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Abstract
Multi-task reinforcement learning (RL) faces the
significant challenge of varying task difficulties,
often leading to negative transfer when simpler
tasks overshadow the learning of more complex
ones. To overcome this challenge, we propose a
novel algorithm, Scheduled Multi-Task Training
(SMT), that strategically prioritizes more chal-
lenging tasks, thereby enhancing overall learning
efficiency. SMT introduces a dynamic task pri-
oritization strategy, underpinned by an effective
metric for assessing task difficulty. This metric en-
sures an efficient and targeted allocation of train-
ing resources, significantly improving learning
outcomes. Additionally, SMT incorporates a reset
mechanism that periodically reinitializes key net-
work parameters to mitigate the simplicity bias,
further enhancing the adaptability and robustness
of the learning process across diverse tasks. The
efficacy of SMT’s scheduling method is validated
by significantly improving performance on chal-
lenging Meta-World benchmarks.

1. Introduction
Recent advancements in deep learning, particularly in com-
puter vision (Krizhevsky et al., 2012), have spurred the
integration of deep learning with reinforcement learning
(RL), forming what is known as deep RL. This approach
has shown promise in complex control tasks, ranging from
mastering Atari games using raw pixel data (Mnih et al.,
2015) to conquering the game of Go (Silver et al., 2016),
and advancing locomotion control (Schulman et al., 2015;
Lillicrap et al., 2016a; Schulman et al., 2017; Haarnoja et al.,
2018b; Fujimoto et al., 2018). A key aspect of this success is
the use of deep neural networks (DNNs) as function approx-
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imators, enabling the representation of intricate policies and
state-action value functions over vast state-action spaces.

However, a limitation of deep RL lies in its typical focus
on individual tasks, leading to sub-optimal sample usage
and inefficiency, particularly for complex tasks. Multi-task
RL (Wilson et al., 2007; Pinto & Gupta, 2017; Zeng et al.,
2018; Hausman et al., 2018; Yang et al., 2020), inspired
by the principles of multi-task learning (Caruana, 1997),
addresses this by training a single policy network capable
of handling multiple tasks, improving sample efficiency
through shared parameters. Despite its advantages, multi-
task RL encounters the challenge of negative transfer, where
learning certain tasks can impede the learning of others,
destabilizing training (Sun et al., 2020).

To overcome these challenges, this paper introduces a novel
approach: a scheduled multi-task RL method that is resilient
to varying task difficulties and enhances performance in
more challenging tasks. Our method involves developing a
general agent incorporating a task representation vector into
its action value function and policy network. We assess each
task’s difficulty relative to the current policy and adaptively
schedule the learning sequence based on this assessment.
This approach prioritizes difficult tasks early in training,
reducing the undue influence of simpler tasks and enhancing
overall performance. We validate our method using the
Meta-World benchmark (Yu et al., 2019), which comprises
50 robotic arm manipulation tasks. Our results demonstrate
significant improvements over the baseline algorithm.

The primary contributions of this work are:

• The introduction of a novel scheduled multi-task RL
approach, the first of its kind to robustly handle vary-
ing task difficulties and mitigate negative transfer in
practical applications.

• A unique method for evaluating task difficulty and
adaptively scheduling training combined with a reset
mechanism, significantly enhancing performance on
more challenging tasks.

• Empirical evidence showing superior performance of
our method compared to base algorithms on the Meta-
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World benchmark, accompanied by an in-depth analy-
sis of the underlying mechanisms.

2. Preliminaries
2.1. Multi-Task Reinforcement Learning

An RL task is modeled as a discrete-time finite-horizon
Markov decision process (MDP), represented by M =
(S,A,P, r, ρ, γ,H), where S ⊆ Rds denotes the state
space, A ⊆ Rda the action space, P : S × A × S → R+

the transition probability, r : S ×A → R the reward func-
tion, ρ : S → R+ the initial state distribution, γ ∈ [0, 1)
the discount factor, and H the horizon. At each timestep t,
the agent observes the current state st ∈ S of the environ-
ment and takes action at ∈ A based on its policy π(at|st).
Subsequently, the environment rewards the agent with rt ac-
cording to the reward function rt = r(st, at) and transitions
to the next state st+1 based on the transition probability
P(st+1|st, at). The trajectory of length H is denoted by
τ = (s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH). Let qπ(τ) be
its distribution under the transition probability P and policy
π(at|st).

The primary objective of conventional single-task RL is to
maximize the expected discounted sum of rewards J(π) =
Eτ∼ρπ

[∑H
t=1 γ

t−1rt

]
. On the other hand, in multi-task

RL considered in this paper, the goal is not just to optimize
the policy for a single task, but obtain a single policy that
performs well over multiple tasks. Formally, we consider
a set of tasks C = {Ti}Ni=1 and a distribution p(T ) over
C, where each task Ti is characterized by a distinct MDP
Mi = (S,A,Pi, ri, ρi, γ,H) described above and p(T )
is typically assumed to be uniform. The MDPs {Mi}Ni=1

share the same state and action spaces, but have different
reward functions, transition probabilities, and initial state
distributions. The goal of multi-task RL is to learn a single
policy π that maximizes the average expected return across
all tasks sampled from p(T ). Thus, the objective can be
expressed as

max
π

ET ∼p(T )[J(π, T )], (1)

where J(π, T ) is the expected return of a single task T ∈ C.

