
Equivariant Light Field Convolution and Transformer
in Ray Space

Yinshuang Xu
University of Pennsylvania
xuyin@seas.upenn.edu

Jiahui Lei
University of Pennsylvania
leijh@seas.upenn.edu

Kostas Daniilidis
University of Pennsylvania

and Archimedes, Athena RC
kostas@cis.upenn.edu

Abstract

3D reconstruction and novel view rendering can greatly benefit from geometric
priors when the input views are not sufficient in terms of coverage and inter-view
baselines. Deep learning of geometric priors from 2D images requires each image
to be represented in a 2D canonical frame and the prior to be learned in a given
or learned 3D canonical frame. In this paper, given only the relative poses of the
cameras, we show how to learn priors from multiple views equivariant to coordi-
nate frame transformations by proposing an SE(3)-equivariant convolution and
transformer in the space of rays in 3D. We model the ray space as a homogeneous
space of SE(3) and introduce the SE(3)-equivariant convolution in ray space.
Depending on the output domain of the convolution, we present convolution-based
SE(3)-equivariant maps from ray space to ray space and to R3. Our mathematical
framework allows us to go beyond convolution to SE(3)-equivariant attention in
the ray space. We showcase how to tailor and adapt the equivariant convolution and
transformer in the tasks of equivariant 3D reconstruction and equivariant neural
rendering from multiple views. We demonstrate SE(3)-equivariance by obtain-
ing robust results in roto-translated datasets without performing transformation
augmentation.

1 Introduction
Recent years have seen significant advances in learning-based techniques [67, 68, 60, 69, 61, 73,
11, 53] harnessing the power of deep learning for extraction of geometric priors from multiple
images and associated ground-truth shapes. Such approaches extract features from each view and
aggregate these features into a geometric prior. However, these approaches are not SE(3)-equivariant
to transformations of the frame where the priors and images are defined. While view pooling or
calculating variance [69, 72, 46, 73, 11] can be used to aggregate features and tackle equivariance,
view pooling discards the rich geometric information contained in a multiple view setup.

In this paper, we address the problem of learning geometric priors that are SE(3)-equivariant with
respect to transformations of the reference coordinate frame. We argue that all information needed
for tasks like novel view rendering or 3D reconstruction is contained in the light field [6, 37]. Our
input is a light field, a function defined on oriented rays in 3D whose values can be the radiance or
features extracted from pixel values. We will use the term light field, and we will be specific when it
is a radiance field or a feature field. Images are discrete samples of this field: the camera position
determines which rays are sampled, while the camera orientation leaves the sample of the light field
unchanged up to pixel discretization. We model the light field as a field over a homogeneous space of
SE(3), the ray space R parameterized by the Plücker coordinates. The ray space R is the space of
oriented light rays, for any ray x ∈ R, the Plücker coordinate is x = (d,m), where d ∈ S2 is the
direction of the ray, and m = x× d where x is any point on the ray.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



We define a convolution in the continuous ray space as an equivariant convolution on a homogeneous
space [18]. Since our features are not limited to scalar values, we will draw upon the tools of tensor
field networks and representation theory, discussed in detail in the Appendix. In Sec. 3.1 we study the
group action of SE(3) on R, the stabilizer group for R, and how SE(3) transforms the feature field
over R. In Sec. 3.4, we focus on developing the equivariant convolution in R, providing analytical
solutions for the kernels with the derived constraints in convolution from R to R and from R to R3,
respectively. Meanwhile, we make the kernel locally supported without breaking the equivariance.
By varying the output domain of the convolution, we introduce equivariant convolutions from the ray
space to the ray space and from the ray space to the 3D Euclidean space.

The constraint of the kernel limits the expressiveness of equivariant convolution when used without a
deep structure. In Sec 3.5, we introduce an equivariant transformer in R. The equivariant transformer
generates the equivariant key, query, and value by leveraging the kernel derived in the convolution,
resulting, thus, in invariant attention weights and, hence, equivariant outputs. We provide a detailed
derivation of two cases of cross-attention: the equivariant transformer from R to R and the equivariant
transformer from R to R3. In the first case, the features that generate the key and value are attached
to source rays, while the feature generating the query is attached to the target ray. In the second case,
the feature generating the query is attached to the target point.

We demonstrate the composition of equivariant convolution and transformer modules in the tasks of
3D reconstruction from multi-views and novel view synthesis given the multi-view features. The
inputs consist of finite sampled radiance fields or finite feature fields, while our proposed equivariant
convolution and transformer are designed for continuous light fields. If an object or a scene undergoes
a rigid transformation and is resampled by the same multiple cameras, the SE(3) group action is not
transitive in the light field sample. This lack of transitivity can significantly impact the computation
of equivariant features, mainly because the views are sparse, unlike densely sampled point clouds.
Object motion introduces new content, resulting in previously non-existing rays in the light field
sampling. Hence, our equivariance is an exact equivariance with respect to the choice of coordinate
frame. In the 3D reconstruction task, we experimentally show that equivariance is effective for small
camera motions or arbitrary object rotations and generally provides more expressive representations.
In the 3D object reconstruction application, we first apply an equivariant convolutional network in
ray space to obtain the equivariant features attached to rays. We then apply equivariant convolution
and equivariant transformer from R to R3 to obtain equivariant features attached to the query point,
which are used to calculate the signed distance function (SDF) values and ultimately reconstruct the
object. In the generalized rendering task, our model queries a target ray and obtains neighboring
rays from source views. Our composition of equivariant modules is based on IBRNet [61], which
consists of view feature aggregation and ray transformer. We replace the view feature aggregation in
[61] with the equivariant convolution and transformer over rays and the ray transformer part with the
equivariant transformerover the points along the ray to get the density and color of the point, see Sec.
3.3. We summarize here our main contributions:

(1) We model the ray space as a homogeneous space with SE(3) as the acting group, and we propose
the SE(3)-equivariant generalized convolution as the fundamental operation on a light field whose
values may be radiance or features. We derive two SE(3)-equivariant convolutions, both taking input
ray features and producing output ray features and point features, respectively.

(2) To enhance the feature expressiveness, we extend the equivariant convolution to an equivariant
transformer in R, in particular, a transformer from R to R and a transformer from R to R3.

(3) We adapt and compose the equivariant convolution and transformer module for 3D reconstruc-
tion from multiple views and generalized rendering from multi-view features. The experiments
demonstrate the equivariance of our models.

2 Related Work
Equivariant Networks Group equivariant networks [15, 65, 62, 55, 63, 12, 19, 17, 22, 24, 23]
provide deep learning pipelines that are equivariant by design with respect to group transformations
of the input. While inputs like point clouds, 2D and 3D images, and spherical images have been
studied extensively, our work is the first, as far as we know, to study equivariant convolution and
cross-attention on light fields. The convolutional structure on homogeneous spaces or groups is
sufficient and necessary for equivariance with respect to compact group actions as proved in [18, 1, 36].
Recently, Cesa et al. [8], Xu et al. [70] provided a uniform way to design the steerable kernel in

2



an equivariant convolutional neural network on a homogeneous space using Fourier analysis of the
stabilizer group and the acting group, respectively, while Finzi et al. [26] proposed a numerical
algorithm to compute a kernel by solving the linear equivariant map constraint. For arbitrary Lie
groups, Finzi et al. [25], MacDonald et al. [39], Bekkers [4] designed the uniform group convolutional
neural network. The fact that any O(n) equivariant function can be expressed in terms of a collection
of scalars is shown in [59]. For general manifolds, Cohen et al. [16], Weiler et al. [64] derived the
general steerable kernel from a differential geometry perspective, where the group convolution on
homogeneous space is a special case. The equivalent derivation for the light field is in the Appendix.
Recently, equivariant transformers drew increasing attention, in particular for 3D point cloud analysis
and reconstruction [27, 48, 10, 7]. A general equivariant self-attention mechanism for arbitrary groups
was proposed in [44, 43], while an equivariant transformer model for Lie groups was introduced in
Hutchinson et al. [32]. We are the first to propose an equivariant attention model in the 3D ray space.

Light Field and Neural Rendering from Multiple Views The plenoptic function introduced in
perception [6] and later in graphics [37] brought a new light into the scene representation problem
and was directly applicable to the rendering problem. Instead of reconstructing and then rendering,
light fields enabled rendering just by sampling the right rays. Recently, learning-based light field
reconstruction [41, 34, 5, 66, 51, 2] became increasingly popular for novel view synthesis, while
[50, 54, 53] proposed non-equivariant networks in the ray space. Due to the smaller dimension of
the ray space, the networks in the ray space are more efficient compared to neural radiance fields
[42], which leverages volumetric rendering. Several studies [73, 61, 53, 50, 11, 38, 13, 31, 58, 20]
concentrate on generalizable rendering. These works are similar to ours in that they obtain the 3D
prior from the 2D images, but they are not equivariant since they explicitly use the coordinates of the
points or the rays in the network.

The most related equivariant rendering approaches to us are [21, 47, 45]. The equivariance in the
paper [21] is not the equivariance we mean in this work: [21] enforces the geometric consistency via
a loss function. [47] is not strictly equivariant and it depends on the assumption of upright views and
the camera ID embeddings, which results in its non-equivariance to camera permutation. It achieves
data-driven equivariance by randomly choosing the first camera frame as the canonical frame. While
[45] addresses the frame problem through relative pose, it is not theoretically equivariant in cases of
individual camera rotations around their axes or minor individual rotations accompanied by small
content changes. We want to emphasize that our central contribution is to propose an equivariant
convolution and transformer on ray space, which can be integrated into a wide range of 3D learning
models.

Reconstruction from Multiple Views Dense reconstruction from multiple views is a well-
established field of computer vision with advanced results even before the introduction of deep
learning [28]. Such approaches cannot take advantage of shape priors and need a lot of views to pro-
vide a dense reconstruction. Deep learning enabled semantic reconstruction, i.e., the reconstruction
from single or multiple views by providing the ground-truth 3D shape during training [14, 67, 68, 40].
These approaches decode the object from a global code without using absolute or relative camera
poses. Regression of absolute or relative poses applied in [35, 71, 56, 69, 72, 57, 3, 46, 33, 20] is
non-equivariant.

3 Method
In this section, we will first introduce the (feature) field on the ray space and 3D Euclidean space,
respectively, and the corresponding SE(3) group actions on the values of the fields in Sec. 3.1.
To offer readers a holistic grasp—from a broad overview down to the intricate specifics and from
foundational concepts to advanced techniques— we will present the reconstruction and the generalized
rendering with the neural components of their architectures (convolutional and attentional) and their
inputs and outputs in Sec. 3.2 and Sec. 3.3. Following that, we expose our central contribution:
equivariant convolution and attention in ray space in Sec. 3.4 and Sec. 3.5.

3.1 Feature field on Ray Space and 3D Euclidean Space

3.1.1 Ray Space
The ray space is the space of oriented light rays. As introduced in the introduction and App. Ex. 1,
we use Plücker coordinates to parameterize the ray space R: for any ray x ∈ R, x can be denoted as
(d,m), where d ∈ S2 is the direction of the ray, and m = x× d is the moment of the ray with x

3



Figure 1: Feature attached to rays: we show
the scalar feature and type-1 feature. When
ρ2 is the trivial representation, tensor fea-
tures can be viewed in the plane orthogo-
nal to the ray (the blue plane). When rota-
tions act on the feature field, the scalar fea-
ture only changes position as attached to the
rays: (Lgf)(x) = f(g−1x); while the type-1
feature changes position and is itself rotated:
(Lgf)(x) = ρ(h(g−1, x)−1)f(g−1x), where
ρ(γ, t) = eiγ .

Figure 2: Features attached to points: we
show scalars and vectors (type-1 features).
The black dot in the figure is the point, and
the square and the vectors are the scalar
and type-1 features attached to the point.
When g ∈ SE(3) acts on the feature field,
we will see that the scalars are kept the
same while the attached position is rotated,
and the vector features change their posi-
tion and alter their direction.

being a point on the ray. Then any g = (R, t) ∈ SE(3) acts on the the ray space as:
gx = g(d,m) = (Rd, Rm+ t× (Rd)). (1)

The ray space R is a homogeneous space with a transitive group action by SE(3). Given the origin
in the homogeneous space as η = ([0, 0, 1]T , [0, 0, 0]T ) (the line representing z-axis), the stabilizer
group H that leaves η unchanged is SO(2)× R (the rotation around and translation along the ray).
The ray space is, thus, isomorphic to the quotient space R ∼= SE(3)/(SO(2)×R). We parameterize
the stabilizer group H as H = {(γ, t)|γ ∈ [0, 2π), t ∈ R}.

We follow the generalized convolution derivation for other homogeneous spaces in [18], which
requires the use of principal bundles, section maps, and twists [29] explained in the appendix section
A.2 and onwards. SE(3) can be viewed as the principal SO(2) × R-bundle, where we have the
projection p : SE(3) → R, for any g ∈ SE(3), p(g) = gη; a section map s : R → SE(3) can
be defined such that p ◦ s = idR. In App. Example 6, we elaborate on how we define the section
map from the ray space to SE(3) in our model. Generally, the action of SE(3) induces a twist as
gs(x) ̸= s(gx). The twist can be characterized by the twist function h : SE(3)×R → SO(2)× R,
gs(x) = s(gx)h(g, x), we provide the twist function in our model and its visualization in App.
Example 6.

3.1.2 Light Field
The light field can be modeled as a function from the ray space to a vector space, f : R → V . We
also need to define the SE(3) group action on the values of that field. Since the group action will
be on a vector space V , we will use the corresponding group representation of the stabilizer group
ρ : SO(2)× R → GL(V ), see details in App. A.3. For example, a light field can be a radiance field
f that maps the ray space of oriented rays to their observed radiance (RGB) f : R → R3 which is a
concatenation of three scalar fields over R. The group representation ρ in this case is the identity
and g ∈ SE(3) acts on the radiance field f as (Lgf)(x) = f(g−1x), shown as the scalar features in
Fig. 1. Given that the stabilizer H = SO(2) × R is a product group, the stabilizer representation
can be written as the product ρ(γ, t) = ρ1(γ)⊗ ρ2(t), where ρ1 is the group representation of SO(2)
and ρ2 is the group representation of R. If the light field is a feature field (Fig. 1) with ρ2 being
the identity representation and ρ1 corresponding to a type-1 field, ρ1(γ) = eiγ , then type-1 features
change position and orientation when g ∈ SE(3) acts on it. Having explained the examples of scalar
(type-0) and type-1 fields, we introduce the action on any feature field f as [18]:

(Lgf)(x) = ρ(h(g−1, x)−1)f(g−1x), (2)
where ρ is the group representation of SO(2)× R corresponding to the space V , determined by the
field type of f , and h is the twist function introduced by SE(3) as shown in App. Example 6.

3.1.3 Feature Field on R3

R3 is also a homogeneous space of SE(3) like the ray space R, with the stabilizer group as SO(3),
as stated in App. Example 2. For any g = (R, t) ∈ SE(3), it acts on the field f over R3 also follows

4



Figure 3: The pipeline of equivariant 3D reconstruction: Firstly, we obtain the feature field over the
ray space. Secondly, we perform an equivariant convolution from ray space to point space. Thirdly,
we apply a SE(3) equivariant cross-attention module to obtain an equivariant feature for a query.

