
Published in Transactions on Machine Learning Research (04/2025)

Reward Distance Comparisons Under Transition Sparsity

Clement Nyanhongo clement.k.nyanhongo.th@dartmouth.edu
Thayer School of Engineering
Dartmouth College

Bruno Miranda Henrique bruno.miranda.henrique.th@dartmouth.edu
Thayer School of Engineering
Dartmouth College

Eugene Santos Jr. eugene.santos.jr@dartmouth.edu
Thayer School of Engineering
Dartmouth College

Reviewed on OpenReview: https: // openreview. net/ forum? id= haP586YomL

Abstract

Reward comparisons are vital for evaluating differences in agent behaviors induced by a set
of reward functions. Most conventional techniques utilize the input reward functions to learn
optimized policies, which are then used to compare agent behaviors. However, learning these
policies can be computationally expensive and can also raise safety concerns. Direct reward
comparison techniques obviate policy learning but suffer from transition sparsity, where only
a small subset of transitions are sampled due to data collection challenges and feasibility
constraints. Existing state-of-the-art direct reward comparison methods are ill-suited for
these sparse conditions since they require high transition coverage, where the majority of
transitions from a given coverage distribution are sampled. When this requirement is not sat-
isfied, a distribution mismatch between sampled and expected transitions can occur, leading
to significant errors. This paper introduces the Sparsity Resilient Reward Distance (SRRD)
pseudometric, designed to eliminate the need for high transition coverage by accommodat-
ing diverse sample distributions, which are common under transition sparsity. We provide
theoretical justification for SRRD’s robustness and conduct experiments to demonstrate its
practical efficacy across multiple domains.

1 Introduction

In sequential decision problems, reward functions often serve as the most “succinct, robust, and transferable”
representations of a task (Abbeel & Ng, 2004), encapsulating agent goals, social norms, and intelligence
(Silver et al., 2021; Zahavy et al., 2021; Singh et al., 2009). For problems where a reward function is specified
and the goal is to find an optimal policy that maximizes cumulative rewards, Reinforcement Learning (RL) is
predominantly employed (Sutton & Barto, 2018). Conversely, when a reward function is complex or difficult
to specify and past expert demonstrations (or policies) are available, the reward function can be learned via
Inverse Reinforcement Learning (IRL) (Ng & Russell, 2000).

In both RL and IRL paradigms, reward functions govern agent decision-making, and reward comparisons
can help assess the similarity of these functions in terms of their induced behaviors. The task of reward
comparisons aims to assess the similarity among a collection of reward functions. This can be done through
pairwise comparisons where the similarity distance D(RA, RB) between two reward functions, RA and RB

(vectors, not scalars), is computed. The similarity distance should reflect variations not only in magnitude but
also in the preferences and behaviors induced by the reward functions. This is characterized by the property
of policy invariance, which ensures that reward functions yielding the same optimal policies are considered

1

https://openreview.net/forum?id=haP586YomL

Published in Transactions on Machine Learning Research (04/2025)

Figure 1: (Transition Sparsity in a 10 × 10 Gridworld Domain) In this illustration, each transition starts
from a starting state s and ends in a destination state s′. For clarity in visualization, we consider action-
independent rewards, R(s, s′). In (a), high transition coverage results from a high rollout count (number of
policy rollouts) in the absence of feasibility constraints, leading to the majority of transitions being sampled
(blue points). In (b), low coverage results from a low rollout count in the absence of feasibility constraints,
leading to fewer sampled transitions (red points). In (c), low coverage results from feasibility constraints,
such as movement restrictions that only allow actions to adjacent cells, which can significantly reduce the
space of sampled transitions (green points) irrespective of rollout count.

similar even if their numerical reward values differ (Ng et al., 1999). This makes direct reward comparisons via
distance measures such as Euclidean or Kullback-Leibler (KL) divergence unfavorable since these distances
do not maintain policy invariance. To satisfy policy invariance, traditional reward comparison techniques
have adopted indirect approaches that compare behaviors derived from the optimized policies associated
with the reward functions under comparison (Arora & Doshi, 2021). However, these indirect approaches
pose the following challenges: (1) they can be slow and resource-intensive due to iterative policy learning
via RL, and (2) policy learning may not be favorable in critical online environments such as healthcare or
autonomous vehicles, where safety considerations are paramount (Amodei et al., 2016; Thomas et al., 2021).
Therefore, developing direct reward comparison methods that bypass the computationally expensive process
of policy learning, while maintaining policy invariance is highly important.

To achieve policy invariance in direct reward comparisons, Gleave et al. (2021) introduced the Equivalent
Policy Invariant Comparison (EPIC) pseudometric. Given the task to compare two reward functions, EPIC
first performs reward canonicalization to express rewards in a standardized form by removing shaping, and
then computes the Pearson distance to measure the difference between the canonical reward functions.
Although theoretically rigorous, EPIC falls short in practice since it is designed to compare reward functions
under high transition coverage, when the majority of transitions within the explored state and action space
are sampled. In many practical scenarios, achieving high transition coverage can be impractical due to
transition sparsity, a condition where a minority of transitions are sampled. The remaining unsampled
transitions may have unknown or undefined reward values (especially if unrealizable), which can distort the
computation of reward expectations during the canonicalization process.

Transition sparsity can be attributed to: (1) limited sampling - when data collection challenges result in
fewer sampled transitions; and (2) feasibility constraints - when environmental or agent-specific limitations
restrict certain transitions. Consider, for instance, a standard 10 × 10 Gridworld domain which has a total
of 100 states, each represented by an (x, y) coordinate. The total number of possible transitions is at
least 10, 000 (100 states × number of actions × 100 states) if at least one action exists between every pair
of states (see Figure 1). However, feasibility constraints such as movement restrictions might limit the
transitions that can be sampled. For example, an agent that can only move to its neighboring states by
taking single-step cardinal directions (actions: up, right, down, left) in each state will explore fewer than
400 transitions (100 states ×4 actions), as shown in Figure 1c. To illustrate the impact of limited sampling,
consider a scenario where transitions are sampled via policy rollouts. Assuming that factors such as feasibility

2

Published in Transactions on Machine Learning Research (04/2025)

constraints, the transition model, and the policy rollout method are kept constant, the extent of sampled
transitions is proportional to the number of policy rollouts (see Figure 1a and 1b). To alleviate the impact
of transition sparsity in reward comparisons, we present the Sparsity Resilient Reward Distance (SRRD)
pseudometric, which does not assume the existence of reward samples with high transition coverage. During
canonicalization, SRRD introduces additional reward expectation terms to accommodate a wider and more
diverse range of transition distributions.

In practical settings, reward comparisons can be useful for a broad range of applications such as: (1)
Evaluating Agent Behaviors – By comparing how different reward functions align or differ using specified
similarity measures, agent rewards can be grouped, to reason and interpret different agent behaviors. This
can be useful in IRL domains, where there is need to extract meaning from inferred rewards computed to
represent agent preferences (Ng & Russell, 2000; Santos & Nyanhongo, 2019). For instance, in sport domains
such as hockey, reward comparisons could be useful in inferring player rankings and their decision-making
strategies (Luo et al., 2020). (2) Initial Reward Screening – In RL domains, direct reward comparisons could
serve as a preliminary step to quickly identify rewards that will achieve a spectrum of desired behaviors
before actual training. This could be beneficial in scenarios where multiple possible reward configurations
exist, but some might be more efficient. (3) Addressing Reward Sparsity1 – Reward comparisons could also
tackle issues such as reward sparsity, by identifying more informative and easier-to-learn reward functions
that might be similar in terms of optimal policies but are more desirable than sparse reward functions.

Contributions In this paper, we introduce the Sparsity Resilient Reward Distance (SRRD) pseudometric,
designed to improve direct reward comparisons in environments characterized by high transition sparsity.
SRRD demonstrates greater robustness compared to existing pseudometrics (such as EPIC), which require
high transition coverage. SRRD’s strength lies in its ability to integrate reward samples with diverse transi-
tion distributions, which are common in scenarios with low coverage. We provide the theoretical justification
for SRRD’s robustness and demonstrate its superiority through experiments in several domains of varying
complexity: Gridworld, Bouncing Balls, Drone Combat, Robomimic, Montezuma’s Revenge, StarCraft II,
and MIMIC-IV. For the simpler domains, Gridworld and Bouncing Balls, we evaluate SRRD against man-
ually defined factors such as nonlinear reward functions and feasibility constraints, to fully understand its
strengths and limitations under controlled conditions. In the more complex domains such as StarCraft II,
we assess SRRD in environments characterized by large state and action spaces, to gauge how it is likely to
perform in realistic settings. Our final experiment explores a novel and practical application of these pseu-
dometrics as distance measures within a k-nearest neighbors algorithm, tailored to classify agent behaviors
based on reward functions computed via IRL. Empirical results highlight SRRD’s superior performance, as
evidenced by its ability to find higher similarity between rewards generated from the same agents and higher
variation between rewards from different agents. These results underscore the crucial need to account for
transition sparsity in direct reward comparisons.

2 Related Works

The EPIC pseudometric is the first direct reward comparison technique that circumvents policy learning while
maintaining policy invariance (Gleave et al., 2021). In practical settings, EPIC’s major limitation is that it is
designed to compare rewards under high transition coverage. In scenarios characterized by transition sparsity,
EPIC underperforms due to its high sensitivity to unsampled transitions, which can distort the computation
of reliable reward expectation terms, needed during canonicalization. This limitation has been observed by
Wulfe et al. (2022), who introduced the Dynamics-Aware Reward Distance (DARD) pseudometric. DARD
improves on EPIC by relying on transitions that are closer to being physically realizable; however, it still
remains highly sensitive to unsampled transitions.

Skalse et al. (2024) also introduced a family of reward comparison pseudometrics, known as Standardized
Reward Comparisons (STARC). These pseudometrics are shown to induce lower and upper bounds on worst-
case regret, implying that the metrics are tight, and differences in STARC distances between two reward

1Transition sparsity arises when a minority of transitions are sampled. This is different from reward sparsity, which occurs
when rewards are infrequent or sparse, making RL tasks difficult.

3

Published in Transactions on Machine Learning Research (04/2025)

functions correspond to differences in agent behaviors. Among the different STARC metrics explored, the
Value-Adjusted Levelling (VAL) and the VALPotential functions are empirically shown to have a marginally
tighter correlation with worst-case regret compared to both EPIC and DARD. While an improvement,
a significant limitation of these metrics is their reliance on value functions, which can be computed via
policy evaluation—a process that incurs a substantially higher computational overhead than sample-based
approximations for both EPIC and DARD. In small environments, these metrics can be computed using
dynamic programming for policy evaluation, an iterative process with polynomial complexity relative to the
state and action spaces (Skalse et al., 2024). In larger environments, computing the exact value functions
becomes impractical hence the value functions need to be approximated via neural networks updated with
Bellman updates (Skalse et al., 2024). Since the primary motivation for direct reward comparisons is to
eliminate the computationally expensive process of policy learning, incorporating value functions is somewhat
contradictory since policy evaluation is iterative, and it can have comparable complexity with policy learning
techniques such as value iteration. Our work focuses on computationally scalable direct reward comparison
pseudometrics (such as EPIC and DARD), which do not involve iterative policy learning or evaluation.

The task of reward comparisons lies within the broader theme of reward evaluations, which aim to explain
or interpret the relationship between rewards and agent behavior. Some notable works tackling this theme,
include, Lambert et al. (2024), who developed benchmarks to evaluate reward models in Large Language
Models (LLMs), which are often fine-tuned using RL via human feedback (RLHF) to align the rewards with
human values. These benchmarks assess criteria such as communication, safety and reasoning capabilities
across a variety of reward models. In another line of work, Mahmud et al. (2023) presented a framework
leveraging human explanations to evaluate and realign rewards for agents trained via IRL on limited data.
Lastly, Russell & Santos (2019) proposed a method that examines the consistency between global and
local explanations, to determine the extent to which a reward model can capture complex agent behavior.
Similar to reward comparisons, reward evaluations can be influenced by shaping functions, thus necessitating
techniques such as canonicalization as preprocessing steps to eliminate shaping (Jenner & Gleave, 2022).

Reward shaping is a technique that transforms a base reward function into alternate forms (Ng et al., 1999).
This technique is mainly employed in RL for reward design where heuristics and domain knowledge are
integrated to accelerate learning (Mataric, 1994; Hu et al., 2020; Cheng et al., 2021; Gupta et al., 2022; Suay
et al., 2016). Several applications of reward shaping have been explored, and some notable examples include:
training autonomous robots for navigation (Tenorio-Gonzalez et al., 2010); training agents to ride bicycles
(Randløv & Alstrøm, 1998); improving agent behavior in multiagent contexts such as the Prisoner’s Dilemma
(Babes et al., 2008); and scaling RL algorithms in complex games (Lample & Chaplot, 2017; Christiano
et al., 2017). Among several reward shaping techniques, potential-based shaping is the most popular due to
its preservation of policy invariance, ensuring that the set of optimal policies remains unchanged between
different versions of reward functions (Ng et al., 1999; Wiewiora et al., 2003; Gao & Toni, 2015).

3 Preliminaries

This section introduces the foundational concepts necessary for understanding direct reward comparisons,
and the critical challenge of transition sparsity which our proposed approach, SRRD (detailed in Section
4), is designed to address. We begin by outlining the Markov Decision Process formalism, followed by a
discussion of policy invariance. Finally, we review the existing key direct reward comparison pseudometrics
(EPIC and DARD) and examine their limitations, which motivate the development of SRRD.

3.1 Markov Decision Processes

A Markov Decision Process (MDP) is defined as a tuple (S, A, γ, T, R), where S and A are the state and
action spaces, respectively. The transition model T : S ×A×S → [0, 1], dictates the probability distribution
of moving from one state, s ∈ S, to another state, s′ ∈ S, under an action a ∈ A, and each given transition
is specified by the tuple (s, a, s′). The discount factor γ ∈ [0, 1] reflects the preference for immediate over
future rewards. The reward function R : S × A × S → R assigns a reward R(s, a, s′) to each transition. A
trajectory τ = {(s0, a0), (s1, a1), · · · , (sn)}, n ∈ Z+, is a sequence of states and actions, with a total return:

4

Published in Transactions on Machine Learning Research (04/2025)

g(τ) =
∑∞

t=0 γtR(st, at, st+1). The goal in an MDP is to find a policy π : S × A → [0, 1] (often via RL) that
maximizes the expected return E[g(τ)].

Given the subsets Si ⊆ S, A ⊆ A, and Sj ⊆ S, the tuple (Si, A, Sj) represents the set of transitions within
the cross-product Si × A × Sj . The associated rewards are:

R(Si, A, Sj) = {R(s, a, s′)|(s, a, s′) ∈ Si × A × Sj},

and the expected reward over these transitions is denoted by E[R(Si, A, Sj)]. In the standard MDP for-
mulation, the reward function is fully specified for all possible transitions including those that may be
unrealizable. However, in many practical settings, such as offline RL (Levine et al., 2020; Agarwal et al.,
2020; Chen et al., 2024), we are often limited to datasets of reward samples that are only defined over a
subset of observed realizable transitions. In this paper, a reward sample is defined as a restriction of R to
a subset B ⊆ S × A × S, where B consists of sampled transitions under a specified policy. We assume that
rewards are defined for transitions in B, and are undefined for transitions not in B. Given a batch of sam-
pled transitions B, the coverage distribution D(s, a, s′) defines the probability distribution over transitions
used to generate B. The sampled state space and action space are denoted by SD ⊆ S and AD ⊆ A. The
sets of all possible distributions over A and S are denoted by ∆A and ∆S respectively, and the individual
distributions over states and actions are denoted by DS ∈ ∆S and DA ∈ ∆A.

3.2 Policy Invariance and Direct Reward Comparisons

In direct reward comparisons, policy invariance is crucial as it ensures that reward functions that differ due
to potential shaping are treated as equivalent, since they yield the same optimal policies (Ng et al., 1999).
Formally, any shaped reward can be represented by the relationship: R′(s, a, s′) = R(s, a, s′) + F (s, a, s′),
where F is a shaping function. Potential shaping guarantees policy invariance, and takes the form:

R′(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s), (1)

where R is the original reward function, and ϕ is a state-potential function. Reward functions R and R′ are
deemed equivalent as they yield the same optimal policies. To effectively compare reward functions that may
differ numerically but induce the same optimal policies, the use of pseudometrics is highly important. Let
X be a set, with x, y, z ∈ X, and let d : X × X → [0, ∞) define a pseudometric. This pseudometric adheres
to the following axioms: (premetric) d(x, x) = 0 for all x ∈ X; (symmetry) d(x, y) = d(y, x) for all x, y ∈ X;
and (triangular inequality) d(x, y) ≤ d(x, z)+d(z, y) for all x, y, z ∈ X. Unlike a true metric, a pseudometric
does not require that: d(x, y) = 0 =⇒ x = y, making it ideal for identifying equivalent reward functions
that might have different numerical values.

The EPIC pseudometric was introduced by Gleave et al. (2021), as a direct reward comparison method that
maintains policy invariance. To compute EPIC, reward functions are first transformed into a canonical form
without potential shaping; and then, the Pearson distance is computed to differentiate the canonical rewards.
The EPIC canonicalization function is defined as follows:

CEP IC(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′) − R(s, A, S′) − γR(S, A, S′)], (2)

where, S ∼ DS , S′ ∼ DS , A ∼ DA, with DS and DA being distributions over states and actions, respec-
tively. Given a potentially shaped reward, R′(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s), canonicalization yields:
CEP IC(R′)(s, a, s′) = CEP IC(R)(s, a, s′)+ϕres, where ϕres = γE[ϕ(S)]−γE[ϕ(S′)] is the remaining residual
shaping. EPIC assumes that S and S′ are identically distributed such that E[ϕ(S)] = E[ϕ(S′)], resulting
in ϕres = 0. This makes EPIC, invariant to potential shaping, since, CEP IC(R) = CEP IC(R′). Finally, the
EPIC pseudometric between two reward functions RA and RB is computed as:

DEPIC(RA, RB) = Dρ(CEP IC(RA), CEP IC(RB)), (3)

where, for any random variables X and Y , the Pearson distance Dρ is defined as:

Dρ(X, Y) =
√

1 − ρ(X, Y)/
√

2. (4)

5

Published in Transactions on Machine Learning Research (04/2025)

The Pearson correlation coefficient is given by: ρ(X, Y) = E[(X − µX)(Y − µY)]/(σXσY), where µ denotes
the mean, σ the standard deviation, and E[(X − µX)(Y − µY)] is the covariance between X and Y . The
Pearson distance is defined over the range: 0 ≤ Dρ(X, Y) ≤ 1, where Dρ(X, Y) = 0 indicates that X and
Y are highly similar since ρ(X, Y) = 1 (perfect positive correlation), and Dρ(X, Y) = 1 indicates that X
and Y are maximally different since ρ(X, Y) = −1. The Pearson distance is scale and shift invariant since
Dρ(aX +c, bY +d) = Dρ(X, Y), where, a, b, c, d ∈ R are constants (Gleave et al., 2021). Therefore, the EPIC
pseudometric is scale, shift and shaping invariant, which are policy-preserving transformations. Computing
CEP IC requires access to all transitions in a reward function, making it feasible only for small environments.
For reward functions with large or infinite state and action spaces, Gleave et al. (2021) introduced the
sample-based EPIC approximation, denoted as ĈEP IC , and is computed as:

ĈEP IC(R)(s, a, s′) = R(s, a, s′) + γ

NM

∑
(x,u)∈BM

R(s′, u, x) − 1
NM

∑
(x,u)∈BM

R(s, u, x)

− γ

N2
M

∑
(x,·)∈BM

∑
(x′,u)∈BM

R(x, u, x′), (5)

where transitions are sampled from a batch BV of NV samples from a coverage distribution D, and state-
action pairs, are sampled from a batch BM of NM samples from the joint state and action distributions,
DS × DA. Each term in ĈEP IC approximates the corresponding expectation term in CEP IC (Equation 2),
for example, γ

NM

∑
(x,u)∈BM

R(s′, u, x) estimates E[γR(s′, A, S′)].

Wulfe et al. (2022) observed that EPIC often depends on transitions that are physically unrealizable, as
it requires all (both realizable and unrealizable) transitions from the space S × A × S′. The unrealizable
transitions can introduce errors in reward comparisons since rewards for these transitions are often arbitrary
and unreliable. To mitigate this challenge, the authors introduced DARD, which incorporates transition
models to prioritize physically realizable transitions. The DARD canonicalization function is given by:

CDARD(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′′) − R(s, A, S′) − γR(S′, A, S′′)], (6)

where A ∼ DA, S′ ∼ T (s, A), S′′ ∼ T (s′, A), and T is the transition model. DARD is invariant to
potential shaping and generally improves upon EPIC by distinguishing between the subsequent states to s
(denoted by S′) and s′ (denoted by S′′). Transitions (s, A, S′) and (s′, A, S′′) are generally in-distribution
with respect to the transition dynamics T since S′ is distributed conditionally based on (s, A), and S′′ is
distributed conditionally based on (s′, A). Therefore, these transitions naturally align with the dynamics of
the sampled transitions, resulting in a lower likelihood of being unrealizable. However, transitions (S′, A, S′′)
are more likely to be out-of-distribution with respect to the transition dynamics T , since S′′ is not distributed
conditionally according to (S′, A), but rather to (s′, A). Consequently, DARD can be sensitive to out-of-
distribution transitions in (S′, A, S′′), which have a higher likelihood of being unrealizable. Nonetheless,
Wulfe et al. (2022) argue that these transitions are closer to being physically realizable since (S′, A, S′′)
transitions are in close proximity to s and s′, compared to transitions that are utilized in EPIC. Computing
the exact DARD computation can also be impractical in large environments, hence, Wulfe et al. (2022)
introduced a sample-based DARD approximation, denoted by ĈDARD (see Appendix A.1).

