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Multivariate Conformal Prediction using Optimal Transport
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Abstract
Conformal prediction quantifies the uncertainty
of machine learning models by constructing sets
of plausible outputs instead of relying on a sin-
gle prediction, which may not exactly match the
ground-truth. This is achieved by evaluating all
possible output candidates and selecting the most
likely ones by ranking their score functions, which
measure how well each candidate aligns with the
given input, the prediction model, and past ob-
servations. Traditionally, this approach has been
limited to univariate score functions, as ranking
requires a scalar value to order candidates. The
challenge lies in extending ranking to multivariate
spaces, where no canonical order exists. To ad-
dress this, we leverage a natural extension of mul-
tivariate score ranking based on optimal transport
mappings. Our method offers a principled frame-
work for constructing conformal prediction sets in
multidimensional settings, preserving distribution-
free coverage guarantees with finite data samples.

1. Introduction
Conformal prediction (CP) (Gammerman et al., 1998; Vovk
et al., 2005; Shafer & Vovk, 2008) has emerged as a simple
framework to quantify the prediction uncertainty of machine
learning algorithm without relying on distributional assump-
tions on the data. For a sequence of observed data, and a
new input point,

Dn = {(x1, y1), ..., (xn, yn)} and xn+1,

the objective is to construct a set that contains the unob-
served response yn+1 with a specified confidence level
100(1− α)%. This involves evaluating scores S(x, y, ŷ) ∈
R such as the prediction error of a model ŷ, for each obser-
vation (x, y) in Dn and ranking these score values. The con-
formal prediction set for the new input xn+1 is the collection
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of all possible responses y whose score S(xn+1, y, ŷ) ranks
small enough to meet the prescribed confidence threshold,
compared to the scores S(xi, yi, ŷ) in the observed data.

CP has undergone tremendous developments in recent
years,both (Barber et al., 2023; Park et al., 2024; Tibshirani
et al., 2019; Guha et al., 2024), that mirror is increased
applicability to challenging settings(Straitouri et al., 2023;
Lu et al., 2022). To name a few, it has been applied
for designing uncertainty sets in active learning (Ho
& Wechsler, 2008), anomaly detection (Laxhammar &
Falkman, 2015; Bates et al., 2021), few-shot learning (Fisch
et al., 2021), time series (Chernozhukov et al., 2018; Xu
& Xie, 2021; Chernozhukov et al., 2021; Lin et al., 2022;
Zaffran et al., 2022), or to infer the performance guarantee
for statistical learning algorithms (Holland, 2020; Cella
& Ryan, 2020); and recently to Large Language Models
(Kumar et al., 2023; Quach et al., 2023). We refer to the
extensive reviews in (Balasubramanian et al., 2014) for
other applications to machine learning.

By design, CP requires the notion of order, as the inclu-
sion of a candidate response depends on its relative rank-
ing to the scores observed previously. Hence, the classi-
cal strategies developed so far largely targets score func-
tions with univariate outputs. This limits their applicability
to multivariate responses, as ranking vector-valued scores
S(x, y, ŷ) ∈ Rd, d ≥ 2 is evidently not as straightforward
as ranking numbers.

Ordering Vector Distributions using Optimal Transport.
In parallel to these developments, and starting with the
seminal reference of (Chernozhukov et al., 2017) and more
generally the pioneering works of (Hallin et al., 2021; 2022;
2023), multiple references have explored the possibilities
offered by optimal transport theory to define a meaningful
ranking or ordering in a multidimensional space. Simply
put, the analogous of a rank function computed on data
can be found in the optimal Brenier map that transports the
data measure to a uniform, symmetric, centered measure of
reference in Rd. As a result, a simple notion of univariate
rank for a vector z ∈ Rd can be found by evaluating the
distance of the image of z according to that optimal map to
the origin. This approach ensures that the ordering respects
both the geometry i.e spatial arrangement of the data and its
distribution: points closer to the center get lower ranks.
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Multivariate Conformal Prediction using Optimal Transport

Contributions We propose to leverage recent advances
in computational optimal transport (Peyré & Cuturi, 2019),
using notably differentiable transport map estimators (Poola-
dian & Niles-Weed, 2021; Cuturi et al., 2019), to leverage
the application of such maps in the definition of multivariate
score functions. More precisely:

• OT-CP: We extend conformal prediction techniques to
multivariate score function by leveraging optimal trans-
port ordering, which offers a principled way to define and
compute a higher-dimensional quantile and cumulative dis-
tribution function. As a result, we obtain distribution-free
uncertainty sets that capture the joint behavior of multi-
variate predictions that enhance the flexibility and scope
of conformal predictions.