[18]:

(Lgf)(x) = ρ(R)f(R−1(x− t))

,where ρ is the group representation of SO(3), since the twist function can be independent of the 3D
position due to the fact that SE(3) = R3 ⋊ SO(3) is a semidirect product group as stated in App.
Example 4. The feature field over R3 and the corresponding group action is also used in [55, 63]. Fig.
2 visualizes the scalar feature (lout = 0) and vector feature (lout = 1) attached to one point, offering
an intuitive understanding of the feature field over R3.

Given the feature field on the ray space and 3D Euclidean space and the corresponding group
actions of SE(3). We will show two 3D multi-view applications of the equivariant convolution and
transformer: 3D reconstruction and generalized neural rendering. In each application, we start with
the specific definition of equivariance and then outline the corresponding pipeline.

3.2 Equivariant 3D Reconstruction
The radiance field serves as the input for the 3D reconstruction, which ultimately generates a signed
distance field (SDF) denoted by the function e : R3 → R. As aforementioned, the radiance field is the
multi-channel scalar field over R, while SDF is the scalar field over R3. A 3D reconstruction Φ : F →
E , where F denotes the space of radiance fields and E denotes the space of signed distance fields, is
equivariant when for any g ∈ SE(3), any x ∈ R3, and any f ∈ F , Φ(Lgf)(x) = L′

g(Φ(f))(x),
where Lg and L′

g are group actions on the light field and the SDF, respectively. Specifically, as f and
e are scalar fields, (Lgf)(x) = f(g−1x) for any x ∈ R, and (L′

ge)(x) = e(g−1x) for any x ∈ R3.

In practice, we have a finite sampling of the radiance field corresponding to the pixels of multiple
views V = {f(x)|x ∈ LV }, where LV denotes the ray set of multi-views and f ∈ F is the
radiance field induced by multi views sample from. The 3D reconstruction Φ is equivariant when
for any g ∈ SE(3) and any x ∈ R3: Φ(g · V )(x) = Φ(V )(g−1x). If we denote V as (LV , f),
g · V = (g · LV ,Lgf), where g · LV is g acting on the rays defined Eq. 1.

We achieve equivariance using three steps as illustrated in Fig. 3: (1) the transition from pixel colors to
a feature-valued light field (equi-CNN over rays), (2) the computation of features in R3 from features
on the ray space by equivariant convolution from R to R3, and (3) the equivariant transformer with
the query generated by the feature on the point we want to compute SDF and key/value generated
by features on rays. Note that we need (3) following (2) because the output feature of a single
convolution layer is not expressive enough due to the constrained kernel.For the detailed practical
adaption of the convolution and transformer in 3D reconstruction, please see the App. B, where we
approximate the intra-view with SE(2) equivariant convolution.

3.3 Generalized Neural Rendering
The light feature field fin : R → V serves as the input for neural rendering, which ultimately
generates the light field f : R → R3, a multi-channel scalar field over R. A neural rendering
Ψ : I → F , where I denotes the space of the light feature fields and E denotes the space of the
light field, is equivariant when for any g ∈ SE(3), any x ∈ R, and any fin ∈ I, Ψ(Lgfin)(x) =
Ψ(fin)(g

−1x),where Lg is the group operator on the light feature field fin, as shown in Eq. 2
depending on the feature type. In the experiment of this paper, the input light feature field is

5



Figure 4: The pipeline of equivariant neural rendering. Firstly, we obtain the features of the points
along the target ray through convolution over rays. Secondly, we apply the equivariant cross-attention
module to obtain features for generating the color of the points. Finally, we use equivariant self-
attention over the points along the ray to obtain features for generating the density of points.

scalar, i.e., Lgfin(x) = fin(g
−1x). Similar to reconstruction, in practice, the neural rendering Ψ

is equivariant when for any g ∈ SE(3) and any x ∈ R: Ψ(g · V )(x) = Ψ(V )(g−1x), where
V = {fin(x)|x ∈ LV }, and if we denote V as (LV , fin), then g · V = (g · LV ,Lgfin),

By restricting the field type of the output field over rays to have a group representation of SO(2)×R
as ρ(γ, t) = ρ1(γ) ⊗ ρ2(t), where ρ2 is the regular representation, we can obtain the feature of
points along the ray by convolution or transformer from R to R. See App. Example 9 for more
explanation of the regular representation. Alternatively, we can obtain the desired feature by applying
convolution or transformer from R to R, with output features attached to the target ray corresponding
to different irreducible representations of the stabilizer group. These features can be interpreted as
Fourier coefficients of the function of the points along the ray. The Inverse Fourier Transform yields
features for the points along the ray. More details are in the App. I.1.

The feature of the points along the ray can be used to generate density and color for volumetric
rendering [61, 73], or fed into attention and pooling for the final ray feature [58]. In this paper, we
opt to generate the density and color and utilize volumetric rendering, which can be viewed as a
specialized equivariant convolution from points to the ray. Method details are in App. I.

We achieve the equivariant rendering through three steps as shown in Fig. 4: (1) we apply equivariant
convolution from rays to rays to get the equivariant feature for points along the rays, which is a
specific field type over R; 2) to enhance the feature expressivity, we apply an equivariant transformer
from rays to rays to get the color for each point; (3) we apply the equivariant self-attention over the
points along the ray to reason over the points on the same ray; the output feature of the points will be
fed to multiple perceptron layers to get the density of the points.

3.4 Convolution in Ray Space

3.4.1 Convolution from Rays to Rays

The convolution, as stated in App. A.4 and [18] is then defined as

f lout(x) =

∫
R
κ(s(x)−1y)ρin(h(s(x)−1s(y)))f lin(y)dy, (3)

where h(g) is the simplified form of the twist h(g, η). Eq.3 is equivariant to SE(3) if and only if the
convolution kernel κ satisfies that κ(hx) = ρout(h)κ(x)ρin(h−1(h, x)), where ρin and ρout are the
group representations of SO(2)× R corresponding to the input feature type lin and output feature
type lout, respectively. We derive the solutions of the kernel in the App. Example 9.

Local kernel support The equivariance stands even if we constrain the kernel to be local. When
x = (dx,mx) meets the condition that ∠(dx, [0, 0, 1]

T ) ≤ β0 and d(x, η) ≤ d0, κ(x) ̸= 0, this
local support will not violate the constraint that κ(hx) = ρout(h)κ(x)ρin(h−1(h, x)).

6



Then, convolution in Eq. 3 is accomplished over the neighbors only as visualized in Fig. 5. In Fig. 5,
any ray y = (dy,my) (denoted in blue) in the neighborhood of a ray x = (dx,mx) will go through
the cylinder with x as the axis and d0 as the radius since d(x, y) ≤ d0.

Moreover, for any y, ∠(dy,dx) ≤ β0. Any ray y ∈ N (x) is on one tangent plane of a cylinder with
x as the axis and d(x, y) as the radius when d(x, y) > 0.

3.4.2 Convolution from Rays to Points

Figure 5: Neighborhood of a ray x in the convolution.

In applications such as 3D reconstruction,
key point detection, and 3D segmentation,
we expect the output to be the field over
R3. Using a convolution, we will define an
equivariant map from light fields (fields on
R) to fields on R3. We denote with H1 and
H2 the stabilizer groups for the input and
output homogeneous spaces, respectively,
i.e., SO(2) × R and SO(3) in this case.
As shown in the App. Example 4, we can
choose the section map s2 : R3 → SE(3):
s2(x) = (I,x) for any x ∈ R3 and I is the

identity matrix. Following [18], the convolution from rays to points becomes:

f lout
2 (x) =

∫
R
κ(s2(x)

−1y)ρin(h1(s2(x)−1s1(y)))f
lin
1 (y)dy,

where h1 is the twist function corresponding to section s1 : R → SE(3) defined aforementioned, ρin
is the group representation of H1 (SO(2)× R) corresponding to the feature type lin. The subscripts
1 and 2 denote the homogeneous spaces the features are defined on. The convolution is equivariant
if and only if the kernel κ satisfies that κ(h2x) = ρout(h2)κ(x)ρin(h−1

1 (h2, x)) for any h2 ∈ H2,
where ρout is the group representation of H2 (SO(3)) corresponding to the feature type lout.

In 3D reconstruction, f lin is the scalar field over R, i.e., ρin = 1. The convolution is simplified
to f lout

2 (x) =
∫
G/H1

κ(s2(x)
−1y)f lin

1 (y)dy and the corresponding constraint becomes κ(h2x) =

ρout(h2)κ(x). App. Example 10 provides analytical kernel solutions.

3.5 Equivariant Transformer over Rays
We can extend the equivariant convolution to the equivariant transformer model. In general, the
equivariant transformer can be formulated as:

fout
2 (x) =

∑
y∈N (x)

exp(⟨fq(x, f in
2 ), fk(x, y, f

in
1 )⟩)∑

y∈N (x) exp(⟨fq(x, f in
2 )fk(x, y, f in

1 )⟩)
fv(x, y, f

in
1 ), (4)

where the subscript 1 denotes the homogeneous space M1
∼= G/H1 of the feature field f in

1 that
generates the key and value in the transformer; the subscript 2 denotes the homogeneous space
M2

∼= G/H2 of the feature field f in
2 that generates query in the transformer, which is also the

homogeneous space of the output feature fout
2 ; x and y represent elements in the homogeneous

spaces M2 and M1, respectively, where y ∈ N (x) indicates that the attention model is applied over y,
the neighbor of x based on a defined metric. fk, fq , and fv are constructed equivariant keys, queries,
and values in the transformer. fk and fv are constructed by equivariant kernel κk and κv while fq is
constructed through an equivariant linear map, see App. F for detailed construction.

When the transformer is a self-attention model, homogeneous space M1 and M2 are the same since
f in
2 = f in

1 . The above equivariant transformer could be applied to the other homogeneous space other
than R, R3, and acting group other than SE(3). This paper presents the equivariant cross-attention
model over rays, i.e., M1 is R. When the transformer is the cross-attention from rays to rays, M2 is
also R, the equivariant kernel κk and κv is the convolution kernel we derived in convolution from
rays to rays in Sec. 3.4.1. When the transformer is the cross-attention from rays to points, M2 is R3,
the equivariant kernel κk and κv is the convolution kernel we derived in convolution from rays to
points in Sec. 3.4.2. With the construction in App. F, we claim that the transformer from rays to rays
or from rays to points, as shown in the equation 4, is equivariant. The proof is in App. G.

7



Figure 6: In the equivariant transformer (L), positional en-
coding is not directly used due to its lack of equivariance.
Instead, the relative position within the kernel is utilized.
To generate the query fq, we multiply the feature f in

2 (x)
(pre-existing or yielded by convolution) attached to x (in
R or R3, depending on the task) by the designed equivari-
ant linear matrix Wq (see App. F). The key fk and value
fv are constructed using designed equivariant kernels κk

and κv . The transformer is equivariant due to equivariant
fk, fq , and fv .As fk, fq and fv are equivariant, the entire
transformer is equivariant. The conventional transformer
(R) uses point position encoding for the query feature and
obtains the query, key, and value through nonequivariant
conventional linear mappings.

Figure 7: In the equivariant trans-
former (U), the query, key, and
value are equivariant and can be
composed of different types of
features; they can be scalars, vec-
tors, or higher-order tensors. The
inner product, determined by the
feature type, should apply to the
same type of features. In con-
trast, the feature in a conventional
transformer (D) is not equivariant,
it does not contain vectors and
tensors, and the inner product is
conventional.

To better understand the equivariant transformer, we visualize the comparison of the equivariant cross-
attention transformer and conventional transformer shown in Fig. 6. Meanwhile, as stated in App. F,
key, query, and value are generally composed of different types of features and are multi-channel,
allowing for the multi-head attention mechanism. In Fig. 7, we visualize the comparison of the
equivariant multi-head attention module from rays to points with conventional multi-head attention
module. The attention module from rays to rays follows a similar concept but with variations in the
feature types due to the differing group representations of SO(2)× R and SO(3).

4 Experiment

4.1 3D Object Reconstruction from Multiple Views

Datasets and Implementation We use the same train/val/test split of the Shapenet Dataset [9] and
render ourselves for the equivariance test. To render the views for each camera, we fix eight cameras
to one cube’s eight corners. The cameras all point in the same direction toward the object’s center.
We use the following notation to denote the variety of transformations in training and testing: I (no
transformation), Z (optical axis rotation), R (bounded 3-dof camera rotation), Y (vertical axis object
rotation), SO(3) (full object rotation). The details of the five settings are in App. J.1.

As described in App. B, we use SE(2) equivariant CNNs to approximate the equivariant convolution
over the rays. For the fusion from the ray space to the point space model, we use one layer of
convolution and three combined blocks of updating ray features and SE(3) transformers. For more
details, please see the App. J.2.
Results We evaluate our model in seven experiment settings, I/I , I/Z, I/R, R/R, Y/SO(3),
SO(3)/SO(3). The setting A/B indicates training the model on the A setup of the dataset and
evaluating it on the B setup. Following the previous works, we use IoU and Chamfer-L1 Distance as
the evaluation metric. Quantitative results are reported in table 1, and qualitative results are in Fig. 8.

We compare with two other approaches [69], which follows a classic paradigm that queries 3D
positions that are then back-projected to obtain image features for aggregation, and [72], which
was state of the art in 3D object reconstruction from multi-views.Note that both baselines originally
estimate the object poses, but we directly provide ground truth poses to them. See App. J.4 for more
qualitative results.

In table 1, our model outperforms the [72] and [69] by a large margin on I/Z, I/R, and Y/SO(3)
settings. Although theoretically, our model is not equivariant to the arbitrary rotation of the object,
Y/SO(3) shows the robustness of our model to the object rotation and the generalization ability
to some extent. Our model outperforms other models for the chair and car categories in R/R and

8



Method chair
I/I I/Z I/R R/R Y/Y Y/SO(3) SO(3)/SO(3)

Fvor w/ gt pose[72] 0.691/0.099 0.409/0.253 0.398/0.257 0.669/0.113 0.687/0.103 0.518/0.194 0.664/0.114
DISN w/ gt pose[69] 0.725/0.094 0.335/0.396 0.322/0.405 0.500/0.201 0.659/0.120 0.419/0.303 0.549/0.174

Ours 0.731/0.090 0.631/0.130 0.592/0.137 0.689/0.105 0.698/0.102 0.589/0.142 0.674/0.113
Method airplane

I/I I/Z I/R R/R Y/Y Y/SO(3) SO(3)/SO(3)
Fvor w/ gt pose[72] 0.770/0.051 0.534/0.168 0.533/0.174 0.766/0.053 0.760/0.052 0.579/0.147 0.746/0.056
DISN w/ gt pose[69] 0.752/0.058 0.465/0.173 0.462/0.171 0.611/0.104 0.706/0.069 0.530/0.151 0.631/0.103

Ours 0.773/0.050 0.600/0.092 0.579/0.100 0.759/0.051 0.734/0.052 0.597/0.101 0.722/0.056
Method car

I/I I/Z I/R R/R Y/Y Y/SO(3) SO(3)/SO(3)
Fvor w/ gt pose[72] 0.837/0.090 0.466/0.254 0.484/0.258 0.816/0.107 0.830/0.094 0.496/0.240 0.798/0.111
DISN w/ gt pose[69] 0.822/0.089 0.610/0.232 0.567/0.236 0.772/0.135 0.802/0.098 0.614/0.205 0.769/0.123

Ours 0.844/0.081 0.739/0.142 0.741/0.150 0.836/0.089 0.830/0.089 0.744/0.137 0.813/0.097

Table 1: The results for the seven experiments of 8-view 3D reconstruction for the ShapeNet dataset.
The metrics in the cell are IoU↑ and Chamfer-L1 Distance↓. We implement [72] and [69] ourselves on
our equivariant dataset. For the performance of [69], we follow their work to conduct the multi-view
reconstruction by pooling over the feature of every view. The value of Chamfer-L1 Distance is ×10.