3.3 Unsampled Transitions

Consider a reward function R : S × A × S → R, where S is the state space and A is the action space. A
reward sample is generated according to a coverage distribution D, and it spans a state space SD ⊆ S and
an action space AD ⊆ A. We define the following sets of transitions:

Full Coverage Transitions (T D) - The set of all theoretically possible transitions within the reward
sample’s state-action space. This set is represented as T D = SD × AD × SD ⊆ S × A × S.

Sampled Transitions (T S) - The set of transitions that are actually present in the reward sample. Due to
feasibility constraints and limited sampling, this set is a subset of the full coverage transitions: T S ⊆ T D.

Unsampled Transitions (T U) - The set of full coverage transitions that are not explored in the reward
sample. These transitions can be both realizable and unrealizable, and T U = T D \ T S .

6

Published in Transactions on Machine Learning Research (04/2025)

Figure 2: (Impact of unsampled transitions on canonicalizing R(s1, a1, s2)) Sampled transitions are those
explored in the reward sample, while expected transitions are those anticipated by ĈEP IC assuming full
coverage. As coverage decreases from (a) to (c), due to a reduction in the number of sampled transitions, the
standard deviation of ĈEP IC(R)(s1, a, s2) increases, indicating ĈEP IC ’s increased instability to unsampled
transitions. For comparison, ĈSRRD and ĈDARD have lower standard deviations, signifying higher stability.

A major limitation of the EPIC and DARD pseudometrics is that they are designed to compare reward func-
tions under high coverage, where |T S | ≈ |T D|. As |T U | → |T D|, the performance of these pseudometrics
significantly degrades due to an increase in the number of unsampled transitions. To illustrate this limita-
tion, consider Equation 5 used to approximate CEP IC . To perform the computation, we need to estimate:
E[R(s′, A, S′)] by dividing the sum of rewards from s′ to S′ by NM transitions; E[R(s, A, S′)] by dividing the
sum of rewards from s to S′ by NM transitions; and E[R(S, A, S′)] by dividing the sum of all rewards from
S to S′ by NM

2 transitions, where NM ≤ |SD × AD| is the size of the state-action pairs in the batch BM .
Every state s ∈ S is ideally expected to have NM transitions to all other states S′, which can be impractical
under transition sparsity when some transitions might be unsampled. Since reward summations are divided
by large denominators due to NM (see Equation 5), when coverage is low, the number of sampled transitions
needed to estimate the reward expectation terms will be fewer than expected, introducing significant error.

Figure 2 illustrates an example showing the effect of unsampled transitions on canonicalization across three
reward samples spanning a state space S = S′ = {s1, ..., s8} and an action space, A = {a1}, such that
NM = 8, under different levels of transition sparsity. Rewards are defined as R(si, a1, sj) = 1+γϕ(sj)−ϕ(si),
where i, j ∈ {1, ..., 8}, and state potentials are randomly generated such that: |ϕ(s)| ≤ 20, with γ = 0.5.
The task is to compute ĈEP IC(R)(s1, a1, s2) over 1000 simulations. For all reward samples, the mean
µ(ĈEP IC(R)(s1, a1, s2)) ≈ 0, but the standard deviation σ(ĈEP IC(R)(s1, a1, s2)) varies based on coverage.
In Figure 2a, the reward sample has high coverage (100%), hence, the number of observed and expected
transitions are equal. In this scenario, EPIC is highly effective and all shaped rewards are mapped to the same
value (≈ 0), resulting in a standard deviation σ(ĈEP IC(R)(s1, a1, s2)) = 0, highlighting consistent reward
canonicalization. In Figure 2b, the reward sample has moderate coverage and the fraction of unsampled
transitions is approximately 33%. As a result, σ(ĈEP IC(R)(s1, a1, s2)) = 2.84, which is relatively high,
signifying EPIC’s sensitivity to unsampled transitions. In Figure 2c, the reward sample exhibits low coverage
and the fraction of unsampled transitions is approximately 77%, indicating a significant discrepancy between
the number of observed and expected transitions. Consequently, σ(ĈEP IC(R)(s1, a1, s2)) = 7.36, highlighting
EPIC’s increased instability due to unsampled transitions. For comparison, we include the DARD and SRRD

7

Published in Transactions on Machine Learning Research (04/2025)

estimates, which exhibit lower standard deviations, signifying greater stability. DARD reduces the effect of
unsampled transitions by relying mostly on transitions that are closer to s and s′ (S′ and S′′), which typically
comprise a smaller subset of states compared to those required by EPIC. However, this localized focus can
make DARD highly sensitive to variations in the composition of transitions between the reward samples
under comparison, since it might lack the context of transitions further from s and s′, potentially limiting
its robustness. In this paper, we use DARD as an experimental baseline.

4 Approach: Sparsity Resilient Reward Distance (SRRD)

The motivation behind SRRD is to establish a direct reward comparison technique that imposes minimal
assumptions about the structure and distribution of transitions in reward samples, ensuring robustness under
transition sparsity. To derive SRRD, we integrate key characteristics of CDARD and CEP IC as follows:

• CDARD eliminates the requirement that the set of states that can be reached from s and s′ must be
similar, thereby increasing the flexibility of transition sample distributions considered. We will refer
to states that can be reached from s′ as S1, and states from s as S2.

• In CDARD, the transitions (S′, A, S′′) are generally in close proximity to s and s′ because S′ ∼ T (s, A)
and S′′ ∼ T (s′, A). These transitions may not capture the states that are further away from s and
s′, potentially lacking the overall context of the reward sample. To address this issue, similar to
how CEP IC uses transitions for the entire sample, (S, A, S′), we utilize transitions for the entire
sample, which we denote as: (S3, A, S4), where S3 encompasses all initial states from the sampled
transitions, and S4 is the set of all states that are subsequent to S3.

These modifications reduce the impact of unsampled transitions, as reward expectations are computed based
on the observed structure of the sampled transitions, without assuming full coverage. With these consider-
ations, we derive the modified canonical equation as:

C1(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)], (7)

where: S1 and S2 are subsequent states to s′ and s, respectively; S3 encompasses all initial states from
all sampled transitions; and S4 are subsequent states to S3. Applying C1 to a potentially shaped reward
R′(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s), we get: C1(R′)(s, a, s′) = C1(R)(s, a, s′) + ϕres1, where,

ϕres1 = E[γ2ϕ(S1) − γ2ϕ(S4) + γϕ(S3) − γϕ(S2)]. (8)

C1 is not theoretically robust since it yields the residual shaping ϕres1 (the remaining shaping after canoni-
calization). To cancel E[ϕ(Si)], ∀i ∈ {1, ..., 4} in ϕres1, we can add rewards R(Si, A, ki) to induce potentials
γϕ(ki) − ϕ(Si); where ki can be any arbitrary set of states. This results in the equation:

C2(R)(s,a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)
+ γ2R(S1, A, k1) − γR(S2, A, k2) + γR(S3, A, k3) − γ2R(S4, A, k4)].

(9)

Applying C2 to a potentially shaped reward, we get: C2(R′)(s, a, s′) = C2(R)(s, a, s′) + ϕres2, where,

ϕres2 = E[γ3ϕ(k1) − γ3ϕ(k4) + γ2ϕ(k3) − γ2ϕ(k2)]. (10)

See Appendix A.3 for derivations of ϕres1 and ϕres2.

The canonical form C2 is preferable to C1, since it enables the selection of ki to eradicate ϕres2. A convenient
solution is to ensure that: k1 = k4 and k2 = k3 such that E[ϕ(k1)] = E[ϕ(k4)] and E[ϕ(k2)] = E[ϕ(k3)],
resulting in ϕres2 = 0. We choose the solution: k1 = k4 = S5, and k2 = k3 = S6; where S5 are subsequent
states to S1, and S6 are subsequent states to S2. This leads to the following SRRD definition:

8

Published in Transactions on Machine Learning Research (04/2025)

Definition 1 (Sparsity Resilient Canonically Shaped Reward). Let R : S × A × S → R be a reward function.
Given distributions DS ∈ ∆S and DA ∈ ∆A over states and actions, let S3 be the set of states sampled
according to DS , and let A be the set of actions sampled according to DA. Furthermore, let T (S4|S3, A) be
a transition model governing the conditional distribution over next states, where, S4 are subsequent states
to S3. For each s ∈ S3 and s′ ∈ S4, let S1 be the set of states sampled according to T (S1|s′, A), and S̃2
be the set of states sampled according to T (S̃2|s, A). Let S2 represent non-terminal states in S̃2. Similarly,
let S5 and S6 be set of states sampled according to T (S5|S1, A) and T (S6|S2, A), respectively. The Sparsity
Resilient Canonically Shaped Reward is defined as:

CSRRD(R)(s,a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)
+ γ2R(S1, A, S5) − γR(S2, A, S6) + γR(S3, A, S6) − γ2R(S4, A, S5)].

(11)

Note that in CSRRD, we first sample S̃2 as subsequent states from s, and then derive S2 as non-terminal
states in S̃2. This modification ensures that (S2, A, S6) ⊆ (S3, A, S6), which is crucial for SRRD’s robustness
in Theorem 1. In practice though, the difference between Ŝ2 and S2 is generally minimal, especially in
long-horizon problems where terminal states tend to be fewer compared to non-terminal states. The SRRD
canonicalization function is invariant to potential shaping as described by Proposition 1.
Proposition 1. (The Sparsity Resilient Canonically Shaped Reward is Invariant to Shaping) Let R :
S × A × S → R be a reward function and ϕ : S → R be a state potential function. Applying CSRRD to
a potentially shaped reward R′(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s) satisfies: CSRRD(R) = CSRRD(R′).

Proof. See Appendix A.4.

Given reward functions RA and RB , the SRRD pseudometric is computed as:

DSRRD(RA, RB) = Dρ(CSRRD(RA), CSRRD(RB)), (12)

where Dρ is the Pearson distance. For robustness, we establish an upper bound on regret showing that as
DSRRD → 0, the performance difference between the policies induced by the reward functions under compar-
ison, RA and RB , approaches 0, as described by Theorem 2. Depending on the transition model dictating
the composition of {S1, ..., S6}, CSRRD can be invariant to shaping across various transition distributions
without requiring full coverage, provided that, for each set of transitions (Si, A, Sj) in the reward expectation
terms, all transitions in the cross-product Si × A × Sj have defined reward values. This is guaranteed when
the full reward function R is available.

In practical scenarios, the full reward function may be unavailable, and CSRRD can be approximated from
reward samples, resulting in ĈSRRD (see Definition 8). In these settings, the transitions needed for each
reward expectation term in ĈSRRD, might be unsampled due to transition sparsity. Despite this challenge,
approximations for ĈSRRD are robust due to the strategic choices of ki (see Equation 9 and 11), S5 and
S6, which ensure that the approximations are ideal for the following two reasons: First, for any reward
sample, we can compute reliable expectation estimates for the first six terms, since for each set of transitions
(Si, A, Sj), Sj is distributed conditionally based on (Si, A); hence, these transitions naturally align with the
transition dynamics that dictate the nature of the reward sample. However, for transitions in the last two
terms, (S3, A, S6) and (S4, A, S5), S6 is not distributed conditionally based on (S3, A) but on (S2, A), and S5
is not distributed conditionally based on (S4, A) but on (S1, A); hence these transitions may not align well
with the transition dynamics that dictate the structure of the reward sample, making these transitions highly
susceptible to being unsampled. Second, while there might be significant fractions of unsampled transitions
in (S4, A, S5), and (S3, A, S6), a minimal set of sampled transitions are likely to exist, because:

• Transitions (S1, A, S5) ⊆ (S4, A, S5):
Since S1 are subsequent states to s′, and S4 are subsequent states for all sampled transitions. It
follows that, S1 ⊆ S4 (see example in Appendix A.6), hence, (S1, A, S5) ⊆ (S4, A, S5).

• Transitions (S2, A, S6) ⊆ (S3, A, S6).
S2 is the set of non-terminal subsequent states from s. Since S3 encompasses all initial non-terminal
states from all sampled transitions, it follows that: S2 ⊆ S3, hence, (S2, A, S6) ⊆ (S3, A, S6).

9

Published in Transactions on Machine Learning Research (04/2025)

Therefore, we can get decent fractions of sampled transitions in (S3, A, S6) and (S4, A, S5), which typically
reduces the extent and impact of unsampled transitions in SRRD, making it robust under transition sparsity,
as described in Section 4.1, Theorem 1.

In summary, SRRD is designed to improve reward function comparisons under transition sparsity. To
achieve this, SRRD introduces additional reward expectation terms into canonicalization, to ensure that
rewards are standardized (remove shaping) based on the observed distribution of sampled transitions, without
assuming full transition coverage. Regarding computational complexity, when employing the double-batch
sampling method that involves a batch BV of NV transitions, and another batch BM of NM state-action
pairs for canonicalization (refer to Appendix A.1); EPIC has a complexity of O(max(NV NM , N2

M)), and
both DARD and SRRD have complexities of O(NV N2

M) (see Appendix A.11). This paper adopts the
double-batch sampling approach to maintain consistency with prior works, however, alternative sample-
based approximations are also viable. Specifically, Appendix B.2 explores a sample-based approximation
method that employs unbiased estimates, and Appendix B.3, explores the use of regression to infer reward
values for unsampled transitions. Across all these approximation variants, SRRD consistently outperforms
both DARD and EPIC under conditions of transition sparsity, confirming its robustness.

4.1 Relative Shaping Errors

This section provides a theoretical evaluation on the robustness of the sample-based approximations: ĈSRRD,
ĈDARD, and ĈEP IC , to unsampled transitions. We first discuss the relevant definitions and assumptions for
the analysis, then present Theorem 1 comparing the three methods. For a reward function R, the structure
of an arbitrary reward canonicalization method (such as CSRRD, CDARD, and CEP IC) takes the form:

CS(R)(s, a, s′) = R(s, a, s′) + E
n−1∑
i=1

[αiR(Si, A, S′
i)] , (13)

where, αi is a constant, |αi| ≤ 1, and i ∈ {1, ..., n−1} are indices denoting the state subsets, Si, S′
i ⊆ S. The

sample-based approximation for CS is denoted by ĈS . Given a non-zero reward sample R, we can bound
the maximum range of each canonical reward by defining the upper bound canonical reward as follows:
Definition 2. (Upper Bound Canonical Reward) Let R be a non-zero reward sample defined over a set
of transitions B, and let ĈS be an arbitrary sample-based canonicalization method. Furthermore, let Z =
max(s,a,s′)∈B(|R(s, a, s′)|) be the maximum absolute reward. The upper bound canonical reward is given by:

U(ĈS(R)(s, a, s′)) = nZ (14)

The justification for Definition 2 is that CS(R)(s, a, s′) has n-terms with absolute values bounded by Z (both
|R(s, a, s′)| ≤ Z and |αiE[R(Si, A, S′

i)]| ≤ Z), hence, U(ĈS(R)(s, a, s′)) = nZ. The non-zero assumption
on R guarantees that there exists at least one sampled transition with a non-zero reward, ensuring that
U(ĈS(R)(s, a, s′)) ≥ 0. To quantify the performance bounds of the canonicalization methods, we define the
relative shaping error as follows:
Definition 3. (Relative Shaping Error (RSE)) Let R′ be a shaped, non-zero reward sample defined over a
set of transitions B, and let ĈS be a sample-based reward canonicalization method, such that: ĈS(R′) =
ĈS(R) + ϕR, where ϕR is the residual shaping term. Suppose that ϕR can be expressed as: ϕR = ϕR̃ + Kϕ,
where Kϕ is a constant that does not vary with (s, a, s′), and ϕR̃ is the effective residual shaping term.
Furthermore, let U(ĈS(R)(s, a, s′)) = nZ represent the upper bound of the unshaped canonical reward, where,
Z = max(s,a,s′)∈B(|R(s, a, s′)|). The relative shaping error is defined as:

RSE(ĈS(R)(s, a, s′)) = |ϕR̃(s, a, s′)|
U(ĈS(R)(s, a, s′))

= |ϕR̃(s, a, s′)|
nZ

. (15)

The relative shaping error (RSE) is designed to theoretically quantify the impact of residual shaping in
reward distance comparisons. The denominator, U(ĈS(R)(s, a, s′)) = nZ, represents an upper bound on the

10

Published in Transactions on Machine Learning Research (04/2025)

magnitude of the base (unshaped) canonical reward, and it serves to normalize the impact of shaping. A low
RSE suggests that U(ĈS(R)(s, a, s′)) is substantially larger than |ϕR̃(s, a, s′)|, indicating that the impact of
shaping is likely minimal. Conversely, a high RSE implies that U(ĈS(R)(s, a, s′)) is relatively small compared
to |ϕR̃(s, a, s′)|, highlighting a more likely significant influence of the effective residual shaping. Note that
in the RSE definition, the effective residual shaping term is ϕR̃ = ϕR − Kϕ, where Kϕ is a constant that
does not impact the Pearson distance (since its shift invariant), and hence, the reward distances. For a
comprehensive discussion on the derivation of the RSE definition, refer to Appendix A.2.1.

With regard to reward samples, we define forward and non-forward transitions as follows:
Definition 4 (Forward transitions). Given a reward sample that spans a state space S, and an action space
A. Consider the state subsets Si, Sj ⊆ S. Transitions (Si, A, Sj) are forward transitions if Sj is distributed
conditionally based on (Si, A), according to the underlying transition dynamics of the reward sample.
Definition 5 (Non-forward transitions). Given a reward sample that spans a state space S, and an action
space A. Consider the state subsets Si, Sj , Sk ⊆ S. Transitions (Si, A, Sj) are non-forward transitions when
the states in Sj are not distributed conditionally based on (Si, A), but are instead based on (Sk, A), according
to the underlying transition dynamics of the reward sample.

In reward canonicalization methods, given transitions (Si, A, Sj) needed in computing reward expectations,
both forward and non-forward transitions can have unsampled transitions since canonicalization methods
typically require the cross-product of all transitions from Si to Sj . However, forward transitions are gen-
erally more robust to being unsampled since they are usually in-distribution with the underlying transition
dynamics governing the reward samples, hence, they naturally align with the progression of rewards in the
sample. In contrast, non-forward transitions are highly prone to being unsampled (and also unrealizable) as
they may include a significant fraction of transitions that are out-of-distribution with the reward sample’s
transition dynamics. Based on the rationale that forward transitions are more robust to being unsampled
compared to non-forward transitions, to make our analysis more tractable, we will assume that the fraction
of unsampled transitions in forward transitions is negligible, leading to Theorem 1:
Theorem 1. Consider the reward comparison task on two equivalent non-zero reward samples that differ
due to potential-based shaping, and share the same set of sampled transitions, B. During canonicalization,
consider the forward and non-forward transition sets needed to compute the reward expectation terms, and
assume that the fraction of unsampled forward transitions in both reward samples is negligible. Each reward
sample can be expressed as R′

i(s, a, s′) = R(s, a, s′) + γϕi(s′) − ϕi(s) for i ∈ {1, 2}, where, R is the unshaped
reward sample, γ is a discount factor, and ϕi(s) is the potential shaping function for R′

i. Under transition
sparsity, the upper bound of the Relative Shaping Error (RSE) for ĈSRRD is lower than that of ĈDARD and
ĈEP IC respectively, in the order:

RSE(ĈSRRD) ≤ M

3Z
; RSE(ĈDARD) ≤ 2M

3Z
; RSE(ĈEP IC) ≤ M

Z
,

where, M = maxs∈S(|ϕi(s)|) is the maximum magnitude of potential shaping across all states for the reward
samples, and Z = max(s,a,s′)∈B(|R(s, a, s′)|) is the maximum absolute value of the unshaped reward sample.

Proof. See Appendix A.2

In more precise terms, Theorem 1 evaluates the robustness ĈSRRD, ĈDARD, and ĈEP IC against residual
shaping introduced by unsampled transitions from non-forward transitions, which are more likely to be
out-of-distribution with the transition dynamics that generated the reward samples. The theorem assesses
the upper bounds of the RSE across the three canonicalization methods to determine their sensitivity to
residual shaping, assuming that the reward samples under comparison induce the same optimal policies,
and share the same set of transitions. These assumptions ensure that we isolate the differences between
the canonicalized reward samples to variations in residual shaping. A lower upper bound implies that a
canonicalization method is likely to be less sensitive to the effects of residual shaping and, hence, it is more
likely to reveal the actual similarity between the unshaped reward samples under comparison. As shown by
the upper bounds of the relative shaping errors, the approximation for ĈSRRD is theoretically more robust,
compared to those of ĈEP IC and ĈDARD, since it has the smallest upper bound.

