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ABSTRACT

Aligning multimodal large language models (MLLMs) with human preferences
often relies on single-signal, model-based reward methods. Such monolithic re-
wards often lack confidence calibration across domain-specific tasks, fail to cap-
ture diverse aspects of human preferences, and require extensive data annotation
and reward model training. In this work, we propose a hybrid reward model-
ing framework that integrates complementary reward paradigms: (i) model-based
rewards, where a learned reward model predicts scalar or vector scores from syn-
thetic and human feedback, and (ii) rule-based rewards, where domain-specific
heuristics provide explicit correctness signals with confidence. Beyond accuracy,
we further incorporate multi-aspect rewards to enforce instruction adherence and
introduce a generalized length-penalty reward to stabilize training and improve
performance. The proposed framework provides a flexible and effective approach
to aligning MLLMs through reinforcement learning policy optimization. Our ex-
periments show consistent improvements across different multimodal benchmarks
when applying hybrid and multi-aspect reward modeling. Our best performing
model in the 3B family achieves an overall average improvement of 9.5% across
general and math reasoning tasks. Focusing specifically on mathematical bench-
marks, the model achieves a significant average improvement of 16%, highlight-
ing its effectiveness in mathematical reasoning and problem solving.

1 INTRODUCTION

The advent of Multimodal Large Language Models (MLLMs) has pushed the boundaries of artifi-
cial intelligence, enabling models to reason over and generate content that integrates text, images,
and other modalities (OpenAI et al., 2024; Liu et al., 2023). A prevailing paradigm for aligning
these powerful models with human preferences is Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017; Ouyang et al., 2022). Typically implemented with Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017), RLHF fine-tunes a model’s policy by optimizing a
signal from a learned Reward Model (RM).

However, the standard RLHF pipeline, which relies on a single, monolithic RM, presents funda-
mental challenges that are particularly acute in the multimodal domain. The inherent ambiguity in
vision-language tasks means that evaluating text-image consistency is far more complex than as-
sessing text-only coherence. Monolithic RMs often struggle to be well-calibrated across this diverse
signal space and are susceptible to reward hacking (Amodei et al., 2016). For instance, a monolithic
RM might reward a plausible-sounding but factually incorrect description of an image-based math
problem, prioritizing textual fluency over verifiable correctness. This failure mode is exacerbated by
the substantial overhead of creating high-quality multimodal preference datasets and the scarcity of
effective, open-source RMs tailored to vision-language tasks.

While recent work on rule-based or verifiable rewards has shown promise for tasks with deter-
ministic outcomes like mathematics introduced in DeepSeek-R1-Zero (DeepSeek-AI et al., 2025),
these methods cannot provide the nuanced feedback required for open-ended, subjective tasks. This
creates a critical gap, as robust multimodal systems must excel at both verifiable reasoning and
subjective generation.
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To bridge this gap, we argue that modern AI alignment requires a portfolio of rewards. We propose
a hybrid and multi-aspect reward optimization that moves beyond monolithic signals to provide
more holistic and reliable supervision. Instead of relying on a single metric, our framework is
built on a more fundamental insight: robust alignment is achieved by integrating (i) a rule-based,
verifiable reward to anchor the model in objective truth, and (ii) a learned, model-based reward
to provide flexible supervision for subjective quality. This hybrid approach directly addresses the
core challenges of MLLM alignment by balancing the precision of deterministic checks with the
generalization of learned preferences.

Furthermore, to make this approach more accessible, we introduce two key technical innovations.
First, we leverage an embedding-based surrogate model as a lightweight and effective proxy for
a fully trained RM, significantly reducing the dependency on costly data annotation and training
cycles. Second, we incorporate a suite of multi-aspect behavioral rewards, including a generalized
length penalty, to enforce fine-grained constraints, promote conciseness, and stabilize training.

Our primary contributions are summarized as follows:

• We demonstrate that a synergistic combination of rule-based, model-based, and behav-
ioral rewards is essential for robust multimodal reasoning, creating a comprehensive reward
“portfolio” that outperforms any single approach.

• We introduce an embedding-based surrogate model as a cost-effective and competitive al-
ternative to a fully trained RM, making powerful reinforcement learning techniques more
accessible.

