BEYOND MONOLITHIC REWARDS: A HYBRID AND MULTI-ASPECT REWARD OPTIMIZATION FOR MLLM ALIGNMENT

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012 013

014

016

018

019

021

024

025

026

027

028

029

031 032 033

034

037

038

040

041

043

044

046

047

048

050 051

052

ABSTRACT

Aligning multimodal large language models (MLLMs) with human preferences often relies on single-signal, model-based reward methods. Such monolithic rewards often lack confidence calibration across domain-specific tasks, fail to capture diverse aspects of human preferences, and require extensive data annotation and reward model training. In this work, we propose a hybrid reward modeling framework that integrates complementary reward paradigms: (i) model-based rewards, where a learned reward model predicts scalar or vector scores from synthetic and human feedback, and (ii) rule-based rewards, where domain-specific heuristics provide explicit correctness signals with confidence. Beyond accuracy, we further incorporate multi-aspect rewards to enforce instruction adherence and introduce a generalized length-penalty reward to stabilize training and improve performance. The proposed framework provides a flexible and effective approach to aligning MLLMs through reinforcement learning policy optimization. Our experiments show consistent improvements across different multimodal benchmarks when applying hybrid and multi-aspect reward modeling. Our best performing model in the 3B family achieves an overall average improvement of 9.5% across general and math reasoning tasks. Focusing specifically on mathematical benchmarks, the model achieves a significant average improvement of 16%, highlighting its effectiveness in mathematical reasoning and problem solving.

1 Introduction

The advent of Multimodal Large Language Models (MLLMs) has pushed the boundaries of artificial intelligence, enabling models to reason over and generate content that integrates text, images, and other modalities (OpenAI et al., 2024; Liu et al., 2023). A prevailing paradigm for aligning these powerful models with human preferences is Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022). Typically implemented with Proximal Policy Optimization (PPO) (Schulman et al., 2017), RLHF fine-tunes a model's policy by optimizing a signal from a learned Reward Model (RM).

However, the standard RLHF pipeline, which relies on a single, monolithic RM, presents fundamental challenges that are particularly acute in the multimodal domain. The inherent ambiguity in vision-language tasks means that evaluating text-image consistency is far more complex than assessing text-only coherence. Monolithic RMs often struggle to be well-calibrated across this diverse signal space and are susceptible to reward hacking (Amodei et al., 2016). For instance, a monolithic RM might reward a plausible-sounding but factually incorrect description of an image-based math problem, prioritizing textual fluency over verifiable correctness. This failure mode is exacerbated by the substantial overhead of creating high-quality multimodal preference datasets and the scarcity of effective, open-source RMs tailored to vision-language tasks.

While recent work on rule-based or verifiable rewards has shown promise for tasks with deterministic outcomes like mathematics (DeepSeek-AI et al., 2025), these methods cannot provide the nuanced feedback required for open-ended, subjective tasks. This creates a critical gap, as robust multimodal systems must excel at both verifiable reasoning and subjective generation.

To bridge this gap, we argue that modern AI alignment requires a portfolio of rewards. We propose a hybrid and multi-aspect reward optimization that moves beyond monolithic signals to provide more holistic and reliable supervision. Instead of relying on a single metric, our framework is built on a more fundamental insight: robust alignment is achieved by integrating (i) a rule-based, verifiable reward to anchor the model in objective truth, and (ii) a learned, model-based reward to provide flexible supervision for subjective quality. This hybrid approach directly addresses the core challenges of MLLM alignment by balancing the precision of deterministic checks with the generalization of learned preferences.

Furthermore, to make this approach more accessible, we introduce two key technical innovations. First, we leverage an embedding-based surrogate model as a lightweight and effective proxy for a fully trained RM, significantly reducing the dependency on costly data annotation and training cycles. Second, we incorporate a suite of multi-aspect behavioral rewards, including a generalized length penalty, to enforce fine-grained constraints, promote conciseness, and stabilize training.

Our primary contributions are summarized as follows:

- We demonstrate that a synergistic combination of rule-based, model-based, and behavioral rewards is essential for robust multimodal reasoning, creating a comprehensive reward "portfolio" that outperforms any single approach.
- We introduce an embedding-based surrogate model as a cost-effective and competitive alternative to a fully trained RM, making powerful reinforcement learning techniques more accessible.
- We conduct a comprehensive empirical evaluation demonstrating that our hybrid framework yields significant performance improvements over traditional RM-based baselines on a diverse suite of mathematical, general VQA, and OCR-based vision tasks.

2 RELATED WORK

Our work builds upon advancements in reinforcement learning for aligning language models, particularly their recent extension to the multimodal domain. This section reviews key developments in model alignment, the application of Reinforcement Learning from Human Feedback (RLHF) to MLLMs, and emerging paradigms in reward modeling that move beyond learned scalar rewards.

2.1 REINFORCEMENT LEARNING FOR LANGUAGE MODEL ALIGNMENT

The alignment of Large Language Models (LLMs) with human preferences has been predominantly shaped by Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020). The paradigm, notably popularized by InstructGPT (Ouyang et al., 2022), involves a three-stage process: supervised fine-tuning (SFT) on demonstrator data, training an RM on human preference labels, and optimizing the SFT model's policy using an RL algorithm like Proximal Policy Optimization (PPO) (Schulman et al., 2017) against the learned RM. This approach has proven effective in enhancing model helpfulness and safety.

However, the reliance on extensive human-annotated preference data for training RMs presents a significant scalability bottleneck. To mitigate this, recent work has explored Reinforcement Learning from AI Feedback (RLAIF) (Bai et al., 2022; Lee et al., 2024), where a powerful "teacher" model is used to generate preference labels, thereby reducing the dependency on costly human annotation. Despite their success, both RLHF and RLAIF frameworks typically rely on a single, monolithic reward signal, which can be susceptible to reward hacking and may not adequately capture the multifaceted nature of a high-quality response (Fu et al., 2025; Chen et al., 2024; Miao et al., 2024).

2.2 ALIGNMENT OF VISION-LANGUAGE MODELS

The principles of RLHF have been naturally extended to the multimodal domain. Early efforts demonstrated that fine-tuning with multimodal instructions enhances the zero-shot capabilities of MLLMs on novel vision-language tasks (Liu et al., 2023). Subsequent works, such as LLaVA-RLHF (Sun et al., 2023) and RLHF-V (Yu et al., 2024), explicitly applied RLHF to improve the

alignment of MLLMs with human intent. These methods involve collecting human preferences on multimodal inputs and training a corresponding RM to guide policy optimization.