11

Published in Transactions on Machine Learning Research (04/2025)

5 Experiments

To empirically evaluate SRRD, we examine the following hypotheses:

H1: SRRD is a reliable reward comparison pseudometric under high transition sparsity.
H2: SRRD can enhance the task of classifying agent behaviors based on their reward functions.

In these hypotheses, we compare the performance of SRRD to both EPIC and DARD using sample-based
approximations (see Appendix A.1). In H1, we analyze SRRD’s robustness under transition sparsity resulting
from limited sampling and feasibility constraints. In H2, we investigate a practical use case to classify agent
behaviors using their reward functions. Experiment 1 tests H1 and Experiment 2 tests H2.

Domain Specifications To conduct Experiment 1, we need the capability to vary the number of sam-
pled transitions, since the goal is to test SRRD’s performance under different levels of transition sparsity.
Therefore, Experiment 1 is performed in the Gridworld and Bouncing Balls domains, as they provide the
flexibility for parameter variation to control the size of the state and action spaces2. These two domains
have also been studied in the EPIC and DARD papers, respectively. The Gridworld domain simulates agent
movement from a given initial state to a specified terminal state under a static policy, within 200 timesteps.
States are defined by (x, y) coordinates where 0 ≤ x < N and 0 ≤ y < M implying |S| = NM . The action
space consists of four cardinal directions (single steps), and the environment is stochastic, with a probability
ϵ of transitioning to any random state irrespective of the selected action. When ϵ = 0, a feasibility constraint
is imposed, preventing the agent from making random transitions. The Bouncing Balls domain, adapted
from Wulfe et al. (2022), simulates a ball’s motion from a starting state to a target state while avoiding
randomly mobile obstacles. These obstacles add complexity to the environment since the ball might need
to change its strategy to avoid obstacles (at a distance, d = 3). Each state is defined by the tuple (x, y, d),
where (x, y) indicates the ball’s current location, and d indicates the ball’s Euclidean distance to the nearest
obstacle, such that: 0 ≤ x < N and 0 ≤ y < M . The action space includes eight directions (cardinals and
ordinals), and we also define the stochasticity-level parameter ϵ for choosing random transitions.

The objective for Experiment 2 is to test SRRD’s performance in diverse and near-realistic domain settings,
where we have no control over factors such as the nature of rewards and the level of transition sparsity.
Therefore, in addition to the Gridworld and the Bouncing Balls domains used in Experiment 1 (but with fixed
parameters), we extend our evaluation to the following testbeds: Drone Combat - a battlefield environment
between two swarms, adapted from a predator-prey gym environment (Anurag, 2019), Montezuma’s Revenge
- an Atari benchmark dataset with human demonstrations for the Montezuma’s Revenge game (Kurin et al.,
2017), StarCraft II - a simulation of combat scenarios where a controlled multiagent team aims to defeat a
default AI enemy team (Vinyals et al., 2019), Robomimic - an open source dataset of robotics manipulation
tasks incorporating both human and simulated demonstrations (Mandlekar et al., 2021), and MIMIC-IV - a
real-world de-identified electronic health dataset for patients admitted at an emergency or intensive care unit
at Beth Israel Deaconess Medical Center in Boston, MA (Johnson et al., 2023). These domains resemble
complex scenarios with large state and action spaces, enabling us to test SRRD’s (as well as the other
pseudometrics) generalization to near-realistic scenarios. Further details about these domains, including
information about the state and action features are described in Appendix C.5.

Reward Functions Extrinsic reward functions are manually defined using a combination of state and
action features. For the Drone Combat, Montezuma’s Revenge, and StarCraft II domains, we use the default
game engine scores as the reward function, and for Robomimic, rewards are based on task completion (see
Appendix C.2). For the Gridworld and Bouncing Balls domains, in each reward function, the reward values
are derived from the decomposition of state and action features, where, (sf1, ..., sfn) is from the starting state
s; (af1, ..., afm) is from the action a; and (s′

f1, ..., s′
fn) is from the subsequent state s′. For the Gridworld

domain, these features are the (x, y) coordinates, and for the Bouncing Balls domain, these include (x, y, d),
where d is the distance of the obstacle nearest to the ball. For each unique transition, using randomly

2Experiment 1 excludes the Drone Combat, MIMIC-IV, Robomimic, Montezuma’s Revenge, and StarCraft II, since these
domains have very large state and action spaces that hinder effective coverage computation.

12

Published in Transactions on Machine Learning Research (04/2025)

generated constants: {u1, ..., un} for incoming state features; {w1, ..., wm} for action features; {v1, ...vn} for
subsequent state features, we create polynomial and random rewards as follows:

Polynomial: R(s, a, s′) = u1sα
f1 + . . . + unsα

fn + w1aα
f1 + . . . + wmaα

fm + v1s′α
f1 + . . . + vns′α

fn,

where α is randomly generated from 1-10, denoting the degree of the polynomial.
Random: R(s, a, s′) = β,

where β is a randomly generated reward for each unique transition.

For the polynomial rewards, α is the same across the entire sample, but other constants vary between different
transitions. The same reward relationships are used to model potential shaping functions. In addition, we
also explore linear and sinusoidal reward models (see Appendix C.2). For complex environments such as
StarCraft II and MIMIC-IV, specifying reward functions can be challenging, hence we also incorporate IRL to
infer rewards from demonstrated behavior. For IRL, we consider the following methods: Maximum Entropy
IRL (Maxent) (Ziebart et al., 2008); Adversarial IRL (AIRL) (Fu et al., 2018); and Preferential-Trajectory
IRL (PTIRL) (Santos et al., 2021). The algorithms are summarized in Appendix C.7.

5.1 Experiment 1: Transition Sparsity

Objective: The goal of this experiment is to test SRRD’s ability to identify similar reward samples under
transition sparsity as a result of limited sampling and feasibility constraints.

Relevance: The EPIC and DARD pseudometrics struggle in conditions of high transition sparsity since
they are designed to compare reward functions under high coverage. SRRD is developed to be resilient under
transition sparsity and this experiment tests SRRD’s performance relative to both EPIC and DARD.

Approach: This experiment is conducted on a 20 × 20 Gridworld domain and a 20 × 20 Bouncing Balls
domain. For all simulations, manual rewards are used since they enable the flexibility to vary the nature of the
relationship between reward values and features, enabling us to test the performance of the pseudometrics
on diverse reward values, which include polynomial and random reward relationships. We also vary the
shaping potentials such that |R(s, a, s′)| ≤ |γϕ(s′) − ϕ(s)| ≤ 5|R(s, a, s′)|. For each domain, a ground truth
reward function (GT) and an equivalent potentially shaped reward function (SH) are generated, both with
full coverage (100%). Using rollouts from a uniform policy, rewards R and R′ are sampled from GT and
SH respectively, and these might differ in transition composition. After sample generation, R and R′ are
canonicalized and reward distances are computed using common transitions between the reward samples,
under varying levels of coverage due to limited sampling and feasibility constraints. The SRRD, DARD, and
EPIC reward distances are computed, as well as DIRECT, which is the Pearson distance between the reward
samples, without canonicalization. Since R and R′ are drawn from equivalent reward functions, an accurate
pseudometric should yield distances close to the minimum Pearson distance, Dρ = 0; and the least accurate
should yield a distance close to the maximum, Dρ = 1. DIRECT serves as a worst-case performance baseline,
since it computes reward distances without canonicalization (needed to remove shaping). We perform 200
simulation trials for each comparison task and record the mean reward distances.

Simulations and Results: Limited Sampling: Using rollouts from a uniform policy, we sample R and
R′ from GT and SH, respectively, under a stochasticity-level parameter, ϵ = 0.1. The number of transitions
sampled is controlled by varying the number of policy rollouts from 1 to 2000. The corresponding coverage
is computed as the number of sampled transitions over the number of all theoretically possible transitions
(= |S × A × S|). Figure 3a summarizes the variation of reward distances to transition coverage across
different levels of transition sampling in the Gridworld and Bouncing Balls domains. As shown, SRRD
outperforms other baselines as it converges towards Dρ = 0 faster, even when coverage is low. DARD
generally outperforms EPIC, however, it is highly prone to shaping compared to SRRD since it is more
sensitive to unsampled transitions. All pseudometrics generally outperform DIRECT, illustrating the value
of removing shaping via canonicalization. No significant differences are observed in the general trends of
results between the two domains, and additional simulations are presented in Appendix C.4. In conclusion,
the proposed SRRD consistently outperforms both EPIC and DARD under limited sampling.

13

Published in Transactions on Machine Learning Research (04/2025)

Figure 3: (Transition Sparsity). The figure illustrates the performance of reward comparison pseudometrics
in identifying the similarity between potentially shaped reward functions under two conditions: (a) limited
sampling and (b) feasibility constraints. A more accurate pseudometric yields a Pearson distance Dρ close to
0, indicating a high degree of similarity between shaped reward functions, while a less accurate pseudometric
results in Dρ close to 1. In both experiments, transition coverage is calculated as the ratio of sampled
transitions to the set of all theoretically possible transitions |S×A×S|, including both feasible and unfeasible
transitions. Each coverage data point represents an average over 200 simulations at a constant policy rollout
count, with coverage data points generated by varying the number of policy rollouts from 1 to 2000 (see
Appendix C.3). In panel (a), EPIC and DARD lag behind SRRD at low transition coverage due to
limited sampling, but their performance gradually improves as coverage increases with higher rollout counts.
In panel (b), movement restrictions significantly reduce transition coverage, regardless of rollout sampling
frequency, which negatively impacts EPIC’s performance (almost similar to DIRECT).

Simulations and Results: Feasibility Constraints: Using rollouts (ranging from 1 to 2000) from a
uniform policy, we sample R and R′ from GT and SH, respectively. To impose feasibility constraints, we
set the stochasticity-level parameter, ϵ = 0, restricting random transitions between states such that only
movement to adjacent states is permitted. These movement restrictions ensure that coverage is generally
low (< 10%), even though the number of rollouts is similar to those in the first experiment. Figure 3b
summarizes the results for the variation of reward distances to transition coverage under the movement
restrictions. As shown, SRRD significantly outperforms all the baselines indicating its high robustness.

5.2 Experiment 2: Classifying Agent Behaviors

Objective: The goal of this experiment is to assess SRRD’s effectiveness as a distance measure in classifying
agent behaviors based on reward functions. If SRRD is robust, it should identify similarities among reward
functions from the same agents while differentiating reward functions from distinct agents.

Relevance: This experiment demonstrates how reward comparison pseudometrics can be used to interpret
reward functions by relating them to agent behavior. In many real-world situations, samples of agent
behaviors are available, and there is a need to interpret the characteristics of the agents that produced these
behaviors. For example, several works have attempted to predict player rankings and strategies using past
game histories (Luo et al., 2020; Yanai et al., 2022). This experiment takes a similar direction by attempting
to classify the identities of agents from their unlabeled past trajectories using reward functions. The reliance
on reward functions rather than the original trajectories is based on the premise that reward functions are
“succinct” and “robust”, hence a preferable means to interpret agent behavior (Abbeel & Ng, 2004).

14

Published in Transactions on Machine Learning Research (04/2025)

Approach: In this experiment, we train a k-nearest neighbors (k-NN) classifier to classify unlabeled agent
trajectories by indirectly using computed rewards, to identify the agents that produced these trajectories.
We examine the k-NN algorithm since it is one of the most popular distance-based classification techniques.
The experiment is conducted across all domains, and since we want to maximize classification accuracy, we
consider different IRL rewards, including: Maxent, AIRL, PTIRL as well as manual (extrinsic) rewards. For
manual rewards: we utilize the default game score for the Drone Combat, StarCraft II, and Montezuma’s
Revenge domains; environmental sparse rewards for task completion in the Robomimic domain; and feature-
based (for example, polynomial) rewards for the Gridworld, Bouncing Balls and MIMIC-IV domains, where
we induce random potential shaping. For each domain, we examine SRRD, DIRECT, EPIC, and DARD as
distance measures for a k-NN reward classification task. The steps for the approach are as follows:

1. Create agents X = {x1, ..., xm} with distinct behaviors.

2. For each agent xi ∈ X, generate a collection of sets {ζxi
1 , . . . , ζxi

p }, where each ζxi
j = {τxi

j,1, . . . , τxi
j,q}

is a q-sized set of trajectories. Compute reward functions {Rxi
1 , . . . , Rxi

p } using IRL or manual
specification based on each corresponding ζxi

j .

3. Randomly shuffle all the computed reward functions R (from all agents), and split into the training
Rtrain and testing Rtest sets.

4. Train a k-NN classifier using each pseudometric (as distance measure) on Rtrain and test it on Rtest.

Table 1: The accuracy (%) of different reward comparison distances in k-NN reward classification.

DOMAIN REWARDS DIRECT EPIC DARD SRRD

Gridworld

Manual 69.8 69.3 70.0 75.8
Maxent 57.4 57.5 68.9 70.0
AIRL 82.3 84.9 85.0 86.2
PTIRL 82.2 84.2 83.4 86.0

Bouncing
Balls

Manual 46.5 47.3 52.0 55.2
Maxent 39.7 46.0 50.8 49.9
AIRL 41.2 46.1 49.8 56.3
PTIRL 70.3 71.1 69.5 72.4

Drone
Combat

Manual 67.1 67.2 66.2 73.9
Maxent 70.3 77.7 73.2 76.7
AIRL 90.1 90.7 92.3 93.8
PTIRL 52.5 63.7 65.1 78.3

StarCraft II

Manual 65.5 67.4 69.5 76.5
Maxent 72.3 74.1 73.9 74.8
AIRL 75.1 75.3 78.1 77.0
PTIRL 77.2 78.1 77.6 79.8

Montezuma’s
Revenge

Manual 66.4 70.1 68.3 73.5
Maxent 67.8 69.1 68.7 71.2
AIRL 68.2 71.4 69.8 72.3
PTIRL 68.2 69.6 70.6 70.2

Robomimic

Manual 78.2 80.3 79.5 82.4
Maxent 82.3 86.8 79.5 89.8
AIRL 85.9 87.1 86.3 91.8
PTIRL 80.3 83.6 83.1 84.2

MIMIC-IV

Manual 53.5 56.5 57.3 59.2
Maxent 57.8 59.1 53.9 60.2
AIRL 56.5 60.7 57.6 63.3
PTIRL 58.9 61.4 60.3 60.9

15

Published in Transactions on Machine Learning Research (04/2025)

Across all domains, in step 1 and 2, fixed parameters are defined such that: m - is the number of distinct
agent policies; p - is the number of trajectory sets per agent; and q - is the number of trajectories per set
in each IRL run (refer to Appendix C.6). In step 1, different agent behaviors are controlled by varying the
agents’ policies. In step 4, to train the classifier, grid-search is used to identify candidate values for k and γ,
and twofold cross-validation (using Rtrain) is used to optimize hyper-parameters based on accuracy. Since
we assume potential shaping, γ is a hyperparameter as its value is unknown beforehand. To classify a reward
function Ri ∈ Rtest, we traverse reward functions Rj ∈ Rtrain, and compute the distance, Dρ(Ri, Rj) using
the reward pseudometrics. We then identify the top k-closest rewards to Ri, and choose the label of the
most frequent class. We select a training to test set ratio of 70 : 30, and repeat this experiment 200 times.

Simulations and Results: Table 1 summarizes experimental results. As shown, SRRD generally achieves
higher accuracy compared to DIRECT, EPIC and DARD across all domains, indicating SRRD effectiveness
at discerning similarities between rewards produced by the same agents, and differences between those
generated by different agents. This trend is more pronounced with manual rewards where SRRD significantly
outperforms other baselines. This can be attributed to potential shaping, which is intentionally induced in
manual rewards that SRRD is specialized to tackle. Therefore, SRRD proves to be a more effective distance
measure at classifying rewards subjected to potential shaping. For IRL-based rewards such as Maxent, AIRL,
and PTIRL, while we assume potential shaping, non-potential shaping could be present. This explains the
reduction in SRRD’s performance gap over EPIC and DARD, as well as the few instances where EPIC
and DARD outperform SRRD, though SRRD is still generally dominant. We also observe that all the
pseudometrics tend to perform better on AIRL rewards compared to other IRL-based rewards. This result
is likely due to the formulation of the AIRL algorithm, which is designed to effectively mitigate the effects
of unwanted shaping in reward approximation (Fu et al., 2018), thus providing more consistent rewards.
Overall, SRRD, EPIC, and DARD outperform DIRECT, emphasizing the importance of canonicalization at
reducing the impact of shaping.

To verify the validity of results, Welch’s t-tests for unequal variances are conducted across all domain
and reward type combinations, to test the null hypotheses: (1) µSRRD ≤ µDIRECT, (2) µSRRD ≤ µEPIC,
and (3) µSRRD ≤ µDARD; against the alternative: (1) µSRRD > µDIRECT, (2) µSRRD > µEPIC, and (3)
µSRRD > µDARD, where µ represents the sample mean. We reject the null when the p-value < 0.05 (level
of significance), and conclude that: (1) µSRRD > µDIRECT for all instances; (2) µSRRD > µEPIC for 22 out
of 28 instances, and (3) µSRRD > µDARD for 24 out of 28 instances. These tests are performed assuming
normality as per central limit theorem, since the number of trials is 200. For additional details about the
tests, refer to Appendix C.8. In summary, we conclude that SRRD is a more effective distance measure for
classifying reward samples compared to its baselines.

6 Conclusion and Future Work

This paper introduces SRRD, a reward comparison pseudometric designed to address transition sparsity, a
significant challenge encountered when comparing reward functions without high transition coverage. Con-
ducted experiments, and theoretical analysis, demonstrate SRRD’s superiority over state-of-the-art pseudo-
metrics, such as EPIC and DARD, under limited sampling and feasibility constraints. Additionally, SRRD
proves effective as a distance measure for k-NN classification using reward functions to represent agent be-
havior. This implies that SRRD can find higher similarities between reward functions generated by the same
agent and higher differences between reward functions that are generated from different agents.

Most existing studies, including ours, have primarily focused on potential shaping, as it is the only additive
shaping technique that guarantees policy invariance (Ng et al., 1999; Jenner et al., 2022). Future research
should consider the effects of non-potential shaping on SRRD (see Appendix B.1) or random perturbations,
as these might distort reward functions that would otherwise be similar. This could help to standardize and
preprocess a wider range of rewards that might not necessarily be potentially shaped. Future studies should
also explore applications of reward distance comparisons in scaling reward evaluations in IRL algorithms. For
example, iterative IRL approaches such as MaxentIRL, often perform policy learning to assess the quality of
the updated reward in each training trial. Integrating direct reward comparison pseudometrics to determine
if rewards are converging, could help to skip the policy learning steps, thereby speeding up IRL. Finally, the

16

Published in Transactions on Machine Learning Research (04/2025)

development of reward comparison metrics has primarily aimed to satisfy policy invariance. A promising
area to examine in the future is multicriteria policy invariance, where invariance might be conditioned to
different criteria. For example, in the context of reward functions in Large Language Models (LLMs), it
might be important to compute reward distance pseudometrics that consider different criteria such as bias,
safety, or reasoning, to advance interpretability, which could be beneficial for applications such as reward
fine-tuning and evaluation (Lambert et al., 2024).

Acknowledgments

This research was funded in part by the Air Force Office of Scientific Research Grant No. FA9550-20-
1-0032, the Office of Naval Research Grant No. N00014-19-1-2211, and Fulbright-CAPES, Grant No.
88881.625406/2021-01. We thank the anonymous reviewers for their valuable suggestions, which helped
to improve the paper.

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship Learning via Inverse Reinforcement Learning. In Proceed-

ings of the Twenty-First International Conference on Machine Learning, pp. 1, 2004.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline rein-
forcement learning. In International conference on machine learning, pp. 104–114. PMLR, 2020.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete
problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Koul Anurag. Ma-gym: Collection of Multi-agent Environments based on OpenAI gym. https://github.
com/koulanurag/ma-gym, 2019.

Saurabh Arora and Prashant Doshi. A Survey of Inverse Reinforcement Learning: Challenges, Method and
Progress. Artificial Intelligence, 297(1), 2021.

Monica Babes, Enrique Munoz de Cote, and Michael Littman. Social Reward Shaping in the Prisoner’s
Dilemma (Short Paper). In Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS), 2008.

Xiaocong Chen, Siyu Wang, Julian McAuley, Dietmar Jannach, and Lina Yao. On the opportunities and
challenges of offline reinforcement learning for recommender systems. ACM Transactions on Information
Systems, 42(6):1–26, 2024.

Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-guided Reinforcement Learning. In
Advances in Neural Information Processing Systems, volume 34, 2021.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep Rein-
forcement Learning from Human Preferences. Advances in Neural Information Processing Systems, 30,
2017.

Justin Fu, Katie Luo, and Sergey Levine. Learning Robust Rewards with Adverserial Inverse Reinforcement
Learning. In International Conference on Learning Representations, 2018.

Yang Gao and Francesca Toni. Potential Based Reward Shaping for Hierarchical Reinforcement Learning.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying Differences In Reward
Functions. In International Conference on Learning Representations, 2021.

Adam Gleave, Mohammad Taufeeque, Juan Rocamonde, Erik Jenner, Steven Wang, Sam Toyer, Maxim-
ilian Ernestus, Nora Belrose, Scott Emmons, and Stuart Russell. Imitation: Clean imitation learning
implementations. arXiv:2211.11972v1 [cs.LG], 2022. URL https://arxiv.org/abs/2211.11972.