• We propose a computational approach to this theoreti-
cal ansatz using the entropic map (Pooladian & Niles-
Weed, 2021) computed from solutions to the Sinkhorn
problem (Cuturi, 2013). We prove that our approach pre-
serves the coverage guarantee while being tractable.

• We showcase the application of OT-CP using a recently re-
leased benchmark of regression tasks (Dheur et al., 2025).

2. Background
Notation We define [n] = {1, . . . , n}. We denote the
standard uniform measure on [a, b] as U([a, b]). For a dis-
crete set of points (zi)i∈[n], the empirical uniform measure
is denoted Un = 1

n

∑n
i=1 δzi .

2.1. Univariate Conformal Prediction

For a real valued random variable Z, it is common to con-
struct an interval [a, b] within which it is expected to fall as

Rα = {z ∈ R : F (z) ∈ [a, b]}

This is based on the probability integral transform that states
that the cumulative distribution function F maps variables
to uniform distribution i.e. P(F (Z) ∈ [a, b]) = U([a, b]).
To guarantee a (1 − α) uncertainty region, it suffices to
choose a and b such that U([a, b]) ≥ 1− α which implies

P (Z ∈ Rα) ≥ 1− α. (1)

Applying it to the real valued score Z = S(X,Y ) of the
prediction model ŷ, an uncertainty set for the response of
a given a input X can be expressed as

Rα(X) =
{
y ∈ Y : F ◦ S(X, y) ∈ [a, b]

}
. (2)

However, this result is typically not directly usable since
the ground-truth distribution F is unknown and must be
approximated empirically with Fn using a finite sample of
data. When the sample size goes to infinity, one expects
to recover Equation (1). The following result provides the
tool to obtain the finite sample version.

Lemma 2.1. If Z1, . . . , Zn, Z be a sequence of real valued
exchangeable random variables, then it holds

Fn(Z) ∼ U
{
0,

1

n
,
2

n
, . . . , 1

}
P(Fn(Z) ∈ [a, b]) = Un+1([a, b]) =

⌊nb⌋ − ⌈na⌉+ 1

n+ 1
.

By choosing any a, b such that Un+1([a, b]) ≥ 1 − α,
Lemma 2.1 guarantees a coverage, that is at least equal
to the prescribed level of uncertainty

P (Z ∈ Rα,n) ≥ 1− α.

where, the uncertainty set Rα,n = Rα(Dn) is defined based
on observations Dn = {Z1, . . . , Zn} and defined as:

Rα,n =
{
z ∈ R : Fn(z) ∈ [a, b]

}
. (3)

In short, Equation (3) is an empirical version of Equation (2)
based on finite sample data. The striking property is that
it preserves the coverage probability (1− α) and does not
depend on the ground-truth distribution of the data.

Given data Dn, a prediction model ŷ and a new input Xn+1,
one can build an uncertainty set for the unobserved output
Yn+1 by applying it to observed score functions.

Proposition 2.2 (Conformal Prediction Coverage). Con-
sider Zi = S(Xi, Yi) for i in [n] and Z = S(Xn+1, Yn+1)
in Lemma 2.1. The conformal prediction set is defined as

Rα,n(Xn+1) =
{
y ∈ Y : Fn ◦ S(Xn+1, y) ∈ [a, b]

}
and satisfies a finite sample coverage guarantee

P (yn+1 ∈ Rα,n(Xn+1)) ≥ 1− α.

The surprising facts are that the coverage guarantee in Propo-
sition 2.2, holds for the unknown ground-truth distribution
of the data P, does not require quantifying the estimation
error |Fn − F |, and is applicable to any prediction model ŷ
as long as it treats the data exchangeably, e.g., a pre-trained
model independent of Dn.

Leveraging the quantile function F−1
n = Qn, and by setting

a = 0 and b = 1− α, we have the usual description

Rα,n(Xn+1) =
{
y ∈ Y : S(Xn+1, y) ≤ Qn(1− α)

}
namely the set of all possible responses whose score rank
is smaller or equal to ⌈(1− α)(n+ 1)⌉ compared to rank-
ing of previously observed scores. For the absolute value
difference score function, the CP set corresponds to

Rα,n(Xn+1) =
[
ŷ(Xn+1)±Qn(1− α)

]
.
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Multivariate Conformal Prediction using Optimal Transport

Center-Outward View Another classical choice is a = α
2

and b = 1− α
2 . In that case, we have the usual confidence

set that corresponds to the range of values that captures the
central proportion with α/2 of the data lying below Q(α/2)
and α/2 lying above Q(1− α/2).