SO(3)/SO(3) settings while it is slightly inferior to [72] in the airplane category. Notably, our
model only requires relative camera poses, while [72] and [69] utilize camera poses relative to the
object frame, leveraging explicit positional encoding of the query point in the object frame, which is
concatenated to the point feature. In addition, our model performs better in several experiments in
I/I and Y/Y settings. This superiority can be attributed to the SE(3) equivariant attention model,
which considers scalar features and ray directions. For a detailed discussion of the results, please see
appendix Sec. J.3

Figure 8: Qualitative results for equivariant reconstruction.
Left: input views; Right: reconstruction meshes of different
models and ground truth meshes show how the model is
trained and tested, explained in the text.

We provide an ablation study of the
effectiveness of SE(2) CNNs, equiv-
ariant convolution, transformer, and
type-1 feature (vector feature) in our
model. Meanwhile, we compare our
method with the model that explicitly
encodes the direction of rays. Please
see the App. J.5 for the details of the
ablation study.

4.2 Neural Rendering

Datasets and Implementation We
use the same training and test dataset
as in [61], which consists of both syn-
thetic and real data. Two experiment
settings illustrate our model’s equiv-
ariance: I/I and I/SO(3). I/I is the
canonical setting, where we train and
test the model in the same canonical
frame defined in the dataset. In the
I/SO(3) setting, we test the model
trained in the conical frame under arbi-
trarily rotated coordinate frames while
preserving relative camera poses and
the relative poses between the cam-
era and the scene, thereby preserv-
ing the content of the multiple views.
Each individual view itself is not trans-
formed. Note that this experiment’s
SO(3) setup differs from the R and
SO(3) setups used in the reconstruc-
tion. Further details and discussions on this difference can be found in App. K.1.

9



Figure 9: Qualitative results for Generalized Rendering. We observe a performance drop for IBRNet
from I to SO(3), while ours are robust to rotations in the testset.

Dataset Method I/I I/SO(3)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Pix- Var↓

Realistic Synthetic
360◦[42]

IBRNet[61] 26.91 0.928 0.084 26.77 0.923 0.091 66.58
Ours 26.90 0.929 0.086 26.90 0.929 0.086 0.00

Real
Forward-Facing [41]

IBRNet[61] 25.13 0.817 0.205 24.60 0.797 0.223 52.66
Ours 24.93 0.808 0.212 24.93 0.808 0.212 0.00

Diffuse Synthetic
360◦[49]

IBRNet [61] 37.21 0.989 0.019 37.07 0.988 0.019 34.51
Ours 37.11 0.987 0.019 37.11 0.987 0.019 0.00

Table 2: The results for the experiments of generalized rendering without per-scene tuning. The
metrics in the cell are PSNR↑, SSIM↑, and Pixel Variance↓ (denoted as Pix-Var). The evaluation of
IBRNet[61] is performed by testing the released model on both canonical and rotated test datasets.

Our model architecture is based on IBRNet[61], with view feature aggregation and ray transformer
components modifications. Specifically, we replace the view feature aggregation in [61] with the
equivariant convolution and transformer over rays and the ray transformer part with the equivariant
self-attention over the points along the ray. For more information on the implementation details,
please refer to App. K.2.

Results We compare with IBRNet on I/I and I/SO(3) settings to show that our proposed models
can be embedded in the existing rendering framework and achieve equivariance. Following previous
works on novel view synthesis, our evaluation metrics are PSNR, SSIM, and LPIPS [74]. In
the I/SO(3) test period, we randomly rotate each data six times and report the average metrics.
Meanwhile, we record the max pixel variance and report the average value. We show a qualitative
result in Fig. 9, where IBRNet presents several blurred transverse lines in the I/SO(3) setting while
ours are robust to the rotation. In table 2, our model performs comparably with IBRNet [61] in I/I
setting without performance drop in I/SO(3) setting. The slight decrease in PSNR/SSIM/LPIPS for
IBRNet from I/I to I/SO(3) can be attributed to the training process involving multiple datasets
with different canonical frames, which includes transformation augmentation and makes the model
more robust to coordinate frame changes. Additionally, conventional metrics like PSNR/SSIM may
not directly capture image variations. Therefore, we introduce an additional metric, pixel variance,
to illustrate the changes better. We observe that IBRNet [61] exhibits pixel variance for different
rotations, whereas our approach remains robust to rotation. Our method performs comparably with
IBRNet in the I/SO(3) setting in DeepVoxels [49] because the synthetic data consists of Lambertian
objects with simple geometry, where the ray directions do not significantly affect the radiance. For
more qualitative results, see App. K.3.

5 Conclusion and Broader Impacts
To learn equivariant geometric priors from multiple views, we modeled the convolution on the light
field as a generalized convolution on the homogeneous space of rays with SE(3) as the acting group.
To obtain expressive point features, we extended convolution to equivariant attention over rays. The
main limitation of the approach is the finite sampling of the light field. The sampling of the light
field by sparse views cannot account for large object motions with drastic aspect change, leading to a
breakdown of equivariance. This novel general equivariant representation framework for light fields
can inspire further work on 3D vision and graphics tasks. We do not see any direct negative impact
of our work, but it could have negative societal consequences if misused without authorization, for
example, when using images violating privacy.

10



6 Acknowledgement
The authors gratefully acknowledge support by the support by the following grants: NSF FRR
2220868, NSF IIS-RI 2212433, NSF TRIPODS 1934960, NSF CPS 2038873.

References
[1] Jimmy Aronsson. Homogeneous vector bundles and g-equivariant convolutional neural networks. Sampling

Theory, Signal Processing, and Data Analysis, 20(2):1–35, 2022.

[2] Benjamin Attal, Jia-Bin Huang, Michael Zollhöfer, Johannes Kopf, and Changil Kim. Learning neural
light fields with ray-space embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19819–19829, 2022.

[3] Miguel Angel Bautista, Walter Talbott, Shuangfei Zhai, Nitish Srivastava, and Joshua M Susskind. On the
generalization of learning-based 3d reconstruction. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2180–2189, 2021.

[4] Erik J Bekkers. B-spline cnns on lie groups. arXiv preprint arXiv:1909.12057, 2019.

[5] Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel. X-fields: Implicit neural
view-, light-and time-image interpolation. ACM Transactions on Graphics (TOG), 39(6):1–15, 2020.

[6] James R Bergen and Edward H Adelson. The plenoptic function and the elements of early vision.
Computational models of visual processing, 1:8, 1991.

[7] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik Bekkers, and Max Welling. Geometric and
physical quantities improve e (3) equivariant message passing. arXiv preprint arXiv:2110.02905, 2021.

[8] Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build e (n)-equivariant steerable cnns. In
International Conference on Learning Representations, 2021.

[9] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[10] Evangelos Chatzipantazis, Stefanos Pertigkiozoglou, Edgar Dobriban, and Kostas Daniilidis. SE(3)-
equivariant attention networks for shape reconstruction in function space. arXiv preprint arXiv:2204.02394,
2022.

[11] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf:
Fast generalizable radiance field reconstruction from multi-view stereo. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14124–14133, 2021.

[12] Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall Hill. Equivariant point network for 3d point
cloud analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14514–14523, 2021.

[13] Yuedong Chen, Haofei Xu, Qianyi Wu, Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. Explicit
correspondence matching for generalizable neural radiance fields. arXiv preprint arXiv:2304.12294, 2023.

[14] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified
approach for single and multi-view 3d object reconstruction. In European conference on computer vision,
pages 628–644. Springer, 2016.

[15] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference on
machine learning, pages 2990–2999. PMLR, 2016.

[16] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolutional
networks and the icosahedral cnn. In International conference on Machine learning, pages 1321–1330.
PMLR, 2019.

[17] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

[18] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homogeneous
spaces. Advances in neural information processing systems, 32, 2019.

11



[19] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas Guibas.
Vector neurons: A general framework for so (3)-equivariant networks. arXiv preprint arXiv:2104.12229,
2021.

[20] Yilun Du, Cameron Smith, Ayush Tewari, and Vincent Sitzmann. Learning to render novel views from
wide-baseline stereo pairs. arXiv preprint arXiv:2304.08463, 2023.

[21] Emilien Dupont, Miguel Bautista Martin, Alex Colburn, Aditya Sankar, Josh Susskind, and Qi Shan.
Equivariant neural rendering. In International Conference on Machine Learning, pages 2761–2770. PMLR,
2020.

[22] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning so (3)
equivariant representations with spherical cnns. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 52–68, 2018.

[23] Carlos Esteves, Yinshuang Xu, Christine Allen-Blanchette, and Kostas Daniilidis. Equivariant multi-
view networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
1568–1577, 2019.

[24] Carlos Esteves, Ameesh Makadia, and Kostas Daniilidis. Spin-weighted spherical cnns. arXiv preprint
arXiv:2006.10731, 2020.

[25] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In International Conference
on Machine Learning, pages 3165–3176. PMLR, 2020.

[26] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivariant
multilayer perceptrons for arbitrary matrix groups. arXiv preprint arXiv:2104.09459, 2021.

[27] Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.

[28] Yasutaka Furukawa, Carlos Hernández, et al. Multi-view stereo: A tutorial. Foundations and Trends® in
Computer Graphics and Vision, 9(1-2):1–148, 2015.

[29] Jean Gallier and Jocelyn Quaintance. Differential geometry and Lie groups: a computational perspective,
volume 12. Springer Nature, 2020.

[30] Jiaming Han, Jian Ding, Nan Xue, and Gui-Song Xia. Redet: A rotation-equivariant detector for aerial
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2786–2795, 2021.

[31] Xin Huang, Qi Zhang, Ying Feng, Xiaoyu Li, Xuan Wang, and Qing Wang. Local implicit ray function for
generalizable radiance field representation. arXiv preprint arXiv:2304.12746, 2023.

[32] Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and Hyunjik
Kim. Lietransformer: Equivariant self-attention for lie groups. In International Conference on Machine
Learning, pages 4533–4543. PMLR, 2021.

[33] Hanwen Jiang, Zhenyu Jiang, Kristen Grauman, and Yuke Zhu. Few-view object reconstruction with
unknown categories and camera poses. arXiv preprint arXiv:2212.04492, 2022.

[34] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-based view synthesis for
light field cameras. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016.

[35] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo machine. Advances in
neural information processing systems, 30, 2017.

[36] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In International Conference on Machine Learning, pages
2747–2755. PMLR, 2018.

[37] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 31–42, 1996.

[38] Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang. Sparseneus: Fast generalizable
neural surface reconstruction from sparse views. arXiv preprint arXiv:2206.05737, 2022.

12



[39] Lachlan E MacDonald, Sameera Ramasinghe, and Simon Lucey. Enabling equivariance for arbitrary lie
groups. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8183–8192, 2022.

[40] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4460–4470, 2019.

[41] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi,
Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with prescriptive sampling
guidelines. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019.

[42] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65
(1):99–106, 2021.

[43] David Romero, Erik Bekkers, Jakub Tomczak, and Mark Hoogendoorn. Attentive group equivariant
convolutional networks. In International Conference on Machine Learning, pages 8188–8199. PMLR,
2020.

[44] David W Romero and Jean-Baptiste Cordonnier. Group equivariant stand-alone self-attention for vision.
arXiv preprint arXiv:2010.00977, 2020.

[45] Aleksandr Safin, Daniel Durckworth, and Mehdi SM Sajjadi. Repast: Relative pose attention scene
representation transformer. arXiv preprint arXiv:2304.00947, 2023.

[46] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li. Pifu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2304–2314, 2019.

[47] Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Radwan, Suhani Vora,
Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene representation transformer: Geometry-
free novel view synthesis through set-latent scene representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6229–6238, 2022.

[48] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In
International conference on machine learning, pages 9323–9332. PMLR, 2021.

[49] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael Zollhofer.
Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2437–2446, 2019.

[50] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light field
networks: Neural scene representations with single-evaluation rendering. Advances in Neural Information
Processing Systems, 34:19313–19325, 2021.

[51] Pratul P Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi Ramamoorthi, and Ren Ng. Learning to
synthesize a 4d rgbd light field from a single image. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2243–2251, 2017.

[52] Norman Steenrod. The topology of fibre bundles, volume 27. Princeton university press, 1999.

[53] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Generalizable patch-based neural
rendering. arXiv preprint arXiv:2207.10662, 2022.

[54] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Light field neural rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8269–8279,
2022.

[55] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv
preprint arXiv:1802.08219, 2018.

[56] Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Multi-view consistency as supervisory signal for
learning shape and pose prediction. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2897–2905, 2018.

[57] Michał J Tyszkiewicz, Kevis-Kokitsi Maninis, Stefan Popov, and Vittorio Ferrari. Raytran: 3d pose
estimation and shape reconstruction of multiple objects from videos with ray-traced transformers. arXiv
preprint arXiv:2203.13296, 2022.

13



[58] Mukund Varma, Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, and Zhangyang Wang.
Is attention all that nerf needs? In The Eleventh International Conference on Learning Representations,
2022.

[59] Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are
universal: Equivariant machine learning, structured like classical physics. Advances in Neural Information
Processing Systems, 34:28848–28863, 2021.

[60] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In Proceedings of the European conference on
computer vision (ECCV), pages 52–67, 2018.

[61] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron,
Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view image-based
rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4690–4699, 2021.

[62] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. arXiv preprint
arXiv:1911.08251, 2019.

[63] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. arXiv preprint arXiv:1807.02547, 2018.

[64] Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate independent convolu-
tional networks–isometry and gauge equivariant convolutions on riemannian manifolds. arXiv preprint
arXiv:2106.06020, 2021.

[65] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic networks:
Deep translation and rotation equivariance. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5028–5037, 2017.

[66] Gaochang Wu, Yebin Liu, Lu Fang, and Tianyou Chai. Revisiting light field rendering with deep anti-
aliasing neural network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[67] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and Shengping Zhang. Pix2vox: Context-
aware 3d reconstruction from single and multi-view images. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 2690–2698, 2019.

[68] Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen Zhou, and Wenxiu Sun. Pix2vox++: Multi-scale
context-aware 3d object reconstruction from single and multiple images. International Journal of Computer
Vision, 128(12):2919–2935, 2020.

[69] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn: Deep implicit
surface network for high-quality single-view 3d reconstruction. Advances in Neural Information Processing
Systems, 32, 2019.

[70] Yinshuang Xu, Jiahui Lei, Edgar Dobriban, and Kostas Daniilidis. Unified fourier-based kernel and
nonlinearity design for equivariant networks on homogeneous spaces. In International Conference on
Machine Learning, pages 24596–24614. PMLR, 2022.

[71] Mingyue Yang, Yuxin Wen, Weikai Chen, Yongwei Chen, and Kui Jia. Deep optimized priors for 3d
shape modeling and reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3269–3278, 2021.

[72] Zhenpei Yang, Zhile Ren, Miguel Angel Bautista, Zaiwei Zhang, Qi Shan, and Qixing Huang. Fvor: Robust
joint shape and pose optimization for few-view object reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2497–2507, 2022.

[73] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one or
few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4578–4587, 2021.