We will assume that the environment is fully observable,
allowing the agent to access the current state st of the envi-
ronment, and that the reward function is bounded above by
Rmax, that is,

sup
(s,a)∈S×A

ri(s, a) = Rmax <∞, ∀i.

There exist several architectures for the single policy π han-
dling multiple tasks. In this paper, we use a deep generalized
policy πθ(a|s, z) that takes a task representation z as input

alongside the current state s, where θ is the policy parameter.
The learned task representation replaces one-hot encoded
task information. The details of our generalized policy ar-
chitecture will be presented in Section 4. As the backbone
algorithm to train the policy, a general RL algorithm can be
adopted. In this paper, we use SAC (Haarnoja et al., 2018b)
as our backbone algorithm.

2.2. Probabilistic Inference for Reinforcement Learning

Our algorithm requires a metric to measure the goodness
of a policy πθ for an RL task M = (S,A,P, r, ρ, γ,H).
Such a metric can be obtained from the work of Levine
(2018). The basic idea is to check how far a trajectory τ
generated by a policy πθ is from an optimal trajectory for
the task. For details, please refer to Levine (2018). Here, we
briefly summarize the work relevant to our development. In
(Levine, 2018), a fully observable MDP is represented as a
control problem involving a probabilistic graphical model by
introducing a binary random variable O. Given a trajectory
τ , {O = 1} denotes the event that τ is optimal, whereas
{O = 0} denotes the event that τ is not optimal. Then, the
following conditional probability is defined (Levine, 2018):

p(O = 1 | τ) = exp

(
H∑
t=1

γt−1(rt −Rmax)

)
, (2)

where Rmax is the least upper bound of the reward function
r. In addition, the prior distribution for τ is assigned as

p(τ) = ρ(s0)

H∏
t=1

[U(at)p(st+1|st, at)] , (3)

where ρ(s0) and p(st+1|st, at) are the true initial state dis-
tribution and transition probability, and U is the uniform
distribution on A.

The probability distribution qθ(τ) of τ generated by the
policy πθ is simply given by (Sutton & Barto, 1998)

qθ(τ) = ρ(s0)

H∏
t=1

[πθ(at|st)p(st+1|st, at)] . (4)

We adopt qθ(τ) as our variational posterior distribution
and attempt to minimize the distance between q(τ) and
p(τ |O = 1), where the latter is the posterior distribution
of an optimal trajectory under our prior (3). In particular,
the KL divergence between q(τ) and p(τ |O = 1) can be
computed as

−KL (qθ(τ) ∥ p(τ | O = 1))

= Eτ∼qθ [log p(τ | O = 1)− log qθ(τ)]

= Eτ∼qθ

[
H∑
t=1

(
γt−1rt − log πθ(at|st)

)]
− C, (5)
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where C is constant irrespective of the policy. Note that the
first term corresponds to the expected return, and the second
term corresponds to the expected entropy of policy πθ(·|s).
Interestingly, the theory suggests that an optimal trajectory
is a combination of return (exploitation) and exploration.
A more detailed derivation of equation (5) is provided in
Appendix E

2.3. Resetting Deep Networks

In deep single-task RL, learning tends to overfit early expe-
riences, called the primacy bias, which is initially explored
by Nikishin et al. (2022). To counter this bias, Nikishin et al.
(2022) proposed a method that periodically implements re-
sets of the RL agent’s parameters while preserving the replay
buffer. The key aspect of this innovative approach is that
although the performance of the deep agent suddenly drops
after reset, the performance quickly improves with good
trajectories obtained in the later stage of learning thus elim-
inating the primacy bias. This approach has demonstrated
marked improvements in diverse environments. Extending
this concept, D’Oro et al. (2023) suggested modulating the
frequency of resets based on the volume of updates rather
than environmental steps, thereby enhancing sample effi-
ciency through more regular resets in scenarios of elevated
replay ratios. Advancing this line of research, Kim et al.
(2023) introduced a novel reset mechanism that incorpo-
rates deep ensemble learning, mitigating the performance
collapse after reset. Moreover, Schwarzer et al. (2023) re-
fined the reset mechanisms and demonstrates human-level
efficiency in Atari game environments.

3. Motivation: The Simplicity Bias in Deep
Multi-Task RL

In this section, we present a motivating example that illus-
trates the challenges to conventional deep multi-task RL,
which treats all target tasks with equal priority. The chal-
lenge is pronounced when the set of target tasks comprises
tasks with different difficulties and stochastic gradient up-
dates are used for training as most deep RL algorithms.

3.1. Heterogeneity in Task Complexity

In multi-task RL, tasks often vary significantly in complex-
ity. For example, consider the Meta-World environment
(Yu et al., 2019), which serves as a prime benchmark for
multi-task RL. The Meta-World benchmark features a spec-
trum of tasks that demand varying amounts of samples and
learning time. To quantify these differences, we conducted
separate training sessions for four representative tasks—
‘reach,’ ‘drawer-close,’ ‘peg-insert-side,’ and ‘push’—using
the same Soft Actor-Critic (SAC) algorithm (Haarnoja et al.,
2018b). The rendered images of the four tasks are shown in

(a) reach (b) drawer-close

(c) peg-insert-side (d) push

Figure 1. Rendered image of the four representative tasks—
‘reach,’ ‘drawer-close,’ ‘peg-insert-side,’ and ‘push’—of the Meta-
World benchmark’s MT10 benchmark.