While effective, this extension inherits the challenges of unimodal RLHF and introduces new ones. Collecting high-quality preference data for multimodal tasks is substantially more complex and expensive, as it requires evaluating the intricate interplay between text and images. Furthermore, the number of publicly available, high-quality multimodal RMs is extremely limited, hindering research and development in scalable multimodal alignment. Our work addresses this gap by proposing a hybrid reward system that reduces the reliance on a single, expensively trained multimodal RM.

2.3 ALTERNATIVE AND HYBRID REWARD MECHANISMS

Recognizing the limitations of a single learned reward signal, researchers have begun to explore more diverse and verifiable reward mechanisms. In domains with deterministic or verifiable outcomes, such as code generation and mathematical reasoning, rule-based rewards have shown great promise (DeepSeek-AI et al., 2025). These methods provide a strong, unambiguous reward signal by executing code against unit tests or verifying the correctness of a mathematical solution, bypassing the need for a learned RM entirely.

Another emerging direction is process-based or outcome-based supervision (Lightman et al., 2023; Uesato et al., 2022), where the reward is targeted at the intermediate reasoning steps (e.g., chain-of-thought) rather than just the final answer. This encourages more faithful and robust reasoning. More recently, multi-aspect reward frameworks have been proposed to evaluate responses along several dimensions, such as correctness, instruction adherence, and conciseness, combining these signals to form a more holistic reward (Wu et al., 2023).

Our proposed framework integrates these threads of research. We combine the flexibility of learned RMs for open-ended, subjective tasks with the precision of rule-based, verifiable rewards for deterministic sub-tasks. By further incorporating multi-aspect reward signals and an efficient embedding-based surrogate model, we aim to create a more robust, scalable, and effective alignment strategy for modern Vision-Language Models.

3 METHODOLOGY: HYBRID AND MULTI-ASPECT REWARD MODELING OPTIMIZATION (HARMO)

Our proposed methodology, HARMO (Hybrid and Multi-Aspect Reward Modeling Optimization), is designed to overcome the limitations of monolithic reward signals in aligning Multimodal Large Language Models (MLLMs). HARMO establishes a more robust and nuanced training objective by integrating a hybrid accuracy signal with targeted behavioral rewards.

3.1 BACKGROUND: FROM PPO TO CRITIC-FREE POLICY OPTIMIZATION

The predominant paradigm for aligning LLMs has been Reinforcement Learning from Human Feedback (RLHF), typically implemented with Proximal Policy Optimization (PPO) (Schulman et al., 2017). PPO, an actor-critic algorithm, optimizes a policy π_{θ} (the actor) using a learned value function V_{ϕ} (the critic) to stabilize gradient updates. The conventional PPO pipeline is resource-intensive, requiring four distinct models: the actor, the critic, a reward model R_{ψ} , and a reference policy $\pi_{\rm ref}$ to regularize training via a Kullback-Leibler (KL) divergence penalty.

The operational complexity of this setup has spurred the development of more streamlined RL algorithms. Recent methods like REINFORCE Leave-One-Out (RLOO) (Ahmadian et al., 2024) and REINFORCE++ (Hu et al., 2025) have successfully eliminated the need for an explicit critic by employing alternative baseline functions for advantage estimation. Building on this momentum, Group-Relative Policy Optimization (GRPO), introduced with DeepSeek-R1 (DeepSeek-AI et al., 2025), further simplifies the process by also removing the dependency on a learned reward model for tasks with verifiable outcomes. GRPO computes rewards using deterministic rules and calculates advantages relative to a group of sampled generations.

Regardless of the specific algorithm, two components remain critical: the fidelity of the reward signal itself and the method of estimating the advantage function, \hat{A}_t . The advantage estimate, which

quantifies the relative value of an action, is the primary driver of policy updates. Its formulation directly impacts training stability and performance. As demonstrated by Liu et al. (2025) and Chu et al. (2025), even subtle modifications to advantage normalization can mitigate reward bias and significantly improve outcomes. Our work builds upon these insights, leveraging a simplified, critic-free optimization framework while focusing on engineering a superior, multi-faceted reward signal.

3.2 THE HARMO FRAMEWORK

HARMO creates a holistic training signal by combining two core components: (1) a hybrid accuracy reward that fuses the certainty of rule-based verification with the flexibility of learned preference models, and (2) a set of multi-aspect behavioral rewards that regulate model conduct and prevent reward hacking.

3.2.1 HYBRID REWARD FOR CALIBRATED ACCURACY

To ground the policy in verifiable correctness while handling the ambiguity of open-ended prompts, we introduce a hybrid reward signal. For tasks with deterministic solutions, such as mathematical or logical reasoning, we employ rule-based verifiers (e.g., equation solvers) to generate a high-confidence, binary reward signal, $R^{\rm rule}$. For subjective or generative tasks where such verification is impossible, we utilize a pretrained reward model, $R^{\rm RM}$, to score the response quality; the pretrained MLLM RM(Wang et al., 2025) provides a score, whereas for the embedding-based RM, we use cosine similarity between the model response and the reference response.

$$R_{g,i}^{\text{hybrid}} = \begin{cases} R_{g,i}^{\text{rule}}, & \text{if response is verifiable,} \\ R_{g,i}^{\text{RM}}, & \text{if response is open-ended.} \end{cases}$$
 (1)

This formulation ensures the model receives a confident and well-calibrated reward signal when ground truth is available, without sacrificing the ability to learn from nuanced human preferences in other domains.

3.2.2 Multi-Aspect Rewards for Behavioral Regularization

Focusing on accuracy alone is insufficient, as it often leads to unintended and undesirable policy behaviors. A common failure mode is "reward hacking" through brevity, where the model learns to produce overly short responses that, while sometimes correct, are often incomplete or simplistic. As illustrated in Figure 1, we observed that RL-aligned models developed a strong bias towards shorter outputs compared to the supervised fine-tuned (SFT) baseline, frequently at the cost of correctness.

Figure 1: Comparison of response lengths between the SFT baseline and the RL-aligned model (without a length penalty). The RL policy learns a brevity bias, producing shorter and often incomplete responses.

Figure 2 further visualizes this dynamic. While the accuracy reward improves during training (Figure 2a), the response length steadily declines without intervention (Figure 2b, red line). To counteract this and other undesirable behaviors, we introduce two auxiliary reward components.