[74] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 586–595, 2018.

14



Appendix

The introduction of convolution and attention to the space of rays in 3D required additional geometric
representations for which there was no space in the main paper to elaborate. We will introduce here
all the necessary notations and definitions. We have accompanied this presentation with examples of
specific groups to elucidate the abstract concepts needed in the definitions.

A Preliminary

A.1 Group Actions and Homogeneous Spaces

Figure 10: The visualization of Plücker coordi-
nates: A ray x can be denoted as (d,m) where x
is any point on the ray x, and d is the direction of
the ray x. m is defined as x× d.

Given the action of the group G on a homoge-
neous space X , and given x0 as the origin of X ,
the stabilizer group H of x0 in G is the group
that leaves x0 intact, i.e., H = {h ∈ G|hx0 =
x0}. The group, G, can be partitioned into the
quotient space (the set of left cosets) G/H and
X is isomorphic to G/H since all group ele-
ments in the same coset transform x0 to the same
element in X , that is, for any element g′ ∈ gH
we have g′x0 = gx0.
Example 1. SE(3) acting on the ray space
R: Take SE(3) as the acting group and the
ray space R as its homogeneous space. We
use Plücker coordinates to parameterize the ray
space R: any x ∈ R can be denoted as (d,m),
where d ∈ S2 is the direction of the ray, and
m = x × d where x is any point on the
ray, as shown in figure 10. A group element

g = (R, t) ∈ SE(3) acts on the the ray space as:
gx = g(d,m) = (Rd, Rm+ t× (Rd)). (5)

We can choose the fixed origin of the homogeneous space to be η = ([0, 0, 1]T , [0, 0, 0]T ),
the line identical with the z-axis of the coordinate system. Then, the stabilizer group
H (the rotation around and translation along the ray) can be parameterized as H ={
(RZ(γ), t[0, 0, 1]

T )|γ ∈ [0, 2π), t ∈ R
}

, i.e., H ≃ SO(2) × R. We can simplify H as H =
{(γ, t)|γ ∈ [0, 2π), t ∈ R}. R is the quotient space SE(3)/(SO(2)× R) up to isomorphism.
Example 2. SE(3) acting on the 3D Euclidean space R3: R3 is isomorphic to SE(3)/SO(3).
Consider another case when SE(3) acts on the homogeneous space R3; for any g = (R, t) ∈ SE(3)
and x ∈ R3, gx = Rx + t. If the fixed origin is [0, 0, 0]T , the stabilizer subgroup is H = SO(3)
since any rotation g = (R,0) leaves [0, 0, 0]T unchanged.
Example 3. SO(3) acting on the sphere S2: S2 is isomorphic to SO(3)/SO(2). The last example is
SO(3) acting on the homogeneous space sphere S2. Given the fixed origin point as [0, 0, 1]T , the
stabilizer group is SO(2).

A.2 Principal Bundle

As stated in [29, 18], the partition of the group G into cosets allows us to treat the group G as the
principal bundle where the total space is G, the base space is the homogeneous space G/H1, the
canonical fiber is the stabilizer group H , the projection map p : G → G/H reads p(g) = gH =
gx0 = x. The section s : G/H → G of p should satisfy that p ◦ s = idG/H , where idG/H is the
identity map on G/H . Note that non-trivial principal bundles do not have a continuous global section,
but we can define a continuous section locally on the open set U ⊆ G/H . The action of G causes a
twist of the fiber, i.e., gs(x) might not be equal to s(gx) though they are in the same coset. We use
the twist function h : G×G/H → H to denote the twist: gs(x) = s(gx)h(g, x). Same as [18], we
simplify h(g, eH) to be h(g), where e is the identity element in G and eH = x0.

1We use G/H to denote the homogeneous space since the homogeneous space X can be identified with
G/H up to an isomorphism, i.e., X ≃ G/H .

15



Figure 11: We can view SE(3) as an SO(2) × R-principal bundle, where the projection map
p : SE(3) → R is p(R, t) = (R[0, 0, 1]T , t × (R[0, 0, 1]T ), and the inverse of p is p−1(x) =
{(R, t)|(R, t)η = x}. We use the coordinate frames (red axis denotes Z-axis, green axis denotes
X-axis, and purple axis denotes Y -axis) to denote the element in SE(3) because we can use the
position of the coordinate origin to denote the translation t and use X-axis, Y -axis, and Z-axis to
represent the first, second and third columns in rotation R. When we say next “the coordinate frame
on the line/ray” we will mean that its origin is on the line/ray. By this convention, the coordinate
frames representing the element in H = SO(2) × R are the frames whose Z-axis aligns with
[0, 0, 1]T and whose origin is [0, 0, t]T for any t ∈ R, i.e., frames on the yellow line in the left of
the figure. For one ray x = (d,m) (illustrated as the chosen blue ray), the coordinate frames on
the ray x whose Z-axis aligns with the ray dx are in p−1(x). As shown in the figure, there exists a
bijection (gray double arrow line ) between p−1(x) and H = SO(2)× R. p−1(x) is isomorphic to
H = SO(2)× R.

Example 4. Projection, section map and twist function for R3 and SE(3): According to Ex. 2, we
can consider a bundle with total space as SE(3), base space as R3, and the fiber as SO(3). For
any g = (R, t) ∈ SE(3), the projection map p : SE(3) → R3 projects g as p(R, t) = t. For any
x ∈ R3, we can define the section map s : R3 → SE(3) as s(x) = (I,x). The twist function
h : SE(3) × R3 → SO(3) is that h(g,x) = s(gx)−1gs(x) = R for any x ∈ R3 and any g =
(R, t) ∈ SE(3). This twist function is independent of x due to the fact that SE(3) = R3 ⋊ SO(3)
is a semidirect product group as stated in [18].
Example 5. Projection, section map, and twist function for S2 and SO(3): As shown in Ex. 3,
SO(3) can be viewed as a principal bundle with the base space as S2 and the fiber as SO(2). With
the rotation R ∈ SO(3) parameterized as R = RZ(α)RY (β)RZ(γ), the projection p : G → G/H
maps R as follows:

p(R) = RZ(α)RY (β)RZ(γ)[0, 0, 1]
T

= RZ(α)RY (β)[0, 0, 1]
T

= [sin(β)cos(α), sin(β)sin(α), cos(β)]T .

For any d ∈ S2, the section map s : S2 → SO(3) of p should satisfy that p ◦ s = idS2 as mentioned
above, i.e., s(d)[0, 0, 1]T = d. For instance, we could define the section map s as:

s(d) = RZ(αd)RY (βd),

where αd and βd satisfies that

d = [sin(βd)cos(αd), sin(βd)sin(αd), cos(βd)]
T .

Specifically, when d = [0, 0, 1]T , αd = 0 and βd = 0; when d = −[0, 0, 1]T , αd = 0 and βd = π.

As defined, the twist function h : SO(3)× S2 → SO(2) is that h(R,d) = s(Rd)−1Rs(d).
Example 6. Projection, section map, and twist function for R and SE(3): The final example is
SE(3) with R as the base space and SO(2)×R as the fiber, which is the focus of this work, as shown

16



Figure 12: For a ray x = (d,m), we need to choose an element (R, t) ∈ SE(3) as the representative
element s(x) such that s(x)([0, 0, 1]T , [0, 0, 0]T ) = x. This figure shows one example of the section
map s from ray space to SE(3). This map also serves as the section provided in this paper. The axes
of the coordinate frame in the figure represent R = sa(d) = RZ(αd)RY (βd), where the green axis,
purple axis, and red axis represent 1st, 2nd and 3rd column in the rotation matrix R, respectively.The
origin of the frame,t = sb(d,m) = d×m, denotes the translation.

in figure 11. According to the group action defined in Eq. 5, the projection map p : SE(3) → R is:

p((R, t)) = (R, t)η = (R[0, 0, 1]T , t× (R[0, 0, 1]T )).

This represents a ray direction d with the 3rd column of a rotation matrix and the moment m with
the cross product of the translation and the ray direction. We can construct a section s : G/H → G
using the Plücker coordinate:

s((d,m)) = (sa(d), sb(d,m)),

where sa(d) ∈ SO(3) is a rotation that sa(d)[0, 0, 1]T = d, i.e., sa is a section map from S2 to
SO(3) as shown in Ex. 5; and sb(d,m) ∈ R3 is a point on the ray (d,m). In this paper, we
define the section map as s((d,m)) = (RZ(αd)RY (βd),d × m), where αd and βd satisfy that
d = RZ(αd)RY (βd)[0, 0, 1]

T , which is the same as Ex. 5. Figure 12 displays the visualization of
the section map.

Given the section map, for any g = (Rg, tg) ∈ SE(3) and x = (dx,mx) ∈ R, we have the twist
function h : SE(3) × R → SO(2) × R is h(g, x) = s−1(gx)gs(x) = (ha(Rg,dx),hb(g, x)),
where ha : SO(3)× S2 → SO(2) is the twist function corresponding to sa, as shown in Ex. 5, and
hb(g, x) = ⟨Rgsb(x) + tg − sb(gx), Rgdx⟩. With the above section s defined in this paper, the twist
function h : SE(3)×R → SO(2)× R is

h(g, x) = s−1(gx)gs(x) = (RZ(Rg,dx), ⟨tg, (Rgdx)⟩),

where RZ(Rg,dx) = R−1
Y (βRgdx)R

−1
Z (αRgdx)RgRZ(αdx)RY (βdx).

To understand the twist function clearly, we visualize a twist induced by a translation in SE(3) in
figure 13,

A.3 Associated Vector Bundle

Given the principal bundle G, we can construct the associated vector bundle by replacing the fiber
H with the vector space V , where V ≃ Rn and H acts on V through a group representation

17



Figure 13: When we translate a ray x = (d,m) with g = (I, t) ∈ SE(3), we will find that gs(x)
does not agree with s(gx). As defined in figure 12, we have sb(x) ⊥ d and sb(gx) ⊥ d. Following
the geometry of the figure, we obtain that hb(g, x) = ⟨t,d⟩[0, 0, 1]T , i.e.,h(g, x) = s(gx)−1gs(x) =
(I, ⟨t,d⟩[0, 0, 1]T ) = (0, ⟨t,d⟩).

ρ : H → GL(V ). The group representation corresponds to the type of geometric quantity in the
vector space V , for example, the scalar, the vector, or the higher-order tensor.

The quotient space E = G×ρ V/H is defined through the right action of H on G× V : (g, v)h =
(gh, ρ(h)−1v) for any h ∈ H , g ∈ G and v ∈ V . With the defined projection map p : G ×ρ V →
G/H: p([g, v]) = gH , where [g, v] =

{
(gh, ρ(h)−1v)|h ∈ H

}
, the element in G×ρ V , we obtain

the fiber bundle E = G×ρ V associated to the principal bundle G. For more background and details
of the associated vector bundle, we recommend referring to the following sources: [52] and [18].

The feature function f : U ⊆ G/H → V can encode the local section of the associated vector bundle
sv : U ⊆ G/H → G×ρ V : sv(x) = [s(x), f(x)], where s is the section map of the principal bundle
as defined in Sec. A.2. The group G acting on the field f as shown in [18]:

(Lgf)(x) = ρ(h(g−1, x))−1f(g−1x), (6)

where h : G×G/H → H is the twist function as defined in Sec. A.2.

A.4 Equivariant Convolution Over Homogeneous Space

The generalized equivariant convolution over homogeneous space, as stated in [18], that maps a
feature field f lin over homogeneous space G/H1 to a feature f l′out over homogeneous space G/H2

by convolving with a kernel κ is defined as:

f l′out(x) =

∫
G/H1

κ(s2(x)
−1y)ρin(h1(s2(x)−1s1(y)))f

lin(y)dy, (7)

where lin and l′out
2 denote the input and output feature types, respectively. ρin is the group

representation of H1 corresponding to the feature type lin, s1 is the section map from G/H1 to
G (see Sec. A.2), s2 is the section map from G/H2 to G (see Sec. A.2), h1 is the twist function
corresponding to s1 (see Sec. A.2).

The convolution is equivariant with respect to G, that is

Lout
g f l′out = κ ∗ Lin

g f lin ,

2In this context, the feature type indicates the specific geometric quantity in vector spaces Vin and Vout. Vin

corresponds to the stabilizer H1 and Vout corresponds to the stabilizer H2. H1 and H2 can be distinct; therefore,
to differentiate the types of features corresponding to different stabilizers, we utilize l and l′ as notations for the
feature types.

18



if and only if κ(h2x) = ρout(h2)κ(x)ρin(h−1
1 (h2, x)) for any h2 ∈ H2, where ρout is the group

representation of H2 corresponding to the feature type l′out.

In the following examples, we will illustrate three instances where the input and output homogeneous
spaces, denoted as G/H1 and G/H2, respectively, are identical, meaning that H1 = H2. These
examples involve convolutions from R3 to R3, from S2 to S2, and from R to R. Furthermore, we
will show an example where H1 and H2 differ, explicitly focusing on the convolution from R to R3.
Example 7. SE(3) equivariant convolution from R3 to R3: If we use the section map as stated in Ex.
4, we will find that h(s(x)−1s(y)) = I , therefore convolution 7 becomes:

f lout(x) =

∫
R3

κ(s(x)−1y)f lin(y)dy

=

∫
R3

κ(y − x)f lin(y)dy

and κ should satisfy

κ(Rx) = ρout(R)κ(x)ρin(h
−1(R, x))

= ρout(R)κ(x)ρin(h
−1(R))

= ρout(R)κ(x)ρ−1
in (R)

for any R ∈ SO(3). When the feature type lin and lout corresponds to the irreducible representation,
we have

κ(Rx) = Dlout(R)κ(x)Dlin(R)−1

where Dlin and Dlout are the Wigner-D matrices, i.e. irreducible representations corresponding to
the feature types lin and lout, which is the same as the analytical result in [63].
Example 8. SO(3) equivariant spherical convolution from S2 to S2: For spherical convolution, when
we substitute the section in Eq. 7 with the section we defined in Ex. 5, the convolution integral takes
the following form:

f lout(α, β)

=

∫
α′∈[0,2π),β′∈[0,π)

κ(R−1
Y (β)R−1

Z (α)RZ(α
′)RY (β

′)[0, 0, 1]T )

ρin(h(R
−1
Y (β)R−1

Z (α)RZ(α
′)RY (β

′))f lin(α′, β′)dα′sin(β′)dβ′

where [0, 0, 1]T is the fixed original point as stated in Ex. 3, ρin is the group representation of SO(2)
corresponding to the feature type lin. When ρin and ρout are the irreducible representations of SO(2),
ρin and ρout can be denoted as ρin(θ) = e−ilinθ and ρout(θ) = e−iloutθ.

To simplify the notation, we utilize R(θ) to represent RZ(θ) ∈ SO(2), where θ ∈ [0, 2π). When
considering the cases where x = [0, 0, 1]T , h(R(θ)x) = R(θ); when x = −[0, 0, 1]T , h(R(θ)x) =
R(−θ); and when x ∈ S2 −

{
[0, 0, 1]T ,−[0, 0, 1]T

}
, h(R(θ)x) = R(−θ) = I . Therefore, the

kernel κ should satisfy the following conditions: κ(R(θ)x) = e−iloutθκ(x) for any R(θ) ∈ SO(2)
and any x ∈ S2 −

{
[0, 0, 1]T ,−[0, 0, 1]T

}
; κ(x) = e−i(lout−lin)θκ(x) for x = [0, 0, 1]T ; and

κ(x) = e−i(lout+lin)θκ(x) for x = −[0, 0, 1]T .