Figure 1. The first two tasks, ‘reach’ and ‘drawer-close,’ are
much easier compared to the other two tasks, ‘peg-insert-
side’ and ‘push’. As a result, they demonstrate fast learning
curves, as shown in Figure 2. On the other hand, the learn-
ing curve for the difficult task of ‘push’ is very slow and has
high variance.

3.2. The Simplicity Bias

In the previous subsection, we observed that a set of tasks
for multi-task RL is typically composed of tasks of various
difficulties. Now, we want to see how the heterogeneity of
task complexity affects the learning process of a conven-
tional multi-task RL agent. For this, we selected two sets Γ1

and Γ2 of tasks, where each set is composed of two tasks
and both sets include the difficult ‘push’ task. We compared
the performance on the ’push’ task under two different set-
tings. The first set Γ1 is composed of ‘reach’ and ‘push’
tasks, and the second set Γ2 is composed of ‘peg-insert-side’
and ‘push’ tasks. Note that the difficult ‘push’ task is paired
with the easier task of ‘reach’ in the first set, whereas the
difficult ‘push’ task is paired with the relatively difficult task
of ‘peg-insert-side’ in the second set. For each of these two
settings, we trained the multi-task agent with a conventional
multi-task objective derived from (1):

JconvMT =
1

|Γj |
∑

Ti∈Γj

J(πθ, Ti), j = 1, 2, (6)

under the assumption of uniformly distributed p(T ). The
key aspect of the conventional multi-task objective (6) is
assigning equal priority to all the tasks in the multi-task set.

Figures 3(a) and 4(a) show the learning results for the set-
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(b) drawer-close
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(c) peg-insert-side
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Figure 2. Learning curves of four tasks: ‘reach,’ ‘drawer-close,’
‘peg-insert-side,’ and ‘push’. It takes much longer for the agent to
succeed in the complex tasks, ‘peg-insert-side’ and ‘push,’ com-
pared to the simpler tasks, ‘reach’ and ‘drawer-close.’

tings Γ1 and Γ2, respectively. As seen in Figure 3(a), when
the difficult ‘push’ task is paired with an easy ‘reach’ task,
the agent completely fails to learn the difficult ‘push’ task.
When the difficult ‘push’ task is paired with the relatively
difficult ‘peg-insert-side’ task, on the other hand, the agent
partially learns the difficult ‘push’ task as seen in Figure
4(a). Contrary to our initial intuition, the difficult ‘push’
is learned when it is paired with another difficult task, not
when it is paired with an easy task. For more detailed ex-
amination of simplicity bias, a simple gridworld example is
provided in Appendix F.

3.3. Gradient Magnitude Analysis of the Simplicity Bias

In order to investigate the cause of the phenomenon in the
previous subsection, we delve further into the problem by
examining the policy gradient. The policy gradient is the
main quantity that directly affects policy updates for policy
gradient or actor-critic methods. The policy gradient of the
multi-task objective (6) is given by

∇θJconvMT =
1

|Γj |
∑

Ti∈Γj

∇θJ(πθ, Ti), j = 1, 2. (7)

We assume that the computation of the policy gradient
is done stochastically based on mini-batches from replay
buffers (Lillicrap et al., 2016b).

Figures 3(b) and 4(b) show the policy gradients
∇θJSAC(πθ, T1) and∇θJSAC(πθ, T2) over time for the two
sets Γ1 and Γ2, respectively. In the first setting, where the
difficult ‘push’ task is paired with the easy ‘reach’ task, it
is seen in Figure 3(b) that the gradient norm of the easy
‘reach’ task increases quickly because the episodic return
for an easy task increases quickly, and the policy gradient is
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Figure 3. Learning curves for the ‘reach’–‘push’ setting. When the
discrepancy between the task complexity is large, the agent fails
to succeed on the harder task, which is ‘push’ in this case.
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Figure 4. Learning curves for the ‘peg-insert-side’–‘push’ setting.
When the discrepancy between the task complexity is moderate,
the agent succeeds in both tasks.

the product of the expected return and the score in principle
(Sutton & Barto, 1998). On the other hand, the gradient
norm of the difficult ‘push’ task does not increase over time.
This is because the large gradient of the easy task in the
early stage of learning pushes the multi-task policy towards
the optimal direction of the easy task and prevents the agent
from learning the difficult task. In this way, the overall
multi-task learning settles down to solving the easy task
without much opportunity for learning the difficult task. We
will refer to this phenomenon as the simplicity bias in multi-
task learning. One might think that when the easy task is
eventually fully learned, its gradient norm becomes small
due to the score term, and the learning is more focused on
the difficult task, allowing the gradient norm of the diffi-
cult task to eventually increase. However, as time goes on,
the learning rate for stochastic gradient shrinks in general.
Hence, policy updates are performed less frequently over
time and the policy settles without permitting prolonged
time for learning the difficult task.