(a) Accuracy reward during RL training.

(b) Response length during RL training.

Figure 2: Training dynamics with and without the proposed length penalty. (a) The accuracy reward consistently improves. (b) The length penalty successfully counteracts the model's tendency to produce shorter responses, promoting more stable and desirable output lengths.

Length-Penalty Reward. To discourage reward hacking via brevity, we introduce a dynamic length penalty, R^{λ} . This component penalizes incorrect responses that are shorter than the briefest correct response within the same generation group. Let $\lambda_{g,i}$ be the length of response i in group g, and let $\lambda_g^{\min} = \min_{i:R_{g,i}^{\text{hybrid}} > \tau} \lambda_{g,i}$ be the minimum length of any correct response in that group (where τ is a correctness threshold). The penalty is applied only to incorrect responses:

$$\mathbf{R}_{g,i}^{\lambda} = -\operatorname{clip}\left(\lambda_g^{\min} - \lambda_{g,i}, 0, P_{\max}\right),\tag{2}$$

where $P_{\rm max}$ is a hyperparameter controlling the maximum penalty. This targeted penalty encourages the model to generate sufficiently detailed answers, effectively stabilizing response length as shown in Figure 2b (blue line).

Format-Adherence Reward. MLLMs are often required to follow specific formatting instructions (e.g., providing chain-of-thought reasoning within $\langle \text{think} \rangle$... $\langle /\text{think} \rangle$ tags). To improve reliability, we add a format-adherence reward, R^{fint} , which provides a positive signal for correctly structured outputs and a penalty for violations, thereby enforcing structural consistency.

3.2.3 POLICY OPTIMIZATION WITH THE HARMO REWARD SIGNAL

The final HARMO reward, $R^{\rm HARMO}$, is a composite signal that integrates the hybrid accuracy component with the multi-aspect behavioral regularizers:

$$R_{g,i}^{\rm HARMO} = R_{g,i}^{\rm hybrid} + R_{g,i}^{\lambda} + R_{g,i}^{\rm fint}. \tag{3}$$
 We integrate this comprehensive reward signal into a policy optimization framework based on

We integrate this comprehensive reward signal into a policy optimization framework based on GRPO. We adopt the GRPO algorithm due to its stability and demonstrated success in enhancing reasoning capabilities in closely related work (Chen et al., 2025). While standard GRPO normalizes rewards using both the mean and standard deviation of a generation group, the standard deviation term can introduce a "difficulty-dependent bias" by disproportionately weighting prompts based on reward variance (Liu et al., 2025). To foster more stable and unbiased learning, we modify the advantage calculation to use only the group mean as a baseline, creating a centered but uniformly scaled signal:

$$\hat{A}_{g,i}^{\mathrm{HARMO}} = R_{g,i}^{\mathrm{HARMO}} - \frac{1}{G} \sum_{j=1}^{G} R_{g,j}^{\mathrm{HARMO}}. \tag{4}$$

The policy π_{θ} is then updated to maximize the following objective function, which incorporates the PPO-style clipping mechanism and a KL penalty($D_{\rm KL}$) to ensure training stability:

$$\mathcal{L}^{\text{HARMO}}(\theta) = \mathbb{E}_{q,\{o_i\} \sim \pi_{\text{old}}} \left[\frac{1}{G} \sum_{i=1}^{G} \min \left(r_t(\theta, a_i) \hat{A}_{g,i}^{\text{HARMO}}, \text{clip} \left(r_t(\theta, a_i), 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{g,i}^{\text{HARMO}} \right) - \beta D_{\text{KL}} \left(\pi_{\theta} \parallel \pi_{\text{ref}} \right) \right] \tag{5}$$

where $r_t(\theta, a_i)$ is the probability ratio $\frac{\pi_{\theta}(a_i|q)}{\pi_{\text{old}}(a_i|q)}$. The complete training procedure is outlined in Algorithm 1.

Algorithm 1 The HARMO Training Procedure

```
271
                1: Input: Initial policy \pi_{\theta_{\text{init}}}, HARMO reward function R^{\text{HARMO}}, prompts \mathcal{D}, hyperparameters \epsilon, \beta.
272
                2: Initialize: Actor policy \pi_{\theta} \leftarrow \pi_{\theta_{\text{init}}}.
273
                3: for each iteration i = 1, ..., I do
274
                           Set reference policy: \pi_{\text{ref}} \leftarrow \pi_{\theta}.
275
                5:
                          for each step s = 1, \dots, M do
                                 Sample a batch of questions \mathcal{D}_b \subset \mathcal{D}.
                6:
276
                7:
                                Set old policy: \pi_{\theta_{\text{old}}} \leftarrow \pi_{\theta}.
277
                8:
                                for each question q \in \mathcal{D}_b do
                                      each question q \in \mathcal{D}_b up S ample G responses \{o_j\}_{j=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot \mid q). Compute HARMO rewards \{R_{q,j}^{\text{HARMO}}\}_{j=1}^G for each response using Equation 3.
278
                9:
279
               10:
                                      Compute group-relative advantages \{\hat{A}_{q,j}^{\text{HARMO}}\}_{j=1}^{G} using Equation 4.
               11:
281
               12:
               13:
                                 Update the actor policy \pi_{\theta} by optimizing the objective in Equation 5.
               14:
                           end for
283
               15: end for
284
               16: Output: Optimized policy model \pi_{\theta}.
285
```

4 EXPERIMENT

270

287

288 289 290

291 292

293

295

296

297

298299300301

303

305306307308

310 311 312

313

314

315

316

317

318

319

320

321 322

323

4.1 EXPERIMENTAL SETUP

Training Data Our training data is curated from the VLAA-Thinking dataset¹ (Chen et al., 2025). It's a diverse corpus of 21,192 question-answer pairs along with distilled reasoning steps, designed to span a range of reasoning challenges. The dataset combines tasks requiring mathematical reasoning with those demanding general visual question answering. It includes both close-ended questions with verifiable answers (e.g., numerical, equation-based, multiple-choice) and open-ended, descriptive prompts. To ensure fair and reproducible comparisons, all our models presented in this work were trained on this dataset, as detailed in Table 1.

