
Towards Efficient and Expressive GNNs for Graph
Classification via Subgraph-aware Weisfeiler-Lehman

Zhaohui Wang
Institute of Computing Technology, CAS

University of Chinese Academy of Sciences
wangzhaohui18b@ict.ac.cn

Qi Cao
Institute of Computing Technology, CAS

caoqi@ict.ac.cn

Huawei Shen ∗

Institute of Computing Technology, CAS
University of Chinese Academy of Sciences

shenhuawei@ict.ac.cn

Bingbing Xu
Institute of Computing Technology, CAS

xubingbing@ict.ac.cn

Muhan Zhang ∗

Institute for Artificial Intelligence, Peking University
muhan@pku.edu.cn

Xueqi Cheng
Institute of Computing Technology, CAS

University of Chinese Academy of Sciences
cxq@ict.ac.cn

Abstract

The expressive power of GNNs is upper-bounded by the Weisfeiler-Lehman (WL)
test. To achieve GNNs with high expressiveness, researchers resort to subgraph-
based GNNs (WL/GNN on subgraphs), deploying GNNs on subgraphs centered
around each node to encode subgraphs instead of rooted subtrees like WL. However,
deploying multiple GNNs on subgraphs suffers from much higher computational
cost than deploying a single GNN on the whole graph, limiting its application to
large-size graphs. In this paper, we propose a novel paradigm, namely Subgraph-
aware WL (SaWL), to obtain graph representation that reaches subgraph-level
expressiveness with a single GNN. We prove that SaWL has beyond-WL capability
for graph isomorphism testing, while sharing similar runtime to WL. To generalize
SaWL to graphs with continuous node features, we propose a neural version named
Subgraph-aware GNN (SaGNN) to learn graph representation. Both SaWL and
SaGNN are more expressive than 1-WL while having similar computational cost to
1-WL/GNN, without causing much higher complexity like other more expressive
GNNs. Experimental results on several benchmark datasets demonstrate that fast
SaWL and SaGNN significantly outperform competitive baseline methods on the
task of graph classification, while achieving high efficiency.

1 Introduction

Graph-structured data widely exist in the real world, and modeling graphs has become an important
topic in the field of machine learning. Graph learning has widespread applications [1–3], and many
valuable applications can be formulated as graph classification, e.g., molecular property prediction [4],
drug toxicity prediction [5]. Graph classification aims to predict the label of the given graph by
exploiting graph structure and feature information. Learning expressive representations of graphs is
crucial for classifying graphs of different structural characteristics.

∗Corresponding authors

Z. Wang et al., Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-
Lehman. Proceedings of the First Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event,
December 9–12, 2022.

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Figure 1: (a) WL encodes nodes by rooted subtrees, which has limited expressiveness. (b) WL/GNN
on Subgraphs paradigm extracts rooted subgraphs and applies GNNs on each rooted subgraph, which
is computationally expensive. (c) Our Subgraph-aware WL/GNN applies WL/GNN on the full
graph and then encodes rooted subgraphs by aggregating nodes within the subgraph. The proposed
paradigm possesses higher expressive power than 1-WL while keeping the computational cost low.

Recently, Graph Neural Networks (GNNs) have achieved great success in graph classification tasks [6–
8]. GNNs that follow a message passing scheme first iteratively aggregate neighbor information
to update node representations, then pool node representations into graph-level representations [9].
Essentially, GNNs are parameterized generalizations of the 1-dimensional Weisfeiler-Lehman algo-
rithm (1-WL) [10], which encodes each node by its rooted subtree pattern [11], as shown in Figure 1
(a). Despite the success of traditional message passing GNNs, the expressive power of GNNs is
theoretically upper-bounded by 1-WL, which is known to have limited power in distinguishing many
non-isomorphic graphs [12–14].

To uplift the expressive power of GNNs, researchers adopt a paradigm of WL/GNN on subgraphs
(Figure 1 (b)), which encodes rooted subgraphs instead of rooted subtrees as node representations [15–
17]. Methods under the paradigm first extract rooted subgraphs (i.e., subgraph induced by the
neighbor nodes within h hops of a center node), and then apply GNNs on each extracted subgraph
respectively. However, as GNNs are applied to subgraphs extracted from each node of the graph, the
computational cost of these methods is much higher than that of traditional message passing GNNs,
especially when the subgraphs have similar sizes to the whole graph.

In this paper, we propose a novel paradigm of Subgraph-aware WL/GNN (SaWL), which reaches
higher expressiveness than 1-WL with a single GNN (Figure 1 (c)). It first deploys WL/GNN on
the full graph to obtain node representations, and then aggregates the nodes within each subgraph
to achieve subgraph awareness. The proposed paradigm greatly reduces the computational cost of
existing WL-on-subgraph methods, while achieving higher expressive power than 1-WL. Under
the paradigm, we propose an algorithm as fast implementation of SaWL, which consists of a WL
encoder and a subgraph operator (S operator). We first apply a standard WL on the full graph to
iteratively update each node label based on its current label and the labels of its neighbors [18]. After
h-th iteration of WL, we use the S operator to encode the h-hop rooted subgraph of each node by
aggregating the current labels of nodes within the subgraph. The whole graph feature mapping at this
iteration is obtained further by pooling the subgraph feature mapping. Finally, we concatenate graph
feature mappings at different iterations into a final graph feature mapping for graph classification.
We then generalize SaWL to a neural version, Subgraph-aware GNN (SaGNN).

Compared to the paradigm of WL/GNN-on-subgraphs, the proposed Subgraph-aware WL/GNN does
not need to copy a full n-node graph into n subgraphs (each rooted at a node) and run WL/GNN
on each subgraph separately (thus the same node can have multiple representations when appearing
in different subgraphs). Instead, Subgraph-aware WL/GNN only runs WL/GNN on the full graph
and encodes subgraph information based on the “global” WL/GNN node representations. It encodes

2

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

the subgraph information while avoiding the need to apply WL/GNN on each extracted subgraph
respectively, which improves the expressiveness and keeps low computational cost at the same time.

We evaluate the effectiveness of the proposed fast SaWL and SaGNN on graph classification tasks
via several benchmark datasets. We then conduct the expressive power evaluation and running time
comparison to verify the high effectiveness and high efficiency of our methods.

2 Preliminary
2.1 Weisfeiler-Lehman and Feature Mapping

Weisfeiler-Lehman (1-WL) [10] is one of the most widely used algorithms which can tackle graph
isomorphism testing for a broad class of graphs [19, 20]. Specifically, 1-WL proceeds in iterations de-
noted by h, and each iteration includes multisets determination, injective mapping and relabeling [18].
Given two graphs G and H , firstly, WL aggregates the labels of neighbor nodes as a multiset Mh

v .
For h = 0, M0

v = l0v , and for h > 0, Mh
v = {{lh−1

u |u ∈ N (v)}}, where lhv is the label of node v in the
h-th iteration, N (v) denotes the neighbor nodes of v and {{}} denotes a multiset. Note that multiset is
a generalized set that allows repeated elements [13]. Then, an injective function is required to update
the label of node, lhv := HASH

((
lh−1
v ,Mh

v

))
. The procedures repeat until the multisets of node

labels of two graphs differ, the number of iterations reaches a predetermined value, or the node labels
do not change in one iteration. The feature mapping of the whole graph can be obtained by mapping
multisets after each iteration. Although 1-WL works well in testing isomorphism on many graphs,
the distinguishing power of the 1-WL is limited [12, 21].

