cheese plate]neu.
(pos ,pos ,pos , neu ) (neu , neu ,neu , neu )

Table 4: Case study experimental results of MGFN and EMGF.
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Figure 3: The impact of the number of GCN and EMSF
block on Restaurant dataset.

gistic effects through multi-anchor triplet learning538

and orthogonal projection.539

4.7 Impact of Number of GCN and EMSF540

Blocks541

We varied the number of layers, lcon, ldep, and542

lsem from 2 to 9 for ConGCN, DepGCN, and543

SemGCN to assess their impact on the model’s544

performance on Restaurant dataset. Based on ex-545

perimental results, we set lcon, ldep, and lsem to 3,546

3, and 9, respectively. Interestingly, maintaining547

consistent layer numbers for lcon, ldep, and lsem548

does not necessarily result in optimal performance.549

We observed that considering the layer count sep-550

arately for each of the three GCN types tends to551

enhance performance. The number of cascaded552

EMFB blocks (denoted as le) affects prediction ac-553

curacy and F1 score. Through experiments, we554

determined that the optimal number of modules is555

6, as depicted in Figure 3.556

4.8 Hype-parameter Analysis557

We will investigate the impact of a crucial parame-558

ter, k, in EMGF. This relates to selecting the num-559

ber of crucial nodes in each view. We have con-560

ducted experiments with various k values, such as561

c, log2(n), log2 n,
n
4 ,

n
3 ,

n
2 , where c is a constant,562

and n represents the number of view nodes. The563

value of c varies from 1 to 5, and we calculate the564
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Figure 4: The impact of different k on Restaurant
dataset.

average performance. We can see from Figure 4 565

that the average performance reaches its peak when 566

k equals log2(n). 567

5 Conclusion 568

Through efficient integration of diverse granularity 569

features, including dependency and constituent syn- 570

tactic, attention semantic, and external knowledge 571

graphs, EMGF demonstrates superior performance 572

compared to existing ABSA methods. This study 573

has tackled the persistent challenge of fully lever- 574

aging the combined potential of diverse granularity 575

features in the ABSA framework. EMGF effec- 576

tively captures complex interactions among these 577

features by employing multi-anchor triplet learn- 578

ing and orthogonal projection techniques, yielding 579

a cumulative effect without incurring additional 580

computational expenses. EMGF offers a scalable 581

and flexible framework for integrating a variety of 582

multi-granularity features in ABSA, thereby en- 583

hancing model performance. 584
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Limitations585

Although our research has achieved commendable586

results, there are limitations worth acknowledging.587

These limitations underscore areas for future im-588

provement and exploration. In this experiment, due589

to limited computational resources, we selected590

the top-k nodes as Anchor nodes in multi-anchor591

triplet learning. However, when we attempted to set592

the value of k to {log2 n, n4 ,
n
3 ,

n
2 } magnitude, we593

observed that the model training was excessively594

slow, and we had to adjust the magnitude of k to a595

smaller scale for experimentation. Finally, due to596

constraints in computational power and time, we597

were unable to explore larger model architectures598

or conduct extensive hyperparameter tuning. We599

hope that future research can address these limita-600

tions to enhance the reliability and applicability of601

the method we propose.602
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