• We conduct a comprehensive empirical evaluation demonstrating that our hybrid frame-
work yields significant performance improvements over traditional RM-based baselines on
a diverse suite of mathematical, general VQA, and OCR-based vision tasks.

2 RELATED WORK

Our work builds upon advancements in reinforcement learning for aligning language models, par-
ticularly their recent extension to the multimodal domain. This section reviews key developments
in model alignment, the application of Reinforcement Learning from Human Feedback (RLHF) to
MLLMs, and emerging paradigms in reward modeling that move beyond learned scalar rewards.

2.1 REINFORCEMENT LEARNING FOR LANGUAGE MODEL ALIGNMENT

The alignment of Large Language Models (LLMs) with human preferences has been predominantly
shaped by Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Stien-
non et al., 2020). The paradigm, notably popularized by InstructGPT (Ouyang et al., 2022), involves
a three-stage process: supervised fine-tuning (SFT) on demonstrator data, training an RM on human
preference labels, and optimizing the SFT model’s policy using an RL algorithm like Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017) against the learned RM. This approach has proven
effective in enhancing model helpfulness and safety.

However, the reliance on extensive human-annotated preference data for training RMs presents a
significant scalability bottleneck. To mitigate this, recent work has explored Reinforcement Learn-
ing from AI Feedback (RLAIF) (Bai et al., 2022; Lee et al., 2024), where a powerful “teacher” model
is used to generate preference labels, thereby reducing the dependency on costly human annotation.
Despite their success, both RLHF and RLAIF frameworks typically rely on a single, monolithic
reward signal, which can be susceptible to reward hacking and may not adequately capture the mul-
tifaceted nature of a high-quality response (Fu et al., 2025; Chen et al., 2024; Miao et al., 2024).

2.2 ALIGNMENT OF VISION-LANGUAGE MODELS

The principles of RLHF have been naturally extended to the multimodal domain. Early efforts
demonstrated that fine-tuning with multimodal instructions enhances the zero-shot capabilities of
MLLMs on novel vision-language tasks (Liu et al., 2023). Subsequent works, such as LLaVA-
RLHF (Sun et al., 2023) and RLHF-V (Yu et al., 2024), explicitly applied RLHF to improve the
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alignment of MLLMs with human intent. These methods involve collecting human preferences on
multimodal inputs and training a corresponding RM to guide policy optimization.

While effective, this extension inherits the challenges of unimodal RLHF and introduces new ones.
Collecting high-quality preference data for multimodal tasks is substantially more complex and
expensive, as it requires evaluating the intricate interplay between text and images. Furthermore, the
number of publicly available, high-quality multimodal RMs is extremely limited, hindering research
and development in scalable multimodal alignment. Our work addresses this gap by proposing a
hybrid reward system that reduces the reliance on a single, expensively trained multimodal RM.

2.3 ALTERNATIVE AND HYBRID REWARD MECHANISMS

Recognizing the limitations of a single learned reward signal, researchers have begun to explore
more diverse and verifiable reward mechanisms. In domains with deterministic or verifiable out-
comes, such as code generation and mathematical reasoning, rule-based rewards have shown great
promise (DeepSeek-AI et al., 2025). These methods provide a strong, unambiguous reward signal by
executing code against unit tests or verifying the correctness of a mathematical solution, bypassing
the need for a learned RM entirely.

Another emerging direction is process-based or outcome-based supervision (Lightman et al., 2023;
Uesato et al., 2022), where the reward is targeted at the intermediate reasoning steps (e.g., chain-of-
thought) rather than just the final answer. This encourages more faithful and robust reasoning. More
recently, multi-aspect reward frameworks have been proposed to evaluate responses along several
dimensions, such as correctness, instruction adherence, and conciseness, combining these signals to
form a more holistic reward (Wu et al., 2023).

Our proposed framework integrates these threads of research. We combine the flexibility of learned
RMs for open-ended, subjective tasks with the precision of rule-based, verifiable rewards for deter-
ministic sub-tasks. By further incorporating multi-aspect reward signals and an efficient embedding-
based surrogate model, we aim to create a more robust, scalable, and effective alignment strategy
for modern Vision-Language Models.