2.2 Graph Neural Networks

Traditional message passing Graph Neural Networks (GNNs) follow an aggregation and update
scheme, which can be viewed as the neural implementation of the 1-WL [13, 22]. Nodes aggregate
features of neighbor nodes, combine them with its features and update to new representations:

hk
v = UPDATE

(
hk−1
v ,AGGREGATE

(
hk−1
u |u ∈ N (v)

))
, (1)

where the UPDATE and AGGREGATE functions are implemented with neural networks. Then, the
whole graph representation can be computed by a pooling/readout operation like sum [23–25]:

hk(G) = READOUT
(
hk
v |v ∈ V(G)

)
. (2)

GNNs have been popular architectures for representation learning on graphs. However, it has been
proved that the expressive power of message passing GNNs is upper bounded by the 1-WL algorithm
[13, 14], which limits the performance on graph classification tasks.

3 Subgraph-aware Weisfeiler-Lehman
We propose a new paradigm of Subgraph-aware Weisfeiler-Lehman (SaWL), which exceeds the
expressive power of 1-WL while keeping low computational complexity. The paradigm first iteratively
applies WL/GNN to the original input graph. With the obtained node representations at each iteration,
the paradigm encodes each rooted subgraph by hashing the node representations within its range.
Then, the subgraph representations are pooled to obtain the whole graph representation.

3.1 SaWL for Graph Classification

SaWL consists of a WL encoder, a subgraph encoding operator (the S operator) and a graph feature
mapping module. For graph G, the WL encoder executes normal WL steps described in section 2.1,
which outputs the updated node labels {lhv |v ∈ V(G)}, where lhv is the label of node v in the h-th
iteration. The core of the proposed SaWL lies in the additional S operator, which encodes subgraph
information with the results of each WL iteration. We describe the S operator in the following.

S operator. We employ an injective hash function that acts on labels of nodes within the subgraph
to encode the subgraph information into a subgraph feature mapping:

ϕ(h)
(
Gh

v

)
= HASH

(
{{lhv |v ∈ V(Gh

v)}}
)
, (3)

3

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Figure 2: Illustration of the fast SaWL. Colored numbers denote node labels. In (b), (c), (e) and (f),
neighbor nodes are aggregated as multiset and compressed to updated labels (the same as 1-WL).
In (d) and (g), the S operator encodes each rooted subgraph into a feature mapping. After the 2nd
iteration, the feature mapping of G2

v1 is no longer equal to that of H2
u1

, so that graph G and H can be
discriminated by SaWL (but not by 1-WL).

where Gh
v is the h-hop rooted subgraph around node v. The hash function can be designed freely.

Essentially, the S operator encodes the multiset of node labels within Gh
v (obtained by running h

iterations of WL on the full graph) into a subgraph representation.

Graph Feature Mapping Module. With the subgraph feature mapping, an injective readout
function is adopted to obtain the whole graph feature mapping in the h-th iteration, i.e.,

ψ(h)(G) = READOUT
(
ϕ(h)(Gh

v)|v ∈ V(G)
)
. (4)

The readout function can be chosen freely. To retain the structural information at all
iterations, the final graph feature mapping is obtained by concatenation, i.e., ψ(G) =
CONCAT

(
ψ(0)(G),ψ(1)(G), ...,ψ(H)(G)

)
, where H is the maximum iteration number.

Discussion. Compared to plain WL, which directly uses node labels at h-th iteration to obtain the
graph representation, SaWL additionally uses the multiset of labels of node v’s neighbors within
h-hop to enhance WL with subgraph information. To understand SaWL’s benefits over plain WL,
from one point of view, SaWL encodes the node-subgraph-graph hierarchy instead of the node-graph
hierarchy of WL, which better captures the hierarchical structural characteristics of the graph. From
another point of view, plain WL encodes a node by its rooted subtree pattern, which can have repeated
nodes. The repetitions of the same node are regarded as distinct nodes, and the actual number of nodes
in the subtree pattern might be corrupted. The hash function in the S operator further characterizes
the information of the actual number of nodes in the subgraph (which also equals the actual number
of nodes in the subtree pattern, because the subgraph Gh

v does not have repeated nodes).

3.2 A Fast Implementation of SaWL

To illustrate the idea of SaWL, we provide a particular implementation here named fast SaWL.
For the S operator, we design HASH function as a counting mapping that counts the occurrence of
different node labels in the subgraph. Then, we adopt sum pooling as the READOUT function to
obtain the whole graph feature mapping.

Definition 1 (Counting mapping). Let Lh ⊆ L denote the set of node labels that occur at least
once in the h-th iteration. Lh = {ℓh1 , ℓh2 , ..., ℓh|Lh|} and we assume that Lh is ordered. Assume
Gh

v ∈ G, where G is the complete graph space. For each iteration h, we define a counting mapping

4

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

ch : G × Lh → N, where ch(Gh
v , ℓ

h
i) is the number of the occurrences of the i-th node label ℓhi in

subgraph Gh
v at the h-th iteration.

With counting mapping, the feature mapping of the subgraph Gh
v can be obtained by ϕ(h)(Gh

v) =(
ch(G

h
v , ℓ

h
1), ..., ch(G

h
v , ℓ

h
|Lh|)

)
, where the value of the i-th position of the vector represents the

occurrence number of label ℓhi in the h-th iteration. Essentially, the S operator encodes subgraph by
mapping the multiset of node labels within the subgraph to a vector, recording the occurrence number
of each label. Then, the whole graph feature mapping is obtained by applying sum pooling to the
subgraph feature mappings. Although the sum pooling is not an injective readout function, as we will
show, it allows fast computation (acceleration) via an implementation trick.

Illustration. We illustrate the fast SaWL in Figure 2. Given two graphs G and H where colored
numbers indicate node labels. The WL encoder of fast SaWL updates node labels in (b), (c), (e) and (f).
S operator encodes rooted subgraphs, and we take two rooted subgraphs as examples in Figure 2(g).
The feature mapping of the subgraph G2

v1 in the 2nd iteration is ϕ(2)(G2
v1) = (3, 2), which means the

label 4 occurs three times and label 5 occurs twice in the subgraph. Then the subgraphs are pooled
to obtain the graph feature mapping in the 2nd iteration, e.g., for graph G, ψ(2)(G) = ϕ(2)

(
G2

v1

)
+

ϕ(2)
(
G2

v2

)
+ ...+ ϕ(2)

(
G2

v6

)
= (20, 12). And for graph H , ψ(2)(H) = (16, 12). Finally, the whole

graph feature mappings are ψ(G) = (4, 2, 12, 8, 20, 12), and ψ(H) = (4, 2, 12, 8, 16, 12). The graph
G and H cannot be discriminated by 1-WL, but they can be discriminated by our fast SaWL.

Figure 3: u1 contributes to the fea-
ture mappings of rooted subgraphs of
u1, u2, u3, u4. The contribution number
equals the size of rooted subgraph H(2)

u1 .

Acceleration. In fast SaWL, the calculation of the S
operator can be executed simultaneously with the WL
encoder, which reduces the computational time. Since
the subgraph feature mappings are summed as the whole
graph feature mapping, the frequency of one node con-
tributing to the whole graph feature mapping is equal to
the number of occurrences of this node in all h-hop rooted
subgraphs. We use graph H (adapted from Figure 2(f))
as an example. In Figure 3(a), each tuple (a, b) repre-
sents the feature mapping of the node’s rooted subgraph.
The whole graph feature mapping can be computed by
summing all subgraphs’ feature mappings: ψ(2)(H) =
(2, 2) + ... + (4, 2) + ... + (2, 2) = (16, 12). However,
we can actually compute the whole graph feature mapping
from a global perspective. E.g., node u1 contributes to the
2-hop rooted subgraphs of nodes u1, u2, u3, u4. And the
number of u1’s contributions to the whole graph feature mapping is exactly the size of node u1’s
2-hop rooted subgraph, i.e., |V(H(2)

u1)| = 4. Similarly, we mark each node’s contribution number
beside it in Figure 3(b). The whole graph feature mapping can be alternatively computed by summing
the contribution numbers for each label dimension, i.e., ψ(2)(H) = (4+4+4+4, 6+6) = (16, 12).
The sizes of rooted subgraphs can be computed together in the multiset determination of WL running
on the original graph by propagating node label and ID simultaneously. We present the steps of the
accelerating version of the fast SaWL for graph classification in Algorithm 1 of the Appendix. We
additionally detail how to use the version for graph isomorphism testing in Appendix A.7.