On the other hand, Figure 4(b) shows that the gradient norm
of the difficult ‘push’ task increases together with the gra-
dient norm of another difficult task, ‘peg-insert-side,’ when
the ‘push’ task is paired with the ‘peg-insert-side’ task. This
is because both tasks are difficult, the return levels of both
tasks are comparable in the early stage of learning and hence
the simplicity bias does not occur.

As seen, the simplicity bias is a major obstacle in multi-task
RL for a general set of tasks with diverse task complexity,
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leading to overfitting to easy tasks, failing to learn more
complex tasks, and deteriorating the overall average perfor-
mance. One right-away idea to cope with this situation is to
apply different weights for different task gradients in (7), as
done in other gradient manipulation works (Yu et al., 2020;
Liu et al., 2021). However, determination of the gradient
weights poses another design issue, which is not trivial. In
the remainder of this paper, we will tackle the problem of
‘how to effectively mitigate or overcome the simplicity bias
in multi-task RL and achieve improved overall performance’
from a totally different approach.

4. Scheduled Multi-Task Training for
Multi-Task Reinforcement Learning

In this section, we describe the environment setting, base-
lines, and implementation details. To address the question
raised in the previous section regarding the optimal struc-
ture and algorithm for effectively dealing with the varying
task difficulties of multi-task RL, we propose the Scheduled
Multi-Task Training (SMT) algorithm. This new approach
is specifically designed to counteract the negative transfer in
multi-task RL by prioritizing more challenging tasks, thus
enhancing the overall learning efficiency. The complexity-
based scheduling, which is our main component, is sup-
ported by two components: reset mechanism and budget-
based training.

• Complexity-Based Scheduling: At its core, SMT em-
ploys a strategic scheduling approach that emphasizes
the early resolution of more challenging tasks to pre-
vent the overshadowing effect of simpler tasks. This
strategy, underpinned by a novel metric for task diffi-
culty assessment, ensures real-time task prioritization
and optimal allocation of learning resources.

• Reset Mechanism: SMT incorporates a reset mech-
anism to address the simplicity bias. By periodically
reinitializing network parameters while keeping the
replay buffer, this mechanism maintains the model’s
adaptability and broadens its generalization capabili-
ties across various tasks.

• Budget-Based Training: SMT divides the training
budget into two stages for effective resource utilization.
Initially focusing on tasks judged solvable, it later re-
allocates budgets toward previously unsolvable tasks,
preventing waste of the budget.

The overall flow of our SMT framework is illustrated in
Figure 5. SMT utilizes three deep neural networks: a policy
network πθ, a Q-value function network Qψ , and a task em-
bedding network Eφ. For each task Ti in the task set C, we
maintain a distinct experience replay buffer Di. The objec-
tive is to maximize

∑
Ti∈C J(πθ, Ti) within a total budget

of agent-environment interactions Btotal. We discuss the
aforementioned key components of SMT in the following
subsections.

4.1. Complexity-Based Scheduling

Based on the observations we made in the previous section,
two things are clear: (i) We should not train tasks with
drastically different difficulties at the same time; and (ii)
since difficult tasks require more training time, they should
be prioritized. This naturally leads us to adopt a complexity-
based scheduling scheme that simultaneously trains K most
complex tasks at the moment. We will call this set ofK tasks
as the training pool Pt, and call the set of the remaining
tasks as the main pool Pm. As the agent learns more and
more about a task, it will progressively get easier, eventually
returning back to the main pool. The vacancy in Pt would
then be filled by a task in Pm that is most difficult at the
moment. The complexity of a task is assessed by generating
neval of trajectories using the policy every Teval time-steps
on each task and computing the average value of the metric
(5).

The loss functions for the trainer are given by:

ℓπ(θ) =
1

|C|
∑
Ti∈C

Es∼Di
[ℓπ(θ; s)] ,

ℓQ(ψ) =
1

|C|
∑
Ti∈C

E(s,a)∼Di

[
ℓQ(ψ; s, a)

]
,

where ℓπ(θ; s) and ℓQ(ψ; s, a) are per sample actor and
critic loss functions, respectively. Note that updates for
tasks Ti ̸∈ Pt may still occur if their experience replay
buffers Di’s are not empty.

4.2. Reset Mechanism

The problem with naive complexity-based scheduling is
that selecting simple tasks at the early stages of the training
process is inevitable because we do not have access to the
task complexity a priori. Due to the simplicity bias, the
policy and value networks are overfitted to simpler tasks
at the early stages, severely hindering the training of more
complex tasks that will appear later. To solve this problem,
we adopt a reset mechanism proposed by Nikishin et al.
(2022): reset the policy parameter θ and the Q-value func-
tion parameter ψ while leaving the experience replay buffers
untouched.