3 METHODOLOGY: HYBRID AND MULTI-ASPECT REWARD MODELING
OPTIMIZATION (HARMO)

Our proposed methodology, HARMO (Hybrid and Multi-Aspect Reward Modeling Optimization),
is designed to overcome the limitations of monolithic reward signals in aligning Multimodal Large
Language Models (MLLMs). HARMO establishes a more robust and nuanced training objective by
integrating a hybrid accuracy signal with targeted behavioral rewards.

3.1 BACKGROUND: FROM PPO TO CRITIC-FREE POLICY OPTIMIZATION

The predominant paradigm for aligning LLMs has been Reinforcement Learning from Human Feed-
back (RLHF), typically implemented with Proximal Policy Optimization (PPO) (Schulman et al.,
2017). PPO, an actor-critic algorithm, optimizes a policy πθ (the actor) using a learned value
function Vϕ (the critic) to stabilize gradient updates. The conventional PPO pipeline is resource-
intensive, requiring four distinct models: the actor, the critic, a reward model Rψ , and a reference
policy πref to regularize training via a Kullback-Leibler (KL) divergence penalty.

The operational complexity of this setup has spurred the development of more streamlined RL al-
gorithms. Recent methods like REINFORCE Leave-One-Out (RLOO) (Ahmadian et al., 2024) and
REINFORCE++ (Hu et al., 2025) have successfully eliminated the need for an explicit critic by
employing alternative baseline functions for advantage estimation. Building on this momentum,
Group-Relative Policy Optimization (GRPO), introduced with DeepSeek-R1 (DeepSeek-AI et al.,
2025), further simplifies the process by also removing the dependency on a learned reward model
for tasks with verifiable outcomes. GRPO computes rewards using deterministic rules and calculates
advantages relative to a group of sampled generations.

Regardless of the specific algorithm, two components remain critical: the fidelity of the reward
signal itself and the method of estimating the advantage function, Ât. The advantage estimate, which
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quantifies the relative value of an action, is the primary driver of policy updates. Its formulation
directly impacts training stability and performance. As demonstrated by Liu et al. (2025) and Chu
et al. (2025), even subtle modifications to advantage normalization can mitigate reward bias and
significantly improve outcomes. Our work builds upon these insights, leveraging a simplified, critic-
free optimization framework while focusing on engineering a superior, multi-faceted reward signal.

3.2 THE HARMO FRAMEWORK

HARMO creates a holistic training signal by combining two core components: (1) a hybrid accuracy
reward that fuses the certainty of rule-based verification with the flexibility of learned preference
models, and (2) a set of multi-aspect behavioral rewards that regulate model conduct and prevent
reward hacking.

3.2.1 HYBRID REWARD FOR CALIBRATED ACCURACY

To ground the policy in verifiable correctness while handling the ambiguity of open-ended prompts,
we introduce a hybrid reward signal. For tasks with deterministic solutions, such as mathematical
or logical reasoning, we employ rule-based verifiers (e.g., equation solvers) to generate a high-
confidence, binary reward signal, Rrule. For subjective or generative tasks where such verification is
impossible, we utilize a pretrained reward model, RRM, to score the response quality; the pretrained
MLLM RM(Wang et al., 2025) provides a score, whereas for the embedding-based RM, we use
cosine similarity between the model response and the reference response.

Rhybrid
g,i =

{
Rrule
g,i , if response is verifiable,

RRM
g,i , if response is open-ended.

(1)

This formulation ensures the model receives a confident and well-calibrated reward signal when
ground truth is available, without sacrificing the ability to learn from nuanced human preferences in
other domains.

3.2.2 MULTI-ASPECT REWARDS FOR BEHAVIORAL REGULARIZATION

Focusing on accuracy alone is insufficient, as it often leads to unintended and undesirable policy
behaviors. A common failure mode is “reward hacking” through brevity, where the model learns to
produce overly short responses that, while sometimes correct, are often incomplete or simplistic. As
illustrated in Figure 1, we observed that RL-aligned models developed a strong bias towards shorter
outputs compared to the supervised fine-tuned (SFT) baseline, frequently at the cost of correctness.