3.3 The Expressive Power of SaWL

We first analyze the expressive power of SaWL by comparing it with 1-WL. Once the graphs can be
discriminated by 1-WL, they can be discriminated by SaWL as well.

Proposition 1. Given two graphs G and H , if they can be distinguished by 1-WL, i.e., ϕ(h)(G) ̸=
ϕ(h)(H), then they must be distinguished by the SaWL, i.e., ψ(h)(G) ̸= ψ(h)(H).

See Appendix A.2 for proof. If the graph pair can be discriminated by 1-WL, the counting mappings
of the whole graphs are different. There must exist subgraphs with different counting mappings in the
graph pair. Therefore, the final feature mappings of the two graphs obtained by SaWL are different.

5

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Proposition 2. We denote a multiset for graphs G as Mh
G, where the elements are multisets of

labels of nodes within h-hop subgraphs, i.e., Mh
G = {{{{lhp |p ∈ V(Gh

v)}}|v ∈ V(G)}}. For graphs G
and H , if Mh

G ̸=Mh
H , then the two graphs can be distinguished by the h-layer SaWL.

In SaWL, S operator encodes a subgraph by hashing the labels of nodes within the subgraph. Then
an injective readout function is applied to subgraphs around each node in the graph to obtain the final
graph feature mapping. Once any element of multisets Mh

G and Mh
H are different, the two graphs can

be distinguished by SaWL. We provide a detailed explanation in Appendix A.3.

Theorem 1. The expressive power of SaWL is higher than that of 1-WL in distinguishing graphs.

As proved in Proposition 1, once the graphs can be discriminated by 1-WL, they must be discriminated
by SaWL. There are also many graphs that can be discriminated by SaWL, but not by 1-WL, e.g.,
graphs G and H in Figures 2, we provide more examples in Appendix A.4. To sum up, the expressive
power of SaWL is strictly higher than that of 1-WL. According to recent research on subgraph
GNNs [26], SaWL’s k-hop subgraph selection and encoding scheme can be implemented by 3-order
Invariant Graph Networks (3-IGNs), whose expressive power is bounded by 3-WL [27]. Thus,
SaWL’s expressive power is also bounded by 3-WL.

3.4 Complexity

We analyze the computational complexity of the fast SaWL and the corresponding accelerating
version respectively. Given the graph G with node number N , average node degree D and edge
number M , where M = ND. We assume the average node number of the subgraphs is n. For the
fast SaWL, the multiset determination, the label compression and relabeling in the WL encoder take
a total runtime of O(ND) [18]. In the S operator, the feature mapping computing of one subgraph
with n nodes takes O(n), and that of the N subgraphs takes O(Nn). To sum up, the time complexity
is O(ND) +O(Nn). For the accelerating version, the S operator can be executed simultaneously
with the multiset determination of the WL encoder. Specifically, determining the label multisets and
identity sets for all nodes takes O(ND) operations which can be accomplished simultaneously. The
runtime of the identity set can be achieved by using a hash table. Therefore, the total time complexity
of the accelerating version is O(ND), which equals that of 1-WL algorithm [18].

4 Subgraph-aware Graph Neural Network
In order to generalize SaWL to scenarios with continuous features, we propose a neural version of
SaWL, namely Subgraph-aware GNN (SaGNN). Each component in the SaWL is replaced with a
neural network in SaGNN.

Model. The neural version SaGNN includes two components: the GNN encoder and the S operator.
Any standard neural version of the 1-WL algorithm can be utilized as the GNN encoder. Given input
graphs, GNN encoder updates nodes with its previous state and representations of neighbor nodes
(Eq. 1). Specifically, we adopt GIN with ϵ = 0 to obtain the node representations in the k-th layer,
i.e., h(k)

v = MLP(k)
(
h
(k−1)
v +

∑
u∈N (v) h

(k−1)
u

)
, where N (v) denotes the neighbors of node v,

and h(k)
v ∈ RN×D1 , D1 is the feature dimension. In each layer, node representations are updated by

the GNN encoder applied to the full graph.

With the updated node representations, S operator in SaGNN are designed to further encode k-hop
subgraphs around each node, which provides extra expressive power beyond plain GNN. An injective
function is utilized for encoding subgraph information by aggregating nodes within the subgraph
(Eq. 3). In this paper, we adopt MLP with SUM as the hash function, as given the input from the
countable space, the combination achieves injective [13]. The representation of the subgraph around
node v is obtained by h(k)

s,v = MLP
(∑

q∈V(Gk
v)
h
(k)
q

)
.

Then, graph representations in the k-th layer are calculated with a readout (pooling) function (Eq. 4).
In SaGNN, we adopt sum pooling as the readout function, i.e.,H(k)(G) = SUM

(
h
(k)
s,v |v ∈ V (G)

)
.

Then the representations of graph G in all layers are concatenated as the final graph representation,
i.e.,H(G) = CONCAT

(
H(1)(G),H(2)(G), ...,H(k)(G)

)
, andH(G) ∈ RD1∗k.

6

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Discussion. Since the SaGNN is the neural version of SaWL, and the SaWL have been shown to
be more expressive than 1-WL, the expressive power of SaGNN is higher than that of 1-WL. The
computational complexity of SaGNN is also the same as the fast SaWL, which is O(ND +Nn).
Besides, both the proposed SaGNN and the existing methods of WL-on-subgraph paradigm [15–17]
intend to uplift GNNs by encoding subgraphs. However, methods of WL-on-subgraph paradigm bring
high computational cost by extracting rooted subgraphs and applying multiple GNNs. Instead, SaGNN
encodes rooted subgraphs with the nodes updated in full graphs, which keeps the computational cost
low. We present a detailed comparison in Appendix A.5.

5 Experiments

In this section, we first evaluate the effectiveness of the proposed methods on graph classification
tasks. Then we conduct experiments to verify the expressiveness and efficiency of our methods.

5.1 Datasets

In the tasks of graph classification, we evaluate fast SaWL and SaGNN with seven datasets, including
TU datasets [28], and Open Graph Benchmark (OGB) dataset [29]. Graphs in these datasets represent
chemical molecules, nodes represent atoms, and edges represent chemical bonds. TU datasets
include MUTAG [30], PTC_MR [31], Mutagenicity [32], NCI1 [33] and NCI109 [33]. The task is
binary classification, and the metric is classification accuracy. Task on OGB dataset ogbg-molhiv is
molecular prediction with metric of ROC-AUC. We evaluate the expressiveness of our methods on
the EXP [34], CSL [35] and SR25 datasets [36], which are three synthetic datasets containing 1-WL
indistinguishable regular graphs. We provide more description of the datasets in Appendix A.6.

5.2 Baselines

In the experiment of the graph classification task on TU, we adopt three graph kernel methods, some
GNNs methods based on the 1-WL, and some methods with higher expressive power than 1-WL as
baselines. Graph kernel methods include shortest path kernel [37], WL subtree kernel [18] and deep
graph kernel [38]. GNNs methods based on the 1-WL include GCN [22], GIN [13], Diffpool [25], and
Sortpool [39]. For GCN, graph representations are obtained by the learned nodes representations and
sum pooling. Higher expressive methods include 1-2-3 GNN [14], 3-hop GNN [17] Nested GNN [15]
and GraphSNN [40]. On OGB dataset, we compare with the traditional message passing GNNs, and
the higher expressive methods Deep LRP-1-3 [41], Nested GNN [15] and GIN-AK+ [16]. Results of
baselines are obtained either from raw paper or source code with published experimental settings ("-"
indicates that results are not available). For GCN and GIN, we search the model layer in {2, 3, 4, 5},
and hidden dimensions in {32, 64, 128}. For Nested GNN, we choose the best-performing Nested
GIN as the baseline according to the results in the original paper. And the results on the datasets
Mutagenicity, NCI and NCI109, we search the subgraph height in {2, 3, 4, 5} with 4 model layers.