4.3. Budget-Based Training

Another issue of naive complexity-based scheduling is that
if an unsolvable task were sampled in the earlier stage of
the process, the algorithm would fail to allocate enough
resources to the training on other tasks. Tasks that might
have been solvable if given sufficient samples, would be
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Figure 5. Overview of the SMT framework. The complexity-based scheduling in Stage 1 is supported by the reset mechanism and
budget-based training in Stage 2. For further explanation, please see Appendix H.

left unsolved, resulting in a poor final performance. To
prevent this event from happening, we assign a budget bi
for each task Ti ∈ Pt. Whenever the agent interacts with
the environmentMi for bi time-steps, we check its training
performance by computing the mean return for the ntrain
most recent training trajectories. If the training performance
is below a predefined threshold m, the task is considered
unsolvable. That task is removed from Pt and moved to the
pool Pu of unsolvable tasks. Since the total budget is fixed,
we set the per-task budgets bi adaptively as κB where B is
the remaining budget and 0 < κ < 1 is a hyperparameter.

To further boost the sample efficiency, we also adopt an
early-stopping mechanism for tasks that are already solved.
If the mean return of the n most recent training trajectories
for a task Ti exceeds a certain predefined threshold M , we
consider it to be solved and move Ti to the pool Ps of solved
tasks.

In the later stages of the algorithm, per-task budgets will
not be large enough to correctly assess the task’s solvability.
Therefore, we must give the tasks in Pu a second chance.
We do this by splitting Btotal into two parts: B1 for Stage
1 and B2 for Stage 2, satisfying B1 +B2 = Btotal. When
Stage 1 is finished, that is, the agent has interacted with the
environment for B1 time-steps, we progress to Stage 2 by
training all the tasks in Pu together, anticipating potential
positive transfers.

To conclude, all tasks in C are categorized into four mutually
exclusive pools: the main pool Pm, the training pool Pt,
the unsolvable pool Pu, and the solved pool Ps. The main
contribution of our work is the novel task scheduling, thus
any type of policy network can be used for practical imple-
mentation. In our research, we utilize the VariBAD policy

structure (Zintgraf et al., 2020) to extract pertinent informa-
tion from each task, detailed in Appendix D. The overall
process of the proposed method is illustrated in Figure 5
and is summarized in Algorithm 1

5. Experiments
Environment. In order to test how well the proposed
method can perform on multiple complex tasks, we tested
our approach with the Meta-World benchmark (Yu et al.,
2019), which has 50 distinct robotic control tasks with a
sawyer arm in the MuJoCo environment (Todorov et al.,
2012). Our experiments use two modes, MT10 and MT50,
with 10 and 50 manipulation tasks, respectively, from the
benchmark, as shown in Figure 7. The task sets of MT10
and MT50 are given in Appendix A.

Baselines. We compared the proposed method with the
baseline methods: 1) SAC with multi-task (SAC-MT): A
shared policy with a one-hot task identification encoding
and current state as input. 2) SAC with Multi-task Multi-
head (SAC-MT-MH) (Yu et al., 2019): It is similar to SAC
with multi-task but has an independent final layer in the
policy network for each task (multi-head). 3) SAC with
soft modularization (SAC-soft-modular) (Yang et al., 2020):
Policy with multiple modules with soft modularization tech-
nique that gives a routing strategy for each task. 4) Gradient
Surgery for Multi-Task Learning (PCGrad) (Yu et al., 2020):
This approach addresses conflicting gradients in multi-task
learning by projecting gradients to a shared subspace, im-
proving overall learning efficiency and performance. 5)
Parameter-compositional multi-task reinforcement learning
(PaCo) (Sun et al., 2022): This method leverages parameter
compositionality to enable efficient multi-task learning by
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Table 1. Comparisons of per-task and average success ratios (%) of the Meta-World MT10 benchmark. For the task name corresponding
to each task ID, see Appendix A.

Task ID

Algorithm 0 1 2 3 4 5 6 7 8 9 Average

SAC-MT 98±2.4 0±0.0 0±0.0 100±0.0 100±0.0 100±0.0 96±2.0 0±0.0 100±0.0 100±0.0 69.4 ± 0.8
SAC-MT-MH 100±0.0 28±21.8 0±0.0 100±0.0 98±2.5 100±0.0 100±0.0 46±21.8 100±0.0 100±0.0 77.2 ± 11.9
Soft Modular 100±0.0 32±14.9 0±0.0 100±0.0 100±0.0 100±0.0 100±0.0 12±14.9 100±0.0 100±0.0 74.4 ± 10.5
PCGrad 94±3.7 0±0.0 0±0.0 100±0.0 100±0.0 100±0.0 100±0.0 54± 39.9 100±0.0 100±0.0 74.8 ± 13.7
PaCo 100±0.0 44±25.2 0±0.0 100±0.0 100±0.0 100±0.0 100±0.0 80 ± 40 100±0.0 100±0.0 82.4 ± 14.2

SMT (Ours) 96±3.7 62±17.9 34±13.8 100±0.0 100±0.0 100±0.0 100±0.0 76±31.9 100±0.0 100±0.0 86.8 ± 8.6

composing task-specific parameters from a shared set of
base parameters.

In all experiments, the policy, task embedding network,
decoder network, and soft Q-function are implemented as
neural networks with two hidden layers of size of 400 and
ReLU activation. The output size of the task embedding
network is 8 (dimension of the representation space Z).