Specifically, when the input and output are scalar feature fields over the sphere, convolution reads

fout(α, β)

=

∫
α′∈[0,2π),β′∈[0,π)

κ(R−1
Y (β)R−1

Z (α)RZ(α
′)RY (β

′)η)

f in(α′, β′)dα′sin(β′)dβ′

κ has such constraint:
κ(R(θ)x) = κ(x)

for any R(θ) ∈ SO(2), which is consistent with the isotropic kernel of the convolution in [22].

19



Example 9. SE(3) equivariant convolution from R to R: In our case, the equivariant convolu-
tion from ray space to ray space is also based on the generalized equivariant convolution over a
homogeneous space. See Sec. 3.4.1 for the details. We solve the constraint of the kernel here:

κ(hx) = ρout(h)κ(x)ρin(h−1(h, x)), (8)

for any h ∈ SO(2)× R.

The irreducible group representation ρin for the corresponding feature type lin = (ω1
in, ω

2
in), where

ω1
in ∈ N and ω2

in ∈ R, can be written as ρin(γ, t) = e−i(ω1
inγ+ω2

int) for any h = (γ, t) ∈ SO(2)×R;
and the irreducible group representation ρout(γ, t) = e−i(ω1

outγ+ω2
outt) for the feature type lout =

(ω1
out, ω

2
out), where ω1

out ∈ N and ω2
out ∈ R, for any h = (γ, t) ∈ SO(2)× R.

To simplify the notation, we utilize R(γ) to represent RZ(γ) ∈ SO(2), where γ ∈ [0, 2π). For
any h = (γ, t) ∈ SO(2) × R and any x = (dx,mx) ∈ R, we have h(h, x) = s(hx)−1hs(x) =
(RZ(R(γ),dx), ⟨t[0, 0, 1]T ,dx⟩) according to Ex. 6. Since SO(2)× R is a product group, we can
have κ(x) = κ1(x)κ2(x), where

κ1((γ, t)x) = ρout((γ, 0))κ1(x)ρ
−1
in ((RZ(R(γ),dx), 0)) (9)

κ2((γ, t)x) = ρout((0, t))κ2(x)ρ
−1
in ((0, ⟨t[0, 0, 1]T ,dx⟩)) (10)

Now we solve the constraint for the kernel κ1:

One can check that for any dx ∈ S2 −
{
[0, 0, 1]T ,−[0, 0, 1]T

}
, RZ(R(γ),dx) = I; when dx =

[0, 0, 1]T , RZ(R(γ),dx) = R(γ); and when dx = −[0, 0, 1]T , RZ(R(γ),dx) = R(−γ).

Therefore, we obtain the constraint that

κ1((γ, t)x) = e−iω1
outγκ1(x) (11)

when dx ∈ S2 −
{
[0, 0, 1]T ,−[0, 0, 1]T

}
;

κ1((γ, t)x) = e−i(ω1
out−ω1

in)γκ1(x) (12)

when dx = [0, 0, 1]T ;

κ1((γ, t)x) = e−i(ω1
out+ω1

in)γκ1(x) (13)

when dx = −[0, 0, 1]T ;

The solution for Eq. 11 is that κ1(x) = f(d(η, x),∠([0, 0, 1]T ,dx))e
−iω1

outatan2([0,1,0]dx,[1,0,0]dx),
where atan2 is the 2-argument arctangent function, and f is an arbitrary function that maps
(d(η, x),∠([0, 0, 1]T ,dx)) to the complex domain.

The solution for Eq. 12 is that when ω1
out = ω1

in, κ1(x) = C, where C is any constant
value; when ω1

out ̸= ω1
in and x = η, κ1(x) = 0; when ω1

out ̸= ω1
in and x ̸= η, κ1(x) =

f(d(η, x))e−i(ω1
out−ω1

in)atan2([0,1,0]mx,[1,0,0]mx),where f is an arbitrary function that maps d(x, η)
to the complex domain.

The solution for Eq. 13 is that when ω1
out = −ω1

in, κ1(x) = C, where C is any constant
value; when ω1

out ̸= −ω1
in and x = −η, κ1(x) = 0; when ω1

out ̸= −ω1
in and x ̸= −η,

κ1(x) = f(d(η, x))e−i(ω1
out+ω1

in)atan2([0,1,0]
Tmx,[1,0,0]

Tmx),where f is an arbitrary function that
maps d(x, η) to the complex domain.

Next, we will solve the constraint for the kernel κ2, which is that κ2((γ, t)x) =

e−i(ω2
out−ω2

in⟨[0,0,1]
T ,dx⟩)tκ2(x).

When dx = [0, 0, 1]T , and ω2
out ̸= ω2

in, κ2(x) = 0; When dx = −[0, 0, 1]T and ω2
out ̸= −ω2

in,
κ2(x) = 0; When dx = [0, 0, 1]T , and ω2

out = ω2
in, κ2(x) = f(d(x, η)), where f is an arbitrary

20



function that maps d(x, η) to the complex domain; When dx = −[0, 0, 1]T , and ω2
out = −ω2

in,
κ2(x) = f(d(x, η)), where f is an arbitrary function that maps d(x, η) to the complex domain; when
dx ∈ S2 −

{
[0, 0, 1]T ,−[0, 0, 1]T

}
,

κ2(x) = f(d(η, x),∠([0, 0, 1]T ,dx))e
−i(ω2

out−ω2
in⟨[0,0,1]

T ,dx⟩)g(x), (14)

where f is an arbitrary function that maps (d(η, x),∠([0, 0, 1]T ,dx)) to the complex domain; g(x) =
[0, 0, 1](xQ − [0, 0, 0]T ), where xQ represents the 3D coordinates of a point Q. This point Q can be
defined as the intersection of x and η if x and η intersect. Alternatively, if x and η do not intersect,
Q is determined as the intersection of η and the ray y, which is perpendicular to both x and η, and
intersects with both x and η. Refer to Figure 16 for a visual representation. One can easily check that
g((γ, t)x) = t+ g(x), as shown in figure 16, which makes the solution valid.

If x and η are intersected, i.e., [0, 0, 1]mx = 0,

g(x) = [0, 0, 1](dx ×mx − [1, 0, 0](dx ×mx)

[1, 0, 0]dx
dx)

when [1, 0, 0]dx ̸= 0;

g(x) = [0, 0, 1](dx ×mx − [0, 1, 0](dx ×mx)

[0, 1, 0]dx
dx)

when [1, 0, 0]dx = 0;

When x and η are not intersected,

g(x) = [0, 0, 1](dx ×mx − [1, 0, 0](dx ×mx)[1, 0, 0]dx + [0, 1, 0](dx ×mx)[0, 1, 0]dx

([1, 0, 0]dx)2 + ([0, 1, 0]dx)2
dx).

Regular Representation Here, we delve into the case where the output field type corresponds to the
group representation of SO(2)×R that ρ(γ, t) = ρ1(γ)⊗ ρ2(t) for any (γ, t) ∈ SO(2)×R, where
ρ2 is the regular representation. The regular representation of a group G is a linear representation
that arises from the group action of G on itself by translation, that is when ρ2 : R → GL(V ) is the
regular representation, for any v ∈ V , for any t, t′ ∈ R, we have (ρ2(t

′)v)t = vt−t′ , in other words,
v ∈ V can be viewed as a function defined on R or an infinite dimensional vector. Then according to
Ex. 6, the group SE(3) acting on the the field f would be:

(Lgf)(x)t = (ρ(h(g−1, x))−1f(g−1x))t

= ρ1(ha(Rg−1 ,dx))
−1f(g−1x)t+hb(g−1,x)

= ρ1(RZ(Rg−1 ,dx))
−1f(g−1x)t+⟨tg−1 ,(Rg−1dx)⟩

for any t ∈ R, x ∈ R and g ∈ SE(3).

The points x on the ray x = (dx,mx) can be uniquely expressed as x = sb(x) + txdx =
dx ×mx + txdx, therefore for any x ∈ R, any t ∈ R, f(x)t can be expressed as a feature attached
to the point sb(x) + tdx along the ray x,i.e., f(x)t = f ′(sb(x) + tdx,dx) as shown in figure 14.

Therefore, we have f ′(x,d) = f((d,x× d))⟨x−d×(x×d),d⟩, one can easily check:

(Lgf
′)(x,d) = ρ1(ha(Rg−1 ,d))−1f ′(Rg−1x+ tg−1 , Rg−1d) = ρ1(RZ(Rg−1 ,d))−1f ′(g−1x, Rg−1d)

(15)

We should note the difference of the point x along the ray and the independent point x, as shown
in the above equation, the point x along the ray x = (d,x × d) is denoted as (x,d) instead of x.
Actually, it can be viewed as a homogeneous space of SE(3) larger than R3, whose elements are in
R3 × S2, as shown in figure 15.

To summarize, the features attached to the ray, whose type corresponds to the regular representation
of translation, can be considered as the features attached to the points along the ray. The action of
SE(3) on features attached to these points can be expressed as shown in Eq. 15.

The solution κ also can be expressed as

κ(x)t = κ1(x)κ2(x)t (16)

21



Figure 14: The feature attached to the ray, which corresponds to the regular representation of
translation, can also be treated as the features attached to the points along the ray.

for any t ∈ R, and their constraint is also the same as Eq. 9 and Eq. 10. As a result, the solution for
κ1 should be the same. We only need to solve κ2:

κ2((γ, t
′)x)t = eiω

2
in⟨[0,0,1]

T ,dx⟩t′κ2(x)t−t′ (17)

for any (γ, t′) ∈ SO(2)× R.

When dx ∈ S2 −
{
[0, 0, 1]T ,−[0, 0, 1]T

}
,

κ2(x)t = f(d(η, x),∠([0, 0, 1]T ,dx))e
iω2

in⟨[0,0,1]
T ,dx⟩g(x)δ(t− g(x)), (18)

where f and g are the same function as defined in 14, and δ(t) = 1 only when t = 0.

when dx ∈
{
[0, 0, 1]T ,−[0, 0, 1]T

}
, κ2(x)t = 0 for any t ∈ R.

Example 10. SE(3) equivariant convolution from R to R3: Following [18], the convolution from
rays to points becomes:

f lout
2 (x) =

∫
R
κ(s2(x)

−1y)ρin(h1(s2(x)−1s1(y)))f
lin
1 (y)dy, (19)

where h1 is the twist function corresponding to section s1 : R → SE(3) defined aforementioned, ρin
is the group representation of SO(2)×R, corresponding to the feature type lin, s2 : R3 → SE(3) is
the section map defined in paper as s2(x) = (I,x).

In this paper, we give the analysis and solutions for the kernel where the input is the scalar field over
the ray space, i.e.,ρin = 1, the trivial group representation, which is also the case of our application
in reconstruction.

The convolution is equivariant if and only if

κ(h2x) = ρout(h2)κ(x),

22



Figure 15: As shown in the figure, the point along the ray is distinct from the independent point.
Moreover, we can observe that the type-1 feature of the point along the ray differs from that of the
independent point. Specifically, the type-1 feature for the point along the ray can be interpreted as a
vector on the plane orthogonal to the ray direction. In contrast, the type-1 feature for the independent
point can be interpreted as a three-dimensional vector.

for any h2 ∈ SO(3), where ρout is the group representation of SO(3) corresponding to the feature
type lout.

We can derive κ(h2x) = ρout(h2)κ(x) analytically. For irreducible representation ρout and any
x = (dx,mx) ∈ R, if ∥mx∥ = 0, κ(x) = cY lout(dx), where c is an arbitrary constant and
Y lout is the spherical harmonics and lout is the order (type) of output tensor corresponding to the
representation ρout; With ∥mx∥ ̸= 0, κ(x) becomes ρout(x̂)f(∥m∥x), where x̂ denotes the element
(dx,

mx

∥mx∥ ,dx × mx

∥mx∥ ) in SO(3) and f : R → R(2lout+1)×1.

Similar to the convolution from rays to rays, we also can have the local support of the kernel. We
set κ(x) ̸= 0 when ∥mx∥ ≤ d0, otherwise κ(x) = 0. One can easily check that it doesn’t break the
equivariant constraint for the kernel.

Specifically, when we set d0 = 0, the neighborhood of the target points in the convolution only
includes the rays from all views going through the point. Hence, we can simplify the convolution to
f lout
2 (x) =

∫
d(y,x)=0

Y lout(ds2(x)−1y)f
in
1 (y)dy. This equation shows that for every point x, we can

treat the ray y going through x with feature f in
1 as a point y′, where y′ − x = ds2(x)−1y , as shown in

figure 17.

B Equivariant 3D Reconstruction

B.1 Approximation of the Equivariant Convolution from Rays to Rays

In practical 3D reconstruction, we have multiple views instead of the whole light field. Although
the convolution above is defined on the continuous ray space, the equivariance still strictly holds
when the ray sampling (pixels from camera views) is the same up to coordinate change. In this case,
we will show how we adjust the equivariant convolution from rays to rays and approximate it by an
intra-view SE(2)-convolution.

23



Figure 16: Visualization of g(x). The left is the case that the ray x and the ray η are intersected, and
the right is the case that the ray x and the ray η are not intersected. For the left, the point Q is the
intersection of x and η, and Q = (0, 0, g(x)); for the right, the point Q is the intersection of the line
y and the ray η, where y is perpendicular to both η and x, and intersects with both η and x. From the
figure, in both cases, we can see that for any t ∈ R, g((0, t)x) = t+ g(x). In general, we actually
have for any (γ, t) ∈ SO(2)× R, g((γ, t)x) = t+ g(x).

Figure 17: Interpreting rays yi as points y′i

B.1.1 From Light Field to Intra-view Convolution

Following Fig. 18, neighboring rays are composed of two parts: a set of rays from the same view and
another set of rays from different views. For one ray x in view A, the neighboring rays from view
B are in the neighborhood of the epipolar line of x in view B. When the two views are close, the
neighborhood in the view B would be very large.

The kernel solution in Ex. 9 suggests that κ(x) is related to ∠(dx, [0, 0, 1]
T ) and d((x, η), where

η = ([0, 0, 1]T , [0, 0, 0]T ) as mentioned before. It would be memory- and time-consuming to
memorize the two metrics beforehand or to compute the angles and distances on the fly. Practically,
the light field is only sampled from a few sparse viewpoints, which causes the relative angles of the
rays in different views to be large and allows them to be excluded from the kernel neighborhood;
therefore, in our implementation, the ray neighborhood is composed of only rays in the same view.

24



Figure 18: For simplification, we show a situation of two views. For a ray x from view A, one part of
the neighboring rays is from view A (the blue rays in the figure), NA(x). For any ray y ∈ NA(x), we
have d(y, x) = 0, and we require ∠(dy,dx) ≤ β0. The other part is from the other view B (the red
rays in the figure). As illustrated in figure 5, the neighboring rays always cross a cylinder around x;
therefore, the neighboring rays from view B are the projection of the cylinder with radius r = d0 in
view B, that is, NB is composed of the neighboring pixels of the epipolar line (the black dotted dash)
corresponding to x in view B. For any ray y in the projection of the cylinder, we have d(y, x) ̸= d0.
Since we require that ∠(dy,dx) ≤ β0 for any ray y ∈ NB(x), NB(x) is part of the projection of the
cylinder, denoted as the shaded yellow part in view B.