Figure 1: Comparison of response lengths between the SFT baseline and the RL-aligned model
(without a length penalty). The RL policy learns a brevity bias, producing shorter and often incom-
plete responses.

Figure 2 further visualizes this dynamic. While the accuracy reward improves during training (Fig-
ure 2a), the response length steadily declines without intervention (Figure 2b, red line). To counter-
act this and other undesirable behaviors, we introduce two auxiliary reward components.
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(a) Accuracy reward during RL training. (b) Response length during RL training.

Figure 2: Training dynamics with and without the proposed length penalty. (a) The accuracy reward
consistently improves. (b) The length penalty successfully counteracts the model’s tendency to
produce shorter responses, promoting more stable and desirable output lengths.

Length-Penalty Reward. To discourage reward hacking via brevity, we introduce a dynamic
length penalty, Rλ. This component penalizes incorrect responses that are shorter than the briefest
correct response within the same generation group. Let λg,i be the length of response i in group
g, and let λmin

g = mini:Rhybrid
g,i >τ λg,i be the minimum length of any correct response in that group

(where τ is a correctness threshold). The penalty is applied only to incorrect responses:

Rλg,i = − clip
(
λmin
g − λg,i, 0, Pmax

)
, (2)

where Pmax is a hyperparameter controlling the maximum penalty. This targeted penalty encourages
the model to generate sufficiently detailed answers, effectively stabilizing response length as shown
in Figure 2b (blue line).

Format-Adherence Reward. MLLMs are often required to follow specific formatting instruc-
tions (e.g., providing chain-of-thought reasoning within <think>...</think> tags). To im-
prove reliability, we add a format-adherence reward, Rfmt, which provides a positive signal for
correctly structured outputs and a penalty for violations, thereby enforcing structural consistency.

3.2.3 POLICY OPTIMIZATION WITH THE HARMO REWARD SIGNAL

The final HARMO reward, RHARMO, is a composite signal that integrates the hybrid accuracy com-
ponent with the multi-aspect behavioral regularizers:

RHARMO
g,i = Rhybrid

g,i +Rλg,i +Rfmt
g,i . (3)

We integrate this comprehensive reward signal into a policy optimization framework based on
GRPO. We adopt the GRPO algorithm due to its stability and demonstrated success in enhancing
reasoning capabilities in closely related work (Chen et al., 2025). While standard GRPO normalizes
rewards using both the mean and standard deviation of a generation group, the standard deviation
term can introduce a “difficulty-dependent bias” by disproportionately weighting prompts based on
reward variance (Liu et al., 2025). To foster more stable and unbiased learning, we modify the
advantage calculation to use only the group mean as a baseline, creating a centered but uniformly
scaled signal:

ÂHARMO
g,i = RHARMO

g,i − 1

G

G∑
j=1

RHARMO
g,j . (4)

The policy πθ is then updated to maximize the following objective function, which incorporates the
PPO-style clipping mechanism and a KL penalty(DKL) to ensure training stability:

LHARMO
(θ) = Eq,{oi}∼πold

[
1

G

G∑
i=1

min
(
rt(θ, ai)Â

HARMO
g,i , clip

(
rt(θ, ai), 1 − ϵ, 1 + ϵ

)
Â

HARMO
g,i

)
− βDKL

(
πθ ∥πref

)]
(5)

where rt(θ, ai) is the probability ratio πθ(ai|q)
πold(ai|q) .
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The complete training procedure is outlined in Algorithm 1.

Algorithm 1 The HARMO Training Procedure

1: Input: Initial policy πθinit , HARMO reward function RHARMO, prompts D, hyperparameters ϵ, β.
2: Initialize: Actor policy πθ ← πθinit .
3: for each iteration i = 1, . . . , I do
4: Set reference policy: πref ← πθ .
5: for each step s = 1, . . . ,M do
6: Sample a batch of questions Db ⊂ D.
7: Set old policy: πθold ← πθ .
8: for each question q ∈ Db do
9: Sample G responses {oj}Gj=1 ∼ πθold(· | q).

10: Compute HARMO rewards {RHARMO
q,j }Gj=1 for each response using Equation 3.

11: Compute group-relative advantages {ÂHARMO
q,j }Gj=1 using Equation 4.