5.3 Experimental Setup

For fast SaWL and SaGNN, we adopt multilayer perceptrons (MLPs) with softmax as the classifier to
predict the class label of the graph. We also take our SaWL with linear SVM as a graph kernel method
named SaWL Kernel to compare with existing graph kernel methods. On the TU datasets, we perform
10-fold cross-validation where 9 folds for training, 1 fold for testing. 10% split of the training set
is used for model selection [42]. We report the average and standard deviation (in percentage) of
test accuracy across the 10 folds. We train the models with batch size 32. On the OGB dataset, the
experiments are conducted 10 times, and the average scores of ROC-AUC are reported. We train the
models with batch size 256. For all datasets, we implement experiments with PyTorch and employ
Adam optimizer with the learning rate of 0.001 to optimize the model. We search the iteration times
of our methods in {2, 3, 4}. In the training process, we adopt the early stopping strategy with patience
30, and we report the test results at the epoch of best validation. The experimental setups of the
expressive power evaluation on the EXP, CSL and SR25 are kept the same with [34–36]. We run all
the experiments with Nvidia V100 GPUs.

7

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

Table 1: 10-Fold Cross Validation average test accuracy (%) on TU datasets.

Methods MUTAG PTC_MR Mutagenicity NCI1 NCI109

SP kernel 87.28± 0.55 58.24± 2.44 71.63± 2.19 73.47± 0.21 73.07± 0.11
WL kernel 82.05± 0.36 57.97± 0.49 - 82.19± 0.18 82.46± 0.24
DGK 87.44± 2.72 60.08± 2.55 - 73.55± 0.51 73.26± 0.26

GCN 78.69± 6.56 66.73± 4.65 80.84± 1.35 78.39± 1.79 77.57± 1.79
GIN 81.51± 8.47 54.09± 6.20 77.70± 2.50 80.0± 1.40 70.20± 3.21
Diffpool 80.00± 6.98 57.14± 7.11 80.55± 1.98 78.88± 3.05 76.76± 2.38
SortPool 85.83± 1.66 58.59± 2.47 80.41± 1.02 74.44± 0.47 -

1-2-3-GNN 86.10± 0.0 60.9± 0.0 - 76.2± 0.0 -
3-hop GNN 87.56± 0.72 - - 80.61± 0.34 -
Nested GIN 87.90± 8.20 54.1± 7.70 82.40± 2.00 78.60± 2.30 77.20± 2.90
GraphSNN 91.57± 2.80 66.70± 3.70 - 81.60± 2.80 -

SaWL Kernel 87.31± 7.04 63.40± 7.30 81.05± 1.96 83.80± 1.80 82.48± 2.54
fast SaWL 90.00± 3.89 70.33± 5.32 84.32± 1.48 84.45± 0.66 85.37± 0.81
SaGNN 88.81± 5.21 71.78± 4.43 84.13± 1.31 83.78± 1.03 83.35± 0.56

Table 2: Performance Evaluation on OGB dataset.

Methods ogbg-molhiv (AUC)
Validation Test

GCN [22] 82.04± 1.41 76.06± 0.97
GIN [13] 82.32± 0.90 75.58± 1.40
Deep LRP-1-3 [41] 81.31± 0.88 76.87± 1.80
Nested GNN [15] 83.17± 1.99 78.34± 1.86
GIN-AK+ [16] - 79.61± 1.19

fast SaWL 79.13± 0.69 78.29± 0.48
SaGNN 81.06± 1.14 78.86± 0.73

Table 3: Evaluation of Expressiveness.

Methods EXP (ACC) CSL (ACC) SR25 (ACC)

GCN [22] 50.0± 0.00 10.0± 0.00 6.67
GIN [13] 50.0± 0.00 10.0± 0.00 6.67
GCN-RNI [34] 98.0± 1.85 16.0± 0.00 6.67
PPGN [43] 100.0 ±0.00 - 6.67
3-GCN [14] 99.7± 0.004 95.70± 14.85 6.67
Nested GNN [15] 99.9± 0.26 - 6.67
GIN-AK+ [16] 100.0±0.00 - 6.67

fast SaWL 99.50± 0.70 80.67± 8.04 6.67
SaGNN 99.67± 0.70 84.67± 10.45 6.67

5.4 Effectiveness Evaluation

Performance on Graph Classification Task. Results of the graph classification on TU and OGB
datasets are shown in Tables 1, 2. On TU datasets, our SaWL kernel gains strong improvements
compared with graph kernel methods and traditional GNNs based on 1-WL. Especially, SaWL
kernel achieves better performance than WL subtree kernel on all TU datasets and it outperforms
WL subtree kernel by more than 10% in accuracy on Mutagenicity, NCI1 and NCI109, which
proves the effectiveness of the S operator experimentally. It verifies that the augmented subgraph
information on the basis of the subtree pattern enhances the expressive power of our model in the
graph classification task. For methods with higher expressive power than traditional message passing
GNNs, i.e., 1-2-3-GNN, 3-hop GNN, Nested GNN and GraphSNN, our fast SaWL and SaGNN
still outperform the methods on most TU datasets. Especially, our fast SaWL gains such progress
with low computational cost. On the larger-scale OGB dataset, our methods achieve comparable
performance at a lower cost compared with other highly expressive methods. We adopt GIN as the
GNN encoder in SaGNN. And the improvements compared to GIN verify the effectiveness of the S
operator, which provides additional subgraph information and improves the distinguishing power in
graph classification. The neural version SaGNN achieves slightly lower performance than fast SaWL
on some small-scale datasets, which may be because the neural model is not sufficiently trained with
insufficient training data. On the larger-scale OGB dataset, the neural version SaGNN achieves better
results than fast SaWL with sufficient training. In summary, the proposed fast SaWL and SaGNN
achieve improvement compared with competitive baselines in the graph classification task.

Expressive Power Evaluation. We first evaluate the expressiveness on the EXP, CSL and SR25
datasets, and then show some cases of graph isomorphism testing in Appendix A.7. Results of
empirical evaluation are shown in Table 3, and some results of baselines are from [34, 44]. Each pair
of graphs in the three datasets is non-isomorphic and 1-WL indistinguishable, and the results of GCN
and GIN verify this. We adopt five methods with high expressive power as baselines [14–16, 34, 43].
On EXP, our fast SaWL and SaGNN consistently achieve very high accuracy, which can distinguish
nearly all graph pairs. The results are comparable with the k-GNNs [14, 43] and Nested GNN [15],
which are more computationally complex. On CSL, our methods significantly outperform 1-WL
based GNNs and are lower than 3-GCN. The results verify the high distinguishing power of fast

8

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

SaWL and SaGNN, which have been stated theoretically. Strongly regular graphs in SR25 are 3-WL
equivalent [45] and cannot be distinguished by the methods in Table 3.

5.5 Efficiency Evaluation

We compare the running time of the proposed methods with baselines to verify the high efficiency
in practice. Our fast SaWL has higher discriminating power than 1-WL, while the accelerating
version of the fast SaWL has the same time complexity as 1-WL, which have been demonstrated
in section 3.4. We record the running time of fast SaWL and 1-WL in obtaining feature mappings
of all graphs in four datasets respectively. The average running time with ten runs are shown in
Tabel 4. The running time of fast SaWL is similar to that of 1-WL. The time difference is less than 0.5
seconds on the TU dataset and less than 3 seconds on the ogbg-molhiv, which contains 41127 graphs.