Introducing the center-outward distribution of Z as the func-
tion T = 2F − 1 , the probability integral transform T (Z)
is uniform in the unit ball [−1, 1]. This ensures a symmetric
description of Rα = T−1(B(0, 1 − α)) around a central
point such as the median Q(1/2) = T−1(0). and the radius
of the ball now directly corresponds to the desired confi-
dence level of uncertainty. Similarly, we have the empirical
center outward distribution Tn = 2Fn − 1 and the center-
outward view of the conformal prediction set follows as

Rα,n(Xn+1) =
{
y ∈ Y : |Tn ◦ S(Xn+1, y)| ≤ 1− α

}
.

If Z follows a probability distribution P, then the transfor-
mation z 7→ T (z) is mapping the source distribution P to
the uniform distribution U over the unit ball. In fact, it
can be characterized as essentially the unique monotone
increasing function such that T (Z) is uniformly distributed.

2.2. Multivariate Conformal Prediction

As recalled in (Dheur et al., 2025), several alternative con-
formal prediction approaches have been proposed to tackle
multivariate prediction problems. While many conformal
methods exist for univariate prediction, we focus here on
those applicable to multivariate outputs. Some of these
methods can directly operate using a simple predictor (e.g.,
a conditional mean) of the response y, while some may re-
quire stronger assumptions, such as requiring an estimator
of the joint probability density function between x and y,
or access to a generative model that mimics the conditional
distribution of y given x) (Izbicki et al., 2022; Wang et al.,
2022).

We restrict our attention in this work to approaches that
make no such assumption, reflecting our modeling choices
for OT-CP.

M-CP. We will consider the template approach of (Zhou
et al., 2024) to use classical CP by aggregating a score
function computed on each of the d outputs of the multivari-
ate response. Given a conformity score si (to be defined
next) for the i-th dimension, Zhou et al. (2024) define the
following aggregation rule:

sM-CP(x, y) = max
i∈[d]

si(x, yi). (4)

As (Dheur et al., 2025), we will use conformalized quantile
regression (Romano et al., 2019) to define the score func-
tions above, for each output i ∈ [d], where the conformity
score is given by:

si(x, yi) = max{l̂i(x)− yi, yi − ûi(x)},

with l̂i(x) and ûi(x) representing the lower and upper con-
ditional quantiles of Yi|X = x at levels αl and αu, re-
spectively. In our experiments, we consider equal-tailed
prediction intervals, where αl =

α
2 , αu = 1 − α

2 , and α
denotes the miscoverage level.

Merge-CP. An alternative approach is simply to use a
squared Euclidean aggregation,

s(x, y) := ∥ŷ(x)− y∥2,

where the choice of the norm (e.g., ℓ1, ℓ2, or ℓ∞) depends
on the desired sensitivity to errors across tasks. This ap-
proach reduces the multidimensional residual to a scalar
conformity score, leveraging the natural ordering of the real
numbers. This simplification not only makes it straightfor-
ward to apply univariate conformal prediction methods, but
also avoids the complexities of directly managing vector-
valued scores in conformal prediction. A variant consists
of applying a Mahalanobis norm (Johnstone & Cox, 2021)
in lieu of the squared Euclidean norm, using the covariance
matrix Σ estimated from the training data (Johnstone & Cox,
2021; Katsios & Papadopulos, 2024),

s(x, y) := ∥Σ−1/2(ŷ(x)− y)∥2,

2.3. Kantorovich Ranks

A naive way to define ranks in multiple dimensions might
be to measure how far each point is from the origin and
then rank them by that distance. This breaks down if the
distribution of the data is stretched or skewed in certain
directions. To correct for this, Hallin et al. (2021) developed
a formal framework of center-outward distributions and
quantiles, also called Kantorovich ranks (Chernozhukov
et al., 2017), extending the familiar univariate concepts of
ranks and quantiles into higher dimensions, building on
elements of optimal transport theory.

Let µ and ν be source and target probability measures on
Ω ⊂ Rd. We consider the optimal transport problem with
square Euclidean cost

inf
π∈Π(µ,ν)

∫
Ω×Ω

∥x− y
∥∥2 dπ(x,y),

where Π(µ, ν) is the set of all transport plans, i.e. joint
distributions π on Ω× Ω whose marginals are µ and ν.

Optimal Transport Map One can look for a map T :
Ω → Ω that pushes forward µ to ν and minimizes the
average transportation cost

T ⋆ ∈ argmin
T#µ=ν

∫
Ω

∥x− T (x)∥2 dµ(x). (5)

Brenier’s theorem states that if the source measure µ has a
density, there exists a solution to 5 that is the gradient of a
convex function ϕ : Ω → R such that T ⋆ = ∇ϕ.