5.1. Results on Meta-World

We report the results on MT10 and MT50 in Table 1 and 2,
respectively. These results validate the efficacy of the SMT
algorithm’s innovative approach to multi-task learning in
RL, particularly its dynamic task prioritization, reset mech-
anism, and strategic budget allocation, which collectively
contribute to significant performance improvements across
diverse tasks in the Meta-World benchmark.

Results on MT10. Referring to the MT10 results in Table
1, our SMT algorithm demonstrates superior performance
across the board, achieving the highest average success rate
of 86.8%. This represents a significant improvement over
existing approaches. Notably, the SMT algorithm excels in
tasks that other methods struggle with, such as task ID 1
(‘push’) and 7 (‘peg-insert-side’). This underscores the ef-
fectiveness of the SMT’s task prioritization and scheduling,
which focuses on addressing more challenging tasks early
in the training process.

Results on MT50. For the MT50 results in Table 2, the
pattern of SMT’s effectiveness continues. It outperforms
other methods, especially noticeable in the average bottom-
k success ratios. For instance, in the more challenging
subset of tasks (bottom-20), while all baselines struggle,
SMT shows a clear advantage.

5.2. Analysis of the Proposed Scheduling Approach

In this section, to evaluate the effectiveness of the proposed
scheduling method, we explore the changes in task-learning

Table 2. Comparison of average bottom-k success ratios of the
Meta-World benchmark MT50 benchmark.

Average Bottom-k Success Ratio (%)

Algorithm k = 10 k = 20 k = 30 k = 40 k = 50

SAC-MT 0.0 ± 0.0 3.7 ± 5.6 21.0 ± 13.8 40.7 ± 10.4 52.6 ± 8.3
SAC-MT-MH 0.0 ± 0.0 4.5 ± 6.1 26.1 ± 14.6 44.0 ± 11.0 55.2 ± 8.8
Soft Modular 0.0 ± 0.0 1.8 ± 3.7 23.7 ± 12.3 42.6 ± 9.5 54.1 ± 7.6
PCGrad 0.0 ± 0.0 0.0 ± 0.0 21.0 ± 12.9 39.9 ± 10.7 51.9 ± 8.5
PaCo 0.0 ± 0.0 4.6 ± 8.2 26.1 ± 15.0 44.6 ± 11.2 55.6 ± 9.1

SMT (Ours) 0.0 ± 0.0 8.0 ± 8.9 26.8 ± 13.1 45.0 ± 9.9 56.0 ± 8.0

sequences facilitated by this scheduling strategy. We have a
total interaction budget of B, and for every timestep, each
task Ti undergoes Si interactions with the agent. The rate
of current budget utilization for the task Ti is thus expressed
as Si/B. Accordingly, under this scheduling strategy, tasks
that are selected with greater frequency have a higher budget
usage rate, while those chosen less frequently have a lower
rate of budget use.

Figure 6 shows the learning curve for the MT10 benchmark.
As seen in Figure 6, the agent utilizes a higher number of
training samples for challenging tasks such as ‘push,’ ‘pick-
place,’ and ‘peg-insert-side’. Conversely, simpler tasks such
as ‘drawer-close’ and ‘window-open’, require fewer sample
budgets compared to the more demanding tasks.

5.3. Ablation Studies

First, we conducted ablation studies on the key hyperparam-
eters of SMT: κ,M,m,B1 with the MT10 benchmark. The
hyperparameter κ represents the size of the training pool Pt,
while m and M denote the thresholds for classifying tasks
as unsolvable and solvable, respectively. Additionally, B1

signifies the allocated budget for Stage 1.

The ablation result is shown in Table 3, showing the average
success ratio according to the task set configuration in the
MT10 benchmark. There, Ceasy denotes the set of relatively
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Table 3. Ablation studies on the hyperparameters

Hyperparameters

κ M m B1 Default

Task Set 0.7 0.9 2000 3000 500 2000 1.5× 107 2.0× 107

Ceasy 99.6 ± 0.1 95.6± 3.7 62.5± 28.3 83.2± 11.9 92.7± 5.8 99.5± 0.2 94.3±4.2 99.5±0.2 99.3±0.3
Cdifficult 50.3±34.3 69.8±19.6 54.1±27.9 61.1±18.4 68.2±22.3 63.3±25.8 67.6±23.4 66.2±10.2 68.0±16.1

C 79.8±15.5 85.3±9.8 59.1±23.6 74.4±12.7 82.9±9.4 85.1±9.9 83.6±8.9 82.9±10.0 86.8 ±8.6

Stage 2Stage 1

Figure 6. Learning curve for the budget usage rate (Si/B) for each
task Ti within the MT10 benchmark. For more complex tasks, the
agent tends to utilize more training samples. This is particularly
evident in tasks such as ‘pick-place,’ ‘push,’ and ‘peg-insert-side’.

easy tasks within the MT10 benchmark comprising ’reach’,
’door-open’, ’drawer-open’, ’window-open’, and ’window-
close’ tasks, whereas the remaining tasks form the set of
difficult tasks Cdifficult. The ablation result shows that the
performance is robust against m and B1 and is relatively
dependent on κ and M . The reason for the dependence of
κ is that the amount of samples used to solve a given task
is determined by the value of κ, underscoring the impor-
tance of setting an appropriate κ. More ablation studies are
provided in Appendix G

Next, we conducted ablation studies on the reset mecha-
nism. Table 4 shows the average success ratio based on the
presence or absence of the reset mechanism. With the reset
mechanism, we have 22 % performance increase. The result
shows that the reset mechanism is important in our SMT
framework.