17

https://github.com/koulanurag/ma-gym
https://github.com/koulanurag/ma-gym
https://arxiv.org/abs/2211.11972

Published in Transactions on Machine Learning Research (04/2025)

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking Reward
Shaping: Understanding the Benefits of Reward Engineering on Sample Complexity. In Advances in
Neural Information Processing Systems, volume 35, 2022.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and Changjie
Fan. Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Erik Jenner and Adam Gleave. Preprocessing Reward Functions for Interpretability. preprint
arXiv:2203.13553, 2022.

Erik Jenner, Herke van Hoof, , and Adam Gleave. Calculus on MDPs: Potential Shaping as a Gradient.
preprint arXiv:2208.09570, 2022.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng, Tom J
Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible electronic health
record dataset. Scientific data, 10(1):1, 2023.

Vitaly Kurin, Sebastian Nowozin, Katja Hofmann, Lucas Beyer, and Bastian Leibe. he atari grand challenge
dataset. In arXiv preprint arXiv:1705.10998, 2017.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha
Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models for language
modeling. arXiv preprint arXiv:2403.13787, 2024.

Guillaume Lample and Devendra Singh Chaplot. Playing FPS Games with Deep Reinforcement Learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yudong Luo, Oliver Schulte, and Pascal Poupart. Inverse Reinforcement Learning for Team Sports: Valuing
Actions and Players. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence (IJCAI-20), 2020.

Saaduddin Mahmud, Saisubramanian Sandhya, and Zilberstein Shlomo. Explanation-Guided Reward Align-
ment. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, pp.
473–482, 2023.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline human
demonstrations for robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.

Maja J Mataric. Reward Functions for Accelerated Learning. Machine Learning Proceedings 1994, pp.
pp. 181 – 189, 1994. doi: https://doi.org/10.1016/B978-1-55860-335-6.50030-1. URL https://www.
sciencedirect.com/science/article/abs/pii/B9781558603356500301.

Andrew Y Ng and Stuart Russell. Algorithms for Inverse Reinforcement Learning. In International Confer-
ence on Machine Learning (ICML), volume 2, 2000.

Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy Invariance under Reward Transformations: Theory
and Application to Reward Shaping. In International Conference on Machine Learning, pp. 278–287, 1999.

Jette Randløv and Preben Alstrøm. Learning to Drive a Bicycle Using Reinforcement Learning and Shaping.
In International Conference on Machine Leaning, volume 98, 1998.

Jacob Russell and Eugene Santos. Explaining Reward Functions in Markov Decision Processes. In The
Thirty-Second International Flairs Conference, 2019.

18

https://www.sciencedirect.com/science/article/abs/pii/B9781558603356500301
https://www.sciencedirect.com/science/article/abs/pii/B9781558603356500301

Published in Transactions on Machine Learning Research (04/2025)

Eugene Santos and Clement Nyanhongo. A Contextual-Based Framework for Opinion Formation. In The
Thirty-Second International Flairs Conference, 2019.

Eugene Santos, Clement Nyanhongo, Hien Nguyen, Keum Joo Kim, and Gregory Hyde. Contextual Evalua-
tion of Human–Machine Team Effectiveness. Systems Engineering and Artificial Intelligence, pp. 283–307,
2021.

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is Enough. Artificial Intelligence,
299, 2021.

Satinder Singh, Richard Lewis, and Andrew G Barto. Where Do Rewards Come From. In Proceedings of the
Annual Conference of the Cognitive Science Society, pp. pp. 2601 – 2606. Cognitive Science Society, 2009.

Joar Max Viktor Skalse, Lucy Farnik, Sumeet Ramesh Motwani, Erik Jenner, Adam Gleave, and Alessandro
Abate. Starc: A general framework for quantifying differences between reward functions. In The Twelfth
International Conference on Learning Representations, 2024.

Halit Bener Suay, Tim Brys, Matthew E. Taylor, and Sonia Chernova. Learning from Demonstration for
Shaping through Inverse Reinforcement Learning. In Proceedings of the 2016 International Conference on
Autonomous Agents Multiagent Systems, pp. 429–437, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

Ana Tenorio-Gonzalez, Eduardo F. Morales, and Luis Villasenor-Pineda. Dynamic Reward Shaping: Training
a Robot by Voice. In Advances in Artificial Intelligence–IBERAMIA 2010, pp. 483–492, 2010.

Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near future.
Advances in Neural Information Processing Systems, 34:13859–13869, 2021.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, T. Ewalds R. Powell, and J. Oh P. Georgiev. Grandmaster Level in StarCraft II using
Multi-agent Reinforcement Learning. Nature, 575:350–354, 2019.

Eric Wiewiora, Garrison Cottrell, and Charles Elkan. Principled Methods for Advising Reinforcement Learn-
ing Agents. In Proceedings of the 20th International Conference on Machine Learning, pp. 792–799, 2003.

Blake Wulfe, Logan Michael Ellis, Jean Mercat, Rowan Thomas McAllister, and Adrien Gaidon. Dynamics-
Aware Comparison of Learned Reward Functions. In International Conference on Learning Representations
(ICLR), 2022.

Chen Yanai, Adir Solomon, Gilad Katz, Bracha Shapira, and Lior Rokach. Q-ball: Modeling basketball
games using deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 8806–8813, 2022.

Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is Enough for
Convex MDPs. In Advances in Neural Information Processing Systems, volume 34, 2021.

Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey. Maximum Entropy Inverse Rein-
forcmeent Learning. In Association for the Advancement of Artificial Intelligence (AAAI), volume 8, pp.
1433–1438, 2008.

19

Published in Transactions on Machine Learning Research (04/2025)

A Derivations, Theorems and Proofs

A.1 Sample-Based Approximations

While the EPIC, DARD, and SRRD pseudometrics can be computed exactly in small environments, doing
so in environments with large or infinite state-action spaces is generally infeasible because it requires eval-
uating rewards for all possible transitions. To address this computational barrier, we adopt sample-based
approximations for scalability. Specifically, we employ the double-batch sampling technique introduced
by Gleave et al. (2021) to estimate CEP IC and was later applied by Wulfe et al. (2022) to approximate
CDARD. This technique uses two separate batches of samples: BV , a set of NV transitions; and BM , a set
of NM state-action pairs that are sampled from the joint state-action space. To ensure consistency across
the three pseudometrics, we extend the double-batch sampling approach to estimate CSRRD. The resulting
sample-based approximations used in this paper are defined as follows:
Definition 6. (Sample-based EPIC) Given a batch BV of NV samples from the coverage distribution D, and
a batch BM of NM samples from the joint state and action distributions, DS × DA. For each (s, a, s′) ∈ BV ,
the canonically shaped reward is approximated by taking the mean over BM :

ĈEP IC(R)(s, a, s′) = R(s, a, s′) + γ

NM

∑
(x,u)∈BM

R(s′, u, x) − 1
NM

∑
(x,u)∈BM

R(s, u, x)

− γ

N2
M

∑
(x,·)∈BM

∑
(x′,u)∈BM

R(x, u, x′)
(16)

Definition 7. (Sample-based DARD) Given a batch BV of NV samples from the coverage distribution D,
and a batch BM of NM samples from the joint state and action distributions, DS × DA. For each (s, a, s′)
transition in BV , we derive sets X ′, X ′′ ⊆ BM , where, |X ′| = N ′ and |X ′′| = N ′′. Here, for the set
X ′ = {(x′, u)}, x′ denotes the subsequent states for transitions starting from s; and in X ′′ = {(x′′, u)}, x′′

denotes subsequent states for transitions starting from s′, such that:

ĈDARD(R)(s, a, s′) = R(s, a, s′) + γ

N ′′

∑
(x′′,u)∈X′′

R(s′, u, x′′) − 1
N ′

∑
(x′,u)∈X′

R(s, u, x′)

− γ

N ′N ′′

∑
(x′,·)∈X′

∑
(x′′,u)∈X′′

R(x′, u, x′′) (17)

Definition 8. (Sample-based SRRD) Given a set of transitions BV from a reward sample, let BM be a batch
of NM state-action pairs sampled from the explored states and actions. From BM , derive sets Xi ⊆ BM , for
i ∈ {1, ..., 6}. Each Xi is a set, {(x, u)}, where x is a state and u is an action. The magnitude, |Xi| = Ni. We
define X3 = {(x3, u)}, where x3 denotes all initial states for all transitions; X4 = {(x4, u)}, where x4 denotes
all subsequent states for all transitions. For each (s, a, s′) transition in BV , we define X1 = {(x1, u)}, where
x1 denotes subsequent states for transitions starting from s′; X2 = {(x2, u)}, where x2 denotes non-terminal
subsequent states for transitions starting from s; X5 = {(x5, u)}, where x5 denotes subsequent states to X1;
and X6 = {(x6, u)}, where x6 denotes subsequent states to X2. For each (s, a, s′) in BV :

CSRRD(R)(s,a, s′) ≈ R(s, a, s′) + γ

N1

∑
(x1,u)∈X1

R(s′, u, x1) − 1
N2

∑
(x2,u)∈X2

R(s, u, x2)

− γ

N3N4

∑
(x3,u)∈X3

∑
(x4,·)∈X4

R(x3, u, x4) + γ2

N1N5

∑
(x1,u)∈X1

∑
(x5,·)∈X5

R(x1, u, x5)

− γ

N2N6

∑
(x2,u)∈X2

∑
(x6,·)∈X6

R(x2, u, x6) + γ

N3N6

∑
(x3,u)∈X3

∑
(x6,·)∈X6

R(x3, u, x6)

− γ2

N4N5

∑
(x4,u)∈X4

∑
(x5,·)∈X5

R(x4, u, x5).

(18)

20

Published in Transactions on Machine Learning Research (04/2025)

In each approximation, each term estimates the corresponding term in the original formula.
For example, in ĈSRRD,− γ

N3N4

∑
(x3,u)∈X3

∑
(x4,·)∈X4

R(x3, u, x4) estimates −γE[R(S3, A, S4)] and
γ

N1

∑
(x1,u)∈X1

R(s′, u, x1) estimates γE[R(s′, A, S1)]. These approximations utilize two batches: BV con-
taining NV transitions and BM containing NM state-action pairs, to canonicalize rewards in BV . Each
transition in BV is canonicalized using state-action pairs in BM . Depending on how BM is sampled (usually
uniformly), it can help reduce bias from the sampling policy used to generate BV , by including state-action
pairs that may not be present in BV ; thereby providing a better representation of the entire state-action
space. As a result, BM can help to provide broader coverage, and reduce bias and variance in results,
using relatively fewer state-action pairs compared to enumerating all possible combinations. In the original
ĈEP IC , and ĈDARD approximations, it’s unclear how duplicates would be handled. In our experiments, we
implement all batches as sets, thereby removing duplicates to further reduce sampling bias.

A.2 Relative Shaping Error Comparisons

This section provides the proof for Theorem 1 which compares the upper bounds of the relative shaping
errors for ĈSRRD, ĈDARD, and ĈEP IC . We organize the presentation as follows:

1. Discuss the motivation for the relative shaping errors in quantifying the variation in the residual
shaping normalized by the upper bound base (unshaped) canonical rewards (Appendix A.2.1).

2. Proof of Theorem 1 (Appendix A.2.2).

A.2.1 Motivation for the Relative Shaping Error (RSE) Measure

Consider the task of comparing two equivalent reward samples, R′
1 and R′

2, which induce similar policies,
share the same set of transitions B, but may differ due to potential shaping. To compare the reward samples,
we first eliminate shaping by applying a sample-based canonicalization method, ĈS . After canonicalization,
we compute the Pearson distance to quantify the difference between the canonical rewards as:

Dρ(ĈS(R′
1), ĈS(R′

2)) =
√

1 − ρ(ĈS(R′
1), ĈS(R′

2))/
√

2, (19)

where ρ is the Pearson correlation. Since R′
1 and R′

2 are assumed to have the same set of transitions, and
only differ due to potential shaping, after canonicalization, we have:

ĈS(R′
1) = ĈS(R1) + ϕR1 = ĈS(R) + ϕR1 ,

ĈS(R′
2) = ĈS(R2) + ϕR2 = ĈS(R) + ϕR2 ,

where ϕR1 and ϕR2 are residual shaping terms, and ĈS(R) is the base canonical reward, which is similar
between the reward samples since the sets of explored transitions are similar3, hence, ĈS(R1) = ĈS(R2) =
ĈS(R). When computing Dρ (Equation 19), the Pearson correlation can thus be expressed as:

ρ(ĈS(R′
1), ĈS(R′

2)) = ρ(ĈS(R) + ϕR1 , ĈS(R) + ϕR2). (20)

Analyzing Equation 20:

• When |ϕRi
| << |ĈS(R)| for all i ∈ {1, 2} then ρ(ĈS(R′

1), ĈS(R′
2)) ≈ ρ(ĈS(R), ĈS(R)) = 1, since

the residual shaping terms have negligible impact. Conversely, when either |ϕR1 | >> |ĈS(R)| or
|ϕR2 | >> |ĈS(R)|, then the Pearson correlation is predominantly influenced by the residual shaping
terms, and ρ can become low or even negative, especially when ϕR1 and ϕR2 differ significantly.

• Since ĈS(R) is the same across ĈS(R′
1) and ĈS(R′

2), variations in the Pearson correlation can be
primarily attributed to variations in the residual shaping terms.

3We assume that the reward samples under comparison are equivalent (in terms of optimal policies) and share the same
transitions, to simplify our analysis by isolating the differences between the reward samples to potential shaping.

21

Published in Transactions on Machine Learning Research (04/2025)

• To assess the impact of residual shaping, it is essential to also consider the magnitude ĈS(R) as a
normalizing factor. If |ĈS(R)| is significantly larger than the residual shaping terms, the influence
of the shaping terms diminishes, resulting in a higher Pearson correlation closer to 1. Conversely,
if |ĈS(R)| is significantly smaller than the residual shaping terms, these shaping terms will have a
higher influence on the correlation, potentially reducing it.

To generalize these insights, let’s consider the canonicalization task on a reward sample R′ such that:

ĈS(R′) = ĈS(R) + ϕR. (21)

To quantify the influence of the residual shaping term ϕR relative to the base canonical reward ĈS(R), let’s
establish the Relative Shaping Error (RSE) as follows:

RSE(ĈS(R)(s, a, s′)) = |ϕR(s, a, s′)|
U(ĈS(R)(s, a, s′))

= |ϕR(s, a, s′)|
nZ

. (22)

A low RSE indicates that U(ĈS(R)(s, a, s′)) is substantially large relative to |ϕR(s, a, s′)|, suggesting that
the residual shaping has minimal impact on Dρ. Conversely, a high RSE implies that U(ĈS(R)(s, a, s′)) is
small relative to |ϕR(s, a, s′)|, highlighting a more significant influence of residual shaping. By normalizing
with the upper bound of the RSE, we obtain a conservative measure to quantify the impact of shaping
in extreme scenarios. This formulation helps assess the robustness of reward canonicalization methods in
mitigating shaping effects during reward comparisons. From Equation 21, suppose we can express:

ĈS(R)(s, a, s′) = ĈS(R̃)(s, a, s′) + KR,

ϕR(s, a, s′) = ϕR̃(s, a, s′) + Kϕ,

where KR and Kϕ are constants that do not vary with (s, a, s′), and ϕR̃ is the effective residual shaping.
When comparing reward samples R′

1 and R′
2, in computing Dρ, the constants KR and Kϕ do not affect the

Pearson correlation since it is shift invariant. Therefore:

ρ(ĈS(R′
1), ĈS(R′

2)) = ρ(ĈS(R1) + ϕR1 , ĈS(R2) + ϕR2)
= ρ(ĈS(R̃1) + KR1 + ϕR̃1

+ Kϕ1 , ĈS(R̃2) + KR2 + ϕR̃2
+ Kϕ2)

= ρ(ĈS(R̃) + ϕR̃1
, ĈS(R̃) + ϕR̃2

) (23)

Relating this to the RSE in Equation 22, note that |ϕR| serves as a measure of reward variation due to
shaping, and U(ĈS(R)) acts as a normalizing term. For the term ϕR, we can omit Kϕ to get:

ϕR̃ = ϕR − Kϕ, (24)

since, Kϕ does not affect the variation in the Pearson correlation. However, for the denominator U(ĈS(R)),
we cannot omit KR (hence no change to the denominator) because the denominator serves to normalize the
residual shaping. When KR is large, even though it does not affect the Pearson correlation, it lowers the
impact of |ϕR̃| and vice versa. This leads to the final RSE equation below:

RSE(ĈS(R)(s, a, s′)) = |ϕR̃(s, a, s′)|
U(ĈS(R)(s, a, s′))

= |ϕR̃(s, a, s′)|
nZ

. (25)

A.2.2 Proof of Theorem 1

Theorem 1 aims to compare the upper bounds of the RSEs for ĈEP IC , ĈDARD, and ĈSRRD.

Proof. Assuming a finite reward sample that spans a state space SD and an action space AD, where D is
the coverage distribution. The following subsets are defined: for ĈEP IC , S ⊆ SD and S′ ⊆ SD; for ĈDARD,
S′′ ⊆ SD and S′ ⊆ SD; and for ĈSRRD, each Si ⊆ SD, where i ∈ {1, . . . , 6}. Let’s define:

M = max
s∈SD

(|ϕ(s)|),

22

Published in Transactions on Machine Learning Research (04/2025)

as the maximum absolute shaping for states in SD, where M ∈ R. Then, for all shaping expectations:

|E[ϕ(S)]| ≤ M, |E[ϕ(S′)]| ≤ M, |E[ϕ(S′′)]| ≤ M, and |E[ϕ(Si)]| ≤ M for all i ∈ {1, . . . , 6}.

In the following analysis, we impose the assumption that unsampled forward transitions are negligible, based
on the rationale that forward transitions are generally consistent, or in-distribution with the transition
dynamics of reward samples, compared to non-forward transitions which have a higher chance of being
out-of-distribution with respect to the reward samples’ transition dynamics. For the analysis, we find the
upper bound of the RSEs under different scenarios of transition sparsity from the best case (no unsampled
transitions) to the worst case (high levels of unsampled non-forward transitions).

Analysis of EPIC:

Considering Equation 2 for CEP IC , the transitions (S, A, S′) are forward transitions since by definition, S′ is
created based on (S, A). However, the transitions: (s, A, S′) and (s′, A, S′) are non-forward transitions since
S′ is not created based on (s, A) or (s′, A), but (S, A). Since we only have unsampled non-forward transitions,
let the fraction of randomly sampled transitions in (s′, A, S′) and (s, A, S′) be u and v respectively, where
0 ≤ u, v ≤ 1. Note that u and v vary based on (s, a, s′); however, for visual clarity, we will denote them as
u and v. Incorporating u and v into ĈEP IC :

ĈEP IC(R)(s, a, s′) = R(s, a, s′) + E[uγR(s′, A, S′) − vR(s, A, S′) − γR(S, A, S′)], (26)

Applying ĈEP IC (Equation 26) to a shaped reward R′(s, a, s′), we get the residual shaping:

ϕepic = (γ − γu)ϕ(s′) + (v − 1)ϕ(s) + E[(γ2u − γ2)ϕ(S′)] + E[γϕ(S)] − E[γvϕ(S′)] (27)

Best Case: In this scenario there are no unsampled transitions such that: u, v = 1. Applying u, v = 1 into
Equation 27, we get: ϕepic = E[γϕ(S)] − E[γϕ(S′)].

In ĈEP IC , all transitions are canonicalized using the same state subsets S and S′ such that the shaping terms
ϕ(S) and ϕ(S′) do not vary with changes in (s, a, s′). Therefore, in ϕepic, the constant Kϕ = E[γϕ(S)] −
E[γϕ(S′)] does not vary with changes in (s, a, s′), and based on Equation 24, ϕ ˜epic = 0, such that:

RSE(ĈEP IC(R)) = 0.

Average Case: In this scenario, 0 < u, v < 1. From ϕepic (Equation 27), we can extract the constant term
Kϕ = −E[γ2ϕ(S′)] + E[γϕ(S)], which does not vary with (s, a, s′). Therefore, the effective residual shaping
(see Equation 24) is given by:

ϕ ˜epic = (γ − γu)ϕ(s′) + (v − 1)ϕ(s) + E[(γ2u − γv)ϕ(S′)], (28)

such that:

|ϕ ˜epic| ≤ (γ − γu)|ϕ(s′)| + (1 − v)|(−ϕ(s))| + |γ2u − γv||E[ϕ(S′)]|
≤ M(γ − γu + 1 − v + |γ2u − γv|),

(
since M = max

s∈SD
|ϕ(s)|

)
.

≤ M(2 − u − v + |u − v|) (when γ = 1)
≤ 2M

From Equation 26, ĈEP IC has four reward terms. Following Definition 2, the upper bound of ĈEP IC(R) is
U(ĈEP IC(R)) = 4Z, hence:

RSE(ĈEP IC(R)) =
|ϕ ˜epic|

U(ĈEP IC(R))
≤ 2M

4Z
= M

2Z
.