3
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Multivariate Conformal Prediction using Optimal Transport

In the one-dimensional case, the cumulative distribution
function of a distribution P is the unique increasing function
transporting it to the uniform distribution. This monotonic-
ity property generalizes to higher dimensions through the
gradient of a convex function ∇ϕ. Thus, one may view the
optimal transport map in higher dimensions as a natural ana-
log of the univariate cumulative distribution function both
represent the unique monotone way to send one probability
distribution onto another.

Definition 2.3. The center-outward distribution of a random
variable Z ∼ P is defined as the optimal transport map
T = ∇ϕ that pushes P forward to the uniform distribution
U on the unit ball B(0, 1). The rank of Z is defined as
Rank(Z) = ∥T (Z)∥, the distance to origin.

Quantile region is an extension of quantiles to multiple
dimensions to represent region in the sample space that con-
tains a given proportion of probability mass. The quantile
region at probability level (1− τ) ∈ (0, 1) can be defined as

Rτ = {z ∈ Rd : ∥T (z)∥ ≤ 1− τ}.

By definition of the spherical uniform distribution, we have
∥T (Z)∥ is uniform on (0, 1) which implies

P(Z ∈ Rτ ) = 1− τ. (6)

3. Kantorovich Conformal Prediction
3.1. Multi-Output Conformal Prediction

We consider that P is only available through a finite set of
samples {Zi}n+1

i=1 and a grid of U with as many points. We
consider first the discrete transport map

Tn+1 : {Zi}n+1
i=1 → {Ui}n+1

i=1

which can be obtained by solving the optimal assignment
problem, which seeks to minimize the total transport cost
between the empirical distributions Pn+1 and Un+1:

Tn+1 ∈ argmin
T∈T

n+1∑
i=1

∥Zi − T (Zi)∥2,

where T is the set of bijections mapping the observed sam-
ple {Zi}n+1

i=1 to the grid {Ui}n+1
i=1 .

Definition 3.1. Let (Z1, . . . , Zn, Zn+1) be a sequence of
exchangeable variables in Rd that follow a common distri-
bution P. The discrete center-outward distribution Tn+1 is
the transport map pushing forward Pn+1 to Un+1.

When dealing with empirical distribution with finite samples
Z1, . . . , Zn, Zn+1 In this asymptotic regime (Chewi et al.,
2024), the empirical source distribution Pn+1 approximates
the ground-truth P and as well as the empirical transport
map Tn+1 approximates in sample the exact transport T ⋆.

Following (Hallin et al., 2021) to formalize the discrete
spherical uniform distribution and its associated empirical
cumulative distribution function, we begin by stating the
construction of the discrete spherical uniform distribution
involves a uniform grid defined such that the total number
of points n = nRnS +no, where no points are at the origin.

• nS unit vectors u1, . . . ,unS
are uniform on the sphere.

• nR radius are regularly spaced as
{

1
nR

, 2
nR

, . . . , 1
}

.

The grid discretizes the sphere into layers of concentric
shells, with each shell containing nS equally spaced points
along directions determined by the unit vectors. The discrete
spherical uniform distribution puts equal mass over each
points of the grid that is to say no × 1/n mass on the origin
and 1/n on the remaining. This ensures isotropic sampling
at fixed radius onto [0, 1].

By definition of the target distribution Un+1, it holds

∥Tn+1(Zn+1)∥ ∼ U
{
0,

1

nR
,
2

nR
, . . . , 1

}
.

In order to define an empirical quantile region as Equa-
tion (6), we need an extrapolation T̄n+1 of Tn+1 out of the
samples (Zi)i∈[n+1]. By definition of such maps

∥T̄n+1(Zn+1)∥ = ∥Tn+1(Zn+1)∥

is still uniformly distributed and the empirical quantile
region can be defined as

Rα,n+1 = {z ∈ Rd : ∥T̄n+1(z)∥ ≤ 1− α}

and expect that P (Z ∈ Rα,n+1) ≈ 1− α when n is large.

Nevertheless, the core point of conformal prediction method-
ology is to go beyond asymptotic results or regularity as-
sumptions about the data distribution. This is crucial be-
cause we only have access to a finite amount of data, and
the ground-truth distribution of the data is unknown in prac-
tice. In that case, it is not immediate to have guarantee with
respect to the ground-truth distribution such as Equation (7).