12: end for
13: Update the actor policy πθ by optimizing the objective in Equation 5.
14: end for
15: end for
16: Output: Optimized policy model πθ .

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training Data Our training data is curated from the VLAA-Thinking dataset1(Chen et al., 2025).
It’s a diverse corpus of 21,192 question-answer pairs along with distilled reasoning steps, designed
to span a range of reasoning challenges. The dataset combines tasks requiring mathematical reason-
ing with those demanding general visual question answering. It includes both close-ended questions
with verifiable answers (e.g., numerical, equation-based, multiple-choice) and open-ended, descrip-
tive prompts. To ensure fair and reproducible comparisons, all our models presented in this work
were trained on this dataset, as detailed in Table 1.

Task Type Dataset Source Answer Type # Samples

Mathematical Reasoning
CLEVR-Math Numeric (Verifiable) 2,000
GeoQA170K Multiple-Choice (Verifiable) 6,499
MathPUMA Equation (Verifiable) 6,696

Visual Question Answering

DocVQA Open-Ended 1,000
VizWiz Open-Ended 1,000
ArxivQA Multiple-Choice (Verifiable) 997
ALLaVA-LAION Open-Ended 3,000

Total 21,192

Table 1: Composition of the training dataset, detailing the source, answer type, and number of
samples for each task category.

Models The primary subject of our investigation is the Qwen2.5-VL-3B-Instruct model (Bai et al.,
2025), which serves as the baseline for our ablation studies. To assess the scalability and generaliz-
ability of our proposed HARMO framework, we also apply it to the larger Qwen2.5-VL-7B-Instruct
model. Performance is benchmarked against other leading open-source models, such as VLAA-
Thinker-Qwen2.5VL (Chen et al., 2025), as well as top-tier proprietary models.

For the reward model, denoted as RRM in Section 3.2.1, we used a pre-trained 7B parameter RM
(Wang et al., 2025). To avoid reliance on a pre-trained RM model specific to MLLMs, which
would require extensive data annotation and training, we instead employed a smaller 22M parameter
embedding model2, as detailed in the experiments reported in Table 2.

1https://huggingface.co/datasets/UCSC-VLAA/VLAA-Thinking
2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Implementation Details. Our reinforcement learning implementation builds on the work of (Peng
et al., 2025)3. On top of this foundation, we incorporate the methodology described in Section 3.2.1.
Additional implementation details are provided in the Appendix A.

Evaluation Benchmarks We conduct a comprehensive evaluation across a diverse set of bench-
marks to rigorously assess model capabilities. Mathematical reasoning is evaluated using Math-
Verse (Zhang et al., 2024), MATH-Vision (Wang et al., 2024), and MathVista (Lu et al., 2024).
Multi-disciplinary reasoning is measured with MMMU (Yue et al., 2024) and MMMU-Pro (Yue
et al., 2025). Finally, general visual question answering performance is tested on AI2D (Kembhavi
et al., 2016), ChartQA (Masry et al., 2022), and DocVQA (Mathew et al., 2021). All evaluations
were executed using the open-source LLMs-Eval framework (Zhang et al., 2025) under identical
conditions (e.g., system prompts, response token limits) to ensure methodological consistency.

4.2 RESULTS AND ANALYSIS

This section presents our empirical findings, structured to first dissect the contribution of each com-
ponent of the HARMO framework through ablation studies, then demonstrate its generalizability,
and finally, compare its overall performance against state-of-the-art models. To ensure the robust-
ness of our findings, all reported results are averaged over three independent training runs with
different random seeds, and we report the mean scores. Throughout our results, bold values indicate
the best scores for each benchmark. We also provide a few examples of model outputs generated by
HARMO vs baseline showing reasoning ability improvement in Appendix B.

4.2.1 ABLATION STUDY: DECONSTRUCTING THE HARMO REWARD SIGNAL

Efficacy of Hybrid Accuracy Rewards Table 2 demonstrates the impact of different accuracy-
focused reward strategies. Relying solely on a learned reward model (Reward Model Enhanced)
improves the baseline, boosting the average math score by 7.89%. However, this approach is limited
by the RM’s tendency to prioritize verbose explanations over correctness, highlighting a lack of
confidence calibration for verifiable tasks. A hybrid model combining rule-based verification with
embedding-based rewards (Embedding + Rule-based Hybrid) is more effective, achieving a stronger
11.70% improvement in math reasoning.