B.1.2 From Intra-view Light Field to Spherical Convolution

After showing that a small kernel support in the case of sparse views affects only intra-view rays, we
can prove that an intra-view light-field convolution is equivalent to a spherical convolution when we
constrain the feature field types over R.

We exploit the desired property that a feature defined on a ray is constant along the ray. This means
that the translation part of the stabilizer group (translation along the ray) leaves the feature as is. In
math terms, the irreducible representation for the translation R is the identity, which means that the
field function is a scalar field for the translation group, with the formula (Ltf)(x) = f(t−1x). We
prove that, in this case, the intra-view convolution over rays is equivalent to the spherical convolution;
please see Sec. C.

B.1.3 From SO(3)- to SE(2)-convolution

While there is an established framework for spherical convolution using a Fourier transform [17, 22,
24] it is not applicable in our case because the boundaries of the constrained field of view cause an
explosion in the high frequencies of the spherical harmonics. We will make a compromise here and
approximate the SO(3) convolution with an SE(2) convolution on the image plane by making the
assumption that the field of view is small. One can see the rationale behind this approximation by
keeping only the first order terms in the optical flow equation: the rotational term is only due to Ωz

while the translational term is (−Tx −Ωy,−Ty +Ωx) with (Ωx,Ωy,Ωz) as the angular velocity. We
provide a justification using the formalism of the previous paragraphs in appendix Sec. E.

B.2 Ray Fusion: Equivariant Convolution and Transformer

To reconstruct a 3D object, we use an implicit function known as the signed distance function (SDF)
defined on R3. As a result, we require an equivariant model that can transform features from rays to

25



points to obtain the SDF. This can be achieved using the equivariant convolution in Sec. 3.4.2 and
transformer in Sec. 3.2 in the paper 3.5, which allows us to transform features from the ray space to
points in 3D space while maintaining equivariance.

B.2.1 Equivariant Convolution from Rays to Points

In this paper, we obtain the scalar feature field over rays after the SE(2)-equivariant CNNs. As
illustrated in figure 3 , we utilize the equivariant convolution (discussed in Sec. 3.4.2 ) to compute
features for a query point by convolving over neighboring rays. Our experiments have shown that
convolving only over rays that go through the point achieves the best results, and the equivariant kernel
used for this convolution is provided in Ex.10. Moreover, in the implementation, we can concatenate
the input feature f in

1 with the depth embedding of the query point x. While this theoretically breaks
the ideal equivariance for continuous light fields, it does not affect the practical equivariance, as it is
rare for two cameras to share the same ray.

B.2.2 Equivariant Transformer from Rays to Points

For the third step, we introduce an equivariant transformer to alleviate the loss of expressivity due to
the constrained kernel κ in Eq. 19. Again, the attention key and values are generated from the feature
attached to rays, while the query is generated from the feature attached to points.

In the implementation, we apply a transformer over the rays going through the query point. We
can continue to use the interpretation that treats any ray y passing through the point x as a point y′
such that y′ − x = ds2(x)−1y, as shown in figure 17. Since y becomes point y′, the ray feature f in

1

becomes the feature over R3 attached to “points" y′. We can update the neighboring ray feature by
directly concatenating the equivariant feature of the point to every ray feature before through a SO(3)
equivariant MLP. The transformer in Eq. 4 would be converted to the transformer in [27] over R3.
See appendix Sec. H for details. The composition of the ray updating block and transformer block
are shown in figure 22.

C Proof of Equivalence of Intra-view Light Field Convolution and Spherical
Convolution

The property that a feature defined on a ray is constant along the ray means that the translation part of
the stabilizer group (translation along the ray) leaves the feature as is. In math terms, the irreducible
representation for the translation R is the identity, which means that the field function is a scalar field
for the translation group, with the formula (Ltf)(x) = f(t−1x). The equivariant condition on the
kernel can then be simplified as

κ((h, t)x) = ρout(h)κ(x)ρin(h−1
a (h,dx)),

where h ∈ SO(2) and t ∈ R, ρin and ρout are irreducible representations for SO(2), and ha is the
twist function as shown in Ex. 6 that h(g, x) = (ha(Rg,dx), hb(g, x)),i.e., the twist of the fiber
introduced by action of SO(3) corresponding to the section map sa of SO(3) in Ex. 5 and Ex. 6.
Now we describe the relationship between the intra-view light-field convolution and the spherical
convolution:
Proposition C.1. When the translation group acts on feature f : R → V as (Ltf)(x) = f(t−1x)
for any x ∈ R, the equivariant intra-view light-field convolution:

f lout(x) =

∫
y∈N (x)

κ(s(x)−1y)ρin(h(s(x)−1s(y)))f lin(y)dy

becomes a spherical convolution:

f lout(x) =

∫
dy∈S2

κ′(sa(dx)
−1dy)ρin(ha(sa(dx)

−1sa(dy)))

f ′lin(dy)ddy, (20)

where f ′lin(dy) = f lin(dy, cx × dy), cx denotes the camera center that x goes through,
sa is the section map of SO(3) as defined in appendix Ex. 5, and κ′(sa(dx)

−1dy) =
κ(sa(dx)

−1dy, (s(x)
−1xc)× (sa(dx)

−1dy)).

26



Proof. The SE(3) equivariant convolution over rays transforms into intra-view convolution when
the neighboring lights are in the same view. Moreover, the simplified kernel constraint derived in the
paper is that for any (h, t) ∈ SO(2)× R and x = (dx,mx) ∈ R :

κ((h, t)x) = ρout(h)κ(x)ρin(h−1
a (h,dx)),

where ha : SO(3) × S2 → SO(2) is the twist function: ha(g,d) = sa(gd)
−1gsa(d) for any

g ∈ SO(3) and d ∈ S2.

With the simplified kernel constraint, we can prove that intra-view light field convolution is equivalent
to spherical convolution:

f lout(x)

=

∫
d(y,cx)=0

κ(s(x)−1y)ρin(h(s(x)−1s(y)))f lin(y)dy (21)

=

∫
d(y,cx)=0

κ(s(x)−1y)ρin(ha(sa(dx)
−1sa(dy)))f

lin(y)dy (22)

=

∫
dy∈S2

κ(sa(dx)
−1dy, s(x)

−1xc × (sa(dx)
−1dy))

ρin(ha(sa(dx)
−1sa(dy)))f

lin(dy, cx × dy)ddy (23)

=

∫
dy∈S2

κ′(sa(d(x))
−1dy)ρin(ha(sa(dx)

−1sa(dy)))

f ′lin(dy)ddy. (24)
In line 21, cx is the camera center that x goes through.

The line 21 is equal to the line 22 because we assume that the irreducible representation for the
translation R is the identity as mentioned in the paper.

From line 22 to line 23, We can replace s(x)−1y with

(sa(dx)
−1dy, (s(x)

−1xc)× (sa(dx)
−1dy))

due to the facts that sa(dx)
−1dy = ds(x)−1y and point s(x)−1xc is on the ray s(x)−1y. Since y

goes through cx, we can replace y with (dy, cx × dy).

From line 23 to 24, we have f ′lin(dy) = f lin(dy, cx × dy) because cx is fixed for any view.
Additionally, from line 23 to 24 we replace

κ(sa(dx)
−1dy, (s(x)

−1xc)× (sa(dx)
−1dy))

with κ′(sa(dx)
−1dy). It is because according to

κ((h, t)x) = ρout(h)κ(x)ρin(h−1
a (h,dx)),

we have κ((e, t)x) = κ(x) for any t ∈ R, where e is the identity element in SO(2); thus when
t = ((−s(x)−1xc))

T [0, 0, 1]T , we have

κ(sa(x)
−1dy, s(x)

−1xc × (sa(x)
−1dy))

= κ(sa(x)
−1dy, (s(x)

−1xc + t[0, 0, 1]T )× (sa(x)
−1dy)) (25)

= κ((sa(x)
−1dy, [0, 0, 0]

T ) (26)

= κ′((sa(x)
−1dy).

Line 25 is equal to 26 because s(x)−1xc is always on the z axis, and thus s(x)−1xc + t[0, 0, 1]T =
[0, 0, 0]T .

D Spherical Convolution Expressed in Gauge Equivariant Convolution
Format

Group convolution is a particular case of gauge equivariant convolution [64], where gauge equivariant
means the equivariance with respect to the transformation of the section map (transformation of the

27



Figure 19: Illustration of hx→y. s(x)[1, 0, 0]T and s(x)[0, 1, 0]T (yellow) attached to x are tangent
vectors on x. We parallel transport s(x)[1, 0, 0]T and s(x)[0, 1, 0]T along the geodesic (black dashed
line) between x and y. The transported tangent vectors need to undergo a transformation hx→y in
SO(2) to align with the vectors s(y)[1, 0, 0]T and s(y)[0, 1, 0]T (green) attached to y.

tangent frame). In the following paragraph we give the elaborated definition of gauge equivariance
for the sphere.

Suppose f : S2 → V is the field function corresponding to the section choice sa : S2 → SO(3),
we use Lsa→s′a

acting on f to denote the change of section map from sa to s′a: (Lsa→s′a
f)(x) =

ρ(sa(x)
−1s′a(x))

−1f(x), where ρ is the irreducible representation of SO(2) corresponding to the
field type of f . The convolution Φ is gauge equivariant when Φ(Lsa→s′a

f) = Lsa→s′a
(Φ(f)).

In this section, we show that the spherical convolution can be expressed in terms of the gauge
equivariant convolution [16], which provides the convenience for us to verify the approximation of
spherical convolution through the SE(2) convolution:

f lout(x) =

∫
y∈N (x)

κ′(s(x)−1y)ρin(hy→x)
−1f lin(y)dy,

where κ′(hx) = ρout(h)κ
′(x)ρ−1

in (h) for any h ∈ SO(2).

Since the focus of this section’s discussion is spherical convolution, here we use s(x) to denote sa(x)
for any x ∈ S2.

For any x, y ∈ S2, s(x)[1, 0, 0]T , s(x)[0, 1, 0]T attached to x are tangent vectors on x, we parallel
transport s(x)[1, 0, 0]T and s(x)[0, 1, 0]T along the geodesic between x and y and get two tangent
vectors on y, denoted as s(x → y)1 and s(x → y)2 as shown in the figure 19, where the parallel
transport along a smooth curve is a way to translate a vector “parallelly" based on the affine connection,
that is, for a smooth curve γ : [0, 1] → S2, the parallel transport X : Im(γ) → T S2 along the curve
γ satisfies that ∇γ̇(t)X = 0, where Im(γ) = {γ(t)|t ∈ [0, 1]} and ∇ is the affine connection.

s(x → y)1 and s(x → y)2 need to undergo a transformation in SO(2) to align with s(y)[1, 0, 0]T

and s(y)[0, 1, 0]T on y as shown in the figure 19. We denote the transformation as hx→y .

28



With the above notation, the spherical convolution can be expressed as:

f lout(x) =

∫
y∈N (x)

κ(s(x)−1y)ρin(h(s(x)−1s(y)))f lin(y)dy

=

∫
y∈N (x)

κ(s(x)−1y)ρin(hs(x)−1y→η)

ρin(hs(x)−1y→η)
−1ρin(h(s(x)−1s(y))f lin(y)dy

=

∫
y∈N (x)

κ(s(x)−1y)ρin(hs(x)−1y→η)

ρin(hy→x)
−1f lin(y)dy

=

∫
y∈N (x)

κ′(s(x)−1y)ρin(hy→x)
−1f lin(y)dy,

where η = [0, 0, 1]T , the fixed origin point in S2, and κ′(x) = κ(x)ρin(hx→η)
−1 for any x ∈ N (η).

We can derive the equivariant condition that κ′ should satisfy:

κ′(hx) = κ(hx)ρin(hhx→η)
−1

= ρout(h)κ(x)ρin(h(h, x))−1ρin(hhx→η)

= ρout(h)κ(x)ρin(hx→η)
−1ρin(h

−1)

= ρout(h)κ
′(x)ρ−1

in (h).

Therefore, the spherical convolution can be expressed as the gauge equivariant convolution format:

f lout(x) =

∫
y∈N (x)

κ′(s(x)−1y)ρin(hy→x)
−1f lin(y)dy,

where κ′(hx) = ρout(h)κ
′(x)ρ−1

in (h) for any h ∈ SO(2).

E Converting Spherical Convolution to SE(2) Equivariant Convolution

As stated in Sec. D, spherical convolution is gauge equivariant with respect to the choice of section
map sa, and the spherical convolution can be written as gauge equivariant convolution. In this
section, we use the gauge equivariant convolution to analyze the SE(2) equivariant convolution’s
approximation of spherical convolution.

Since each view performs spherical convolution on its own, we only analyze the convolution for one
view for the sake of simplicity. We use V to denote the space of the rays in the same view, where
V ⊂ S2. For any x ∈ V , we can choose the section map sa such that hx→o = e, where o ∈ S2 that o
aligns with the optical axis as shown in the figure 20. Again, we use s(x) to denote sa(x) for any
x ∈ S2 in this section.

When FOV is small, for any x, y ∈ V , we can have such approximation: hx→y = e. Then the above
gauge equivariant convolution in Sec. D can be approximated as

f lout(x) =

∫
y∈N (x)

κ′(s(x)−1y)f lin(y)dy

t=s(x)−1y
========

∫
t∈N (η)

κ′(t)f lin(s(x)t)dt,

where η = [0, 0, 1]T , the fixed origin in S2, and κ′(hx) = ρout(h)κ
′(x)ρ−1

in (h) for any h ∈ SO(2).

Additionally, as illustrated in figure 21, we have a map from V to the projection points on the picture
plane represented as ω : V → R2, where ω(o) is defined as [0, 0]T . When FOV is small, we have
such approximation that for any h ∈ SO(2), t ∈ N (η), and x ∈ V ,

ω(s(x)t) ≈ ω(x) + ω(s(o)t).

29



Figure 20: Section choice for every view

It is because

ω(s(x)t) = ω(x) + ω(s(o)t)

+ r(
sinβt

cosβt
− sinβt

cosβxcos(βx + βt)
),

and we have

limt→ηr(
sinβt

cosβt
− sinβt

cosβxcos(βx + βt)
)

= r(tanβx)
2βt + o(β2

t ),

when βx is small (FOV is small), the approximation stands.

Then f lout(x) = κ′(t)f lin(s(x)t)dt can be approximately conducted in the image plane:

f ′lout(ω(x))

=

∫
ω(s(o)t)∈N ([0,0]T )

κ′′(ω(s(o)t))f ′lin(ω(x) + ω(s(o)t))

d(ω(s(o)t)), (27)

where for any x ∈ S2, f ′(ω(x)) = f(x), and for any t ∈ N (η), κ′′(ω(s(o)t)) = κ′(t).

Since for any h ∈ SO(2) and any t ∈ N (η), ω(s(o)ht) = hω(s(o)t), we have for any h ∈ SO(2)
and any t ∈ N (η),

κ′′(hω(s(o)t)) = κ′′(ω(s(o)ht)) = κ′(ht)

= ρout(h)κ
′(t)ρ−1

in (h) = ρout(h)κ
′′(s(o)t)ρ−1

in (h)

p=ω(s(o)t)∈R2

=========== k′′(hp)

= ρout(h)κ
′′(p)ρ−1

in (h).

30



Figure 21: Illustration of projection map ω

Therefore, convolution 27 is exactly SE(2) equivariant convolution and it can be used to approximate
the spherical convolution.