3.2. Optimal Transport Merging

We introduce the Optimal Transport Merging, a simple pro-
cedure that reduces any vector-valued score S(x, y) ∈ Rd

in a one-dimension score. More precisely, we define the
new non-conformity score function of an observation as

SOT−CP(x, y) = ∥T ⋆ ◦ S(x, y)∥2

where T ⋆ is the optimal Brenier (1991) map that pushes
the distribution of vector-valued scores onto the uniform

4
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Multivariate Conformal Prediction using Optimal Transport

ball distribution U in the same approach. This approach
allows us to exploit the natural ordering of the real line,
making it possible to directly apply one-dimensional con-
formal prediction methods to the sequence of transformed
scores Zi = ∥SOT−CP(Xi, Yi)∥2 for i ∈ [n+ 1].

In practical implementation, T ⋆ can be replaced by any ap-
proximation T̂ that preserves the permutation invariance of
the score functions. We introduce the conformal prediction
set resulting from the optimal transport merging is

ROT−CP(Xn+1, α) = Rα(T,Xn+1)

with respect to a given transport map T

Rα(T ) =
{
y : Fn(∥SOT−CP(Xn+1, y)∥2) ≤ 1− α

}
.

have a coverage (1− α), where Fn is empirical (univariate)
cumulative distribution function of the observed scores{

∥SOT−CP(X1, Y1)∥, . . . , ∥SOT−CP(Xn, Yn)∥
}
.

Proposition 2.2 implies

P(Yn+1 ∈ ROT−CP(Xn+1)) ≥ 1− α.

Remark 3.2. Our proposed conformal prediction frame-
work OT-CP with optimal transport merging score function
generalizes the Merge-CP approaches. More specifically,
under the additional assumption that we are transporting
a source Gaussian (resp. uniform) distribution to a target
Gaussian (resp. uniform) distribution, the transport map is
linear (Peyré & Cuturi, 2019; Muzellec & Cuturi, 2018)

3.3. Coverage Guarantees under Approximations

When dealing with high-dimensional data or complex dis-
tributions, it is essential to find computationally feasible
methods to approximate the optimal transport map T ⋆ with
a map T̂ . In practical applications, we will rely on empirical
approximations of the Brenier (1991) map using finite sam-
ples. Note that this approach may encouter a few statistical
roadblocks, as such estimators are significantly hindered
by the curse of dimensionality (Chewi et al., 2024). Con-
sequently, one may think that these maps, not serving as
reliable approximations, may hurt the performance of our
approach. However, the machinery of conformal predic-
tion presented earlier in the background section allows to
maintain a coverage level, irrespective of sample size limi-
tations. We defer the presentation of this practical approach
to section 3.4 and focus first on coverage guarantees.

Coverage of Approximated Quantile Region
Let us assume an arbitrary approximation T̂ of the Brenier
(1991) map and define the corresponding quantile region as

R
(
T̂ , r

)
= {z ∈ Rd : ∥T̂ (z)∥ ≤ r},

The coverage in Equation (7) is not automatically main-
tained since Û := T̂#P may not coincide with U. As a result,
the validity of the approximated quantile region may be com-
promised unless we can control the magnitude of the error
∥Û− U∥, which requires additional regularity assumptions.

In its standard formulation, conformal prediction relies on
an empirical setting and does not directly apply to the contin-
uous case. Consequently, it does not provide a solution for
calibrating entropic quantile regions, for example. However,
a careful inspection of the one-dimensional case reveals that
understanding the distribution of the probability integral
transform is the key point:

• U
({

0, 1
n ,

1
2 , . . . , 1

})
∼ Fn(Z) ̸= F (Z) ∼ U(0, 1) .

Instead of relying on an analysis of approximation error
to quantify the deviation |Fn − F | under certain regularity
conditions, conformal prediction fully characterizes the dis-
tribution of the probability integral transform and calibrates
the radius of the quantile region accordingly.

We follow this very simple idea and note that by definition

P(R(T̂ , r)) = P(∥T̂ (z)∥ ≤ r) = Û(B(0, r)).

Instead of relying on Û ≈ U, we define

rα(T̂ ,P) = inf{r : Û(B(0, r)) ≥ 1− α}

that leads to a desired coverage with the approximated trans-
ported map . For a radius r̂α = rα(T̂ ,P), it holds

P
(
Z ∈ R(T̂ , r̂α)

)
≥ 1− α.

By extension, a quantile region of the vector-valued score
Z = S(X,Y ) ∈ Rd of a prediction model ŷ provides an
uncertainty set for the response of a given a input X , with
prescribed coverage (1− α) can be expressed as

Rα(X) =
{
y ∈ Y : ∥T ◦ S(X, y)∥ ≤ 1− α

}
.

P(Y ∈ Rα(X)) = 1− α. (7)

In the following result, we give the finite sample analog of
Equation (6), which provides a finite sample guarantee for
our optimal transport approach.