Our proposed approach, RM + Rule-based Hybrid, which integrates the learned RM for open-ended
questions with deterministic rule-based checks, proves to be the most effective. This optimal com-
bination yields the most substantial gains, improving math reasoning performance by 14.82% and
overall performance by 9.48%. We hypothesize that this superior performance stems from the 7B
reward model’s ability to capture the nuanced aspects of quality and instruction following in open-
ended VQA tasks, providing a more informative signal than the cosine similarity from a general-
purpose embedding model.

Reward Model MathVersemini MATH-Visiontest MathVistamini MMMUval MMMU-Prostandard

Qwen2.5-VL-3B-Instruct (Baseline)
N/A 34.77 21.68 61.30 31.10 47.78

Reward Model Enhanced
Skywork7B RM 41.04 22.30 63.70 31.91 47.78
∆ vs. Baseline (+6.27) (+0.62) (+2.40) (+0.81) (0.00)

Embedding + Rule-based Hybrid Enhanced
Hybrid (Rule + Embedding) 40.28 23.85 67.40 31.79 46.33
∆ vs. Baseline (+5.51) (+2.17) (+6.10) (+0.69) (-1.45)

RM + Rule-based Hybrid Enhanced
Hybrid (Rule + Skywork7B RM) 41.88 25.92 67.40 32.08 48.00
∆ vs. Baseline (+7.11) (+4.24) (+6.10) (+0.98) (+0.22)

Table 2: Performance of the RL-trained model under accuracy-focused reward modeling. The hybrid
model with pretrained RM and rule-based verification consistently delivers the highest performance.

3https://github.com/TideDra/lmm-r1
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Impact of Multi-Aspect Behavioral Rewards Next, we evaluate the incremental benefit of
adding behavioral rewards for format adherence and length control, as shown in Table 3. Start-
ing with the baseline, adding the hybrid accuracy reward (⊕H) alone lifts math performance by
13.0%. Incorporating a format adherence reward (⊕H+F) further enhances this gain to 14.8%.
Finally, introducing our dynamic length penalty (⊕H+F+λ) results in the full HARMO frame-
work, which achieves the largest math-specific improvement of 16.0%. Notably, the length penalty
provides a significant boost on MathVerse (from 41.88 to 44.52) and MathVista (from 67.40 to
68.00), confirming its effectiveness at promoting outputs that are both precise and appropriately de-
tailed. This progressive ablation clearly demonstrates that each component—correctness, format,
and length—contributes meaningfully to the model’s final reasoning capabilities.

Reward Model Components MathVersemini MATH-Visiontest MathVistamini MMMUval MMMU-Prostandard

Qwen2.5-VL-3B-Instruct Baseline (SFT Only)
N/A 34.77 21.68 61.30 47.78 31.10

Incremental Reward Augmentation
⊕ Hybrid (H) 40.38 25.49 67.20 48.56 30.98
∆ vs. Baseline (+5.61) (+3.81) (+5.90) (+0.78) (-0.12)

⊕ Hybrid + Format (H+F) 41.88 25.92 67.40 48.00 32.08
∆ vs. Baseline (+7.11) (+4.24) (+6.10) (+0.22) (+0.98)

⊕ Hybrid + Format + Length (H+F+λ) [HARMO] 44.52 24.08 68.00 47.11 31.56
∆ vs. Baseline (+9.75) (+2.40) (+6.70) (-0.67) (+0.46)

Table 3: Ablation study showing the progressive impact of adding reward components to the
Qwen2.5-VL-3B-Instruct model. The full HARMO model, combining hybrid accuracy, format ad-
herence, and a length penalty, yields the strongest performance on mathematical reasoning tasks.

4.2.2 GENERALIZABILITY AND SCALABILITY OF HARMO

To verify that HARMO is not limited to a specific setup, we test its ”plug-and-play” capability and
scalability. As shown in Table 4, when HARMO is integrated with a model trained with fine-grained,
token-level rewards, it still provides a notable overall improvement of 5.76%. Furthermore, when
applied to the larger Qwen2.5-VL-7B-Instruct model, HARMO delivers an even greater enhance-
ment of 6.55%. These results confirm HARMO’s robustness and its ability to serve as a versatile
enhancement for different reward schemes and model sizes.