Task Type	Dataset Source	Answer Type	# Samples
	CLEVR-Math	Numeric (Verifiable)	2,000
Mathematical Reasoning	GeoQA170K	Multiple-Choice (Verifiable)	6,499
	MathPUMA	Equation (Verifiable)	6,696
Visual Question Answering	DocVQA	Open-Ended	1,000
	VizWiz	Open-Ended	1,000
	ArxivQA	Multiple-Choice (Verifiable)	997
	ALLaVA-LAION	Open-Ended	3,000
Total			21,192

Table 1: Composition of the training dataset, detailing the source, answer type, and number of samples for each task category.

Models The primary subject of our investigation is the Qwen2.5-VL-3B-Instruct model (Bai et al., 2025), which serves as the baseline for our ablation studies. To assess the scalability and generalizability of our proposed HARMO framework, we also apply it to the larger Qwen2.5-VL-7B-Instruct model. Performance is benchmarked against other leading open-source models, such as VLAA-Thinker-Qwen2.5VL (Chen et al., 2025), as well as top-tier proprietary models.

For the reward model, denoted as $R^{\rm RM}$ in Section 3.2.1, we used a pre-trained 7B parameter RM (Wang et al., 2025). To avoid reliance on a pre-trained RM model specific to MLLMs, which would require extensive data annotation and training, we instead employed a smaller 22M parameter embedding model², as detailed in the experiments reported in Table 2.

¹https://huggingface.co/datasets/UCSC-VLAA/VLAA-Thinking

²https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Implementation Details. Our reinforcement learning implementation builds on the work of (Peng et al., 2025)³. On top of this foundation, we incorporate the methodology described in Section 3.2.1. Additional implementation details are provided in the Appendix A.

Evaluation Benchmarks We conduct a comprehensive evaluation across a diverse set of benchmarks to rigorously assess model capabilities. Mathematical reasoning is evaluated using Math-Verse (Zhang et al., 2024), MATH-Vision (Wang et al., 2024), and Math-Vista (Lu et al., 2024). Multi-disciplinary reasoning is measured with MMMU (Yue et al., 2024) and MMMU-Pro (Yue et al., 2025). Finally, general visual question answering performance is tested on AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), and DocVQA (Mathew et al., 2021). All evaluations were executed using the open-source LLMs-Eval framework (Zhang et al., 2025) under identical conditions (e.g., system prompts, response token limits) to ensure methodological consistency.

4.2 RESULTS AND ANALYSIS

 This section presents our empirical findings, structured to first dissect the contribution of each component of the HARMO framework through ablation studies, then demonstrate its generalizability, and finally, compare its overall performance against state-of-the-art models. To ensure the robustness of our findings, all reported results are averaged over three independent training runs with different random seeds, and we report the mean scores. Throughout our results, **bold** values indicate the best scores for each benchmark. We also provide a few examples of model outputs generated by HARMO vs baseline showing reasoning ability improvement in Appendix B.

4.2.1 ABLATION STUDY: DECONSTRUCTING THE HARMO REWARD SIGNAL

Efficacy of Hybrid Accuracy Rewards Table 2 demonstrates the impact of different accuracy-focused reward strategies. Relying solely on a learned reward model (*Reward Model Enhanced*) improves the baseline, boosting the average math score by 7.89%. However, this approach is limited by the RM's tendency to prioritize verbose explanations over correctness, highlighting a lack of confidence calibration for verifiable tasks. A hybrid model combining rule-based verification with embedding-based rewards (*Embedding + Rule-based Hybrid*) is more effective, achieving a stronger 11.70% improvement in math reasoning.

Our proposed approach, RM + Rule-based Hybrid, which integrates the learned RM for open-ended questions with deterministic rule-based checks, proves to be the most effective. This optimal combination yields the most substantial gains, improving math reasoning performance by 14.82% and overall performance by 9.48%. We hypothesize that this superior performance stems from the 7B reward model's ability to capture the nuanced aspects of quality and instruction following in open-ended VQA tasks, providing a more informative signal than the cosine similarity from a general-purpose embedding model.

Reward Model	MathVerse _{mini}	MATH-Vision _{test}	MathVista _{mini}	$MMMU_{val}$	MMMU-Pro _{standard}
	Qwen	2.5-VL-3B-Instruct (I	Baseline)		
N/A	34.77	21.68	61.30	31.10	47.78
	1	Reward Model Enhan	ced		<u> </u>
Skywork7B RM	41.04	22.30	63.70	31.91	47.78
Δ vs. Baseline	(+6.27)	(+0.62)	(+2.40)	(+0.81)	(0.00)
	Embeddin	ıg + Rule-based Hybr	id Enhanced		
Hybrid (Rule + Embedding)	40.28	23.85	67.40	31.79	46.33
Δ vs. Baseline	(+5.51)	(+2.17)	(+6.10)	(+0.69)	(-1.45)
	RM +	Rule-based Hybrid E	nhanced		
Hybrid (Rule + Skywork7B RM)	41.88	25.92	67.40	32.08	48.00
Δ vs. Baseline	(+7.11)	(+4.24)	(+6.10)	(+0.98)	(+0.22)

Table 2: Performance of the RL-trained model under accuracy-focused reward modeling. The hybrid model with pretrained RM and rule-based verification consistently delivers the highest performance.

³https://github.com/TideDra/lmm-r1

Impact of Multi-Aspect Behavioral Rewards Next, we evaluate the incremental benefit of adding behavioral rewards for format adherence and length control, as shown in Table 3. Starting with the baseline, adding the hybrid accuracy reward (\oplus H) alone lifts math performance by 13.0%. Incorporating a format adherence reward (\oplus H+F) further enhances this gain to 14.8%. Finally, introducing our dynamic length penalty (\oplus H+F+ λ) results in the full HARMO framework, which achieves the largest math-specific improvement of 16.0%. Notably, the length penalty provides a significant boost on MathVerse (from 41.88 to 44.52) and MathVista (from 67.40 to 68.00), confirming its effectiveness at promoting outputs that are both precise and appropriately detailed. This progressive ablation clearly demonstrates that each component—correctness, format, and length—contributes meaningfully to the model's final reasoning capabilities.