Lemma 3.3 (Coverage of Empirical Quantile Region). Let
Z1, . . . , Zn, Zn+1 be a sequence of exchangeable variable
in Rd, then, P(Zn+1 ∈ Rα,n+1) ≥ 1− α.

Remark that the source probability in Lemma 3.3 is the
ground-truth P. Given a transport map T̂ and applying and
the empirical radius rα,n+1 = rα(T̂ ,Pn+1), it holds

Pn+1(Zn+1 ∈ R(T̂ , rα,n+1)) ≥ 1− α.

5
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Multivariate Conformal Prediction using Optimal Transport

However, this is only an empirical coverage statement:

1

n+ 1

n+1∑
i=1

1{Zi ∈ R(T̂ , rα,n+1)} ≥ 1− α

which does not implies coverage with respect to P unless
n → ∞. The following steps show how to obtain finite
sample validity.

Proof. For simplicity, we will denote the quantile region as
Rα,n+1 = R(T̂ , rα,n+1). Then by exchangeability:

P(Zn+1 ∈ Rα,n+1) =
1

n+ 1

n+1∑
i=1

Pn+1(Zi ∈ Rα,n+1)

= E

[
1

n+ 1

n+1∑
i=1

1{Zi ∈ Rα,n+1}

]

= E
[
Pn+1(Zn+1 ∈ Rα,n+1)

]
≥ 1− α.

This can be directly applied to obtain conformal prediction
set for vector-valued non-conformity score functions Zi =
S(Xi, Yi) ∈ Rd for i in [n+ 1] in Lemma 3.3.
Proposition 3.4. The conformal prediction set is defined as

R̂α,n+1(Xn+1) =
{
y ∈ Y : ∥T̂ ◦ S(Xn+1, y)∥ ≤ r̂α,n+1

}
with r̂α,n = inf

{
r ≥ 0 : Û(B(0, r)) ≥ 1− α

}
. It satisfies

a distribution-free finite sample coverage guarantee

P
(
Yn+1 ∈ R̂α,n+1(Xn+1)

)
≥ 1− α. (8)

Approaches relying on vector-valued probability integral
transform, e.g., leveraging Copulas have been explored re-
cently (Messoudi et al., 2021; Park et al., 2024) and con-
cluded that loss of coverage can occur when the estimated
copula of the scores deviates from the true copula and thus
does not formally guarantee finite-sample validity. To our
knowledge, Proposition 3.4 provides the first calibration
guarantee for such confidence regions without assumptions
on the distribution, for any approximation map T̂ . Specifi-
cally using the discrete spherical uniform grid implies:
Proposition 3.5. Given n discrete sample points distributed
over a sphere with radius {0, 1

nR
, 2
nR

, . . . , 1} and directions
uniformly sampled on the sphere, the smallest radius to
obtain a coverage (1− α) is determined by

rα =
jα
nR

where jα =

⌈
n(1− α)− no

nS

⌉
,

where nS is the number of directions, nR is the number of
radius, and no is the number of copies of the origin.

Remark 3.6. When the discrete transport problem is
solved approximately and one obtain T̂n+1, then choosing
r̂α,n+1 = rα(T̂n+1,Pn+1) ensure finite sample coverage
just as Section 3.3. So one can take benefit of numerical
efficiency without sacrificing valid coverage.

3.4. Implementation with the Entropic Map

We assume access to two sample sets, i.e., one containing
residuals µ̂n = 1

n

∑
i δzi , and the second containing the

discretized uniform grid on the sphere, ν̂m = 1
m

∑
j δuj ,

not necessarily assuming a same size, namely n ̸= m. A
convenient estimator for the Brenier map T ⋆ is the entropic
map (Pooladian & Niles-Weed, 2021). Let ε > 0 and write
Kij = [exp(−∥zi − uj∥2/ε)]ij the kernel matrix. One can
then define,

f⋆,g⋆ = argmax
f∈Rn,g∈Rm

⟨f , 1n

n ⟩+ ⟨g, 1m

m ⟩ − ε⟨e f
ε ,Ke

g
ε ⟩ . (9)

Problem (9) is an unconstrained concave optimization prob-
lem known as the regularized OT problem in dual form (?,
Prop. 4.4). Problem (9) can be solved numerically with the
Sinkhorn algorithm (Cuturi, 2013). Equipped with these
optimal vector, one can define the maps, valid out of sample,

fε(z) = minε([∥z − uj∥2 − g⋆
j ]j) , (10)

gε(u) = minε([∥zi − u∥2 − f⋆i ]i) , (11)

where for a vector u or arbitrary size s we define the log-
sum-exp operator as minε(u) := −ε log( 1s1