Model Configuration MathVersemini MATH-Visiontest MathVistamini MMMUval MMMU-Prostandard

Plug-and-Play with Fine-Grained Rewards (3B Model)
Token-Level Rewards (Baseline) 38.43 23.32 63.50 41.12 31.79
Token-Level Rewards + HARMO 41.22 24.84 66.40 42.32 31.45
∆ vs. Baseline (+2.79) (+1.52) (+2.90) (+1.20) (-0.34)

Scalability to 7B Model Family
Qwen2.5-VL-7B-Instruct (Baseline) 46.40 25.20 69.70 46.11 36.71
Qwen2.5-VL-7B-Instruct + HARMO 50.89 27.66 72.00 47.79 36.82
∆ vs. Baseline (+4.49) (+2.46) (+2.30) (+1.68) (+0.11)

Table 4: Demonstration of HARMO’s generalizability and scalability. It consistently improves
performance both as a plug-in for alternative reward schemes and when applied to a larger model.

4.2.3 MAIN RESULTS: COMPARISON WITH STATE-OF-THE-ART MODELS

Our final evaluation in Table 5 shows that HARMO-aligned models substantially outperform their
respective baselines and are highly competitive with leading open-source and proprietary models.
At the 3B scale, HARMO-VL-3B achieves an 9.48% average improvement over its baseline across
all reasoning benchmarks. The gains are most pronounced on mathematical tasks, where it delivers
a remarkable 16.0% average increase, with boosts of up to 28.1% on MathVerse. At the 7B scale,
HARMO-VL-7B improves upon its baseline by 3.63% overall, again showing strong gains on math
benchmarks like MathVerse (+4.5 points) and MATH-Vision (+2.5 points).

Crucially, despite their smaller parameter counts, our HARMO-enhanced models challenge top-tier
proprietary systems. Notably, HARMO-VL-3B and HARMO-VL-7B achieve scores of 68.0 and
72.0 on MathVista, respectively, surpassing the 67.7 score of the much larger Claude-3.5 Sonnet.
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In the context of OCR-related tasks (Table 6), HARMO maintains performance comparable to the
strong baselines, indicating that its reasoning enhancements do not come at the cost of core vision-
language capabilities.

Models MathVersemini MATH-Visiontest MathVistamini MMMUval MMMU-Prostandard Average
Proprietary Vision-Language Models

GPT-4o 47.8 30.6 63.8 69.1 51.9 52.64
Claude-3.5 Sonnet 41.2 33.5 67.7 68.3 51.5 52.44
Gemini-1.5 Pro 54.8 19.2 63.9 65.8 46.9 50.12

Open-Source Vision-Language Models (3B Scale)
Qwen2.5-VL-3B-Instruct 34.77 21.68 61.30 47.78 31.10 39.73
VLAA-Thinker-Qwen2.5VL-3B 38.78 24.13 64.20 47.56 28.90 40.71
HARMO-VL-3B (Ours) 44.52 24.08 68.00 47.11 31.56 43.05
∆ vs. Qwen2.5-VL-3B-Instruct (+9.8) (+2.4) (+6.7) (-0.7) (+0.5) (+3.74)

Open-Source Vision-Language Models (7B Scale)
Qwen2.5-VL-7B-Instruct 46.40 25.20 69.70 52.56 36.71 46.11
VLAA-Thinker-Qwen2.5VL-7B 50.56 26.48 70.60 45.11 34.05 45.36
HARMO-VL-7B (Ours) 50.89 27.66 72.00 51.56 36.82 47.79
∆ vs. Qwen2.5-VL-7B-Instruct (+4.5) (+2.5) (+2.3) (-1.0) (+0.1) (+1.68)

Table 5: Results on general reasoning benchmarks. HARMO significantly improves upon strong
open-source models and demonstrates competitive performance against leading proprietary models.