Worst Case: In this scenario, u, v = 0. Applying u and v into ĈEP IC (Equation 26), we get:

ĈEP IC(R)(s,a, s′) = R(s, a, s′) − E[γR(S, A, S′)], (29)

23

Published in Transactions on Machine Learning Research (04/2025)

and ϕepic = γϕ(s′) − ϕ(s) − E[γ2ϕ(S′)] + E[γϕ(S)]. Since S and S′ are the same across all transitions,
Kϕ = −E[γ2ϕ(S′)] + E[γϕ(S)] is a constant, hence, ϕ ˜epic = γϕ(s′) − ϕ(s) such that:

|ϕ ˜epic| ≤ |γϕ(s′)| + |(−ϕ(s))| ≤ γM + M ≤ 2M

From Equation 29, ĈEP IC has two reward terms. Following Definition 2, U(ĈEP IC(R)) = 2Z, hence:

RSE(ĈEP IC(R)) =
|ϕ ˜epic|

U(ĈEP IC(R))
≤ M

Z
.

∴ Based on all the three cases, we have:

RSE(ĈEP IC(R)) ≤ M

Z
. (30)

Analysis of DARD:

Considering Equation 6 for CDARD, the state subset S′′ is subsequent to s′, and S′ is subsequent to s. For
approximations, the transitions (S′, A, S′′) are non-forward transitions since S′′ is created based on (s′, A)
rather than (S′, A). Let the fraction of randomly sampled transitions in (S′, A, S′′) be w, where 0 ≤ w ≤ 1.
Note that w also depends on (s, a, s′); however, for visual clarity we denote it as simply w. Incorporating w
into ĈDARD:

ĈDARD(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′′) − R(s, A, S′) − wγR(S′, A, S′′)], (31)

Applying ĈDARD to a shaped reward R′, we get the residual shaping:

ϕdard = E[(γ2 − wγ2)ϕ(S′′) + (wγ − γ)ϕ(S′)] (32)

Best Case: In this scenario, w = 1, such that |ϕdard| = 0, hence, RSE(ĈDARD) = 0.

Average Case: For this scenario, 0 < w < 1:

|ϕdard| ≤ (γ2 − wγ2)|E[ϕ(S′′)]| + (γ − wγ)|(−E[ϕ(S′)])| ≤ (γ2 − wγ2)M + (γ − wγ)M ≤ 2M

In ĈDARD, the state subsets S′ and S′′ vary due to (s, a, s′); hence, Kϕ = 0. Following Definition 3, and
applying it to ĈDARD (Equation 31), U(ĈDARD(R)) = 4Z, such that:

RSE(ĈDARD(R)) = |ϕdard|
U(ĈDARD(R))

≤ 2M

4Z
= M

2Z
.

Worst Case: In this scenario, w = 0, hence we eliminate terms with w in Equation 31 to get:

ĈDARD(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′′) − R(s, A, S′)], (33)

which corresponds to: ϕdard = E[γ2ϕ(S′′) + γϕ(S′)], such that:

|ϕdard| ≤ |E[γ2ϕ(S′′)| + |E[γϕ(S′)]| ≤ |γ2M | + |γM | ≤ 2M

Following Definition 2, and applying it to ĈDARD (Equation 33): U(ĈDARD(R)) = 3Z, such that:

RSE(ĈDARD(R)) = |ϕdard|
U(ĈDARD(R))

≤ 2M

3Z
.

∴ Based on all the three cases, we have:

RSE(ĈDARD(R)) ≤ 2M

3Z
. (34)

24

Published in Transactions on Machine Learning Research (04/2025)

Analysis of SRRD

Considering CSRRD in Definition 1, the first six reward terms are forward transitions, since for each set
of transitions (Si, A, Sj), Sj is distributed conditionally based on (Si, A). The last two terms violate this
condition; hence, they are non-forward transitions. As mentioned in Section 4, SRRD is designed such that:

• Transitions (S1, A, S5) ⊆ (S4, A, S5):
Since S1 are subsequent states to s′, and S4 are subsequent states for all sampled transitions. It
follows that S1 ⊆ S4, hence, (S1, A, S5) ⊆ (S4, A, S5).

• Transitions (S2, A, S6) ⊆ (S3, A, S6):
S2 is the set of non-terminal subsequent states to s. Since S3 encompasses all initial states from all
sampled transitions, it follows that S2 ⊆ S3, hence, (S2, A, S6) ⊆ (S3, A, S6).

For ĈSRRD, let the fraction of the randomly sampled transitions for (S4, A, S5) and (S3, A, S6) be p and
q, respectively. Considering that the number of unsampled forward transitions are negligible, we establish
minimal thresholds m1, m2 > 0 such that: p = m1 when (S4, A, S5) only contains sampled transitions from
(S1, A, S5), and q = m2 when (S3, A, S6) only contains sampled transitions from (S2, A, S6). Therefore:
m1 ≤ p ≤ 1 and m2 ≤ q ≤ 1. Note that p and q vary based on (s, a, s′), but for visual clarity, we express
them as p and q. Incorporating p and q, we get:

ĈSRRD(R)(s,a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4) + γ2R(S1, A, S5)
− γR(S2, A, S6) + qγR(S3, A, S6) − pγ2R(S4, A, S5)]

(35)

Applying ĈSRRD (Equation 35) to a shaped reward R′(s, a, s′), we get the residual shaping:

ϕsrrd = E[(γ − qγ)ϕ(S3) + (pγ2 − γ2)ϕ(S4) + (γ3 − pγ3)ϕ(S5) + (qγ2 − γ2)ϕ(S6)] (36)

Best Case: In this scenario there are no unsampled transitions such that: p, q = 1. Applying p and q into
Equation 36, we get: ϕsrrd = 0, hence, RSE(ĈSRRD(R)) = 0.

Average Case: In this scenario, m1 < p < 1 and m2 < q < 1. Note that in ĈSRRD, S3 and S4 are the
same for all transitions, since S3 encompasses all initial states, and S4 includes all subsequent states to S3.
Therefore, ϕ(S3) and ϕ(S4) do not vary with (s, a, s′). From ϕsrrd (Equation 36), we can extract the constant
Kϕ = E[γϕ(S3) − γ2ϕ(S4)]. Based on Equation 24, the effective residual shaping is given by:

ϕ ˜srrd = E[−qγϕ(S3) + pγ2ϕ(S4) + (γ3 − pγ3)ϕ(S5) + (qγ2 − γ2)ϕ(S6)]

such that:

ϕ ˜srrd ≤ qγ|(−E[ϕ(S3)])| + pγ2|E[ϕ(S4)]| + (γ3 − pγ3)|E[ϕ(S5)]| + (γ2 − qγ2)|(−E[ϕ(S6)])|
≤ M(qγ + pγ2 + γ3 − pγ3 + γ2 − qγ2)
≤ M(q + p + 1 − p + 1 − q) (when γ = 1)
≤ 2M

Since ĈSRRD has 8 terms, following Definition 3 and applying it to Equation 35, we get U(ĈSRRD(R)) = 8Z,
Therefore:

RSE(ĈSRRD(R)) = |ϕ ˜srrd|
U(ĈSRRD(R))

≤ M

4Z
.

Worst Case: In this scenario, p = m1 (when (S4, A, S5) only has sampled transitions from (S1, A, S5))
and q = m2 (when (S3, A, S6) only has sampled transitions from (S2, A, S6)). Consider a situation where
|(S4, A, S5)| >> |(S1, A, S5)|, and |(S3, A, S6)| >> |(S2, A, S6)|, such that: m1 → 0 and m2 → 0. Therefore:

ĈSRRD(R)(s,a, s′) ≈ R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4) + γ2R(S1, A, S5)
− γR(S2, A, S6)] (37)

25

Published in Transactions on Machine Learning Research (04/2025)

with the corresponding residual shaping:

ϕsrrd ≈ E[γϕ(S3) − γ2ϕ(S4) + γ3ϕ(S5) − γ2ϕ(S6)]. (38)

From ϕsrrd (Equation 38), we can extract the constant Kϕ = E[γϕ(S3) − γ2ϕ(S4)] since it does not vary
with (s, a, s′). Therefore, the effective residual shaping is given by:

ϕ ˜srrd ≈ E[γ3ϕ(S5) − γ2ϕ(S6)],

hence:

|ϕ ˜srrd| ≤ γ3|E[ϕ(S5)]| + γ2|(−E[ϕ(S6)])|
∣∣ ≤

∣∣γ3M + γ2M
∣∣ ≤ 2M

Following Definition 2, and applying it to ĈSRRD (Equation 37): U(ĈSRRD(R)) = 6Z, such that:

RSE(ĈSRRD(R)) = |ϕ ˜srrd|
U(ĈSRRD(R)

≤ M

3Z
.

∴ Based on all the three cases, we have:

RSE(ĈSRRD(R)) ≤ M

3Z
. (39)

Conclusion

Based on the upper bounds of the RSE values aggregated from the best, average and worst case scenarios
of transition sparsity (Equation 39, 34, 30), we can conclude that:

RSE(ĈSRRD) ≤ M

3Z
; RSE(ĈDARD) ≤ 2M

3Z
; RSE(ĈEP IC) ≤ M

Z
,

The RSE serves as a theoretical measure to evaluate the robustness of the pseudometrics by quantifying the
influence of residual shaping errors relative to the rewards. It’s important to acknowledge that the RSE is a
conservative measure, since the residual shaping is normalized by U(CS(R)). Therefore, in practice, it may
not guarantee the order of performance predicted in Theorem 1, as the impact of residual shaping could be
more pronounced when normalized by smaller reward values. Despite this limitation, the RSE still offers a
meaningful theoretical measure on the robustness of the pseudometrics.

A.3 Residual Shaping

Derivation of ϕres1: Applying C1 (Equation 7) to a shaped reward R′(s, a, s′) = R(s, a, s′)+γϕ(s′)−ϕ(s):

C1(R′)(s, a, s′) = R′(s, a, s′) + E[γR′(s′, A, S1) − R′(s, A, S2) − γR′(S3, A, S4)]
= R(s, a, s′) + γϕ(s′) − ϕ(s) + E[γ(R(s′, A, S1) + γϕ(S1) − ϕ(s′))

− (R(s, A, S2) + γϕ(S2) − ϕ(s)) − γ(R(S3, A, S4) + γϕ(S4) − ϕ(S3))]
= C1(R)(s, a, s′) + E[γ2ϕ(S1) − γ2ϕ(S4) + γϕ(S3) − γϕ(S2)]

Hence, C1(R)(s, a, s′) yields the residual shaping:

ϕres1 = E[γ2ϕ(S1) − γ2ϕ(S4) + γϕ(S3) − γϕ(S2)].

26

Published in Transactions on Machine Learning Research (04/2025)

Derivation of ϕres2: Applying C2 (Equation 9) to shaped reward R′(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s):

C2(R′)(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s) + E[γ(R(s′, A, S1) + γϕ(S1) − ϕ(s′))
− (R(s, A, S2) + γϕ(S2) − ϕ(s)) − γ(R(S3, A, S4) + γϕ(S4) − ϕ(S3))
+ γ2(R(S1, A, k1) + γϕ(k1) − ϕ(S1)) − γ(R(S2, A, k2) + γϕ(k2) − ϕ(S2))
+ γ(R(S3, A, k3) + γϕ(k3) − ϕ(S3)) − γ2(R(S4, A, k4) + γϕ(k4) − ϕ(S4))].

= C2(R)(s, a, s′) + E[γ3ϕ(k1) − γ3ϕ(k4) + γ2ϕ(k3) − γ2ϕ(k2)]

Hence, C2(R)(s, a, s′) yields the residual shaping:

ϕres2 = E[γ3ϕ(k1) − γ3ϕ(k4) + γ2ϕ(k3) − γ2ϕ(k2)].

A.4 The Sparsity Resilient Canonically Shaped Reward is Invariant to Shaping

Proposition 1. (The Sparsity Resilient Canonically Shaped Reward is Invariant to Shaping) Let R :
S × A × S be a reward function and ϕ : S → R be a state potential function. Applying CSRRD to a po-
tentially shaped reward R′(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s) satisfies: CSRRD(R) = CSRRD(R′).

Proof. Let’s apply CSRRD, Definition 1, to a shaped reward R′(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s):

CSRRD(R′)(s, a, s′) = R(s, a, s′) + γϕ(s′) − ϕ(s) + E[γ[R(s′, A, S1) + γϕ(S1) − ϕ(s′)]
− [R(s, A, S2) + γϕ(S2) − ϕ(s)] − γ[R(S3, A, S4) + γϕ(S4) − ϕ(S3)]
+ γ2[R(S1, A, S5) + γϕ(S5) − ϕ(S1)] − γ[R(S2, A, S6) + γϕ(S6) − ϕ(S2)]
+ γ[R(S3, A, S6) + γϕ(S6) − ϕ(S3)] − γ2[R(S4, A, S5) + γϕ(S5) − ϕ(S4)]],

Regrouping the reward terms and the potentials, this reduces to:

CSRRD(R′)(s, a, s′) = CSRRD(R)(s, a, s′) + (γϕ(s′) − γE[ϕ(s′)]) + (−ϕ(s) + E[ϕ(s)])
+ E[γ2(ϕ(S1) − ϕ(S1))] + E[γ(−ϕ(S2) + ϕ(S2))] + E[γ(ϕ(S3) − ϕ(S3))]
+ E[γ2(−ϕ(S4) + ϕ(S4))] + E[γ3(ϕ(S5) − ϕ(S5))] + E[γ2(−ϕ(S6) + ϕ(S6))]

Since E[γϕ(s′)] = γϕ(s′) and E[ϕ(s)] = ϕ(s), this leads to:

CSRRD(R′)(s, a, s′) = CSRRD(R)(s, a, s′).

A.5 Invariance under the Sample-Based SRRD Approximation

For the sample-based SRRD canonical reward (Definition 8), under transition sparsity, some rewards may
be undefined since the associated transitions may be unsampled. However, when all the necessary rewards
are defined, policy invariance can be achieved. To show this, we will first derive Lemma 1, then present the
proof that assumes all the necessary rewards are available.
Lemma 1. Let ϕ : S → R be a potential function. Given states xi ∈ S and xj ∈ S, then:

1
n1n2

n1∑
i=1

n2∑
j=1

(γϕ(xi) − ϕ(xj)) = γ

n1

n1∑
i=1

ϕ(xi) − 1
n2

n2∑
j=1

ϕ(xj).

27

Published in Transactions on Machine Learning Research (04/2025)

Proof.

1
n1n2

n1∑
i=1

n2∑
j=1

(γϕ(xi) − ϕ(xj)) = 1
n1n2

γ

n1∑
i=1

 n2∑
j=1

ϕ(xi)

−
n2∑

j=1

(
n1∑

i=1
ϕ(xj)

)
Notice that ϕ(xi) is independent of j and ϕ(xj) is independent of i, thus,

= γ

n1n2

n1∑
i=1

n2ϕ(xi) − 1
n1n2

n2∑
j=1

n1ϕ(xj)

= γ

n1

n1∑
i=1

ϕ(xi) − 1
n2

n2∑
j=1

ϕ(xj).

Proposition 2. Given transition sets (Si, A, Sj) needed to compute each reward expectation term in ĈSRRD,
if the transitions fully cover the cross-product Si ×A×Sj, then for a shaped reward R′(s, a, s′) = R(s, a, s′)+
γϕ(s′) − ϕ(s), the sample-based SRRD approximation is invariant to shaping.

Proof.

ĈSRRD(R′)(s,a, s′) ≈ R(s, a, s′) + γϕ(s′) − ϕ(s)

+ γ

N1

∑
(x1,u)∈X1

[R(s′, u, x1) + γϕ(x1) − ϕ(s′)] − 1
N2

∑
(x2,u)∈X2

[R(s, u, x2) + γϕ(x2) − ϕ(s)]

− γ

N3N4

∑
(x3,u)∈X3

∑
(x4,·)∈X4

[R(x3, u, x4) + γϕ(x4) − ϕ(x3)]

+ γ2

N1N5

∑
(x1,u)∈X1

∑
(x5,·)∈X5

[R(x1, u, x5) + γϕ(x5) − ϕ(x1)]

− γ

N2N6

∑
(x2,u)∈X2

∑
(x6,·)∈X6

[R(x2, u, x6) + γϕ(x6) − ϕ(x2)]

+ γ

N3N6

∑
(x3,u)∈X3

∑
(x6,·)∈X6

[R(x3, u, x6) + γϕ(x6) − ϕ(x3)]

− γ2

N4N5

∑
(x4,u)∈X4

∑
(x5,·)∈X5

[R(x4, u, x5) + γϕ(x5) − ϕ(x4)].

Rearranging terms, the above equation can be written as:

ĈSRRD(R′)(s, a, s′) = ĈSRRD(R)(s, a, s′) + ϕresiduals ,

where:

ϕresiduals = γϕ(s′) − ϕ(s) + γ

N1

∑
(x1,u)∈X1

[γϕ(x1) − ϕ(s′)] − 1
N2

∑
(x2,u)∈X2

[γϕ(x2) − ϕ(s)]

− γ

N3N4

∑
(x3,u)∈X3

∑
(x4,·)∈X4

[γϕ(x4) − ϕ(x3)] + γ2

N1N5

∑
(x1,u)∈X1

∑
(x5,·)∈X5

[γϕ(x5) − ϕ(x1)]

− γ

N2N6

∑
(x2,u)∈X2

∑
(x6,·)∈X6

[γϕ(x6) − ϕ(x2)] + γ

N3N6

∑
(x3,u)∈X3

∑
(x6,·)∈X6

[γϕ(x6) − ϕ(x3)]

− γ2

N4N5

∑
(x4,u)∈X4

∑
(x5,·)∈X5

[γϕ(x5) − ϕ(x4)].

(40)

28

Published in Transactions on Machine Learning Research (04/2025)

Applying Lemma 1 to Equation 40 and simplifying terms, we get:

ϕresiduals = γϕ(s′) − ϕ(s) + γ2

N1

∑
(x1,u)∈X1

[ϕ(x1)] − γϕ(s′) − γ

N2

∑
(x2,u)∈X2

[ϕ(x2)] + ϕ(s)

− γ2

N4

∑
(x4,u)∈X4

[ϕ(x4)] + γ

N3

∑
(x3,u)∈X3

[ϕ(x3)] + γ3

N5

∑
(x5,u)∈X5

[ϕ(x5)] − γ2

N1

∑
(x1,u)∈X1

[ϕ(x1)]

− γ2

N6

∑
(x6,u)∈X6

[ϕ(x6)] + γ

N2

∑
(x2,u)∈X2

[ϕ(x2)] + γ2

N6

∑
(x6,u)∈X6

[ϕ(x6)] − γ

N3

∑
(x3,u)∈X3

[ϕ(x3)]

− γ3

N5

∑
(x5,u)∈X5

[ϕ(x5)] + γ2

N4

∑
(x4,u)∈X4

[ϕ(x4)] = 0

Therefore: ĈSRRD(R′) = ĈSRRD(R).

A.6 Example: SRRD State Definitions

Figure 4 illustrates a transition graph from a reward sample with 10 states SD = {x0, ..., x9}, and a single
action AD = {a1}. This example illustrates how the sets {S1, ..., S6} are defined in SRRD, along with their
relationships: (S1 ⊆ S4) and (S2 ⊆ S3), which contribute to SRRD’s robustness to unsampled transitions.

Figure 4: A transition graph with 10 states {x0, ...x9}, and a single action {a1}. State subsets are defined
based on the transition: (x0, a1, x1).

The Sparsity Resilient Canonically Shaped Reward is given by:

CSRRD(R)(s,a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4) + γ2R(S1, A, S5)
− γR(S2, A, S6) + γR(S3, A, S6) − γ2R(S4, A, S5)],

where: S1 are subsequent states to s′, and S2 are subsequent non-terminal states to s. S3 encompasses all
initial states from all transitions; S4, S5, and S6 are subsequent states to S3, S1 and S2, respectively.

29

Published in Transactions on Machine Learning Research (04/2025)

Following the SRRD definition, the states in Figure 4, are defined as follows:

s: state x0.

s′: state x1.

S1 (subsequent to s′): {x2, x5, x6, x9}.

S2 (subsequent non-terminal states to s): {x1, x3, x4, x5, x7}.

S3 (initial states from all transitions): {x0, x1, x2, x3, x4, x5, x7, x9}. terminal states x6 and x8 not included

S4 (subsequent states to S3): {x1, x2, x3, x4, x5, x6, x7, x8, x9}. starting state x0 not included

S5 (subsequent states to S1): {x2, x4, x6, x7, x8}

S6 (subsequent states to S2): {x1, x2, x3, x4, x5, x6, x8, x9}

Transition Relationships (see Section 4 for reference)

1. S1 ⊆ S4, therefore, (S1, A, S5) ⊆ (S4, A, S5).

2. S2 ⊆ S3, therefore, (S2, A, S6) ⊆ (S3, A, S6).

A.7 Pseudometric Equivalence Under Full Coverage

Proposition 3. Given the state subset S ⊆ S, the SRRD, DARD, and EPIC canonical rewards are equivalent
under full coverage when: S = S1 = ... = S6 for SRRD; S = S′ = S′′ for DARD, and S = S′ for EPIC.

Proof.