Finally, to verify the importance of the ”Hard Tasks First”
scheduling scheme, we conducted experiments on vari-
ous scheduling methods, including random task selection,

Table 4. Ablation study on the reset mechanism

Algorithm

Task set SMT w/o reset SMT

Ceasy 88.7±7.1 99.3±0.3
Cdifficult 43.8±31.8 68.0±16.1

C 70.7 ±17.4 86.8 ±8.6

Table 5. Ablation study on the scheduling method

Scheduling Method

Task Set Easy Tasks First Random Hard Tasks First(Ours)

Ceasy 88.7±7.1 89.8±4.3 99.3±0.3
Cdifficult 23.8±36.4 26.2±44.5 68.0±16.1

C 62.7±17.4 62.6±21.3 86.8±8.6

easy tasks first, and hard tasks first. Table 5 shows the
average success ratio for each scheduling method. As
shown, scheduling with the hard tasks first outperforms
other scheduling approaches, highlighting the effectiveness
of our method.

6. Related Works
Multi-task RL. Multi-task learning has emerged as a crit-
ical domain within machine learning, aiming to develop
algorithms that excel across a broad spectrum of tasks. This
endeavor has proven to be particularly pivotal in RL, where
the goal is to construct models capable of mastering diverse
tasks (Wilson et al., 2007; Pinto & Gupta, 2017; Zeng et al.,
2018; Hausman et al., 2018; Yang et al., 2020). Unlike
single-task learning, multi-task RL thrives on exploiting
the shared knowledge between tasks to foster generaliza-
tion, a concept that has also seen significant adoption in
computer vision to improve feature extraction and general-
ization (Zhang et al., 2014; Dai et al., 2016; Liu et al., 2019).
The primary challenge lies in optimizing the knowledge
transfer across tasks to boost learning efficiency without
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Algorithm 1 Scheduled Multi-Task Training (SMT)

1: Initialize policy network πθ, Q-value network Qψ , task
embedding network Eφ

2: Initialize replay buffers Di for each task Ti ∈ C
3: (Pu,Ps)← (∅,∅)
4: Randomly sample K tasks to form Pt
5: Pm ← C \ Pt
6: Set a budget for each task in Pt as κBtotal.
7: for B ← Btotal, Btotal − 1, . . . , B1 + 1 do
8: for all Ti ∈ Pt do
9: Interact with the environment and store data in Di

10: if Training performance of Ti > M then
11: Move Ti to Ps
12: end if
13: if Ti exhausts its budget then
14: if Training performance of Ti < m then
15: Move Ti to Pu
16: else
17: Move Ti to Pm
18: end if
19: end if
20: end for
21: Update θ, ψ, and φ using the data in {Di}
22: if Btotal −B ≡ Treset − 1 (mod Treset) then
23: Evaluate the performance of πθ on each tasks by

rolling out neval trajectories.
24: Randomly reinitialize θ and ψ
25: end if
26: while |Pt| < K do
27: Sample a task Ti with the lowest evaluation perfor-

mance, move it to Pt, and set its budget to κB.
28: end while
29: end for
30: for B ← B1, B1 − 1, . . . , 1 do
31: for all Ti ∈ Pu do
32: Interact with the environment and store data in Di
33: end for
34: Update θ, ψ, and φ using the data in {Di}
35: end for

succumbing to negative transfer, where progress in one task
may inadvertently degrade performance in others.

Addressing Negative Transfer. Addressing negative trans-
fer is paramount to the success of multi-task RL. Strategies
to mitigate this issue encompass a range of techniques. (i)
Distillation methods leverage policy distillation to amal-
gamate insights from multiple tasks into a unified model,
albeit typically requiring a separate network for each task,
thus increasing the resource overhead (Rusu et al., 2016a;
Parisotto et al., 2016; Teh et al., 2017). (ii) Modular net-
works employ distinct modules for different tasks, with
potential task-specific routing to manage parameter sharing

and minimize task interference. This method allows for
strategic parameter sharing, curbing the adverse effects of
negative transfer (Rusu et al., 2016b; Devin et al., 2017;
Andreas et al., 2017; Haarnoja et al., 2018a; Yang et al.,
2020; Sun et al., 2022). (iii) Gradient-based techniques fo-
cus on analyzing gradient signals across tasks to identify
and eliminate elements that could lead to negative transfer.
Although promising, the variability and noise inherent in
task gradients can complicate their effective utilization for
this purpose (Zhang & Yeung, 2013; Chen et al., 2018; Hu
et al., 2019; Yu et al., 2020). In contrast to the previous
approaches, we train a task-embedding network alongside
a novel learning algorithm specifically designed to counter-
act negative transfer. By quantifying the negative effects
and dynamically adjusting the learning process, our method
offers a stable and effective solution to the challenges of
multi-task RL.