Table 4: Runtime Comparison of fast SaWL with 1-WL on
Graph Feature Mapping Computation (second).

Methods Mutagenicity NCI1 NCI109 ogbg-molhiv

1-WL 4.90± 0.23 4.69± 0.16 4.73± 0.20 112.25± 0.68
fast SaWL 4.99± 0.22 4.81± 0.20 4.96± 0.20 115.11± 0.71

We further conduct the t-test as a sig-
nificance test. The p-value is 0.8413,
and 0.8413 > 0.05. The experimental
results demonstrate that there is no sig-
nificant difference in the running time
of fast SaWL and 1-WL on graph fea-
ture mapping computation, which is
consistent with the theoretical analysis.

Figure 4: Training Time Comparison of SaGNN with
Method of the WL-on-subgraph paradigm.

For SaGNN, we compare the run-
ning time with an example method of
the WL-on-subgraph paradigm, i.e.,
Nested GNN (NGNN) [15]. Results
are shown in Figure 4. For a fair
comparison, we set the model layer
and hidden dimension the same. On
TU datasets, the running time of the
Nested GNN is more than three times
that of SaGNN. On the ogbg-molhiv
dataset (abbreviated as ogb in Fig-
ure 4), we compare the epoch time
and the whole training time. The run-
ning time of the Nested GNN is more
than eight times that of SaGNN on
both each epoch and the whole train-
ing process, e.g., the average training
time of Nested GNN on an epoch is
134.91 seconds, and that of SaGNN is 9.71 seconds, the whole training time of Nested GNN is 10331
seconds and that of SaGNN is 1206 seconds. We also test GNN-AK without subgraph sampling
modules on ogbg-molhiv. The whole training time is 6100 seconds, which is five times that of SaGNN.
The time comparison empirically demonstrates that our SaGNN is significantly more efficient than
methods of the WL-on-subgraph paradigm and has a better generalization to large-scale graphs.

6 Related Works

Graph classification is an important task with many valuable downstream applications, such as chem-
ical molecular property prediction [46] and pharmaceutical drug research [2]. Graph classification
aims to predict the labels of given graphs by utilizing graph structure and feature information.

Graph kernels. Historically, graph kernels have been the dominant approaches for graph classifica-
tion. Graph kernels first decompose the graph into different substructures, e.g., path, graphlet, and
subtree. Then kernel matrix of graphs is calculated by implicit way with kernel functions or explicit
way with graph feature mappings. Finally, kernel matrix is sent to kernel machine to obtain the
predicted labels of graphs. Typical graph kernel methods include shortest path kernel [37], random
walk graph kernel [47], graphlet kernel [48], and WL subtree kernel [18]. However, graph kernel
methods have limitations in graph classification due to heuristic feature extraction.

9

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

GNNs based on 1-WL algorithm. Recently, Graph Neural Networks (GNNs) have been popular
methods for graph classification, which made a great success [39, 49]. These methods can be viewed
as the neural implementation of the 1-WL [13, 22], which first updates node representations by
aggregating neighbor nodes, and then pools the nodes to obtain the graph representation. Many
pooling strategies have been proposed for graph classification [23, 25, 50]. However, it has been
proved that the expressive power of traditional GNNs based on 1-WL is at most as large as 1-WL
[13, 14], which limits the performance of GNN-pooling methods on the graph classification task.

High Expressive GNNs. The expressiveness of GNNs is a key research topic in graph machine
learning. Many approaches with higher expressive power than 1-WL have been proposed, includ-
ing high-dimension WL based [14, 43], feature augmentation based [34, 51], subgraph encoding
based [15, 16, 52] and some equivariant models [26, 27, 53]. We provide a brief review here. (1) It’s
natural to build GNNs based on a high-dimensional WL algorithm for high expressive power, e.g.,
PPNG [43] based on the high-order graph networks, k-GNNs [14] based on the set k-WL algorithm.
However, high-dimensional WL algorithms require enumeration of the node tuples, which limits the
scalability and generalization with high computational cost. (2) Some researchers propose to improve
the expressive power of GNN by adding additional features. They augment GNNs by concatenating
pre-extracted sub-structural information or random features as additional node features [34, 41, 54].
For example, Graph Structure Networks (GSN) [54] encodes structural information in the additional
preprocessing stage by counting the appearance of certain substructures as the structural feature vector.
Then the structural features are utilized in message passing. GCN-RNI [34] enhances GNNs with ran-
dom node initialization. rGINs [51] concatenates random features with node features and then applies
GINs on the combined features. However, such additional feature augmentation-based methods limit
the generalization ability of the methods. (3) Many existing subgraph-based methods first extract
subgraphs centered on each node of graphs, then apply GNNs on the extracted subgraphs [15, 16].
E.g., Nested GNN [15] implements base GNN on the extracted subgraphs then obtains the whole
graph representations by a global pooling. These methods can be summarized as WL-on-subgraph
paradigm (Figure 1 (b)), and the computational cost are much higher than 1-WL, which limits their
application to the large scale graphs. We provide more related works in Appendix A.9.

7 Conclusion

The traditional message passing graph neural networks (GNNs) are at most as powerful as 1-WL
test. Since the representative power of the subgraph is higher than that of the subtree, methods of the
WL-on-subgraph paradigm are proposed to improve GNNs, which brings expensive computational
cost. As a contrast, we propose a subgraph-aware WL (SaWL) paradigm in this paper, which uplifts
GNNs and keeps computation complexity low. Under the paradigm, we first implement an algorithm
named fast SaWL, where the additional S operator encodes subgraph information on the basis of the
WL on the full graph. We then present the neural version of the SaWL named SaGNN, which replace
the components in SaWL with neural networks. SaWL and SaGNN are proved to be more expressive
than 1-WL, and have achieved significant improvements in the experiments.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable suggestions. This work is
funded by the National Natural Science Foundation of China under Grant Nos. U21B2046, 62272125,
and the National Key R&D Program of China (2020AAA0105200). Huawei Shen is also supported
by Beijing Academy of Artificial Intelligence (BAAI).

References
[1] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural

networks for social recommendation. In The world wide web conference, pages 417–426, 2019.
1

[2] T Gaudelet, B Day, AR Jamasb, J Soman, C Regep, G Liu, et al. Utilising graph machine
learning within drug discovery and development (2020). arXiv preprint arXiv:2012.05716,
2020. 9

10

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

[3] Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M Kim.
Fast and flexible protein design using deep graph neural networks. Cell systems, 11(4):402–411,
2020. 1

[4] Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen,
and Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular
property prediction. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 731–752, 2020. 1

[5] Lesong Wei, Xiucai Ye, Yuyang Xue, Tetsuya Sakurai, and Leyi Wei. Atse: a peptide toxicity
predictor by exploiting structural and evolutionary information based on graph neural network
and attention mechanism. Briefings in Bioinformatics, 22(5):bbab041, 2021. 1

[6] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 2

[7] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Comput-
ing graph neural networks: A survey from algorithms to accelerators. ACM Computing Surveys
(CSUR), 54(9):1–38, 2021.