T
s e

−u/ε). Us-
ing the Brenier (1991) theorem, linking potential values to
optimal map estimation, one obtains an estimator for T ⋆:

Tε(z) := z −∇fε(z) =

m∑
j=1

p j(z)uj , (12)

where the weights depend on z as:

p j(z) :=
exp

(
−
(
∥z − uj∥2 − g⋆

j

)
/ε
)∑m

k=1 exp (− (∥z − uk∥2 − g⋆
k) /ε)

. (13)

One can obtain, analogously, an estimator for the inverse
map (T ⋆)−1 using the potential gε, as demonstrated in
Fig. 5. Using the entropic map estimator requires running
the Sinkhorn (1964) algorithm on a n ×m cost matrix at
train time, and at each evaluation, compute weights in (13)
that require computing the distance of any incoming point
z to the uniform grid. The complexity is therefore O(nm)
when training the map and conformalizing its scores, and
then O(m) at each evaluation of a score for a given y.

Sampling on the sphere As mentioned in (Hallin et al.,
2021), it is preferable to sample the uniform measure Ud

with diverse samples, and this can be achieved using strati-
fied sampling on radii lengths, but, most importantly, low-
disrepancy samples on the sphere to pick sampling direc-
tions. We borrow inspiration from the review provided in

6
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Figure 1. We report the mean and the standard error of the region size across 10 different seeds. For M-CP, we use 300 samples to
compute the conditional mean, and for OT-CP, we use ε = 0.1 and 215 = 32768 points in the uniform target measure. On average,
OT-CP displays smaller region size than other baselines. The dimensionality of each dataset is provided for reference underneath, datasets
are sorted in increasing dimension order.

(Nguyen et al., 2024) to pick their Gaussian based mapping
approach (Basu, 2016). This consists in mapping a low-
discrepancy sequence w1, . . . , wL on [0, 1]d to a potentially
low-discrepancy sequence θ1, . . . , θL on Sd−1 through the
mapping θ = Φ−1(w)/∥Φ−1(w)∥2, where Φ−1 is the in-
verse CDF of N (0, 1) applied entry-wise.

4. Experiments
4.1. Setup and Metrics

We borrow the experimental setting provided by Dheur et al.
(2025) and benchmark multivariate conformal methods on
a total of 24 tabular datasets. Total data size n in these
datasets ranges from 103 to 50,000, with input dimension
p ranging from 1 to 348, and output dimension d ranging
from 2 to 16. We adopt their approach, which is to rely on a
multivariate quantile function forecaster (MQF2, Kan et al.,
2022), a normalizing flow that is able to quantify output
uncertainty conditioned on input x. However, in accordance
with our stance mentioned in the background section, we
will only assume access to the conditional mean (point-wise)
estimator for OT-CP.

As is common in the field, we evaluate the methods using
several metrics, including marginal coverage (MC), and
mean region size (Size). The latter is using importance
sampling, leveraging (when computing test time metrics
only), the generative flexibility provided by the MQF2 as an
invertible flow. See (Dheur et al., 2025) and their code for
more details on the experimental setup.

4.2. Hyperparameter Choices

We apply default parameters for all three competing meth-
ods, M-CP and Merge-CP, using (or not) the Mahalanobis
correction. For M-CP using conformalized quantile regres-

sion boxes, we follow (Dheur et al., 2025) and leverage
the empirical quantiles return by MQF2 to compute boxes
(Zhou et al., 2024).

OT-CP our implementation requires essentially tuning two
important hyperparameters: the entropic regularization ε
and the total number of points used to discretize the sphere
m, not necessarily equal to the input data sample size.
These two parameters describe a fundamental statistical
and computational trade-off. On the one hand, it is known
that increasing m will mechanically improve the ability of
Tε to recover in the limit T ⋆ (or at least solve the semi-
discrete (Peyré & Cuturi, 2019) problem of mapping n data
points to the sphere). However, large m incurs a heavier
computational price when running the Sinkhorn algorithm.
On the other hand, increasing ε improves on both com-
putational and statistical aspects, but deviates further the
estimated map from the ground truth T ⋆ to target instead
a blurred map. We have experimented with these aspects
and derive from our experiments that both m and ε should
be increased to track increase in dimension. As a sidenote,
we do observe that debiasing the outputs of the Sinkhorn
algorithm does not result in improved results, which agrees
with the findings in (Pooladian et al., 2022).