CEP IC(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′) − R(s, A, S′) − γR(S, A, S′)]
CDARD(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′′) − R(s, A, S′) − γR(S′, A, S′′)]
CSRRD(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)

+ γ2R(S1, A, S5) − γR(S2, A, S6) + γR(S3, A, S6) − γ2R(S4, A, S5)]

Under full coverage, every state s ∈ S transitions to every s′ ∈ S under every action a ∈ A. Consequently,
all relative subsets are equal: S = S′ = S′′ = S1 = S2 = S3 = S4 = S5 = S6, such that:

CEP IC = CDARD = CSRRD = R(s, a, s′) + E[γR(s′, A, S) − R(s, A, S) − γR(S, A, S)]. (41)

A.8 Repeated Canonicalization Under Full Coverage

Proposition 4. Given the state subset S ⊆ S, under full coverage when: S = S1 = ... = S6 for SRRD;
S = S′ = S′′ for DARD, and S = S′ for EPIC. Then: CSRRD, CEP IC , and CDARD cannot be further
canonicalized.

30

Published in Transactions on Machine Learning Research (04/2025)

Proof. From Proposition 3, we showed that under full coverage, CS = CEP IC = CDARD = CSRRD. Applying
CS to canonicalize a previously canonicalized reward we get:

CS [CS(R)(s, a, s′)] = CS [R(s, a, s′) + E[γR(s′, A, S) − R(s, A, S) − γR(S, A, S)]]

= CS(R)(s, a, s′) + γE[CS(R(s′, A, S))] − E[CS(R(s, A, S))] − γE[CS(R(S, A, S))]

= CS(R)(s, a, s′)
+ γE[R(s′, A, S) + E[γR(S, A, S) − R(s′, A, S) − γR(S, A, S)]]
− E[R(s, A, S) + E[γR(S, A, S) − R(s, A, S) − γR(S, A, S)]]
− γE[R(S, A, S) + E[γR(S, A, S) − R(S, A, S) − γR(S, A, S)]]

= CS(R)(s, a, s′)
+ γE[R(s′, A, S) − R(s′, A, S)] + E[γR(S, A, S) − γR(S, A, S)]
− E[R(s, A, S) − R(s, A, S)] + E[γR(S, A, S) − γR(S, A, S)]
− γE[R(S, A, S) − R(S, A, S)] + E[γR(S, A, S) − γR(S, A, S)]

= CS(R)(s, a, s′)

A.9 Regret Bound

In this section, we establish a regret bound in terms of the SRRD distance. The procedure for the analysis
is adapted from the related work on EPIC by Gleave et al. (2021). Given reward functions RA and RB

and their optimal policies π∗
A and π∗

B , we show that the regret of using policy π∗
B instead of a policy π∗

A is
bounded by a function of DSRRD(RA, RB). We also show that as DSRRD(RA, RB) → 0, the regret approaches
0 suggesting that π∗

A ≈ π∗
B . The concept of regret bounds is important as it shows that differences in DSRRD

reflect differences between the optimal policies induced by the input rewards.

For our analysis, we will use the following Lemmas:
Lemma 2. Let f ∈ Rn be a vector of real numbers and let fi ∈ Rk be a subvector formed by selecting a
subset of the entries of f . Then:

||fi||2 ≤ ||f ||2 (42)

Proof. Suppose f has n elements and fi has k elements. Since fi ⊆ f , every element in fi is also in f , and
k ≤ n. Therefore,

∑
f2 ≥

∑
f2

i such that: ||fi||2 ≤ ||f ||2.

Lemma 3. Let RA, RB : S × A × S → R be reward functions with corresponding optimal policies π∗
A and

π∗
B. Let Dπ(t, st, at, st+1) denote the distribution over trajectories that policy π induces at time step t. Let

D(s, a, s′) be the coverage distribution over transitions. Suppose that there exists some K > 0 such that
KD(st, at, st+1) ≥ Dπ(t, st, at, st+1) for all time steps t ∈ N, triples st, at, st+1 ∈ S × A × S and policies
π ∈ {π∗

A, π∗
B}. Then the regret under RA from executing π∗

B optimal for RB instead of π∗
A is at most:

GRA
(π∗

A) − GRA
(π∗

B) ≤ 2K

1 − γ
DL1,D(RA, RB).

where DL1,D is a pseudometric in L1 space, and GR(π) resembles the return of R under a policy π.

Proof. See Gleave et al. (2021) Lemma A.11.

31

Published in Transactions on Machine Learning Research (04/2025)

Lemma 4. Let RA, RB : S × A × S → R be reward functions. Let π∗
A and π∗

B be policies optimal for reward
functions RA and RB. Suppose the regret under the standardized reward RS

A from executing π∗
B instead of

π∗
A is upper bounded by some U ∈ R:

GRS
A

(π∗
A) − GRS

A
(π∗

B) ≤ U. (43)

Assuming that S3 is identically distributed to S4 in CSRRD, then the regret is bounded by:

GRA
(π∗

A) − GRA
(π∗

B) ≤ 8U∥RA∥2. (44)

Proof. Following Gleave et al. (2021), we can express the standardized reward as:

RS = CSRRD(R)
∥CSRRD(R)∥2

, (45)

In CSRRD (Equation 11), the states S1 and S5 depend on s′, while S2 and S6 depend on s. Assuming
that S3 is identically distributed to S4, we can see that CSRRD is a potential function, where ϕ(s′) =
E[R(s′, A, S1)] + γR(S1, A, S5) − γR(S4, A, S5)], and ϕ(s) = E[R(s, A, S2)] + γR(S2, A, S6) − γR(S3, A, S6)].
Therefore, CSRRD is simply R shaped by some potential Φ, such that:

GCSRRD(R)(π) = GR(π) − Es0∼d0 [Φ(s0)]

Therefore, we can write:

GRS (π) = 1
∥CSRRD(R)∥2

GCSRRD(R)(π) = 1
∥CSRRD(R)∥2

(GR(π) − Es0∼d0 [Φ(s0)]), (46)

where, s0 depends only on the initial state distribution d0, but not π. Applying Equation 46 to π∗
A and π∗

B :

GRS (π∗
A) − GRS (π∗

B) = 1
∥CSRRD(RA)∥2

(GRA
(π∗

A) − GRA
(π∗

B)). (47)

Combining Equation 47 and 43:

GRA
(π∗

A) − GRA
(π∗

B) ≤ U∥CSRRD(RA)∥2. (48)

We now bound ∥CSRRD(RA)∥2 in terms of ∥RA∥2. The SRRD canonical reward is expressed as:

CSRRD(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)
+ γ2R(S1, A, S5) − γR(S2, A, S6) + γR(S3, A, S6) − γ2R(S4, A, S5)]

Now, using the triangular inequality rule on the L2 distance, and linearity of expectation:

||CSRRD(R)(s, a, s′)||2 ≤ ||R(s, a, s′)||2 + E[γ||R(s′, A, S1)||2 + || − R(s, A, S2)||2 + γ|| − R(S3, A, S4)||2
+ γ2||R(S1, A, S5)||2 + γ|| − R(S2, A, S6)||2 + γ||R(S3, A, S6)||2 + γ2|| − R(S4, A, S5)||2]

Using Lemma 2, the L2 norm of each reward subspace is such that:

||R(Si, Aj , Sk)||2 ≤ ||R(S, A, S′)||2 = ||R||2. (49)

Therefore,

||CSRRD(R)(s, a, s′)||2 ≤ 8||R||2 (50)

Combining Equation 50 and 48 we get:

GRA
(π∗

A) − GRA
(π∗

B) ≤ 8U ||RA||2.

32

Published in Transactions on Machine Learning Research (04/2025)

Lemma 5. Given a reward function R : S × A × S → R, then: E[CSRRD(R)(S, A, S′)] = 0, if S and S′ are
identically distributed.

Proof. Applying the transitions (S, A, S′) into CSRRD (Equation 11), S′ = S4 = S1 = S2 = S5 = S6, and
S = S3, such that:

CSRRD(R)(S, A, S′) = R(S, A, S′) + E[γR(S′, A, S′) − R(S, A, S′) − γR(S, A, S′)]

Therefore:

E[CSRRD(R)(S, A, S′)] = E[R(S, A, S′) + E[γR(S′, A, S′) − R(S, A, S′) − γR(S, A, S′)]

if S is identically distributed to S′, then E[R(S′, A, S′)] = E[R(S, A, S′)], hence:

E[CSRRD(R)(S, A, S′)] = E[R(S, A, S′) + E[γR(S, A, S′) − R(S, A, S′) − γR(S, A, S′)] = 0

Theorem 2. Let RA, RB : S × A × S → R be reward functions with respective optimal policies, π∗
A, π∗

B.
Let γ be a discount factor, Dπ(t, st, at, st+1) be the distribution over the transitions induced by policy π at
time t, and D(s, a, s′) be the coverage distribution. Suppose there exists K > 0 such that KD(st, at, st+1) ≥
Dπ(t, st, at, st+1) for all times t ∈ N, triples (st, at, st+1) ∈ S × A × S and policies π ∈ {π∗

A, π∗
B}. Then the

regret under RA from executing π∗
B instead of π∗

A is at most:

GRA
(π∗

A) − GRA
(π∗

B) ≤ 32K∥RA∥2(1 − γ)−1DSRRD(RA, RB),

where GR(π) is the return of policy π under reward R.

Proof. Since CSRRD is zero-mean centered for transition inputs (S, A, S′) (see Lemma 5), from Gleave et al.
(2021) [A.4], it follows that:

DSRRD(RA, RB) = 1
2
∥∥RS

A(S, A, S′) − RS
B(S, A, S′)

∥∥2
2 . (51)

From Lemma A.10 in Gleave et al. (2021), the L1 norm of a function is upper bounded by its L2 norm on a
probability space, such that:

DL1,D(RS
A, RS

B) =
∥∥RS

A(S, A, S′) − RS
B(S, A, S′)

∥∥
1 ≤ 2DSRRD(RA, RB). (52)

Combining Lemma 3 and Equation 52:

GRSRRD
A

(π∗
A) − GRSRRD

A
(π∗

B) ≤ 2K

1 − γ
DL1,D(RSRRD

A , RSRRD
B) ≤ 4K

1 − γ
DSRRD(RA, RB). (53)

Applying Lemma 4, we get:

GRA
(π∗

A) − GRA
(π∗

B) ≤ 32K∥RA∥2

1 − γ
DSRRD(RA, RB). (54)

As shown, when DSRRD → 0, the regret: GRA
(π∗

A) − GRA
(π∗

B) → 0

33

Published in Transactions on Machine Learning Research (04/2025)

A.10 Generalized SRRD Extensions

We derive a generalized form of SRRD by recursively eliminating shaping residuals via higher-order terms.

1. To create SRRD, the first step is to adopt the desirable characteristics from both DARD and EPIC
(refer to Section 4), and derive C1 as follows:

C1(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)].

C1 yields the residual shaping term: ϕres1 = E[γ2ϕ(S1) − γ2ϕ(S4) + γϕ(S3) − γϕ(S2)].

2. To cancel E[ϕ(Si)], ∀i ∈ {1, ..., 4}, we add rewards R(Si, A, k1
i) to induce potentials γϕ(k1

i) − ϕ(Si),
which results in C2:

C2(R)(s,a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)
+ γ2R(S1, A, k1

1) − γ2R(S4, A, k1
4) + γR(S3, A, k1

3) − γR(S2, A, k1
2)].

C2 yields the residual shaping: ϕres2 = E[γ3ϕ(k1
1) − γ3ϕ(k1

4) + γ2ϕ(k1
3) − γ2ϕ(k1

2)].

3. To cancel E[ϕ(k1
i)], we add rewards R(k1

i , A, k2
i) to induce potentials γϕ(k2

i) − ϕ(k1
i), yielding C3:

C3(R)(s,a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)
+ γ2R(S1, A, k1

1) − γ2R(S4, A, k1
4) + γR(S3, A, k1

3) − γR(S2, A, k1
2)

+ γ3R(k1
1, A, k2

1) − γ3R(k1
4, A, k2

4) + γ2R(k1
3, A, k2

3) − γ2R(k1
2, A, k2

2)]

C3 yields the residual shaping: ϕres3 = E[γ4ϕ(k2
1) − γ4ϕ(k2

4) + γ3ϕ(k2
3) − γ3ϕ(k2

2)].

4. As we can see, this process results in the generalized formula:

Cn(R)(s,a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)
+ γ2R(S1, A, k1

1) − γ2R(S4, A, k1
4) + γR(S3, A, k1

3) − γR(S2, A, k1
2)

+ γ3R(k1
1, A, k2

1) − γ3R(k1
4, A, k2

4) + γ2R(k1
3, A, k2

3) − γ2R(k1
2, A, k2

2)
· · ·

+ γnR(kn−2
1 , A, kn−1

1) − γnR(kn−2
4 , A, kn−1

4) + γn−1R(kn−2
3 , A, kn−1

3)
− γn−1R(kn−2

2 , A, kn−1
2)],

where, n ≥ 3. Cn yields the residual shaping:

ϕn = E[γn+1ϕ(kn−1
1) − γn+1ϕ(kn−1

4) + γnϕ(kn−1
3) − γnϕ(kn−1

2)].

• Looking at ϕn, as n increases, each residual shaping term is scaled by γn, so their contribution
diminishes exponentially with n. Therefore, the upper bound magnitude of ϕn significantly decreases
since 0 ≤ γ < 1, and each |ϕ(ki)| ≤ M , where M is the upper bound potential for all distributions
ki ⊆ SD (see Appendix A.2.2). Therefore, as n approaches infinity, ϕn approaches 0.

• The advantage of the generalized SRRD form is that ϕn approaches 0 as n increases. However, com-
puting many ki sets makes the process expensive and difficult to implement in practice. Therefore,
a smaller n is preferable. In SRRD, we choose n = 2, then use our intuition to select sets ki, which
further reduce the residual shaping.

A.11 Computational Complexity

The pseudometrics discussed in this paper all utilize a double sampling method that uses the batches: BV

of NV sampled transitions, and BM of NM state-action pairs. The sample-based approximations for the
methods have the following computational complexities:

34

Published in Transactions on Machine Learning Research (04/2025)

EPIC Complexity:

CEP IC(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′) − R(s, A, S′) − γR(S, A, S′)].

• For all transitions in BV , approximating E[R(S, A, S′)] from BM takes approximately O(N2
M) com-

plexity since we iterate BM in a double loop (see Equation 5). However, this expectation is the same
for all transitions, hence it can be computed once.

• For each transition (s, a, s′) ∈ BV , the reward expectations, E[R(s′, A, S′)] and E[R(s, A, S′)] can
be approximated in one iteration through BM , resulting in O(NM) time complexity per transition.
Since the computation varies based on (s, a, s′), the overall complexity is O(NV NM).

Therefore, the overall complexity for EPIC is O(max(NV NM , N2
M)). When NM is significantly larger com-

pared to NV , the complexity is approximately O(N2
M), and if NV is significantly larger relative to NM , the

complexity is approximately O(NV NM).

DARD Complexity:

CDARD(R)(s, a, s′) = R(s, a, s′) + E[γR(s′, A, S′′) − R(s, A, S′) − γR(S′, A, S′′)].

• For each transition (s, a, s′) ∈ BV , the reward expectations, E[R(s′, A, S′′)] and E[R(s, A, S′)] can be
approximated through a single iteration of BM , resulting in O(NM) time complexity per transition.
The reward expectation, E[R(S′, A, S′′)] can be computed via a double loop through BM , and it
varies based on (s, a, s′), resulting in O(N2

M) time complexity per transition.

Therefore, the overall complexity for DARD is O(NV N2
M).

SRRD Complexity:

CSRRD(R)(s,a, s′) = R(s, a, s′) + E[γR(s′, A, S1) − R(s, A, S2) − γR(S3, A, S4)
+ γ2R(S1, A, S5) − γR(S2, A, S6) + γR(S3, A, S6) − γ2R(S4, A, S5)].

• For all transitions in BV , approximating E[R(S3, A, S4)] from BM takes approximately O(N2
M)

complexity since we iterate BM in a double loop (see Equation 18). However, this expectation is
the same for all transitions, hence it can be computed once.

• For each transition (s, a, s′) ∈ BV , the reward expectations, E[R(s′, A, S1)] and E[R(s, A, S2)] can
be approximated in one iteration through BM , resulting in O(NM) time complexity per transition.
The reward expectations, E[R(S1, A, S5)], E[R(S2, A, S6)], E[R(S3, A, S6)] and E[R(S4, A, S5)], all
require double iterations through BM , and they vary based on (s, a, s′), hence, they take O(N2

M)
complexity per transition.

Therefore, the overall complexity for SRRD is O(NV N2
M).

B Additional Considerations

B.1 Deviations from Potential Shaping

Reward comparison pseudometrics are generally designed to eliminate potential shaping, and in this study, we
examine how deviations from potential shaping can affect the performance of these pseudometrics. Within a
20×20 Gridworld domain, we generate a ground truth (GT) polynomial reward function and a corresponding
shaped reward function (SH), both with full coverage (100% transitions). From GT and SH, we sample
rewards R and R′ using uniform policy rollovers. For both samples, we add additional noise, N , with the

35

Published in Transactions on Machine Learning Research (04/2025)

Figure 5: (Non-Potential Shaping Effects): As the severity of randomly generated noise increases from part
(a) to (c), rewards deviate more from potential shaping, hence, all the pseudometrics degrade in performance.
In the end (part (c)), the pseudometrics perform similarly to DIRECT, showing that canonicalization does
not yield any additional advantages when the rewards significantly deviate from potential shaping.

following severity levels: None: N = 0, Mild: |N | ≤ max(|R′|), and High: |N | ≤ 5 max(|R′|), where N
is randomly generated from a uniform distribution within bounds defined by the severity levels. Thus, the
updated shaped reward is given by:

R′′ = R′ + N.

Figure 5 shows the performance variation of the reward comparison pseudometrics to different noise severity
levels. When N = 0 (noise free), the difference between SRRD, EPIC, DARD, and DIRECT is the highest,
with a performance order: SRRD > DARD > EPIC > DIRECT, which demonstrates SRRD’s performance
advantage over other pseudometrics under potential shaping. As the impact of N increases, the shaped
reward R′′ becomes almost entirely comprised of noise, and the shaping component significantly deviates from
potential shaping. As shown, SRRD’s performance gap over other pseudometrics significantly diminishes.
At high severity (Figure 5c), SRRD’s performance is nearly identical to all other pseudometrics, including
DIRECT, which does not involve any canonicalization. In conclusion, these results still demonstrate SRRD’s
superiority in canonicalizing rewards even with minor random deviations from potential shaping (Figure 5
b). However, as the rewards become non-potentially shaped, all pseudometrics generally become ineffective,
performing similarly to non-canonicalized techniques such as DIRECT.

B.2 Sample-based Approximations using Unbiased Estimates

In this paper, the sample-based SRRD approximation presented adopts a similar form to that of EPIC
and DARD, primarily to maintain consistency with well-established methods. This approach utilizes two
types of samples: BV , a batch of transitions of size NV , and BM , a batch of state-action pairs of size NM .
Each transition in BV is canonicalized using state-action pairs from BM . The advantage is that if BM is
representative of the joint state-action distribution of the reward function (or sample), canonicalization can be
highly effective even with smaller sizes of BM . Since each transition in BV is canonicalized using state-action
pairs from BM , the computational load required during canonicalization can be reduced compared to using
all possible transitions. For example, suppose we have a reward function with 10, 000 states and 100 actions.
In this case, the total number of transitions = 10, 000×100×10, 000 = 1010. However, using the sample-based
SRRD approximation method, we could generate a sample BV with 100 transitions, and another sample
BM , with 100 state-action pairs. Each transition in BV is then canonicalized using state-action pairs from
BM , and the total number of transitions needed is approximately NV ∗ NM

2 ≈ 100 ∗ 1002 = 106 transitions
(see Appendix A.11); which is way less than the transitions needed in the full computation.

The double-batch sampling approach (using BV and BM) generally works well in environments where tran-
sition sparsity is not a major problem. However, when transition sparsity is a concern, a large fraction of
transitions generated from the combination of BV and BM might be unsampled, and can have undefined
reward values, which can introduce errors in canonicalization. Our proposed pseudometric, SRRD, is much
more robust under these conditions compared to both EPIC and DARD, even though it uses a similar sam-

36

Published in Transactions on Machine Learning Research (04/2025)

pling form. An alternative approach to the double-batch sampling method is to use unbiased estimates. The
unbiased estimate approximations are described as follows:

ĈEP IC(R)(s, a, s′) ≈ R(s, a, s′) + γ

N1

∑
R(s′, u, x′) − 1

N2

∑
R(s, u, x′) − γ

N3

∑
R(x, u, x′), (55)

where: {(s′, u, x′)} is the set of sampled transitions that start from the state s′, with the total number of
transitions equal to N1; {(s, u, x′)} is the set of sampled transitions that start from the state s, with the
total number of transitions equal to N2; and {(x, u, x′)} is the set of all the sampled transitions, with the
total number of transitions equal to N3.

ĈDARD(R)(s, a, s′) ≈ R(s, a, s′) + γ

N1

∑
R(s′, u, x′′) − 1

N2

∑
R(s, u, x′) − γ

N3

∑
R(x′, u, x′′), (56)

where: {(s′, u, x′′)}, is the set of all sampled transitions that start from the state s′, with the total number
of transitions equal to N1; {(s, u, x′)} is the set of all sampled transitions that start from the state s, with
the total number of transitions equal to N2; and {(x′, u, x′′)} is the set of transitions that start from the
subsequent states of s to the subsequent states of s′, and have a total number of transitions equal to N3.