In other words, we can intuitively approximate the equivariant convolution over the partial sphere
using the SE(2) equivariant network when the distortion of the sphere and the tangent plane of the
optical axis is modest.

F Construction of Features in Equivariant Light Field Transformer

Noted that fout
2 , f in

2 and f in
1 are features that are composed of fields of different types, denoted as

fout
2 = ⊕if

louti
2 , f in

2 = ⊕if
lini
2 , and f in

1 = ⊕if
l′ini
1

3. fk, fq , and fv are constructed equivariant key
features, query features, and value features, respectively, which are composed of fields of different
types as well.

We use fk = ⊕if
lki

k , fq = ⊕if
lki
q , and fv = ⊕if

lvi
v to denote fk, fq and fv, respectively. We con-

struct the features fk,fq and fv through the equivariant kernels κk = ⊕j,iκ
lkj

,l′ini

k , κv = ⊕j,iκ
lvj ,l

′
ini

v

and equivariant matrix Wq = ⊕j,iW
lkj

,lini
q :

f
lkj

k (x, y, f in
1 )

=
∑
i

κ
lkj

,l′ini

k (s2(x)
−1y)ρ

l′ini
1 (h1(s2(x)−1s1(y)))f

l′ini
1 (y); (28)

f
lvj
v (x, y, f in

1 )

=
∑
i

κ
lvj ,l

′
ini

v (s2(x)
−1y)ρ

l′ini
1 (h1(s2(x)−1s1(y)))f

l′ini
1 (y); (29)

f
lkj
q (x, f in

2 ) =
∑
i

W
lkj

,lini
q f

lini
2 (x), (30)

where for any i, j, any h2 ∈ SO(3), and any x ∈ R κ
lkj

,l′ini

k and κ
lvj ,l

′
ini

v should satisfy that:

κ
lkj

,l′ini

k (h2x) = ρ
lkj

2 (h2)κ
lkj

,l′ini

k (x)ρ
l′ini
1 (h−1

1 (h2, x));

κ
lvj ,l

′
ini

v (h2x) = ρ
lvj
2 (h2)κ

lvj ,l
′
ini

v (x)ρ
l′ini
1 (h−1

1 (h2, x)),

3Since here the homogeneous spaces of input and output might be different, so as the stabilizer groups, we
use l and l′ to denote the representations of different stabilizer groups.

31



where h1(h2, x) = s1(h2x)
−1h2s1(x) is the twist function, and for any i, j and any h2 ∈ SO(3),

W
lkj

,lini
q satisfies that:

ρ
lkj

2 (h2)W
lkj

,lini
q = W

lkj
,lini

q ρ
lini
1 (h2). (31)

When the group representation is irreducible representation, due to Schur’s Lemma, we have

W
lkj

,lini
q = cI when lkj

= lini
, where c is an arbitrary real number, otherwise W

lkj
,lini

q = 0.

G Proof for Equivariance of Light Field Transformer

The equivariant light field transformer defined in the paper reads:

fout
2 (x)

=
∑

y∈N (x)

exp(⟨fq(x, f in
2 ), fk(x, y, f

in
1 )⟩)∑

y∈N (x) exp(⟨fq(x, f in
2 )fk(x, y, f in

1 )⟩

fv(x, y, f
in
1 )) (32)

is in a general form.

According to [18], one can prove that fq, fk and fv are equivariant, that is, for any g ∈ SE(3),
x ∈ R3 and y ∈ R,

f
lkj
q (g · x,Lin

g (f in
2 )) = ρ

lkj

2 (h2(g
−1, g · x)−1)f

lkj
q (x, f in

2 );

f
lkj

k (g · x, g · y,L′in
g (f in

1 )) = ρ
lkj

2 (h2(g−1, g · x)−1)f
lkj

k (x, y, f in
1 );

f
lvj
v (g · x, g · y,L′in

g (f in
1 )) = ρ

lvj
2 (h2(g−1, g · x)−1)f

lvj
v (x, y, f in

1 ),

where Lin and L′in are group action of SE(3) on f in
2 and f in

1 , respectively.

The inner product ⟨fq, fk⟩ =
∑

i(f
lki
q )T f

lki

k is invariant due to the property of unitary representation,
which results in the equivariance of the transformer.

H From SE(3) Equivariant Transformer in Ray Space to SE(3) Equivariant
Transformer in Euclidean Space

In our implementation for the reconstruction task, the attention model is always only applied over
the rays going through the points. We can continue to use the interpretation in the convolution from
ray space to R3 in Ex. 10 that treats any ray y passing through the point x as a point y′ such that
y′ − x = ds2(x)−1y as shown in the figure 17.

After we get the initial feature of query points through equivariant convolution from R to R3, we
update the neighboring ray feature by directly concatenating the query point feature to every ray
feature before through a SO(3) equivariant MLP as shown in the figure 22. SO(3) equivariant MLP
is composed of an equivariant nonlinear layer and self-interaction layer as in the tensor field networks
[55].

Since y becomes point y′, and f in
1 is the feature over R3 attached to “points" y′, it becomes ⊕if

lini
1

4.
Then transformer 32 would be converted to the transformer in [27] over R3:

4Since here f in
1 is the fields over R3, we use l instead of l′ as the denotation

32



Figure 22: The structure of ray updating and SE(3) transformer. We treat any ray y going through
point x as a point y′ ∈ R3 such that y′ − x = ds2(x)−1y. The blue block indicates the ray feature
update, and the pink block is the equivariant attention model. For the ray feature updating, the point
feature (lavender) is concatenated to every ray feature (light yellow, light blue, and light red) and
goes through an equivariant MLP. For the transformer, we get the equivariant query, key, and value
feature through the designed linear matrix Wq, designed kernels κk and κv, then apply multi-head
attention to obtain the output point feature, which can subsequently be fed into the next ray feature
updating and SE(3) transformer block.

fout
2 (x)

=
∑

y′∈N (x)

exp(⟨fq(x, f in
2 ), fk(x, y

′, f in
1 )⟩)∑

y′∈N (x) exp(⟨fq(x, f in
2 )fk(x, y′, f in

1 )⟩

fv(x, y
′, f in

1 )), (33)

where the subscript denotes the points to which the feature is attached, i.e., x and y′.

The features fk, fv are constructed by the equivariant kernels κk = ⊕j,iκ
lkj

,lini

k , κv = ⊕j,iκ
lvj ,lini
v :

f
lkj

k (x, y, f in
1 ) =

∑
i

κ
lkj

,lini

k (y′ − x)f
lini
1 (y);

f
lkj
v (x, f in

2 ) =
∑
i

κ
lvj ,lini
v (y′ − x)f

lini
2 (y),

where for any i, j, any h2 ∈ SO(3), and any x ∈ R3 κ
lkj

,lini

k and κ
lvj ,lini
v should satisfy that:

κ
lkj

,lini

k (h2x) = ρ
lkj

2 (h2)κ
lkj

,lini

k (x)ρ
lini
2 (h−1

2 );

κ
lvj ,lini
v (h2x) = ρ

lvj
2 (h2)κ

lvj ,lini
v (x)ρ

lini
1 (h−1

2 )

as stated in [27].

The feature fq is constructed in the same way as Equation 30.

33



Figure 23: The comparison of the equivariant light field transformer and the conventional transformer.
The left is the equivariant light field transformer, and the right is the conventional transformer. In
our light field transformer, the position encoding is not directly concatenated to the features because
this is not equivariant. We first obtain the equivariant feature attached to the point by equivariant
convolution over the rays. We then construct features fk, and fv with derived designed kernels κk

and κv to keep them equivariant; we construct fq by the designed equivariant linear layer Wq . Since
fk, fq , and fv are all equivariant, the inner product of fk and fq is invariant, which results in invariant
attention weight. Therefore, the whole transformer is equivariant. In contrast, the conventional
transformer concatenates the ray position encoding with the feature attached to the ray, uses the point
position encoding for the query feature for the point, and applies multi-head attention using fk, fq,
and fv , which are obtained by the Linear layer. We should note that Wq in the light field transformer
is designed to be equivariant, satisfying equation 31, which differs from the conventional linear map
Wq in the conventional transformer. For the attention blocks after the first block, the query features of
the point in our model and the conventional model are both the output of the last attention block. The
difference is that our query feature keeps equivariant while the feature in the conventional transformer
is not.

Figure 22 shows the structures of ray feature update and SE(3) equivariant transformer.

In figure 23, we compare the SE(3) equivariant transformer and the conventional transformer to
illustrate how the equivariance is guaranteed in the equivariant transformer. In figure 24, we present
the types of futures in SE(3) equivariant attention head and conventional attention head, respectively.
It indicates that geometric information is aggregated equivariantly in multi-head attention in the
equivariant transformer.

I Equivariant Neural Rendering

Equivariant rendering relates to equivariant 3D reconstruction, where we focus on multiple views
instead of the entire light field. The equivariance property is maintained when the ray sampling is
invariant up to a coordinate change.

I.1 Convolution from Rays to Rays

For neural rendering tasks, we query one ray and apply the convolution over the neighboring rays
to obtain the feature attached to the target query ray. Similar to the reconstruction, we utilize a
kernel with local support. However, there is a distinction in that for neural rendering, the kernel κ is
constrained to be nonzero only when d(x, η) = 0, while there are no constraints on ∠(dx, [0, 0, 1]

T ).

34



Figure 24: The comparison of multi-head attention modules in the equivariant light field transformer
and in the conventional transformer. The figure above is the multi-head attention module in an
equivariant light transformer, and the figure below is the conventional transformer. In the light field
transformer, the query, key, and value features are composed of different types of features; they can be
scalars, vectors, or higher-order tensors. The inner product should apply to the same type of features,
and the type of feature determines the way of applying the inner product. In contrast, the feature in a
conventional transformer doesn’t contain vectors and tensors, and the inner product is conventional.

As a result, the neighboring rays exclusively encompass the rays on the epipolar line for the target ray
in each source view, as depicted in Figure 25.

The scalar field over rays serves as the input to the convolution. The output field type corresponds
to the regular representation of translation. This is because this field type serves as the input for
the cross-attention module later on. If this field type were not utilized, the transformer would reach
the entire neighboring set, leading to inferior performance compared to applying the transformer
individually for each point and then applying it over the points along the ray. A similar observation
is made in [58], which states that the two-stage transformer outperforms the one-stage transformer.
Using the field type corresponding to the regular representation of the translation as the input, the
transformer from rays to rays is equivalent to performing a transformer for each point, respectively,
as explained in the following section.

In Eq. 18, we already provide the solution of the kernel. We give a detailed explanation in this case
and show that it is equivalent to performing convolution from rays to rays with output field types
corresponding to irreducible representations, followed by applying Inverse Fourier Transform. Given
that the input field is a scalar field, we have ω1

in = 0 and ω2
in = 0. When considering an output field

type of (ω1
out, reg), where reg represents the regular representation of translation, the convolution

can be expressed as follows:

(f
(ω1

out,reg)
out )t =

∫
y∈N (x)

κ1(s(x)
−1y)(κ2(s(x)

−1y))tfin(y)dy

=

∫
y∈N (x)

κ1(s(x)
−1y)f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))δ(t− g(s(x)−1y))fin(y)dy

=

∫
g(s(x)−1y)=t

κ1(s(x)
−1y)f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))fin(y)dy.

From the above equation, we can intuitively find that when the output field corresponds to the regular
representation of the translation, the convolution happens at every point along the ray, respectively.
We can treat f (ω1

out,reg)
out as a function over R, and for any ω ∈ R we apply the Fourier Transform to

f
(ω1

out,reg)
out :

35



Figure 25: For simplification, we show two source views. For a target query ray x, the neighboring
rays (denoted by red rays) are on the epipolar lines (denoted as yellow dotted dashes) for the target
ray in each source view. For any ray y ∈ N (x), d(x, y) = 0.

F(ω) =

∫
t

f
(ω1

out,reg)
out (t)e−iωtdt

=

∫
t

∫
g(s(x)−1y)=t

κ1(s(x)
−1y)f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))fin(y)dye

−iωtdt

=

∫
y

κ1(s(x)
−1y)f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))e

−iωg(s(x)−1y)fin(y)dy

=

∫
y

κ1(s(x)
−1y)κ′

2(s(x)
−1y)fin(y)dy,

where κ′
2 = f(d(η, s(x)−1y),∠([0, 0, 1]T ,ds(x)−1y))e

−iωg(s(x)−1y), which is exactly the kernel
corresponding to ω2

out = ω and ω2
in = 0 as stated in Eq. 14. Therefore, we know that the field

corresponding to the irreducible representation of the translation can be treated as the Fourier
coefficients of the field corresponding to the regular representation. We can first obtain the features
of different irreducible representations attached to the ray and subsequently apply the Inverse Fourier
Transform to get the features for points along the ray,as shown in figure 26.

I.2 Cross-attention over Rays

The feature that generates the query in the transformer is the feature attached to the target ray, whose
feature type corresponds to the regular representation of the translation. The feature that generates
the key and value in the transformer is attached to the neighboring rays in the source view, whose

36



Figure 26: The features for points along the ray (the field type corresponds to the regular represen-
tation) can be obtained by the Inverse Fourier Transform of features attached to the ray, where the
types of feature fields correspond to the irreducible representation of the translation.

feature type corresponds to the scalar field. The output is the feature attached to the target ray, whose
feature type corresponds to the regular representation. Therefore, the transformer becomes:

(fout
2 (x))t =

∑
y∈N (x)

exp(⟨(fq(x, f in
2 ))t, (fk(x, y, f

in
1 ))t⟩)∑

y∈N (x) exp(⟨(fq(x, f in
2 ))t(fk(x, y, f in

1 ))t⟩
)(fv(x, y, f

in
1 ))t, (34)

where

(fk(x, y, f
in
1 ))t = (κk(s2(x)

−1y))tf
in
1 (y)

(fv(x, y, f
in
1 ))t = (κv(s2(x)

−1y))tf
in
1 (y)

(fq(x, f
in
2 ))t = C(f in

2 (x))t.

In the equations above, κk and κv are the kernels derived in Ex. 9 Eq. 16, C is the equivariant weight
matrix satisfying Eq. 31.

The expression above indicates that the feature types of both key and value correspond to the regular
representation of translation, as well as the feature type of the query. Moreover, the transformer
operates on each point along the ray independently. It should be noted that the features (fk)t,
(fq)t, (fv)t and (f in

2 )t may have multiple channels and may consist of different types of features
corresponding to various representations of SO(2). The inner product ⟨·, ·⟩ can only happen in the
field type of the same representation of SO(2). This allows for the implementation of a multi-head
attention module, where each head can attend to a specific type of feature and multiple channels.

37



I.3 Self-attention over Points Along the Ray

After the cross-attention over rays, we get the features of the points along the ray, i.e., the feature
attached to the ray corresponding to the regular representation of translation. SE(3) acts on the
feature f ′ attached to the point along the ray as mentioned in Eq.15 :

(Lgf
′)(x,d) = ρ1(RZ(Rg−1 ,d))−1f ′(g−1x, Rg−1d),

where ρ1 is the group representation of SO(2).