4.3. Results

We present results by differentiating datasets with small
dimension d ≤ 6 from datasets with higher dimensionality,
that we expect to be more challenging to handle with OT
approaches, owing to the curse of dimensionality that might
degrade the quality of multivariate quantiles.
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Figure 2. Ablation on both the total number of points m sampled from the sphere and the ε regularization level for all datasets. This plot
details the impact of the two important hyperparameters we single out in OT-CP. As can be seen, larger sample size m improves region
size (smaller the better) for roughly all datasets and regularizations. On the other hand, one must tune ε to operate at a suitable regime:
not too low, which results in the well documented poor statistical performance of unregularized OT, nor too high, which would lead to a
collapse of the entropic map to the sphere.

an
su

r2
 (2

)
bi

o 
(2

)
bi

rth
s1

 (2
)

bl
og

_d
at

a 
(2

)
ca

lco
fi 

(2
)

ed
m

 (2
)

en
b 

(2
)

ho
us

e 
(2

)
ta

xi
 (2

)
ju

ra
 (3

)
sc

pf
 (3

)
sf

1 
(3

)
sf

2 
(3

)
slu

m
p 

(3
)

ho
us

eh
ol

ds
 (4

)
ai

r (
6)

at
p1

d 
(6

)
at

p7
d 

(6
)0

100

200

300

tim
e 

(s
)

method
M-CP
Merge-CP
Merge-CP (Mah)
OT-CP

Figure 3. Computational time on small dimensional datasets. OT-
CP incurs more compute time due to the OT map estimation. See
Fig.7 for a similar picture for higher dimensional datasets.

5. Conclusion
We have proposed OT-CP, a new approach that can leverage
a recently proposed formulation for multivariate quantiles
that uses optimal transport theory and optimal transport map
estimators. We show the theoretical soundness of this ap-
proach, but, most importantly, demonstrate its applicability
throughout a broad range of tasks compiled by (Dheur et al.,
2025). Compared to similar baselines that either leverage
a conditional mean regression estimator (Merge-CP), or
more involved quantile regression estimators (M-CP), OT-
CP displays superior performance overall, while incurring,
predictably, a higher train / calibration time cost. The chal-
lenges brought forward by the estimation of OT maps in
high dimensions (Chewi et al., 2024) require being particu-
larly careful when tuning entropic regularization and grid
size. However, we show that there exists a reasonable setting
for both these parameters that delivers good performance
across most tasks.
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Figure 4. As in 1, we report mean and standard errors for region
size across 10 different seeds for larger datasets. We keep the same
parameters and importantly ε = 0.1 and 215 = 32768 points in
the uniform target measure.

Figure 5. Conformal α = 5% sets recovered by mapping back
the reduced sphere on the Manhattan map, in agreement with
Equation 7, on a prediction for the taxi dataset. We use the
inverse entropic map mentioned in Section 3.4, mapping back the
gridded sphere of size m = 215.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Multivariate Conformal Prediction using Optimal Transport

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Balasubramanian, V., Ho, S.-S., and Vovk, V. Conformal

prediction for reliable machine learning: theory, adapta-
tions and applications. Newnes, 2014.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R. J. Conformal prediction beyond exchangeability. The
Annals of Statistics, 51(2):816–845, 2023.

Basu, K. Quasi-Monte Carlo Methods in Non-Cubical
Spaces. Stanford University, 2016.

Bates, S., Candès, E., Lei, L., Romano, Y., and Sesia,
M. Testing for outliers with conformal p-values. arXiv
preprint arXiv:2104.08279, 2021.

Brenier, Y. Polar factorization and monotone rearrangement
of vector-valued functions. Communications on Pure
and Applied Mathematics, 44(4), 1991. doi: 10.1002/cpa.
3160440402.

Cella, L. and Ryan, R. Valid distribution-free inferential
models for prediction. arXiv preprint arXiv:2001.09225,
2020.

Chernozhukov, V., Galichon, A., Hallin, M., and Henry, M.
Monge–Kantorovich depth, quantiles, ranks and signs.
The Annals of Statistics, 45(1):223 – 256, 2017. doi:
10.1214/16-AOS1450. URL https://doi.org/10.
1214/16-AOS1450.
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Figure 6. Coverage for bigger dimensional datasets, corresponding to the setting displayed in Figure 6
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Figure 7. Runtimes for bigger dimensional datasets, corresponding to the setting displayed in Figure 6

A. Appendix
We provide a few additional results related to the experiments proposed in Section 4
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Figure 8. Ablation: coverage quality as a function of hyperparameters, with the setting corresponding to Fig.2
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Figure 9. Coverage of all baselines on small dimensional datasets, corresponding to the region sizes given in 1.
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Figure 10. Ablation: running time as a function of hyperparameters, with the setting corresponding to Fig.2
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