CSRRD(R)(s,a, s′) ≈ R(s, a, s′) + γ

N1

∑
R(s′, u, x1) − 1

N2

∑
R(s, u, x2) − γ

N3

∑
R(x3, u, x4)

+ γ2

N4

∑
R(x1, u, x5) − γ

N5

∑
R(x2, u, x6) + γ

N6

∑
R(x3, u, x6) − γ2

N7

∑
R(x4, u, x5).

(57)

For SRRD, let X1 represent the set of all subsequent states from s′; X2 represent the set of all subsequent
states to s; and X3 be the set of all initial states for transitions, while X4, X5, and X6 denote the sets of
subsequent states from X3, X1, and X2, respectively. For all transitions, the set: {(x3, u, x4)} contains all
sampled transitions where x3 ∈ X3 and x4 ∈ X4, with the total number of transitions equal to N3. For each
sampled transition, (s, a, s′), the set:{(s′, u, x1)} contains observed transitions starting from s′ and ending
in x1 ∈ X1, with a magnitude N1. {(s, u, x2)} contains observed transitions starting from s and ending in
x2 ∈ X2, with a magnitude N2. {(x1, u, x5)} contains observed transitions starting from x1 ∈ X1 and ending
in x5 ∈ X5, with a magnitude N4. {(x2, u, x6)} contains observed transitions starting from x2 ∈ X2 and
ending in x6 ∈ X6, with a magnitude N5. {(x3, u, x6)} contains observed transitions starting from x3 ∈ X3
and ending in x6 ∈ X6, with a magnitude N6. {(x4, u, x5)} contains observed transitions starting from
x4 ∈ X4 and ending in x5 ∈ X5, with a magnitude N7.

Figure 6 shows results obtained for Experiment 1 (refer to Section 5.1), using sample-based approximations
relying on unbiased estimates, instead of the double-batch sampling approach. The obtained results show
a similar trend to the results obtained from the double sampling approach, with SRRD still yielding better
performance compared to both EPIC and DARD. In general, unbiased estimates tend to be more accurate
under transition sparsity, as reflected in Figure 7, showing results for both the double-sampling and the
unbiased estimate approaches. Overall, the unbiased estimate approach tends to outperform the double-batch
approach, however the double-sampling approach catches up as the level of transition sparsity decreases. The
SRRD approach still outperforms both EPIC and SRRD especially when coverage is low (≤ 20%), and it
also performs well under the double-batch sampling mechanism, highlighting its robustness in eliminating
potential shaping.

37

Published in Transactions on Machine Learning Research (04/2025)

Figure 6: (Unbiased Estimate Approximations). The figure shows results for Experiment 1 (refer to Section
5.1) which is conducted using unbiased estimates as approximations for the SRRD, DARD and EPIC. As
shown, results demonstrate a similar trend as the one obtained when using the double-batch sampling
approach reliant on BV and BM . The goal of the experiment is to compare the effectiveness of reward
comparison pseudometrics at identifying the similarity between potentially shaped reward functions under
two conditions: (a) limited sampling and (b) feasibility constraints. A more accurate pseudometric yields a
Pearson distance Dρ close to 0, indicating a high degree of similarity between shaped reward functions, while
a less accurate pseudometric results in Dρ close to 1. In (a), EPIC and DARD lag behind SRRD at low
coverage due to limited sampling, but their performance gradually improves as coverage increases. In (b),
movement restrictions significantly reduce transition coverage, negatively impacting both EPIC and DARD.

Figure 7: (Unbiased Estimates vs Double-batch Sampling). This figure presents the results for Experiment
1 under limited sampling for the Gridworld domain. It compares the performance of pseudometrics using
the double-sampling approach (with batches Bv and BN) versus the unbiased estimate approach. For the
unbiased estimates, the results are plotted in bold lines and for the double-sampling approach, they are
plotted using broken lines. The initial ’u’ (legend) denotes the unbiased estimate methods, for example
uSRRD. The objective is to compare the difference in performance between unbiased estimates and the
double-batch sampling approach. As shown, the unbiased estimate approaches tend to outperform the
double-batch approaches. In both sampling approaches (double-sampling or unbiased estimates), SRRD
also outperforms both EPIC and DARD especially when coverage is low (≤ 20%). The SRRD approach also
performs well under the double-batch sampling approach, highlighting its robustness at eliminating potential
shaping.

38

Published in Transactions on Machine Learning Research (04/2025)

B.3 Inferring Rewards for Unsampled Transitions via Regression

All the canonicalization methods discussed in this paper are susceptible to unsampled transitions. However,
CSRRD is more resilient since it mostly relies on forward transitions rather than non-forward transitions
(refer to Section 4.1). In this study, instead of relying solely on sampled transitions during canonicalization,
we explore the possibility of addressing transition sparsity by generalizing rewards from sampled transitions
to unsampled transitions via regression. Using a 20 × 20 Bouncing Balls domain, we generate reward
samples from a uniform policy and compute the SRRD, DARD, and EPIC distances. To vary coverage, we
adjust the number of trajectories generated from policy rollouts, and compute coverage as the fraction of
sampled transitions over the total number of transitions, |S × A × S|. In this experiment, reward samples
are only defined for feasible transitions and unfeasible transitions have undefined reward values. However,
during canonicalization, the reward values for the unsampled transitions (mostly unfeasible), are inferred via
regression. Figure 8 shows the results obtained in this experiment:

Figure 8: (Incorporating Regressed Rewards) When the relationship between rewards and state-action fea-
tures is less complex, such as the case with polynomial rewards, learning the regression model is highly
effective. Consequently, incorporating rewards that are inferred via regression into canonicalization can be
beneficial, resulting in improved performance for regressDARD, regressSRRD, and regressEPIC. However,
when the relationship between rewards and state-action features is complex, the learned regression model
might struggle to generalize well such as the case for random and sinusoidal rewards.

As shown in Figure 8, the success of incorporating regressed rewards depends on the nature of the reward
function. When the reward function is derived as a simple combination of state-action features, learning
the regression model is highly effective due to the less complex relationship between state-action features
and reward values. This is likely the case for polynomial rewards, where pseudometrics that incorporate
regressed rewards, generally outperform the original non-regression-based pseudometrics, especially as the
coverage increases. However, for sinusoidal and random reward functions, the relationship between state-
action features and rewards is much more complex, making it challenging to effectively learn a highly effective
model under transition sparsity. Consequently, the rewards learned via regression may not generalize well,
and the original sample-based approximations tend to outperform the regression-based approximations. In
general, the regressed SRRD approximation outperformed all other regressed-based approximations. This
superiority is attributed to the inherent nature of SRRD which relies more on forward transitions that
are likely in-distribution with the reward samples’ transition dynamics, than non-forward transitions that
are more prone to being out-of-distribution with the dynamics of the reward samples. Therefore, even
when incorporating regression, SRRD depends less on the regressed rewards compared to EPIC and DARD,
resulting in more accurate predictions. EPIC ideally requires full coverage, hence, under transition sparsity,
it relies more heavily on regressed rewards which makes it more susceptible to errors when the regression
model cannot generalize well. In this experiment, we compared linear regression, decision trees, and neural
networks, and chose linear regression since it yielded the best results in terms of accuracy. This could result
from the lack of diverse data, as rewards are only defined for feasible transitions, which are a small subset
compared to the total number of transitions that would be needed if no feasibility constraints were imposed.

39

Published in Transactions on Machine Learning Research (04/2025)

B.4 Sensitivity of SRRD to Sampling Policy

A crucial challenge in reward comparison tasks is the fact that reward samples partially represent the true
reward function and might not fully capture the structure of the actual reward function. This section exam-
ines the performance of SRRD to variations in the policy used to extract reward samples. The experiment
is conducted in a 15 × 15 Gridworld environment, where an agent’s objective is to navigate from an initial
state (0, 0) to the target state (14, 14). The agent selects actions from the set A = {up, right, down, left}.
The reward function is derived from predefined expert behaviors using Adversarial Inverse Reinforcement
Learning (AIRL). Figure 9 shows a reward function Rdiagonal, computed for an agent with a diagonally
oriented policy where for each state s: πdiagonal(up|s) = 0.1, πdiagonal(right|s) = 0.4, πdiagonal(down|s) = 0.4
and πdiagonal(left|s) = 0.1. The reward for each transition is represented by the triangular directional arrows,
for example, the reward from state (0, 0) to state (0, 1) is 2.5. The reward function is defined exclusively for
feasible transitions, and the intensity of rewards is depicted using three three colors: red for high rewards
(> 5), blue for moderate rewards (2 − 5), and light brown for low rewards (< 2). In this study, we compare
the similarity between two shaped reward samples derived from Rdiagonal using a specified sampling policy.
We then analyze the variation in DSRRD based on different sampling policies. The experiment is repeated
over 100 trials.

Figure 9: (Rdiagonal). The reward function is generated via AIRL from an agent that executes the policy
πdiagnoal, which favors movement along the grid’s main diagonal. High rewards are highlighted in red,
moderate rewards in blue, and low rewards in light brown.

40

Published in Transactions on Machine Learning Research (04/2025)

Table 2: Sensitivity of SRRD to different reward sampling policies. The coverage is computed as the fraction
of sampled transitions, over the total number of feasible transitions.

Reward Sampling Policy

πuniform πdiagonal πtop πleft

of Trajectories 50 100 50 100 50 100 50 100

Coverage (%) 33.2 43.4 56.9 74.6 11.91 14.3 10.86 13.03

DSRRD for Rdiagonal 0.62 0.60 0.57 0.56 0.64 0.63 0.62 0.62

Table 2 summarizes results for testing SRRD’s sensitivity to different reward sampling policies: πdiagonal,
πtop -biased toward the upper segment of the grid; πuniform - a uniform policy across all four directions; and
πleft - biased towards the left grid segment. As shown, DSRRD varies based on the reward sampling policy.
In Rdiagonal when all the feasible transitions are used in reward comparisons, DSRRD ≈ 0.58, which is the
benchmark value to test the policy variations. This value closely matches the distance values obtained by
πuniform and πdiagonal, which both sample transitions that closely match the actual distribution of the bench-
mark rewards, Rdiagonal. However, policies such as πtop and πleft, generally achieve distances that deviate
from the benchmark score, since the reward distribution in the reward samples might be less representative
of the structure of Rdiagonal. Overall, DSRRD varies between: [0.56 − 0.64], while the benchmark distance
from Rdiagonal is 0.58. We also observe that increasing the number of sampled trajectories from 50 to 100
generally leads to lower SRRD distances. However, this effect is less pronounced in this experiment because
the reward function is defined only for feasible transitions, limiting the variability and coverage inherently.
In conclusion, SRRD is sensitive to variations in the policies that generate the reward samples, since canon-
icalization relies on the distribution of sampled transitions, which might not be representative of the actual
transition distribution under full coverage. In sampling rewards, it is desirable to ensure that the sample
has high coverage and broad support over the distribution of the true reward function. We also performed
this study with EPIC and DARD, and they both yield higher distances within the range [0.63 − 0.7].

B.5 Environments with Infinite or Continuous State and Action Spaces

As previously mentioned in Section 3 and 4, computing the exact reward comparison distances is only feasi-
ble in small environments with finite discrete states and actions, where all the possible transitions between
states and actions can be enumerated. For complex environments with infinite or continuous states and
actions, computing the exact values for DEPIC, DDARD and DSRRD becomes impractical, hence, sample-
based approximation methods have been developed. These approximations take transition inputs composed
of discrete states and actions, and when applied to continuous environments, it is essential to discretize the
state and action observations from the continuous signals as demonstrated in prior works (Gleave et al.,
2021; Wulfe et al., 2022). In our experiments, these approximations are necessary in environments such as
Robomimic, MIMIC-IV, Drone Combat Scenario and StarCraft II. For StarCraft II for example, while not
necessarily continuous in a strict sense, the environment operates in real-time with partial observability, mul-
tiagent decision-making, durative actions, and asynchronous, parallel action execution. The game updates
at approximately 16 times per second, and it effectively has infinite states and actions. These fluid, real-time
interactions align it more with continuous decision-making scenarios, and to manage the complexity, we
perform feature preprocessing to discretize and cluster state and action observations before applying the
sample-based approximations.

An intriguing area for future research is the integration of function approximation to generalize reward
canonicalization to reward functions represented as neural networks. While function approximation might
not be necessary for straightforward reward comparisons—where the goal is to retrieve a similarity distance—
they become essential in applications requiring the canonicalization of the entire reward functions, such as
standardizing rewards during IRL for example. Our initial proposed approach involves training a neural
network to predict canonical rewards based on batches of transition observations. In the training process,
the canonicalized rewards for the batch can be approximated via sample-based methods, and then the neural

41

Published in Transactions on Machine Learning Research (04/2025)

network aims to predict the canonicalized rewards from the input transition batch. The network iteratively
learns to predict the canonicalized rewards by minimizing the difference between its predictions and the
sample-based approximations.

C Experimental Details

C.1 Experiment 1: Transition Sparsity Pseudocode

Algorithm 1 Analyzing the effect of limited sampling on reward distance
Input:

T - list of policy rollout counts,
E - number of experimental trials under same condition,
G - grid size,
RD - list to store reward distances at different coverages,
MC - maximum coverage ≈ S × A × S.

Output: RD
1: generate GT - ground truth reward, SH - shaped reward from all possible transitions.
2: for rolloutcount in T do
3: trialdistance, trialcoverage = list(), list()
4: for trial in E do
5: Bgt, Bsh = set(), set()
6: generate trajectories τgt and τsh using uniform policy rollouts.
7: for (s, a, s′) ∈ τgt do
8: Bgt.add((s, a, s′))
9: end for

10: for (s, a, s′) ∈ τsh do
11: Bsh.add((s, a, s′))
12: end for
13: for (s, a, s′) ∈ Bgt and (s, a, s′) ∈ Bsh, retrieve R(s, a, s′) using GT and R′(s, a, s′) using SH,

respectively.
14: coverage = |Bgt∪Bsh|

MC
15: compute dist(R, R′) using EPIC, SRRD, DARD, or DIRECT.
16: trialdistance.append(dist(R, R′))
17: trialcoverage.append(coverage)
18: end for
19: RD.append([mean(trialcoverage), mean(trialdistance)])
20: end for

C.2 Experiment 1: Reward Functions

Extrinsic reward functions are manually defined using a combination of state and action features. For the
Drone Combat, Montezuma’s Revenge, and StarCraft II domains, we use the default game engine scores as
the reward function, and for Robomimic, rewards are based on task completion (see Appendix C.2). For
the Gridworld and Bouncing Balls domains, in each reward function, the reward values are derived from the
decomposition of state and action features, where, (sf1, ..., sfn) is from the starting state s; (af1, ..., afm)
is from the action a; and (s′

f1, ..., s′
fn) is from the subsequent state s′. For each unique transition, using

randomly generated constants: {u1, ..., un} for incoming state features; {w1, ..., wm} for action features;
{v1, ...vn} for subsequent state features, we create reward models as follows:

• Linear:

R(s, a, s′) = u1sf1 + ... + unsfn + w1af1 + ... + wmafm + v1s′
f1 + ... + vns′

fn,

42

Published in Transactions on Machine Learning Research (04/2025)

• Polynomial:

R(s, a, s′) = u1sα
f1 + ... + unsα

fn + w1aα
f1 + ... + wmaα

fm + v1s′α
f1 + ... + vns′α

fn,

where, α is randomly generated from 1 − 10, denoting the degree of the polynomial.

• Sinusoidal:

R(s, a, s′) =u1sin(sf1) + · · · + unsin(sfn) + w1sin(af1) + · · · + wmsin(afm)
+ v1sin(s′

f1) + · · · + vnsin(s′
fn)

• Random
R(s, a, s′) = β,

where, β is a randomly generated reward for each given transition.

The same relationships are used to model potential functions, where: ϕ(s) = f(sf1, .., sfn), and f is the
relationship drawn from the set: {polynomial, sinusoidal, linear, random}. For StarCraft II, Drone Combat,
and Montezuma’s revenge, we used the default game score provided by the game engine as the reward
function; and for Robomimic, sparse rewards based on task completion are used. For the StarCraft II
domain, this score focuses on the composition of unit and resource features. Since the Drone Combat
environment is originally designed for a predator-prey domain, we adapt the score https://github.com/
koulanurag/ma-gym to essentially work for the Drone Combat scene (i.e instead of a predator being rewarded
for eating some prey, the reward is now an ally attacking an enemy).

C.3 Experiment 1: Parameters

A uniform policy in the Gridworld domain randomly selects one of the four actions, {north, east, south,
west}, at each timestep. For the Bouncing Balls domain, it randomly selects an action from the set: {north,
north-east, east, east-south, south, south-west, west, west-north, north}. The parameter ϵ dictates the ratio
of times in which random transitions (instead of uniform policy) are executed. Table 3 and Table 4 shows
the experimental parameters used in Experiment 1 (Algorithm 1).

Table 3: (Low Coverage): Parameters used to test the variation of coverage for the Gridworld and the
Bouncing Balls domain.

Parameter Values
Rollout Counts, T [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 1000, 2000]
Epochs, E 200
Policy, π uniform, ϵ = 0.1
Discount, γ 0.7
Dimensions 20 × 20

Table 4: (Feasibility Constraints): Parameters used to test the variation of coverage in the presence of
movement restrictions, ϵ = 0, for the Gridworld and Bouncing Balls domain.

Parameter Values
Rollout Counts, T [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 1000, 2000]
Epochs, E 200
Policy, π uniform, ϵ = 0
Discount, γ 0.7
Dimensions 20 × 20

43

https://github.com/koulanurag/ma-gym
https://github.com/koulanurag/ma-gym

Published in Transactions on Machine Learning Research (04/2025)

C.4 Transition Sparsity: Additional Results

In both the Gridworld and the Bouncing Balls domains, we did not see much difference in the structure of
results between the 10 × 10 domain and the 20 × 20 domains. Results were fairly consistent in that SRRD
tends to outperform DARD and EPIC, and feasibility constraints tend to limit coverage significantly.

Figure 10: 10 × 10 Gridworld: Variation of reward relationships

Figure 11: 20 × 20 Gridworld: Variation of reward relationships

44

Published in Transactions on Machine Learning Research (04/2025)

Figure 12: 10 × 10 Bouncing Balls: Variation of reward relationships

Figure 13: 20 × 20 Bouncing Balls: Variation of reward relationships

45

Published in Transactions on Machine Learning Research (04/2025)

C.5 Experiment 2: Reward Classification - Testbeds

Gridworld: The Gridworld domain simulates agent movement from a given initial state to a specified
terminal state under a static policy. Each state is defined by an (x, y) coordinate where 0 ≤ x < N ,
and 0 ≤ y < M implying |S| = NM . For Experiment 2, the action space only consists of four cardinal
directions {north, east, south, west}, and to define classes, we use static policies based on the action-selection
distribution (out of 100) per state. Table 6 shows the Gridworld parameters used for Experiment 2.

Bouncing Balls: The Bouncing Balls domain, adapted from Wulfe et al. (2022), simulates a ball’s motion
from a starting state to a target state while avoiding randomly mobile obstacles. These obstacles add
complexity to the environment since the ball might need to change its strategy to avoid obstacles (at a
distance, d = 3). Each state is defined by the tuple (x, y, d), where (x, y) indicates the ball’s current location,
and d indicates the ball’s Euclidean distance to the nearest obstacle, such that: 0 ≤ x < N , 0 ≤ y < M ,
and d ≤ max(M, N). The action space includes eight directions (cardinals and ordinals), with the stochastic
parameter ϵ for choosing random transitions. Table 5 describes the parameters for Experiment 2.

Drone Combat: The Drone Combat domain is derived from the multi-agent gym environment, which
simulates a predator-prey interaction (Anurag, 2019). We adapt this testbed to simulate a battle between
two drone swarms; a blue swarm denoting the ally team; and a red swarm denoting a default AI enemy. The
goal is for the blue ally team to defeat the default AI team. This testbed offers discrete actions and states
within a fully observable environment, while also offering flexibility for unit creation, and obstacle placement.
However, the number of states and actions is still high such that we did not use the testbed in Experiment
1. Each unit (blue and red squares) possesses a distinct set of parameters and possible actions. Each team
consists of drones and ships, and the team that wins either destroys the entire drones of the opponent or its
ship. This ship adds complexity to the decision-making process of the teams which need to engage with the
enemy, as well as safeguard their ships. Each drone is defined by the following attributes: visibility range
(VR) - the range a unit can see from its current position (partial observability); health (H) - the number of
firings a unit can sustain; movement range(MR) - the maximum distance that a unit can move to; and shot
strength(SS) - the probability of a shot hitting its target. These attributes are drawn from the set:

U = {(VR, H, MR, SS) | VR ∈ {1, 3, 5}, H ∈ {5, 10, 15}, MR ∈ {1, 2, 3}, SS ∈ {0.05, 0.1}}

Table 7 summarizes the parameters used for Experiment 2.