Reward Model Components	MathVersemini	MATH-Vision _{test}	MathVista _{mini}	MMMU _{val}	MMMU-Prostandard
	Qwen2.5-VL-3B-In:	struct Baseline (SFT (Only)		
N/A	34.77	21.68	61.30	47.78	31.10
	Incremental R	eward Augmentation			
⊕ Hybrid (H)	40.38	25.49	67.20	48.56	30.98
Δ vs. Baseline	(+5.61)	(+3.81)	(+5.90)	(+0.78)	(-0.12)
⊕ Hybrid + Format (H+F)	41.88	25.92	67.40	48.00	32.08
Δ vs. Baseline	(+7.11)	(+4.24)	(+6.10)	(+0.22)	(+0.98)
\oplus Hybrid + Format + Length (H+F+ λ) [HARMO]	44.52	24.08	68.00	47.11	31.56
Δ vs. Baseline	(+9.75)	(+2.40)	(+6.70)	(-0.67)	(+0.46)

Table 3: Ablation study showing the progressive impact of adding reward components to the Qwen2.5-VL-3B-Instruct model. The full HARMO model, combining hybrid accuracy, format adherence, and a length penalty, yields the strongest performance on mathematical reasoning tasks.

4.2.2 GENERALIZABILITY AND SCALABILITY OF HARMO

To verify that HARMO is not limited to a specific setup, we test its "plug-and-play" capability and scalability. As shown in Table 4, when HARMO is integrated with a model trained with fine-grained, token-level rewards, it still provides a notable overall improvement of 5.76%. Furthermore, when applied to the larger Qwen2.5-VL-7B-Instruct model, HARMO delivers an even greater enhancement of 6.55%. These results confirm HARMO's robustness and its ability to serve as a versatile enhancement for different reward schemes and model sizes.

Model Configuration	MathVerse _{mini}	MATH-Vision _{test}	MathVista _{mini}	$MMMU_{val}$	MMMU-Prostandard		
Plug-and-Play with Fine-Grained Rewards (3B Model)							
Token-Level Rewards (Baseline)	38.43	23.32	63.50	41.12	31.79		
Token-Level Rewards + HARMO	41.22	24.84	66.40	42.32	31.45		
Δ vs. Baseline	(+2.79)	(+1.52)	(+2.90)	(+1.20)	(-0.34)		
Scalability to 7B Model Family							
Qwen2.5-VL-7B-Instruct (Baseline)	46.40	25.20	69.70	46.11	36.71		
Qwen2.5-VL-7B-Instruct + HARMO	50.89	27.66	72.00	47.79	36.82		
Δ vs. Baseline	(+4.49)	(+2.46)	(+2.30)	(+1.68)	(+0.11)		

Table 4: Demonstration of HARMO's generalizability and scalability. It consistently improves performance both as a plug-in for alternative reward schemes and when applied to a larger model.

4.2.3 MAIN RESULTS: COMPARISON WITH STATE-OF-THE-ART MODELS

Our final evaluation in Table 5 shows that HARMO-aligned models substantially outperform their respective baselines and are highly competitive with leading open-source and proprietary models. At the 3B scale, HARMO-VL-3B achieves an 9.48% average improvement over its baseline across all reasoning benchmarks. The gains are most pronounced on mathematical tasks, where it delivers a remarkable 16.0% average increase, with boosts of up to 28.1% on MathVerse. At the 7B scale, HARMO-VL-7B improves upon its baseline by 3.63% overall, again showing strong gains on math benchmarks like MathVerse (+4.5 points) and MATH-Vision (+2.5 points).

Crucially, despite their smaller parameter counts, our HARMO-enhanced models challenge top-tier proprietary systems. Notably, HARMO-VL-3B and HARMO-VL-7B achieve scores of 68.0 and 72.0 on MathVista, respectively, surpassing the 67.7 score of the much larger Claude-3.5 Sonnet.

In the context of OCR-related tasks (Table 6), HARMO maintains performance comparable to the strong baselines, indicating that its reasoning enhancements do not come at the cost of core vision-language capabilities.

Models	MathVerse _{mini}	MATH-Vision _{test}	MathVista _{mini}	$MMMU_{val}$	MMMU-Pro _{standard}	Average		
	Proprietary Vision-Language Models							
GPT-40	47.8	30.6	63.8	69.1	51.9	52.64		
Claude-3.5 Sonnet	41.2	33.5	67.7	68.3	51.5	52.44		
Gemini-1.5 Pro	54.8	19.2	63.9	65.8	46.9	50.12		
Open-Source Vision-Language Models (3B Scale)								
Qwen2.5-VL-3B-Instruct	34.77	21.68	61.30	47.78	31.10	39.73		
VLAA-Thinker-Qwen2.5VL-3B	38.78	24.13	64.20	47.56	28.90	40.71		
HARMO-VL-3B (Ours)	44.52	24.08	68.00	47.11	31.56	43.05		
Δ vs. Qwen2.5-VL-3B-Instruct	(+9.8)	(+2.4)	(+6.7)	(-0.7)	(+0.5)	(+3.74)		
Open-Source Vision-Language Models (7B Scale)								
Qwen2.5-VL-7B-Instruct	46.40	25.20	69.70	52.56	36.71	46.11		
VLAA-Thinker-Qwen2.5VL-7B	50.56	26.48	70.60	45.11	34.05	45.36		
HARMO-VL-7B (Ours)	50.89	27.66	72.00	51.56	36.82	47.79		
Δ vs. Qwen2.5-VL-7B-Instruct	(+4.5)	(+2.5)	(+2.3)	(-1.0)	(+0.1)	(+1.68)		

Table 5: Results on general reasoning benchmarks. HARMO significantly improves upon strong open-source models and demonstrates competitive performance against leading proprietary models.

Models	ai2d _{test}	chartqa _{test}	docvqa _{val}			
3B Model Family						
Qwen2.5-VL-3B-Instruct (Baseline) HARMO-VL-3B (Ours) Δ vs. Baseline	78.43 78.79 (+0.36)	83.28 84.12 (+0.84)	92.56 91.88 (-0.68)			
7B Mod	lel Family					
Qwen2.5-VL-7B-Instruct (Baseline) HARMO-VL-7B (Ours) Δ vs. Baseline	82.67 82.87 (+0.20)	82.96 82.64 (-0.32)	94.72 94.46 (-0.26)			

Table 6: Performance on OCR-related benchmarks. HARMO maintains competitive performance with the baseline, showing that reasoning improvements do not degrade core VQA capabilities.

5 Conclusion

We introduced HARMO, a novel reward optimization framework that advances reinforcement learning beyond monolithic signals by integrating a hybrid of deterministic and learned rewards with a generalized length penalty to control verbosity.

Our evaluation demonstrates that HARMO significantly enhances complex reasoning, achieving a 9.5% overall and a 16% mathematical performance gain over a strong baseline while maintaining robustness on vision-specific tasks.