We will apply the self-attention model to these points along the same ray. For two points
x1 and x2 on the same ray (d,x1 × d), one can observe that for the same type of feature,
⟨(Lgf

′)(x1,d), (Lgf
′)(x1,d)⟩ = ⟨f ′(g−1x1, Rg−1d), f ′(g−1x1, Rg−1d)⟩, which makes atten-

tion weight invariant, the transformer could be formulated as:

fout(x) =
∑

y on the same ray as x

exp(⟨fq(f in, x), fk(f
in, x, y)⟩)∑

y on the same ray as x exp(⟨fq(f in, x), fk(f in, x, y)⟩)
fv(x, y, f

in), (35)

where

f l
k(x, y, f

in) = ck(d(x, y))I(f
in)l(y)

f l
v(x, y, f

in) = cv(d(x, y))I(f
in)l(y)

f l
q(x, f

in) = cqI(f
in)l(x),

and x and y are the points along the same ray with direction d, we can denote x as (x,d) and y
as (y,d), d(x, y) is the signed distance ⟨d,y − x⟩, ck,cv are arbitrary functions that take signed
distance as the input and output complex values and cq is an arbitrary constant complex. It should
be noted that the features fk, fq, fv, and f in may have multiple channels and consist of different
types of features corresponding to various representations of SO(2), the inner product ⟨·, ·⟩ can only
happen in the same type of field. This allows for implementing a multi-head attention module, where
each head can attend to a specific feature type and multiple channels. Here, f l

k denotes the type−l
feature in feature fk, f l

v represents the type−l feature in feature fv , f l
q denotes the type−l feature in

feature fl, and (f in)l represents the type−l feature in feature f in.

Note that this transformer architecture also follows the general format of the transformer in Eq. 4.
We only simplify the kernel κk, κv to be trivial equivariant kernels.

To obtain a scalar feature density for each point, the feature output of each point can be fed through
an equivariant MLP, which includes equivariant linear layers and gated/norm nonlinear layers. These
layers are similar to the ones used in [62] and [63].

J 3D Reconstruction Experiment

J.1 Generation of the Dataset

The I dataset is obtained by fixing the orientation of the object as well as the eight camera orientations.
With the object orientation fixed, we can independently rotate each camera around its optical axis by
a random angle in a uniform distribution of (−π, π] to obtain the Z dataset. For the R dataset, we
rotate every camera randomly by any rotation in SO(3) while fixing the object. The equivariance
stands with the content unchanged. Therefore, in practice, we require that the object projection
after the rotation does not have new parts of the object. We satisfy this assumption by forcing the
camera to fixate on a new random point inside a small neighborhood and subsequently rotate each
camera around its optical axis with the uniformly random angle in (−π, π]. We generate the Y
dataset by rotating the object only with azimuthal rotations while keeping the camera orientations the
same. The SO(3) dataset is generated by rotating the object with random rotation in SO(3) with the
orientations of cameras unchanged, which will potentially result in new image content. Equivariance
is not theoretically guaranteed in this setup, but we still want to test the performance of our method.

38



Figure 27: The number of parameters and FLOPs of SE(2) equivariant CNNs. We set batch size as
one to calculate number of FLOPs.

J.2 Implementation Details

We use SE(2) equivariant CNNs to approximate the equivariant convolution over the rays. We use
the same ResNet backbone as implemented in [30] that is equivariant to the finite group C8, which
we find achieves the best result compared with other SE(2) equivariant CNNs. We use a similar
pyramid structure as [69] that concatenates the output feature of every block. Since every hidden
feature is the regular representation, in the final layer we use 1× 1 SE(2)-equivariant convolutional
layers to transfer the hidden representation to scalar type.

For the fusion from the ray space to the point space model, we use one layer of convolution and
three combined blocks of updating ray features and SE(3) transformers. For the equivariant SE(3)
multi-head-attention, we only use the scalar feature and the vector (type-1) feature in the hidden layer.
The kernel matrix includes the spherical harmonics of degrees 0 and 1. We also concatenate every
output point feature of every block as in the 2D backbone. Since the output feature of every block
includes the vector feature, we transfer it to the scalar feature through one vector neuron layer and the
inner vector product. We use the same weighted SDF loss as in [69] during training, which applies
both uniform and near-surface sampling. We report the number of parameters and floating-point
operations (FLOPs) of our 2D backbone and light fusion networks in Fig. 27 and Fig. 28 respectively.

39



Figure 28: The number of parameters and FLOPs of the ray fusion model, which is composed of
convolution from rays to points and transformer from rays to points. We set batch size as one to
calculate the number of FLOPs.

J.3 Discussion of Results

There is still a performance gap between I/I and I/Z. Although SE(2) equivariant networks are
theoretically strictly equivariant, the error in practice is introduced by the finite sampling of the image
and the pooling layers. Additionally, we use the ResNet that is equivariant to C8 approximation of
SO(2), which causes this gap but increases the whole pipeline performance in the other tasks. There
is no significant difference between I/Z and I/R, which shows that approximating the spherical
field convolution by SE(2) equivariant convolution is reasonable in practice.

J.4 Qualitative Results

Figure 29 shows a qualitative result for the chair category. There are more qualitative results shown
in Fig. 37, Fig. 38, and Fig. 39.

J.5 Ablation Study

First, we replace the SE(2) CNNs backbone with the conventional CNNs to test the effectiveness
of SE(2) CNNs. Secondly, we remove the equivariant convolution/transformer part and use trivial
aggregation (max-pooling) combined with MLP. Finally, we run an equivariant convolution and
transformer without using the type-1 (vector) feature while keeping the number of parameters similar
to our model.

40



Figure 29: Qualitative results for equivariant reconstruction. Left: input views; Right: reconstruction
meshes of different models and ground truth meshes. The captions below the meshes show how the
model is trained and tested, explained in the text.

Table 3 summarizes the result on the chair category, which illustrates that in the I/I and Y/Y trials,
SE(2) CNN is less expressive than traditional CNN, but it contributes to the equivariance of our
model looking at the results of I/Z, I/R, and Y/SO(3). Equivariant ray convolution and transformer
improve both the reconstruction performance and the equivariance outcome. We also compare the
ray convolution and transformer with the models operating only on scalar features without vector
features, and again, we see a drop in performance in every setting, proving the value of taking ray
directions into account.

We also compare to a baseline where the ray difference information is encoded in the feature explicitly.
Most models that encode ray directions aim at rendering, like IBRnet. Here, we modified IBRnet
(Fig.2 of IBRnet paper) to query 3D points only for their SDF value instead of querying all densities
along the ray that would be necessary for rendering. We replaced the ray direction differences with
the ray directions themselves because we use a query point and not a query ray. We report in table
4 IoU result for Y/Y and Y/SO(3) (where Y is augmentation only along the vertical axis) for two
models – IBRNet with conventional CNNs as 2D backbone and IBRNet with SE(2)-equivariant
CNNs as 2D backbone. For the SO(3) setting, we rotate the whole 8 cameras with the same rotation,
which is equivalent to rotating the object with the inverse rotation, and we use the object canonical
frame to encode the ray information.

The baseline is not equivariant: It explicitly uses the ray directions as inputs to MLPs. Ray directions
or their differences change when the coordinate system is transformed, breaking, thus, equivariance.
Table 4 demonstrates that our model is more resilient to object rotations. We can enhance equivariance

41



Method w/o SE(2) w/o conv& trans w/o type-1 Full model
I/I 0.767/0.079 0.695/0.105 0.722/0.093 0.731/0.090
I/Z 0.430/0.234 0.533/0.175 0.553/0.158 0.631/0.130
I/R 0.417/0.249 0.442/0.241 0.466/0.203 0.592/0.137
R/R 0.672/0.112 0.658/0.122 0.682/0.109 0.689/0.105
Y/Y 0.731/0.090 0.644/0.124 0.677/0.111 0.698/0.102

Y/SO(3) 0.467/0.0.217 0.534/0.170 0.569/0.163 0.589/0.142
SO(3)/SO(3) 0.655/0.120 0.616/0.142 0.636/0.130 0.674/0.113

Table 3: Ablation: w/o SE(2) means replacing SE(2) equivariant network with conventional; w/o
ray conv& trans denotes the model where we replace the light field convolution and the light field
equivariant transformer with max-pooling; w/o type-1 means using only scalar features in convolution
and transformers.

Method Y/Y Y/SO(3) SO(3)/SO(3)
IBRNet [61] w/o SE(2) 0.689 0.432 0.611
IBRNet [61] w/SE(2) 0.652 0.501 0.619

Ours 0.698 0.598 0.674
Table 4: Comparison of our model and a baseline which encodes the ray information explicitly.
IBRNet w/o SE(2) is the modified IBRNet with conventional CNN backbone, IBRNet w/SE(2) is the
model where we replace the conventional CNN backbone with the SE(2) equivariant CNN.

by using SE(2) equivariant modeling, and our model outperforms the baseline in the Y/Y setting. We
believe that the transformer in our model is responsible for the performance improvement.

K Neural Rendering Experiment

K.1 Experiment Settings Discussion

Two experiment settings illustrate our model’s equivariance: I/I and I/SO(3). I/I is the canonical
setting, where we train and test the model in the same canonical frame defined in the dataset. I/SO(3)
is that we test the model trained in the canonical frame under arbitrary rotated coordinate frames,
which means that all the camera poses in one scene are transformed by the same rotation without
changing their relative camera poses and relative poses between the camera and the scene, which
doesn’t change the content of the multiple views. The reason we don’t apply translation to the
cameras is that there exists a depth range for points sampling in the model and the comparing baseline
[61], which effectively mitigates the impact of translation.

We should note that the SO(3) setting in this experiment setting differs from R and SO(3) settings
in reconstruction. R changes the relative pose of the cameras, and each image is transformed due to
the rotation of each camera without altering the content, i.e., the sampling of the light field is nearly
unchanged. The R setting aims to demonstrate that replacing the conventional method with ray-based
convolution can get rid of the canonical frame for each view.

SO(3) in reconstruction is to rotate the object pose randomly without changing the pose of the
camera, which is equivalent to transforming the cameras by the inverse rotation but fixing the object,
resulting in changes in the relative poses between the camera and the object, the content of the image
and, therefore, the sampling of the light field. This setting shows that even for non-theoretically
equivariant cases, our model in reconstruction still demonstrates robustness.

In the rendering experiment using the SO(3) setting, each image itself is not transformed, unlike the
R setting in the reconstruction. The content of the images remains unchanged, including the light
field sampling, unlike the SO(3) setting in the reconstruction. Since each image is not transformed,
even if the conventional 2D convolution is applied to the image, the scalar feature attached to the
ray is not altered, and the light feature field sampling remains the same up to the transform of the
coordinate frame. This setting was used to demonstrate that our model is SE(3)-equivariant when
the input is the scalar light feature field.

42



Figure 30: The number of parameters and FLOPs of the model, which takes the scalar feature attached
to rays as input and predicts the color and density for points along the target ray. The calculation of
FLOPs is performed for single-pixel rendering with 10 source views.

Figure 31: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

K.2 Implementation Details

As described in the paper, we use a similar architecture as [61], where we replace the aggregation
of view features by equivariant convolution and equivariant transformer over rays. In equivariant
convolution, the input is scalar feature field over rays, which means that ω1

in = 0 and ω2
in = 0;

for the output field, we use regular representation of translation as described in Sec. 3.3 , and we
use ω1

out = 0, 21, · · · , 27 for group representation of SO(2), each field type has 4 channels. In
equivariant transformer over rays, we update the key and value before going to the attention module
in the experiment; the specific operation is that we concatenate key fk and query fq , we concatenate

43



Figure 32: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

Figure 33: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

fv and query fq, and then we feed the concatenated key and value into two equivariant MLPs
(equivariant linear layers and gated/norm nonlinear layers, similar to the ones used in [62]) to get the
newly updated key and updated value, which will be fed into attention module. In line with [61], our
approach does not involve generating features for the color of every point. In our implementation, we
directly multiply the attention weights obtained from the softmax operator in the transformer with the
corresponding colors in each view to perform color regression.

We replace the ray transformer with the equivariant transformer over the points along the ray; the input
features comprise the feature types corresponding to the group representations ωin = 0, 21, · · · , 27
for SO(2). Each feature type has 4 channels; the output comprises the same feature type, and each
type has 2 channels. We will first convert the feature into a scalar feature by an equivariant MLP
(equivariant linear layers and gated/norm nonlinear layers, similar to the ones used in [62].) and then
feed it into a conventional MLP to get the density. We report in Fig. 30 the number of parameters and
floating-point operations (FLOPs) of the model composed of the convolution and transformers.

K.3 Qualitative Results

Fig. 32, Fig. 33, Fig. 34, Fig. 31, Fig. 35 and Fig. 36 show the qualitative results on Real-Forward-
Facing [41] and Realistic Synthetic 360◦ [49] data. Our model performs comparably to IBRNet in
the canonical setting. However, IBRNet experiences a performance drop in the rotated frame, while
our model remains robust to the rotation.

44



Figure 34: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

Figure 35: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

Figure 36: In terms of qualitative results for rendering, we compare the performance of IBRNet and
our model in both the given canonical frame (denoted as "IBRNet(I)" and "Ours(I)" respectively) and
a rotated frame (denoted as "IBRNet(SO(3))" and "Ours(SO(3))" respectively). Our model performs
comparably to IBRNet in the canonical setting. However, IBRNet experiences a performance drop in
the rotated frame, while our model remains robust to the rotation.

45



Figure 37: Qualitative Result for the chair. Left: input views; Right: reconstruction meshes of
different models. The captions below the meshes show how the model is trained and tested.

46



Figure 38: Qualitative Result for the car. Left: input views; Right: reconstruction meshes of different
models. The captions below the meshes show how the model is trained and tested.

47



Figure 39: Qualitative Result for the car. Left: input views; Right: reconstruction meshes of different
models. The captions below the meshes show how the model is trained and tested.

48


	Introduction
	Related Work
	Method
	Feature field on Ray Space and 3D Euclidean Space
	Ray Space
	Light Field
	Feature Field on R3

	Equivariant 3D Reconstruction
	Generalized Neural Rendering
	Convolution in Ray Space
	Convolution from Rays to Rays
	Convolution from Rays to Points

	Equivariant Transformer over Rays

	Experiment
	3D Object Reconstruction from Multiple Views
	Neural Rendering

	Conclusion and Broader Impacts
	Acknowledgement
	Preliminary
	Group Actions and Homogeneous Spaces
	Principal Bundle
	Associated Vector Bundle
	Equivariant Convolution Over Homogeneous Space

	Equivariant 3D Reconstruction
	Approximation of the Equivariant Convolution from Rays to Rays
	From Light Field to Intra-view Convolution
	From Intra-view Light Field to Spherical Convolution
	From SO(3)- to SE(2)-convolution

	Ray Fusion: Equivariant Convolution and Transformer
	Equivariant Convolution from Rays to Points
	Equivariant Transformer from Rays to Points


	Proof of Equivalence of Intra-view Light Field Convolution and Spherical Convolution
	Spherical Convolution Expressed in Gauge Equivariant Convolution Format 
	Converting Spherical Convolution to SE(2) Equivariant Convolution
	Construction of Features in Equivariant Light Field Transformer
	Proof for Equivariance of Light Field Transformer
	From SE(3) Equivariant Transformer in Ray Space to SE(3) Equivariant Transformer in Euclidean Space
	Equivariant Neural Rendering
	Convolution from Rays to Rays
	Cross-attention over Rays
	Self-attention over Points Along the Ray

	3D Reconstruction Experiment
	Generation of the Dataset
	Implementation Details
	Discussion of Results
	Qualitative Results
	Ablation Study

	Neural Rendering Experiment
	Experiment Settings Discussion
	Implementation Details
	Qualitative Results