Models ai2dtest chartqatest docvqaval

3B Model Family

Qwen2.5-VL-3B-Instruct (Baseline) 78.43 83.28 92.56
HARMO-VL-3B (Ours) 78.79 84.12 91.88
∆ vs. Baseline (+0.36) (+0.84) (-0.68)

7B Model Family

Qwen2.5-VL-7B-Instruct (Baseline) 82.67 82.96 94.72
HARMO-VL-7B (Ours) 82.87 82.64 94.46
∆ vs. Baseline (+0.20) (-0.32) (-0.26)

Table 6: Performance on OCR-related benchmarks. HARMO maintains competitive performance
with the baseline, showing that reasoning improvements do not degrade core VQA capabilities.

5 CONCLUSION

We introduced HARMO, a novel reward optimization framework that advances reinforcement learn-
ing beyond monolithic signals by integrating a hybrid of deterministic and learned rewards with a
generalized length penalty to control verbosity.

Our evaluation demonstrates that HARMO significantly enhances complex reasoning, achieving a
9.5% overall and a 16% mathematical performance gain over a strong baseline while maintaining
robustness on vision-specific tasks.

This work highlights the critical role of multi-faceted reward modeling in stabilizing RL training
and improving reward accuracy. HARMO provides a strong foundation for future research, such as
dynamic reward weighting or self-improving systems where agents learn to refine their own reward
functions, paving the way for more robust and adaptable AI.
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Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
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A IMPLEMENTATION DETAILS

A.1 RL TRAINING FRAMEWORK

Our reinforcement learning implementation builds upon the LMM-R1 framework (Peng et al.,
2025)4. On top of this foundation, we incorporate the methodology described in Section 3, extending
the framework with additional functionalities. In particular, we implement hybrid and multi-aspect
reward modeling, introduce support for MLLM training, and enable token-level reward assignment
for MLLM reinforcement learning.

A.2 TRAINING HYPER-PARAMETERS

The hyperparameters used for HARMO are summarized in Table 7. The same set of hyperparameters
is applied to all variants of the model proposed in this paper to ensure a consistent training setup.

4https://github.com/TideDra/lmm-r1
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Table 7: HARMO Training Hyperparameters

Hyperparameter Value
Training batch size 256
Rollout batch size 256
Samples per prompt 8
Temperature 1
Max output sequence length 4096
Max epochs 1
Number of episodes 2
Initial KL coefficient 1e−3

Discount factor (γ) 1
GAE parameter (λ) 1
Actor learning rate 1e−6

B CASE STUDY

The following figures illustrate HARMO’s ability to reason through a variety of problem-solving
questions. In these visualizations, the reasoning steps are color-coded to indicate their verification
status:

• Text highlighted with indicates correctly verified reasoning steps.
• Text highlighted with indicates advanced or highly sophisticated reasoning steps.
• Text highlighted with indicates incorrectly verified or flawed reasoning steps.

These figures demonstrate HARMO’s step-by-step problem-solving capabilities and provide a visual
comparison with baseline models.
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Figure 3: Case Study 1 - Math Cube Problem

HARMO demonstrates advanced reasoning and correctly identifies all 12 edge-centered cubes with
exactly two painted faces after the 3 cm cube is subdivided. The baseline model, by contrast, fails
to systematically exclude corner cubes or miscounts edge cases, often yielding an incorrect answer.
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Figure 4: Case Study 2 - Solving a General Math Problem (Part 1)
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Figure 4: Case Study 2 - Solving a General Math Problem (Part 2)

HARMO correctly reasoned step-by-step to arrive at the correct answer, whereas the baseline model
followed unreasonable steps and produced an incorrect solution.
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Figure 5: Case Study 3 - Math Puzzle Problem

Qwen3 baseline failed to identify the correct puzzle equation, whereas HARMO succeeded in find-
ing the correct puzzle equation, reasoning step-by-step, and arriving at the correct solution.
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Figure 6: Case Study 4 - Geometry Math Problem

HARMO correctly solves for x with clear recognition of equal sides AB = AC, while the baseline
model fails to identify the isosceles nature, leading to incorrect conclusions.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Case Study 5 - Geometry Math Problem

HARMO correctly finds ∠BAE = 30◦, while the baseline incorrectly sums angles to 150° with
incorrect geometric reasoning, misinterpreting the figure’s layout.
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