[8] Yu Zhou, Haixia Zheng, Xin Huang, Shufeng Hao, Dengao Li, and Jumin Zhao. Graph neural
networks: Taxonomy, advances, and trends. ACM Transactions on Intelligent Systems and
Technology (TIST), 13(1):1–54, 2022. 2

[9] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning
(ICML), pages 1263–1272. PMLR, 2017. 2

[10] B. Y. Weisfeiler and A. A. Leman. A reduction of a graph to a canonical form and an algebra
arising during this reduction (in russian). 1968. 2, 3

[11] Brendan L Douglas. The weisfeiler-lehman method and graph isomorphism testing. arXiv
preprint arXiv:1101.5211, 2011. 2, 17

[12] Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020. 2, 3, 15

[13] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the Information Conference of Learning Representation (ICLR),
2018. 3, 6, 7, 8, 10

[14] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In AAAI conference on artificial intelligence, 2019. 2, 3, 7, 8, 10

[15] Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information
Processing Systems, 34, 2021. 2, 7, 8, 9, 10, 16

[16] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
gnn with local structure awareness. In Proceedings of the Information Conference of Learning
Representation (ICLR), 2021. 7, 8, 10, 16

[17] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195–205, 2020. 2, 7, 16, 18

[18] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011. 2, 3, 6, 7, 9, 18

[19] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):1–42, 2020. 3

[20] László Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In 20th
Annual Symposium on Foundations of Computer Science (sfcs 1979), pages 39–46. IEEE, 1979.
3

[21] Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory,
volume 47. Cambridge University Press, 2017. 3

11

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

[22] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proceedings of the Information Conference of Learning Representation (ICLR),
2017. 3, 7, 8, 10

[23] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International
Conference on Machine Learning (ICML), pages 3734–3743. PMLR, 2019. 3, 10

[24] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks
with eigenpooling. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 723–731, 2019.

[25] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems (NIPS), pages 4800–4810, 2018. 3, 7, 10

[26] Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. arXiv preprint arXiv:2206.11140,
2022. 6, 10

[27] Waïss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. In ICLR 2021, 2021. 6, 10

[28] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020. 7

[29] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020. 7

[30] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
medicinal chemistry, 34(2):786–797, 1991. 7

[31] Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma.
Statistical evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):
1183–1193, 2003. 7

[32] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for
mutagenicity prediction. Journal of medicinal chemistry, 48(1):312–320, 2005. 7, 18

[33] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14(3):347–375,
2008. 7

[34] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising
power of graph neural networks with random node initialization. In Proceedings of the Thirtieth
International Joint Conference on Artifical Intelligence (IJCAI), 2021. 7, 8, 10, 17

[35] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663–4673. PMLR, 2019. 7, 17, 18

[36] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and
Paul Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pages 599–608. PMLR, 2021. 7, 17

[37] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
International Conference on Data Mining (ICDM), pages 8–pp. IEEE, 2005. 7, 9

[38] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1365–1374,
2015. 7

[39] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Thirty-second AAAI conference on artificial intelligence,
2018. 7, 10

[40] Asiri Wijesinghe and Qing Wang. A new perspective on" how graph neural networks go beyond
weisfeiler-lehman?". In International Conference on Learning Representations, 2021. 7

12

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

[41] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020. 7,
8, 10, 18

[42] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. Proceedings of the Information Conference of
Learning Representation (ICLR), 2019. 7

[43] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pages 2156–2167, 2019. 8, 10

[44] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020. 8

[45] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. Journal of Computer and System
Sciences, 113:42–59, 2020. 9

[46] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas
Seidel, and Thierry Langer. A compact review of molecular property prediction with graph
neural networks. Drug Discovery Today: Technologies, 37:1–12, 2020. 9

[47] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201–1242, 2010. 9

[48] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics,
pages 488–495, 2009. 9

[49] Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for
graph classification. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pages 2091–2100, 2021. 10

[50] Haoteng Tang, Guixiang Ma, Lifang He, Heng Huang, and Liang Zhan. Commpool: An
interpretable graph pooling framework for hierarchical graph representation learning. Neural
Networks, 143:669–677, 2021. 10

[51] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),
pages 333–341. SIAM, 2021. 10

[52] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph
representations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021. 10

[53] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. In International Conference on Learning Representations, 2021. 10, 18

[54] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 10, 18

[55] Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. Advances in Neural Information Processing Systems,
2022. 18

13

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

A Appendix

A.1 Acceleration of the fast SaWL

The S operator in the fast SaWL (Section 3.2) can be calculated simultaneously with the WL encoder,
which leads to the accelerating version. The idea of the acceleration is illustrated in Figure 3, each
node contributes to the feature mappings of m rooted subgraphs, where m equals the size of rooted
subgraph centered in the node. The sizes of rooted subgraphs can be computed simultaneously with
the multiset determination of the WL encoder. We then present the steps of the accelerating version.

The accelerating version proceeds in iterations. Each iteration consists of five steps (Algorithm 1),
which are multisets determination, multisets sorting, label compression, relabeling and feature
mapping obtaining. Specifically, given two graphs G and G′, for node v, the label is denoted as lhv
and the identity is denoted as idv. In step 1, we aggregate the labels and identity sets of neighbor
nodes respectively. Node labels of neighbor nodes are aggregated as a multiset Mh

v . For h = 0,
M0

v = l0v, and for h > 0, Mh
v = {{lh−1

u |u ∈ N (v)}}, where N (v) denotes the neighbor nodes of
v and {{}} denotes a multiset. Identity sets of neighbor nodes are aggregated and combined with
the identity of the center node which forms a new set thv . For h = 0, t0v = {idv}, and for h > 0,
thv = {idv, idw|w ∈ th−1

u , u ∈ N (v)}. In step 2, each label multiset Mh
v is sorted and converted to

a string Sh
v with the prefix lh−1

v , which prepares for the label compression. In step 3, each string is
compressed to a new label with a hash function g :

∑
∗ →

∑
and g should be an injective function.

The mapping alphabet is shared across graphs, which guarantees a common feature space. In step 4,
we relabel each node in graph G and G′ as lhv := g(Sh

v).

We assume the minimum label in h-th iteration is lm. Then, in step 5, we compute the graph feature
mapping. The value of the i-th position (i starts from 0) of the feature mapping in layer h is:

ψ
(h)
i (G) =

∑
lhv=lm+i,v∈V

∣∣thv ∣∣ , (5)

which means the summation of the occurrences of label lm + i in all h-hop subgraphs. The final
graph feature mappings obtained by the fast SaWL and the accelerating version are equivalent. In the
accelerating version, the feature mappings of subgraphs do not require to be calculated separately,
which reduces the computational cost and speeds up the computation.

Algorithm 1 Accelerating version of fast SaWL for Graph Classification

Input: Node Labels (features) X; Adjacency Matrix A
for h = 1 to H do

1. Label multisets and identity sets determination
• Aggeregate labels of neighbor nodes centered in each node v in graph G as multiset Mh

v .
For h = 0, M0

v = l0v , and for h > 0, Mh
v = {{lh−1

u |u ∈ N (v)}}.
• Aggregate identity sets of neighbor nodes centered in each node v in graph G. Identity of

node v and elements in identity sets of neighbor nodes compose the new identity set. For
h = 0, t0v = {id(v)}, for h > 0, thv = {idv, idw|w ∈ th−1

u , u ∈ N (v)}.
2. Sorting labels in each label multiset
• Sort label elements in the label multiset in ascending order and concatenate them into a

string Sh
v .

• Add lh−1
v as a prefix to Sh

v .
3. Label compression
• Map each string Sh

v to a compressed label using a hash function g :
∑

∗ →
∑

such that
g(Sh

v) := g(Sh
w) if and only if Sh

v = Sh
w.

4. Relabeling
• Set lhv := g(Sh

v) for all nodes in the graph.
5. i-th position of graph feature mapping of h layer
• ψ

(h)
i (G) =

∑
lhv=lm+i,v∈V

∣∣thv ∣∣.
end for

Output: Graph Feature Vector ψ(G) =
[
ψ(0)(G), ..., ψ(H)(G)

]

14

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

A.2 Proof of Proposition 1

Proof. For graphs G and H , if they can be discriminated by 1-WL, there must exits a constant
h that ϕ(h)(G) ̸= ϕ(h)(H). Since ϕ(h)(G) = (ch(G, ℓ

h
1), ..., ch(G, ℓ

h
|Lh|)), there must exist a

ℓhi , such that ch(G, ℓhi) ̸= ch(H, ℓ
h
i). Then there must be different subgraphs in the two graphs

such that ch(Gh
v , ℓ

h
i) ̸= ch(H

h
u , ℓ

h
i), where Gh

v is a h-hop subgraph around node v of G. As a
result, the sets of subgraph feature mappings of graph G and H are not equal, i.e., {ϕ(Gh

v)|v ∈
V(G)} ≠ {ϕ(Hh

u)|u ∈ V(H)}. With the condition that READOUT is a injective function, we have
READOUT({ϕ(Gh

v)|v ∈ V (G)}) ̸= READOUT({ϕ(Hh
u)|u ∈ V(H)}), i.e., ψh(G) ̸= ψh(H).