Robomimic Robomimic is a framework designed for imitation learning and reinforcement learning in
robotic manipulation tasks (Mandlekar et al., 2021). It provides standardized datasets, and environments to
facilitate reproducibility in learning from demonstrations. In our experiments, we focus on collected offline
datasets, which include human and simulated demonstrations on the following robotic tasks: Lift - the robot
needs to pick up a cube and lift it off the table; Can - the task requires lifting and placing a soda can
upright; Square - the robot aligns and places a square peg into a hole; Tool Hang - requires a robot to use
a tool to hang it on a rack; and Nut Assembly - a multi-step task where the robot must pick up a nut and
screw it onto a bolt. The goal in Experiment 2 is to distinguish between a single human expert, machine
generated, and mixed human agent behaviors, using a k-NN classifier based on reward pseudometrics. For
each agent type, we collect 200 trajectories, and utilize the extrinsic sparse rewards based on task completion,
as well as IRL computed rewards. The details about the agent types, and data collection are available at:
https://robomimic.github.io/docs/datasets/robomimic_v0.1.html.

Montezuma’s Revenge: Montezuma’s Revenge is a classic Atari 2600 game generally used as a bench-
mark in RL research due to its challenging environment. The game involves controlling an explorer agent,
in navigating a series of interconnected rooms in a temple filled with traps, ladders, enemies and collectible
items. The game is challenging for RL since its characterized by sparse rewards, complex exploration, long-
term dependencies, and high penalty for mistakes. In our experiments, we used a collection of Atari games
from human demonstrations (Kurin et al., 2017). We subdivide these games into three subgroups based on
game scores: experts (> 3000), moderate (1000 − 3000) and novice(< 1000); and sample 200 trajectories for

46

https://robomimic.github.io/docs/datasets/robomimic_v0.1.html

Published in Transactions on Machine Learning Research (04/2025)

each agent type. The task objective is to determine the agents’ expertise using the reward pseudometrics to
classify the agents based on samples of their demonstrated behavior.

StarCraft II (SC2): The SC2 domain is a strategy game created by Blizzard Entertainment that features
real-time actions on a complex battlefield environment. The game involves planning, strategy, and quick
decision-making to control a multi-agent ally team, aiming to defeat a default AI team in a competitive,
challenging, and time-sensitive environment. SC2 serves not only as entertainment but also as a platform
for professional player competitions. Due to its complexity and the availability of commonly used interactive
Python libraries, the SC2 game is widely employed in Reinforcement Learning, serving as a testbed for
multi-agent research. The goal of the ally team is to gather resources, and build attacking units that are
used to execute a strategic mission to defeat the AI enemy; within an uncharted map, that gets revealed
after extensive exploration (introduces partial observability). The sheer size of the map and the multitude
of possible actions for each type of unit, as well as the number of units, contribute to the enormity of the
action and state spaces. During combat, each ally unit, moves in a decentralized manner and attacks an
enemy unit using an assigned cooperative strategy from the set: C = {c1, c2, c3, c4}; where c1 - move towards
ally closest to enemy’s start base; c2 - move towards a random enemy unit; c3 - move towards ally closest
to an enemy unit; and c4 - move towards the map’s center. We focus on attack-oriented ally units to reduce
the state space. Non-attacking units such as pylons are treated as part of the environment. The game state
records the number of ally units (numally), and the total number of opponent units (numenemy); as well as
the central coordinates of the ally and the enemy. The action records the number of ally units attacking the
enemy at an instance. Table 8 describes the StarCraft II parameters used for Experiment 2.

MIMIC IV: MIMIC-IV is a large, publicly available database of de-identified patients admitted to an
emergency department (ED) or intensive care unit(ICU) at the Beth Israel Deaconess Medical Center in
Boston, MA (Johnson et al., 2023). The dataset contains records for over 65, 000 patients admitted to an
ICU, and over 200, 000 patients admitted to the ED. In our analysis, we model each patient’s hospital’s visit
as a Markov Decision Process, where, each state is a list of assigned diagnoses (a patient may have multiple
concurrent diagnoses), and the actions are the procedures and prescriptions provided. For manual rewards,
we assign R = 5 ∗ γt when a patient survives, where γ = 0.9 is a discount factor (to penalize frequent visits)
and t is the trial number of the patient’s visit. A manual reward of −5 is assigned when the patient dies. We
also compute AIRL, Maxent and PTIRL rewards. From the data, because both the states (diagnoses) and
actions (prescriptions and procedures) are expressed in natural language, we transform them into numerical
vectors using frequency counts of medical keywords (without stop words) from the diagnoses or prescription
reports. We then apply standard scaling (mean and variance), and perform PCA to extract numerical
features. For the behavioral classification experiment, we manually group patients into 5 categories based
on keywords from the first diagnosis record of the patients. These categories are: diabetes - has diabetes
oriented diagnoses, kidney - has kidney oriented diagnoses, limb - has limb or skeletal oriented diagnoses,
respiratory - has respiratory diagnoses, and substance - has substance abuse or mental health diagnoses. Our
task is then to classify different patient trajectories (sequences of states and actions), based on their reward
functions, using the reward pseudometrics. It is important to note that some diseases overlap, hence we
used a majority vote to assign the overall category. Since this data is inherently sparse, our final dataset had
409 patients distributed such that we have: [70, 75, 42, 35, 187] patients, corresponding to each disease class,
respectively. Each trajectory has a length in the range 30 to 250. Most of the original MIMIC-IV data was
not useful for our analysis since patients rarely visit an ICU facility more than once. In the experiments we
did not consider age, race or gender in the analysis.

C.6 Experiment 2: Parameters

The optimal values for γ (discount factor) and k (the neighborhood size) are not fixed for each independent
trial. Therefore, for hyperparameter selection, we employ a grid search over the set defined by:

{(γ, k) : γ ∈ {0, 0.1, . . . , 1}, k ∈ {10, 20, . . . , 100}}

The agent classes shown describe the policy that an agent takes in each given state. For example, in the
Gridworld domain, an agent with a policy [25, 25, 25, 25], randomly selects the cardinal direction to take

47

Published in Transactions on Machine Learning Research (04/2025)

from a uniform distribution. For the Drone Combat and StarCraft II domains, the agent behaves based on
the combination of the defined attributes.

Table 5: Bouncing Balls Parameters.

Parameter Values
Agent policies (10 classes) [[12, 12, 12, 12, 13, 13, 13, 13], [5, 5, 25, 25, 25, 5, 5, 5],

[25, 25, 25, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 25, 25, 25], [5, 5, 65, 5, 5, 5, 5, 5],
[5, 5, 5, 65, 5, 5, 5, 5], [5, 5, 5, 5, 65, 5, 5, 5], [5, 25, 5, 25, 5, 25, 5, 5],
[20, 5, 20, 5, 20, 5, 20, 5], [5, 20, 5, 20, 5, 20, 5, 20]]

Trajectory sets per policy 100
Number of obstacles 5
Distance to obstacle (Manhattan) 3
Number of comparison trials 200
Actions move: {north, north-east, east, east-south, south, south-west, west, west-

north}
State Dimensions 20 × 20 ×3

Table 6: Gridworld Parameters.

Parameter Values
Agent policies (10 classes), [[25, 25, 25, 25], [5, 5, 5, 85], [85, 5, 5, 5], [5, 85, 5, 5], [5, 5, 85, 5], [5, 15, 30,

55], [55, 30, 15, 5], [15, 5, 55, 30], [5, 55, 30, 15], [15, 30, 5, 55]]
Trajectory sets per policy, 100
Number of comparison trials, 200
Actions, move: {north, west, south, east}
State Dimensions 20 × 20

Table 7: Drone Combat Parameters.

Parameter Values
Agent policies 10 classes, each consisting of 5 agents. Each agent x has attributes

randomly drawn from the set:
U = {(V R, H, MR, SS) | V R ∈ {1, 3, 5}, H ∈ {5, 10, 15}, MR ∈
{1, 2, 3}, SS ∈ {0.05, 0.1}}

Trajectory sets per policy 100
Number of agents per team 11 (1 ship, 10 drones)
Number of comparison trials 200
Actions, α is the movement range,
1 ≤ α ≤ 3

{{leftα, upα, rightα, downα}, attack}

Dimensions 40 × 25, with obstacles occupying ≈ 30% of the area

Table 8: StarCraft II Parameters.

Parameter Values
Agent policies generated based on re-
sources and strategy

10 classes, agents attributes randomly chosen from:

U = {(c, u) | c ∈ {c1, c2, c3, c4}, u ∈ {adept, voidray, phoenix, stalker}}.

Trajectory sets per policy 100
Comparison trials 200
Actions Number of attacking units per unit time
State representation (numally, numenemy, (xally , yally), (xenemy , yenemy))

48

Published in Transactions on Machine Learning Research (04/2025)

C.7 Experiment 2: Inverse Reinforcement Learning (IRL)

Table 9: Reward Learning Parameters Across Domains

AIRL MAXENT PTIRL

Trajectories/run: 5 Trajectories/run: 5 Target Trajectories/run: 5
RL Algorithm: PPO RL Algorithm: PPO Non-Target Trajectories/run: 10
Discount (γ): 0.9 Discount (γ): 0.9 Max Reward Cap: +100
Reward Network - MLP

Hidden Size: [256, 128]
Reward Network - MLP

Hidden Size: [256, 128] Min Reward Cap: -100

Learning Rate: 10−4 Learning Rate: 10−4 LP Solver: Cplex
Time Steps: 105

Generator Batch Size: 2048
Discriminator Batch Size: 256

In Experiment 2, we utilize Inverse Reinforcement Learning (IRL) to compute agent rewards based on
demonstrated behavior. Specifically, we employ three IRL algorithms: Maximum Entropy IRL (Maxent-
IRL) (Ziebart et al., 2008); Adversarial IRL (Fu et al., 2018); and the Preferential Trajectory IRL (PT-IRL)
(Santos et al., 2021). In addition, we compute manual rewards that differ due to potential shaping.

Maxent IRL The objective of the Maxent IRL4 algorithm is to compute a reward function that will
generate a policy (learner) πL that matches the feature expectations of the trajectories generated by the
expert’s policy (demonstrations, assumed to be optimal) πE . Formally, this objective can be expressed as:

EπL
[ϕ(τ)] = EπE

[ϕ(τ)], (58)

where ϕτ are trajectory features. Eπk
=

∑
τ∈φk

pπk
(τ) · ϕ(τ), where pπk

(τ) is the probability distribution of

selecting trajectory τ from πk. The original Maxent-IRL algorithm modeled the relationship between state
features and agent rewards as linear, however, recent modifications now incorporate non-linear features via
neural networks. To resolve the ambiguity of having multiple optimal policies which can explain an agent’s
behavior, this algorithm applies the principle of maximum entropy to select rewards yielding a policy with
the highest entropy.

AIRL: The AIRL algorithm uses generative adversarial networks to train a policy that can mimic the
expert’s behavior. The IRL problem can be seen as training a generative model over trajectories, such that:

max
w

J(w) = max
w

Eτ∼D[log pw(τ)], (59)

where pw(τ) ∝ p(s0)
∏T −1

t=0 P (st+1|st, at)eγt.Rw(st,at) and the parameterized reward is Rw(s, a). Using the
gradient of J(w), the entropy-regularized policy objective can be shown to reduce to:

max
π

Eπ

[
T∑

t=0
(Rw(st, at) − logπ(at|st))

]
(60)

The discriminator is designed to take the form: Dw(s, a) = exp(fw(s, a))/(exp(fw(s, a)) + π(a|s)), and the
training objective aims to minimize the cross-entropy loss between expert demonstrations and generated
samples: L(w) =

∑T
t=0 (−ED[log Dw(st, at)] − Eπt [log(1 − Dw(st, at))]) . The policy optimization objective

then uses the reward: R(s, a) = log(Dw(s, a)) − log(1 − Dw(s, a)).

PTIRL: The PTIRL algorithm incorporates multiple agents, each with a set of demonstrated trajecto-
ries φi. To compute rewards for each agent, PTIRL considers target and non-target trajectories. Target
trajectories are demonstrated trajectories from a target agent, and non-target trajectories are demonstrated

4Maxent and AIRL implementations adapted from: https://github.com/HumanCompatibleAI/imitation (Gleave et al., 2022)

49

Published in Transactions on Machine Learning Research (04/2025)

trajectories from other agents. Denoting P as the probability transition function for all the agents, the linear
expected reward for each trajectory τ is defined as:

LER(τ) =
m∑

k=1
P (sk

′, ak, sk) · r(sk
′, ak, sk).

For each trajectory set, there is a lower bound value lb(φ) and an upper bound value ub(φ), defined as:
lb(φ) = minτ∈φ(LER(τ)) and ub(φ) = maxτ∈φ(LER(τ)), respectively. From lb(φ) and ub(φ), the spread δ
is defined as: δ(φa, φb) = lb(φa)−ub(φb). PTIRL defines a preferential ordering between any two trajectories
φa and φb as a poset, ≺, such that if φb ≺ φa, then δ(φa, φb) > 0. Given the above definitions, let φi be
the set of target trajectories and φni the set of non-target trajectories. The PTIRL objective is to compute
rewards such that φnt ≺ φi, δ(φi, φnt) ≥ α, where α is the minimum threshold for the spread. PTIRL is
generally fast because it directly computes rewards via linear optimization.

C.8 Reward Classification: Significance Tests

Table 10: Experiment 2: Welch’s t-tests

SRRD_vs_DIRECT SRRD_vs_EPIC SRRD_vs_DARD
Domain Rewards t-statistic p-value t-statistic p-value t-statistic p-value

Manual 11.522 0 12.478 0 10.385 0

Maxent 28.496 0 28.142 0 2.593 0.005

AIRL 13.610 0 5.117 0 4.266 0Gridworld

PTIRL 11.209 0 5.719 0 7.725 0

Manual 18.801 0 17.375 0 6.955 0

Maxent 32.341 0 12.104 0 -2.586 0.995

AIRL 45.020 0 28.226 0 19.488 0Bouncing Balls

PTIRL 5.089 0 3.101 0.001 7.096 0

Manual 16.152 0 15.851 0 16.786 0

Maxent 17.829 0 -2.543 0.994 9.123 0

AIRL 9.772 0 8.023 0 3.935 0Drone Combat

PTIRL 61.534 0 34.679 0 30.384 0

Manual 24.419 0 20.633 0 15.760 0

Maxent 6.171 0 1.717 0.04 2.233 0.013

AIRL 4.992 0 4.300 0 -2.913 0.998StarCraft II

PTIRL 6.054 0 3.631 0 4.961 0

Manual 4.409 0 2.23 0.01 3.04 0.001

Maxent 8.02 0 3.19 0.043 10.89 0

AIRL 6.24 0 4.95 0 5.59 0Robomimic

PTIRL 4.27 0 0.65 0.16 1.18 0.04

Manual 8.97 0 4.58 0 6.54 0

Maxent 4.40 0 2.95 0.001 3.23 0

AIRL 4.73 0 1.03 0.15 2.87 0Montezuma’s Revenge

PTIRL 2.30 0.01 0.763 0.223 -0.51 0.69

Manual 5.93 0 2.89 0 1.94 0.03

Maxent 2.71 0 1.18 0.12 6.66 0

AIRL 7.73 0 2.97 0 6.29 0.MIMIC-IV

PTIRL 2.14 0.02 -0.55 0.71 0.65 0.26

50

Published in Transactions on Machine Learning Research (04/2025)

In Table 10, we show the comprehensive results for the Welch’s t-tests for unequal variances, which are
conducted across all domain and reward type combinations, to test the null hypotheses: (1) µSRRD ≤
µDIRECT, (2) µSRRD ≤ µEPIC, and (3) µSRRD ≤ µDARD; against the alternative: (1) µSRRD > µDIRECT,
(2) µSRRD > µEPIC, and (3) µSRRD > µDARD, where µ represents the sample mean. Generally, the tests
indicate that (1) µSRRD > µDIRECT for all instances; (2) µSRRD > µEPIC for 22 out of 28 instances, and (3)
µSRRD > µDARD for 24 out of 28 instances. These tests are performed at a significant level of α = 0.05,
assuming normality as per central limit theorem, since the number of trials is 200. In summary, we conclude
that the SRRD pseudometric is more effective at classifying reward samples compared to its baselines.
Detailed accuracy scores with variability are shown in Table 11.

Table 11: Experiment 2: Accuracy Scores

Domain Rewards DIRECT EPIC DARD SRRD

Gridworld

Manual 69.8 ± 4.6 69.3 ± 4.6 70.0 ± 5.0 75.8 ± 4.6

Maxent 57.4 ± 4.5 57.5 ± 4.5 68.9 ± 4.5 70.0 ± 4.4

AIRL 82.3 ± 3.0 84.9 ± 1.8 85.0 ± 2.6 86.2 ± 2.7

PTIRL 82.2 ± 3.5 84.2 ± 3.3 83.4 ± 3.5 86.0 ± 3.3

Bouncing
Balls

Manual 46.5 ± 4.8 47.3 ± 4.6 52.0 ± 4.8 55.2 ± 4.5

Maxent 39.7 ± 3.1 46.0 ± 3.3 50.8 ± 3.2 49.9 ± 3.2

AIRL 41.2 ± 3.4 46.1 ± 3.9 49.8 ± 3.3 56.3 ± 3.3

PTIRL 70.3 ± 4.2 71.1 ± 4.3 69.5 ± 4.1 72.4 ± 4.0

Drone Combat

Manual 67.1 ± 4.1 67.2 ± 4.2 66.2 ± 4.9 73.9 ± 4.2

Maxent 70.3 ± 3.7 77.7 ± 3.8 73.2 ± 4.2 76.8 ± 3.5

AIRL 90.1 ± 3.9 90.7 ± 3.9 92.3 ± 3.7 93.8 ± 3.7

PTIRL 52.5 ± 4.3 63.7 ± 4.3 65.1 ± 4.6 78.3 ± 4.1

StarCraft II

Manual 65.5 ± 4.6 67.4 ± 4.5 69.5 ± 4.5 76.5 ± 4.4

Maxent 72.3 ± 4.1 74.1 ± 4.1 73.9 ± 4.2 74.8 ± 4.1

AIRL 75.1 ± 4.0 75.3 ± 4.0 78.1 ± 3.8 77.0 ± 3.8

PTIRL 77.2 ± 4.1 78.1 ± 4.2 77.6 ± 4.2 79.6 ± 4.0

Robomimic

Manual 78.2 ± 7.6 80.3 ± 9.3 79.5 ± 7.9 82.4 ± 8.6

Maxent 82.3 ± 8.3 86.8 ± 7.9 79.5 ± 9.1 89.8 ± 8.8

AIRL 85.9 ± 8.7 87.1 ± 9.1 86.3 ± 9.7 91.8 ± 9.5

PTIRL 80.3 ± 7.7 83.6 ± 8.3 83.1 ± 8.5 84.2 ± 8.1

Montezuma’s
Revenge

Manual 66.4 ± 7.5 70.1 ± 8.3 68.3 ± 7.7 73.5 ± 7.5

Maxent 67.8 ± 8.1 69.1 ± 8.3 68.7 ± 7.4 71.2 ± 7.9

AIRL 68.2 ± 8.3 71.4 ± 8.7 69.8 ± 7.9 72.3 ± 8.2

PTIRL 68.2 ± 7.9 69.6 ± 7.6 70.6 ± 7.9 70.2 ± 7.7

MIMIC-IV

Manual 53.5 ± 9.7 56.5 ± 9.2 57.3 ± 10.1 59.2 ± 9.5

Maxent 57.8 ± 8.51 59.1 ± 9.5 53.1 ± 9.7 60.2 ± 9.2

AIRL 56.5 ± 8.7 60.7 ± 8.6 57.6 ± 9.2 63.3 ± 8.9

PTIRL 58.9 ± 9.4 61.4 ± 8.9 60.3 ± 9.1 60.9 ± 9.3

51

	Introduction
	Related Works
	Preliminaries
	Markov Decision Processes
	Policy Invariance and Direct Reward Comparisons
	Unsampled Transitions

	Approach: Sparsity Resilient Reward Distance (SRRD)
	Relative Shaping Errors

	Experiments
	Experiment 1: Transition Sparsity
	Experiment 2: Classifying Agent Behaviors

	Conclusion and Future Work
	Derivations, Theorems and Proofs
	Sample-Based Approximations
	Relative Shaping Error Comparisons
	Motivation for the Relative Shaping Error (RSE) Measure
	Proof of Theorem 1

	Residual Shaping
	The Sparsity Resilient Canonically Shaped Reward is Invariant to Shaping
	Invariance under the Sample-Based SRRD Approximation
	Example: SRRD State Definitions
	Pseudometric Equivalence Under Full Coverage
	Repeated Canonicalization Under Full Coverage
	Regret Bound
	Generalized SRRD Extensions
	Computational Complexity

	Additional Considerations
	Deviations from Potential Shaping
	Sample-based Approximations using Unbiased Estimates
	Inferring Rewards for Unsampled Transitions via Regression
	Sensitivity of SRRD to Sampling Policy
	Environments with Infinite or Continuous State and Action Spaces

	Experimental Details
	Experiment 1: Transition Sparsity Pseudocode
	Experiment 1: Reward Functions
	Experiment 1: Parameters
	Transition Sparsity: Additional Results
	Experiment 2: Reward Classification - Testbeds
	Experiment 2: Parameters
	Experiment 2: Inverse Reinforcement Learning (IRL)
	Reward Classification: Significance Tests