This work highlights the critical role of multi-faceted reward modeling in stabilizing RL training and improving reward accuracy. HARMO provides a strong foundation for future research, such as dynamic reward weighting or self-improving systems where agents learn to refine their own reward functions, paving the way for more robust and adaptable AI.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human feedback in llms, 2024. URL https://arxiv.org/abs/2402.14740.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in ai safety, 2016. URL https://arxiv.org/abs/1606.06565.

487

488

489

490

491

492

493

494

495

496

497

498

499

500 501

502

504 505

506

507

509

510

511 512

513

514

515

516

517

519

521

522

523

524

525

527

528

529

530

531

532

534

536

538

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL https://arxiv.org/abs/2502.13923.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness from ai feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models, 2025. URL https://arxiv.org/abs/2504.11468.

Lichang Chen, Chen Zhu, Davit Soselia, Jiuhai Chen, Tianyi Zhou, Tom Goldstein, Heng Huang, Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf, 2024. URL https://arxiv.org/abs/2402.07319.

Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. In *Advances in Neural Information Processing Systems*, volume 30, 2017.

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong reinforcement learning baseline for model reasoning, 2025. URL https://arxiv.org/abs/2504.02546.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu

Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

- Jiayi Fu, Xuandong Zhao, Chengyuan Yao, Heng Wang, Qi Han, and Yanghua Xiao. Reward shaping to mitigate reward hacking in RLHF. In *ICML 2025 Workshop on Reliable and Responsible Foundation Models*, 2025. URL https://openreview.net/forum?id=62A4d5Mokc.
- Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness to both prompt and reward models, 2025. URL https://arxiv.org/abs/2501.03262.
- Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is worth a dozen images, 2016. URL https://arxiv.org/abs/1603.07396.
- Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. Rlaif vs. rlhf: Scaling reinforcement learning from human feedback with ai feedback, 2024. URL https://arxiv.org/abs/2309.00267.
- Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step, 2023. URL https://arxiv.org/abs/2305.20050.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL https://arxiv.org/abs/2304.08485.
- Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.org/abs/2503.20783.
- Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts, 2024. URL https://arxiv.org/abs/2310.02255.
- Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for question answering about charts with visual and logical reasoning, 2022. URL https://arxiv.org/abs/2203.10244.
- Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for vqa on document images, 2021. URL https://arxiv.org/abs/2007.00398.
- Yuchun Miao, Sen Zhang, Liang Ding, Rong Bao, Lefei Zhang, and Dacheng Tao. InfoRM: Mitigating reward hacking in RLHF via information-theoretic reward modeling. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=3XnBVK9sD6.
- OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624 625

627

628

629

630 631

632

633 634

635

636 637

638

639

640 641

642

644 645

646

647

Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. *arXiv* preprint arXiv:2203.02155, 2022.

Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang, Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning abilities through two-stage rule-based rl. *arXiv preprint arXiv:2503.07536*, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In *Advances in Neural Information Processing Systems*, volume 33, pp. 3008–3021, 2020.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer, and Trevor Darrell. Aligning large multimodal models with factually augmented rlhf, 2023. URL https://arxiv.org/abs/2309.14525.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

- Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL https://openreview.net/forum?id=QWTCcxMpPA.
- Xiaokun Wang, Peiyu Wang, Jiangbo Pei, Wei Shen, Yi Peng, Yunzhuo Hao, Weijie Qiu, Ai Jian, Tianyidan Xie, Xuchen Song, Yang Liu, and Yahui Zhou. Skywork-vl reward: An effective reward model for multimodal understanding and reasoning, 2025. URL https://arxiv.org/abs/2505.07263.
- Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A. Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for language model training, 2023. URL https://arxiv.org/abs/2306.01693.
- Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun, and Tat-Seng Chua. Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback, 2024. URL https://arxiv.org/abs/2312.00849.
- Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of CVPR*, 2024.
- Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun, Botao Yu, Ge Zhang, Huan Sun, Yu Su, Wenhu Chen, and Graham Neubig. Mmmu-pro: A more robust multi-discipline multimodal understanding benchmark, 2025. URL https://arxiv.org/abs/2409.02813.
- Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu, Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on the evaluation of large multimodal models. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 881–916. Association for Computational Linguistics, 2025. doi: 10.18653/v1/2025.findings-naacl.51. URL http://dx.doi.org/10.18653/v1/2025.findings-naacl.51.
- Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Peng Gao, and Hongsheng Li. Mathverse: Does your multi-modal llm truly see the diagrams in visual math problems?, 2024. URL https://arxiv.org/abs/2403.14624.

A IMPLEMENTATION DETAILS

A.1 RL TRAINING FRAMEWORK

Our reinforcement learning implementation builds upon the LMM-R1 framework (Peng et al., 2025)⁴. On top of this foundation, we incorporate the methodology described in Section 3, extending the framework with additional functionalities. In particular, we implement hybrid and multi-aspect reward modeling, introduce support for MLLM training, and enable token-level reward assignment for MLLM reinforcement learning.

A.2 TRAINING HYPER-PARAMETERS

The hyperparameters used for HARMO are summarized in Table 7. The same set of hyperparameters is applied to all variants of the model proposed in this paper to ensure a consistent training setup.

⁴https://github.com/TideDra/lmm-r1

Table 7: HARMO Training Hyperparameters

Hyperparameter	Value
Training batch size	256
Rollout batch size	256
Samples per prompt	8
Temperature	1
Max output sequence length	4096
Max epochs	1
Number of episodes	2
Initial KL coefficient	$1e^{-3}$
Discount factor (γ)	1
GAE parameter (λ)	1
Actor learning rate	$1e^{-6}$

CASE STUDY В

The following figures illustrate HARMO's ability to reason through a variety of problem-solving questions. In these visualizations, the reasoning steps are color-coded to indicate their verification status:

- Text highlighted with ____ indicates correctly verified reasoning steps.
- Text highlighted with ____ indicates advanced or highly sophisticated reasoning steps.
- Text highlighted with ____ indicates incorrectly verified or flawed reasoning steps.

These figures demonstrate HARMO's step-by-step problem-solving capabilities and provide a visual comparison with baseline models.