In other words, the graph G and H can also be discriminated by the SaWL.

A.3 Explaination of Proposition 2

We further explain the Proposition 2 in section 3.3. For graphs G and H , if {{{{lhp |p ∈ V(Gh
v)}}|v ∈

V(G)}} ̸= {{{{lhq |q ∈ V(Gh
u)}}|u ∈ V(H)}}, then the two graphs can be distinguished by the h-layer

SaWL. Inner multisets {{lhp |p ∈ V(Gh
v)}} and {{lhq |q ∈ V(Gh

u)}} encode the subgraphs information
of graph G and H by S operator. Once any pair of the encoded subgraphs differs, readout function
can map the two graphs to different feature mappings. The graphs G and H can be distinguished by
SaWL.

We provide a simplified and specific version of Proposition 2. We assume the inner multisets encode
the subgraph information only with the number of nodes within the subgraph. We define the number
of h-shortest neighbors of each node as shv , which is the number of nodes with the exact shortest
distance h from the center node v. For graphs G and H , if {{shv |v ∈ V(G)}} ̸= {{shu|u ∈ V(H)}},
then the two graphs can be distinguished by the h-layer fast SaWL.

For graphs G and H , if {{shv |v ∈ V(G)}} ≠ {{shu|u ∈ V(H)}}, then the two graphs can be distin-
guished by the h-layer SaWL. shv is the number of nodes with the exact shortest distance h from
node v. When h = 1, if the numbers of 1-hop neighbor nodes are different in G and H , 1-WL
can discriminate the two graphs, i.e., ϕ(h)(G) ̸= ϕ(h)(H). According to Proposition 1, SaWL can
discriminate the graphs as well. Assume the numbers of 1-hop neighbor nodes are the same, when
h = 2, the number of nodes with the shortest distance 2 are different in G and H . Then the sizes
of 2-hop rooted subgraphs in G and H are different, which leads to the difference in the multisets
of rooted subgraphs in the two graphs. With the injective readout function, the final graph feature
mappings of the graph G and H are different. Similarly, assume the numbers of (h−1)-hop neighbor
nodes in two graphs are the same. Then if the numbers of h-shortest distance nodes in two graphs
are different, it results in the different multisets of rooted subgraphs and the different graph feature
mappings. Therefore, the graphs G and H can be discriminated by SaWL.

For a further intuitive understanding, we take the implemented algorithm of SaWL, i.e., fast SaWL,
as an example. From the perspective of the accelerating version, the size of the rooted subgraph
equals the contribution of the center nodes to the whole graph feature mapping (shown in Figure 3(b)).
Therefore, different sizes of rooted subgraphs directly lead to different feature mappings of the graph
G and H . The graphs can be discriminated by fast SaWL.

A.4 Graph Examples

In this subsection, we provide two classes of graphs that cannot be discriminated by WL [12], but
can be discriminated by the proposed SaWL. Note that the labels of all nodes in Figure 5 are the
same. SaWL can discriminate the graphs only by utilizing the graph structure, and the additional
label information of nodes can leave the discrimination easier.

The first class is k-regular graphs of the same size (Figure 5(b)-(f)). The 6-nodes 2-regular graph
in Figure 5(b), 8-nodes 3-regular graphs in Figure 5(c), 12-nodes 4-regular graphs in Figure 5(d)
and two pairs of circulant graphs in Figure 5(e), 5(f) can be discriminated by 2-layer SaWL. The
green nodes are center nodes, and the grey nodes are 2-hop neighbors of the green nodes. We take
Figure 5(c) as example. There are two 2-hop shortest neighbors of the green node in the left graph,
which are marked as grey. While for the green node in the right graph, the number of the 2-hop
shortest neighbor is three (grey nodes in the right graph). According to proposition 2 in section 3.3,
the left graph and the right graph can be discriminated by SaWL with two layers.

15

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

(a) non-regular graphs. (b) 6-nodes 2-regular graphs.

(c) 8-nodes 3-regular graphs. (d) 12-nodes 4-regular graphs.

(e) 11-circulant graph with 2, 3 skip links. (f) 12-circulant graph with 4, 5 skip links.

Figure 5: Graph pairs can discriminated by SaWL, but not WL.

For a more intuitive understanding, we present the feature mappings of graphs in Figure 5(c) with
1-WL and our fast SaWL. We assume the initial label of each node is 0. For 1-WL, the multiset
determination in the 1st and the 2nd iteration includes 0, 000 → 1; 1, 111 → 2. The feature mappings
of the graph in the left and right after the 2nd iteration are equal, i.e., ϕ(Gleft) = ϕ(Gright) =
(8, 8, 8). For our fast SaWL, the feature mapping of the graph in the left is ψ(Gleft) = (8, 32, 52),
while that of the right graph is ψ(Gright) = (8, 32, 56). The difference comes from the green node
and its equivalent nodes. In the left graph, label 2 occurs 52 times in all rooted subgraphs, and it
occurs 56 times in the rooted subgraphs of the right graph.

The second class includes some non-regular non-isomorphic graphs, e.g., Figure 5(a). The two graphs
are non-regular graphs, but WL cannot distinguish them. SaWL can discriminate the two graphs with
three layers. We take pink nodes as center nodes. For the left graph, there are three 3-hop shortest
neighbors of the pink node. While for the right graph, there exist two 3-hop shortest neighbors of the
pink node, which are marked as grey. Therefore, the two graphs can be distinguished by SaWL.

A.5 Comparison with WL-on-subgraphs methods

We discuss relations of the proposed methods of subgraph-aware WL (Figure 1(c)) paradigm with
other methods of WL-on-subgraph paradigm (Figure 1(b)). Methods of WL-on-subgraph paradigm
usually extract subgraphs around each node of the graph, then apply GNNs on each extracted
subgraph respectively, such as Nested GNN [15], GNN-AK [16] and k-hop GNN [17]. However,
the computation complexity of this paradigm is much higher than our proposed subgraph-aware WL
paradigm. Given a graph G with N nodes, the average degree of nodes is denoted as D, and the
average nodes number of subgraphs is denoted as n. Extracting k-hop subgraphs from each node

16

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

takes O(k · N · D). Applying GNNs on all extracted subgraphs takes O(N · n · D). Totally, the
computation cost is O(k ·N ·D+N · n ·D). Compared to high dimensional GNNs based on k-WL,
methods of WL-on-Subgraph paradigm reduce the computational cost. However, the complexity
is still much higher than that of 1-WL and our proposed methods. Essentially, Both the proposed
methods of subgraph-aware WL paradigm and the existing methods of WL-on-subgraph paradigm
intend to uplift GNNs by encoding subgraphs. However, the WL-on-subgraph methods apply GNNs
on all extracted subgraphs respectively, which brings high computational cost. As a contrast, our
subgraph-aware WL methods encode subgraphs while keeping the computational cost low.