758

759

760

761

762

764 765

772

773 774

776

777

779

780 781

782

783

784

785

786 787

788

789

791

792 793

794

796

798 799

800

801

802

803

804 805

806 807

808

System Prompt: You are a helpful assistant good at solving problems with step-by-step reasoning. You should first think about the reasoning process and then provide the user with the answer. User Prompt: A cube with the edge 3 cm long is painted grey and cut into smaller cubes each with an edge of 1 cm long. How many smaller cubes will have exactly 2 faces painted? Output the step-by-step reasoning in <think> </think> and the final answer in <answer> </answer> tags The <answer> tag should include the final answer. The output format should be <think>Your reasoning process</think> <answer>Final answer</answer>. Input Image: HARMO-3B answer: To determine how many smaller cubes will have exactly 2 faces painted, we need to analyze the structure of the larger cube and the smaller cubes it is divided into. 1. The larger cube has an edge length of 3 cm. When it is divided into smaller cubes each with an edge length of 1 cm, it will be divided into 3 x 3 x 3 = 27 smaller cubes. 2. The smaller cubes that have exactly 2 faces painted are the cubes that are located on the edges of the larger cube, but not at the corners. Each edge of the larger cube is 3 cm long, and when divided into smaller cubes, it will have 3 smaller cubes along each edge. The cubes at the corners are painted on three faces, the cubes at the edges but not at the corners are painted on two faces, and the cubes at the vertices are painted on four faces. 3. Each edge of the larger cube has 3 smaller cubes, but the two cubes at the ends of each edge are corner cubes and are painted on four faces. Therefore, the number of smaller cubes with exactly two faces painted on one edge is 3 - 2 = 1. Since there are 12 edges in a cube, the total number of smaller cubes with exactly two faces painted is $12 \times 1 = 1$. Thus, the number of smaller cubes that have exactly 2 faces painted is 12. </think> <answer>12</answer> Qwen2.5-VL-3B-Instruct answer: <think> To solve this problem, we need to consider how the original cube is divided into smaller cubes and which smaller cubes will have exactly two faces painted. 1. The original cube has an edge length of 3 cm. When it is cut into smaller cubes with an edge length of 1 cm, it will result in a 3x3x3 grid of smaller cubes 2. In a 3x3x3 grid, the smaller cubes that have exactly two faces painted are those located on the edges of the larger cube but not at the corners. This means we need to count the number of such cubes along each edge. 3. Each edge of the original cube is 3 cm long, so there are 3 smaller cubes along each edge (including the 4. Since there are 3 edges, and each edge contributes 3 smaller cubes with exactly two faces painted, we calculate the total number as follows: Total = 3 edges * 3 cubes per edge = 9 cubes Therefore, there are 9 smaller cubes that will have exactly two faces painted </think> <answer> </answer>

Figure 3: Case Study 1 - Math Cube Problem

HARMO demonstrates advanced reasoning and correctly identifies all 12 edge-centered cubes with exactly two painted faces after the 3 cm cube is subdivided. The baseline model, by contrast, fails to systematically exclude corner cubes or miscounts edge cases, often yielding an incorrect answer.

```
810
811
                                System Prompt :
812
                                You are a helpful assistant good at solving problems with step-by-step reasoning. You should first think about
                                the reasoning process and then provide the user with the answer
813
                                User Prompt:
814
                                Which stone should Mr Flintstone place on the right side of the scales, so that both sides weigh the same?
815
                                Options: ['A' 'B' 'C' 'D' 'E']
                                Output the step-by-step reasoning in <think> </think> and the final answer in <answer> </answer> tags.
816
                                The <answer> tag should include the correct option choice.
                                The output format should be
817
                                <think>Your reasoning process</think> <answer>Correct option choice</answer>.
818
                                                    <image1>:
819
820
821
822
                                                    <image2>:
823
                                                   A) (5 \text{kg}) B) (7 \text{kg}) C) (9 \text{kg}) D) (11 \text{kg}) E) (13 \text{kg})
824
825
                                HARMO-3B answer:
826
                                <think>
                                To determine which stone Mr. Flintstone should place on the right side of the scales to make both sides weigh
828
                                the same, we need to calculate the total weight on the left side of the scales first.
                                The left side of the scales has three stones:
829
                                        A stone weighing 26 kg
                                        A stone weighing 12 kg
830
                                        A stone weighing 8 kg
831
                                Let's add these weights together:
832
                                26 kg + 12 kg + 8 kg = 46 kg
833
                                The right side of the scales has two stones:
834
                                       A stone weighing 20 kg
                                        A stone weighing 17 kg
835
                                Let's add these weights together:
                                20 kg + 17 kg = 37 kg
836
                                To make both sides weigh the same, we need to find a stone that, when added to the right side, will make the
837
                                total weight equal to 46 kg. Let's denote the weight of the stone to be placed on the right side as x. We need
                                to solve the equation:
838
                                37 \text{ kg} + x = 46 \text{ kg}
839
                                Subtract 37 kg from both sides:
840
                                x = 46 \text{ kg} - 37 \text{ kg} = 9 \text{ kg}
841
                                Therefore, Mr. Flintstone should place a stone weighing 9 kg on the right side of the scales.
                                <answer>C</answer>
843
844
                                Qwen2.5-VL-3B-Instruct answer:
845
                                To solve this problem, we need to determine which weight will balance the scale when placed on the
846
                                right side. First, let's calculate the total weight on the left side of the scale:
847
                                Left side weights: 26 \text{ kg} + 12 \text{ kg} + 8 \text{ kg} = 46 \text{ kg}
848
849
                                Now, we need to find out how much weight is needed on the right side to balance it. Since the total
                                weight on the left side is 46 kg, the right side must also have 46 kg to balance.
850
851
                                Let's check each option to see which one adds up to 46 kg:
852
                                A) 5 kg: 46 kg (not enough)
                                B) 7 kg: 46 kg (not enough)
853
                                C) 9 kg: 46 kg (not enough)
854
                                D) 11 kg: 46 kg (not enough)
                                E) 13 kg: 46 kg (enough)
855
856
                                Therefore, the correct weight to place on the right side to balance the scale is 13 kg.
857
                                <answer>E)</answer>
858
859
```

Figure 4: Case Study 2 - Solving a General Math Problem

861 862

863

HARMO correctly reasoned step-by-step to arrive at the correct answer, whereas the baseline model followed unreasonable steps and produced an incorrect solution.

868

869

870

871

872

873

874

875

882

883 884 885

886 887

888

889

890 891 892

893

894 895

897

899900

901

902

903

904 905

906 907

908

909 910

911

913 914

915

916 917

```
System Prompt:
You are a helpful assistant good at solving problems with step-by-step reasoning. You should first think about
the reasoning process and then provide the user with the answer.
User Prompt:
Which stone should Mr Flintstone place on the right side of the scales, so that both sides weigh the same?
Options: ['A' 'B' 'C' 'D' 'E']
Output the step-by-step reasoning in <think> </think> and the final answer in <answer> </answer> tags.
The <answer> tag should include the correct option choice.
The output format should be:
<think>Your reasoning process</think> <answer>Correct option choice</answer>.
Input Image:
HARMO-3B answer:
<think>
Let's analyze the pattern of hexagons in Sylvia's drawings:

1. The first pattern has 1 hexagon.

2. The second pattern has 7 hexagons.

3. The third pattern has 19 hexagons.
We need to find the number of hexagons in the fifth pattern. Let's denote the number of hexagons in the n-th pattern as H(n).
From the given patterns, we can see that:
H(2) = 7

H(3) = 19
To find a pattern, let's calculate the difference between consecutive terms: H(2) - H(1) = 7 - 1 = 6 H(3) - H(2) = 19 - 7 = 12
The differences are 6 and 12. We can see that the difference is increasing by 6 each time. So, the difference between the number of hexagons in the n-th pattern and the n-1-th pattern is 6(n-1).
Therefore, we can express H(n) as: H(n) = H(n-1) + 6(n-1)
Using this recurrence relation, we can find H(4) and H(5): H(4) = H(3) + 6(3) = 19 + 18 = 37
H(5) = H(4) + 6(4) = 37 + 24 = 61
So, the number of hexagons in the fifth pattern is 61. 
<answer>61</answer>
Qwen2.5-VL-3B-Instruct answer:
To determine the number of hexagons in the fifth pattern, we need to observe the pattern and identify the
rule governing the growth.

    First Pattern: There is 1 hexagon.
    Second Pattern: There are 7 hexagons (1 + 6).
    Third Pattern: There are 19 hexagons (7 + 12).

We can see that each subsequent pattern adds more hexagons than the previous one. To find the number of hexagons in the fourth and fifth patterns, we continue this pattern:
4. Fourth Pattern: The number of hexagons is (19 + 18 = 37). 5. Fifth Pattern: The number of hexagons is (37 + 20 = 57).
Therefore, the fifth pattern will have 57 hexagons. 
<answer>57</answer>
```

Figure 5: Case Study 3 - Math Puzzle Problem

Qwen3 baseline failed to identify the correct puzzle equation, whereas HARMO succeeded in finding the correct puzzle equation, reasoning step-by-step, and arriving at the correct solution.

```
System Prompt:
You are a helpful assistant good at solving problems with step-by-step reasoning. You should first think about
the reasoning process and then provide the user with the answer.
In the triangle, \angle A = \angle B. What is x?
Output the step-by-step reasoning in <think> </think> and the final answer in <answer> </answer> tags.
The <answer> tag should include the final answer.
The output format should be:\n<think>Your reasoning process</think> <answer>Final answer</answer>.
Input Image:
HARMO-3B answer:
<think>
Since \angle A = \angle B in the triangle ABC, then AC = BC. Given the lengths of the sides AC = 3x - 1 and BC = 2x + 2,
we can set up the equation:

3x - 1 = 2x + 2

Subtract 2x from both sides:
Add 1 to both sides:
Thus, the value of x is 3.
</think>
<answer>3</answer>
Qwen2.5-VL-3B-Instruct answer:
Since \angle A = \angle B, triangle ABC is isosceles with AB = AC. Therefore, we can set up the equation x + 4 = 2x + 2. Solving for x: x + 4 = 2x + 2. Subtract x from both sides: 4 = x + 2
Subtract 2 from both sides:
2 = x
So, x = 2.
</think>
<answer>2</answer>
```

Figure 6: Case Study 4 - Geometry Math Problem

HARMO correctly solves for x with clear recognition of equal sides AB = AC, while the baseline model fails to identify the isosceles nature, leading to incorrect conclusions.

1016

1017 1018

1019

1020

1022102310241025

973 974 975 976 977 978 System Prompt: 979 You are a helpful assistant good at solving problems with step-by-step reasoning. You should first think about 980 the reasoning process and then provide the user with the answer. 981 User Prompt: 982 Square ABCD and equilateral triangle AED are coplanar and share the line segment AD, as shown. What is the measure, in degrees, of angle BAE? 983 Output the step-by-step reasoning in <think> </think> and the final answer in <answer> </answer> tags. 984 The <answer> tag should include the final answer 985 The output format should be:\n<think>Your reasoning process</think> <answer>Final answer</answer>. 986 Input Image: 987 988 990 991 992 993 HARMO-3B answer: 994 995 <think> Given the square ABCD and the equilateral triangle AED, we need to find the measure of angle BAE. 996 Since ABCD is a square, all angles in the square are 90 degrees and all sides are equal. Therefore, 997 Since AED is an equilateral triangle, all its angles are 60 degrees and all its sides are equal. Therefore, 998 ∠EAD = 60°. 999 We can find \angle BAE by subtracting \angle DAB from \angle EAD: \angle BAE = \angle EAD - \angle DAB = 60° - 90° + 90° = 30° Here, we subtract 90 degrees from 60 degrees because \angle DAB is the sum of \angle DAE and \angle EAB, and 1000 ∠EAB is 90 degrees. 1001 1002 Therefore, the measure of ∠BAE is 30 degrees. 1003 <answer>30</answer> 1004 Qwen2.5-VL-3B-Instruct answer: 1005 <think> Given that square ABCD and equilateral triangle AED share side AD, we can deduce the following: 1. Since ABCD is a square, all its internal angles are 90°. 2 Since AED is an equilateral triangle, all its internal angles are 60°. 1008 To find the measure of angle BAE, we need to consider the geometry formed by these shapes. 1009 The angle BAD is part of the square, so it is 90°. 1010 The angle EAD is part of the equilateral triangle, so it is 60°. 1011 Since B and D are adjacent vertices of the square, the line segment BD forms a straight line passing through both points. Therefore, the angle BAE is the sum of the angles BAD and EAD. 1012 1013 Thus, angle BAE = 90° + 60° = 150°. 1014 <answer>150°</answer> 1015

Figure 7: Case Study 5 - Geometry Math Problem

HARMO correctly finds $\angle BAE = 30^{\circ}$, while the baseline incorrectly sums angles to 150° with incorrect geometric reasoning, misinterpreting the figure's layout.