A.6 Datasets Description

We provide statistics of the datasets utilized in graph classification tasks in table 5. We adopt
molecular datasets for evaluation, including TU datasets and OGB dataset. Nodes in these datasets
denote atoms, and the edges denote chemical bonds. To empirically evaluate the expressive power,
we adopted EXP [34], CSL [35] and SR25 datasets [36]. EXP contains 600 pair of non-isomorphic
graphs, which cannot be distinguished by 1-WL. The task is to classify the graphs to 2 classes.
CSL dataset [35] contains 150 4-regular graphs which cannot be distinguised by 1-WL. Each graph
contains 41 nodes with same degree 4 and 164 edges. The task is to classify the regular graphs to 10
isomorphism classes. SR25 dataset [36] contains 15 strongly regular graphs. Each graph contains 25
nodes and 300 edges. The task is to classify the regular graphs to 15 different isomorphism classes.
There’s no node feature and edge feature in these three datasets. The model needs to utilize purely
structural information to distinguish graphs.

Table 5: Statistics of datasets.

Dataset #Graphs #Positive #Avg.
Nodes

#Avg.
Edges

#Nodes
Types

MUTAG 188 125 17.9 19.8 7
PTC_MR 344 152 25.6 29.4 18
Mutagenicity 4337 2401 30.3 30.8 13
NCI1 4110 2057 29.9 32.3 37
NCI109 4127 2079 29.6 32.1 38
ogbg-molhiv 41127 1443 25.5 27.5 119

A.7 The Accelerating Version for graph isomorphism testing

The accelerating version of fast SaWL provided in Appendix A.1 can be utilized for the graph
isomorphism testing, which has the same time complexity as 1-WL, but higher discriminating power
than 1-WL. We first present the definition of the graph isomorphism testing, and then we explain the
steps and the termination condition of the accelerating version in the graph isomorphism testing.

Graph Isomorphism Testing. Given a graph G, V(G) and E(G) are the sets of nodes and edges
respectively. Two graphs G and H are isomorphic if there exists a bijection ξ between V(G) and
V(H). ξ : V(G) → V(H) and it preserves the edge relation, i.e., (u, v) ∈ E(G) if and only if
(ξ(u), ξ(v)) ∈ E(H) for all u, v ∈ V(G). Although the exact complexity of the graph isomorphism
problem is still uncertain, there are some efficient graph isomorphism algorithms [11].

The Accelerating Version of Fast SaWL for Graph Isomorphism Testing. When used for the
graph isomorphism testing, each iteration of the accelerating version consists of four steps, i.e., steps
1-4 of Algorithm 1. Given graphs G and H , the accelerating version terminates after iteration h if:

{(lhv , |thv |)|v ∈ V(G)} ≠ {(lhu, |thu|)|u ∈ V(H)}. (6)

lhv denotes the label of node v in the h-th iteration, and it represents a h-height subtree pattern.
thv denotes the set of the node identities. It contains node identities in the subtree pattern without
repetition due to the uniqueness of the node identity. The termination condition implies that fast
SaWL can determine that two graphs are non-isomorphic once the updated labels or the number of
nodes in the subtree patterns are different. The terminating condition of the 1-WL can be denoted

17

Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman

as {lhv |v ∈ V(G)} ≠ {lhu|u ∈ V(H)} [18]. The terminating condition of the accelerating version of
fast SaWL (Eq. 6) is stricter than that of 1-WL by adding a new structural constraint. Therefore, once
the graphs are determined unequal by the 1-WL algorithm, they must also be determined unequal by
the proposed implementation. Besides, there exist many graphs that WL cannot discriminate, which
can be determined as non-isomorphic (e.g., graph pairs in Figure 5). To conclude, the discriminating
power of the SaWL is higher than that of 1-WL in the graph isomorphism testing.

Cases. We take the graph pair in Figure 5(c) as an example, the iteration process has been described
in Appendix A.4. We denote the left graph as G and the right graph as H . After the 2nd iteration, for
our fast SaWL, the set of graph G, i.e., {(2, 6), (2, 7)|v ∈ V(G)} is not equal to the set of graph H ,
i.e., {(2, 7)|u ∈ V(H)}. The terminating condition is satisfied, and the two graphs are determined
as non-isomorphic. While for 1-WL, {2|v ∈ V(G)} = {2|u ∈ V(H)}, the two graphs cannot be
discriminated. All graph pairs in Figure 5 can be discriminated by fast SaWL in this way.

A.8 Ablation Study

In this section, we conduct ablation studies on number of iteration. We adopt one dataset for expressive
power evaluation and one dataset for graph classification, i.e., CSL [35] and Mutagenicity [32]. We
test the performance of our fast SaWL and SaGNN with different numbers of iteration from 1 to
5. We report average accuracy of ten times running in Table 6. I=2 denotes two times iterations.
From the results, it can be observed that as the number of iterations increases, the performance first
improves and then drops a little. It is basically similar on both datasets. The expressive power of
the models increases first and then tends to remain unchanged. The methods achieve the best results
when the number of iterations is 3 or 4. When the number of iterations is 5, the performance is
slightly worse, which may be caused by the increase of the dimension of the feature mapping and the
increase of the model parameters. Relatively, the neural version SaGNN requires more iterations than
the fast SaWL to get the best results. When the training data is sufficient, SaGNN can achieve better
performance, which can be observed in Table 2 as well.

Table 6: Ablation Study on Number of Iteration (ACC).

Datasets Iteration I=1 I=2 I=3 I=4 I=5

CSL fast SaWL 14.67 45.33 82.67 80.67 81.33
SaGNN 12.67 23.33 56.67 84.67 80.00

Mutagenicity fast SaWL 79.81 81.77 83.41 84.16 82.16
SaGNN 79.07 81.94 83.12 84.13 83.08

A.9 More Related Works

We present more related works, including substructure encoding based methods and more highly
expressive GNNs here. Substructure encoding based methods. Some methods utilize sub-
graph/substructure information as additional node features [41, 54]. For example, Graph Structure
Networks (GSN) proposed in [54] encodes structural information in the additional preprocessing
stage by counting the appearance of certain substructures as the structural feature vector. Then
the structural features are utilized in message passing. The structure encoding in these method
is more like a heuristic feature engineering. The selection of the certain substructures requires
domain knowledge. This kind of method lacks flexibility and cannot guarantee generalization. It
also requires high computational cost as choosing good substructures remains an open problem
due to its combinatorial nature. More highly expressive GNNs. ESAN [53] encodes a graph by
a bag of subgraphs to achieve higher expressive power, which shares some similarities with us.
However, ESAN needs some predefined policy to obtain subgraphs. The obtained subgraphs are
then encoded by an equivariant architecture. It relies on the subgraph selection policy to achieve
high expressivity, which loses some generalization. K-hop GNNs [17, 55] propose to aggregate the
node with the information from its k-hop neighborhood, rather than only from its direct neighbors,
which can identity fundamental graph properties such as connectivity and triangle freeness. K-hop
GNNs leverage multi-hop information to improve the expressive power of GNNs, while it has some
differences from methods of WL-on-subgraph. More comparison and discussion can be found in [55].

18

	1 Introduction
	2 Preliminary
	2.1 Weisfeiler-Lehman and Feature Mapping
	2.2 Graph Neural Networks

	3 Subgraph-aware Weisfeiler-Lehman
	3.1 SaWL for Graph Classification
	3.2 A Fast Implementation of SaWL
	3.3 The Expressive Power of SaWL
	3.4 Complexity

	4 Subgraph-aware Graph Neural Network
	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental Setup
	5.4 Effectiveness Evaluation
	5.5 Efficiency Evaluation

	6 Related Works
	7 Conclusion
	A Appendix
	A.1 Acceleration of the fast SaWL
	A.2 Proof of Proposition 1
	A.3 Explaination of Proposition 2
	A.4 Graph Examples
	A.5 Comparison with WL-on-subgraphs methods
	A.6 Datasets Description
	A.7 The Accelerating Version for graph isomorphism testing
	A.8 Ablation Study
	A.9 More Related Works