7. Conclusion
In this work, we introduced the Scheduled Multi-Task Train-
ing (SMT), addressing the critical challenge of negative
transfer in multi-task RL. By strategically prioritizing more
complex tasks, SMT effectively enhances learning efficiency
and performance across a diverse set of tasks. Our novel
dynamic task prioritization strategy, guided by a metric for
assessing task difficulty, ensures that training resources are
allocated where they are most needed, thereby significantly
improving learning outcomes. Moreover, the incorporation
of a reset mechanism to periodically reinitialize key net-
work parameters mitigates the simplicity bias, enhancing
the adaptability and robustness of the learning process. Fu-
ture work could explore the integration of SMT with other
RL algorithms, further refinement of the task difficulty as-
sessment metric, and the application of SMT to real-world
multi-task learning problems. Additionally, investigating
the impact of different reset mechanisms and task priori-
tization strategies on learning efficiency and adaptability
presents an exciting avenue for research. Ultimately, the
SMT algorithm opens up new possibilities for advancing
the field of multi-task RL.

Impact Statement
One of the current limitations of RL is generalization. That
is, the policy trained for a specific task has difficulty in
performing well for a different task. Thus, training a policy
that can perform well for multiple similar tasks is a vital
issue in RL. In this paper, we proposed a new effective
algorithm based on scheduling for multi-task RL, which
mitigates the negative transfer among multiple tasks and
enhances overall performance. Our result can contribute to
application of RL to many real-world control problems that
require solving multiple similar tasks.
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A. MT10 and MT50 Environments
In our experiment, we make two benchmarks MT10 and MT50 that contain 10 and 50 distinct environments from the 50
environments of Meta-World (Yu et al., 2019), respectively. Figure 7 and 8 illustrates every task in the MT10 and MT50.
Note that the illustrated figures are all derived from rendered images within the Meta-World environment (Yu et al., 2019).

reach push pick-place door-open drawer-open

drawer-close button-press-topdown peg-insert-side window-open window-close

Figure 7. MT10: multi-task benchmark with 10 distinct tasks.
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Figure 8. MT50: multi-task benchmark with 50 distinct tasks.
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B. MT50 Full Experiment Result
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Figure 9. Meta-World MT50 success rate. We report the final success rates of the baselines and our method for training tasks of the
Meta-World MT50 benchmark.
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C. Hyperparameters

Table 6. Hyperparameters of SMT. Hyperparameters of SMT used for Meta-World MT10 and MT50 along with the notations in the
manuscript.

Hyperparameters MT10 MT50

Training steps Btotal 2× 107 1× 108

Discount factor 0.99 0.99

Minibatch size per Task 256 256

Optimizer (all) Adam Adam

Optimizer (all) : learning rate 0.0003 0.003

Networks (MLP) : activation ReLU ReLU

Networks (MLP) : n. hidden layers 2 2

Networks (MLP) : hidden units 400 400

Networks (GRU) : hidden units 256 256

Dim(h) 4 8

Replay Buffer Size per Task 1× 106 2× 105

Target network update period 1 1

τ 0.005 0.005

Stage 1 Budgets B1 1.7× 107 8.5× 107

Stage 2 Budgets B2 3× 106 1.5× 107

κ 0.8 0.7

K 3 8

Reset Interval (time steps) Treset 5× 105 1× 107

Scheduling Interval (time steps) 1× 103 1× 103
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D. Practical Policy Implementation
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Decoder Network

Figure 10. Overall structure of networks: Policy network together with a task embedding network and three decoding networks.

In our approach, we adopt a generalized policy, denoted as πθ(a|s, h), which is parameterized by θ as depicted in Figure
10. Additionally, we utilize a task embedding network implemented by GRU (Cho et al., 2014), m ∼ Eϕ(ht|τ:t), which
is parameterized by ϕ, along with three decoder networks: Dφr (s, a, s

′,m) for reward reconstruction, Dφs(s, a,m) for
state reconstruction, and DφT (s, a, s

′,m) for task prediction. Here, the proposed networks are shared across all tasks. At
each time, the task embedding network takes the input of the history τ:t = {si, ai−1, ri}ti=1, and outputs the representation
m ∼ Eϕ(ht|τ:t). Typically, tasks are distinguished by their IDs through a one-hot vector, as seen in approaches like
SAC-MT. Nevertheless, with our proposed scheduling method, training is exclusively focused on the tasks within Pt, so that
the policy might not be exposed to the one-hot task IDs of other tasks not included in Pt. Consequently, this could lead to
diminished performance on tasks that are unseen in the evaluation period. Hence, the extraction of task-specific information
becomes crucial. Moreover, unlike the VariBAD architecture, we can determine which tasks have been introduced, and to
utilize on this for extracting task information, we’ve augmented VariBAD’s original Decoder with a task prediction feature
aimed at learning to predict the one-hot task ID.

E. Detailed Derivation of Equation (5)

The derivation is based on (Levine, 2018). Let us first assume that we have access to the true initial state distribution ρ(s0)
and the true state transition probability p(st+1 | st, at). Given a trajectory τ , we introduce a binary random variable O,
where {O = 1} denotes the event that τ is optimal and {O = 0} denotes the event that τ is not optimal. We choose the
distribution over O to be defined by the equation

p(O = 1 | τ) = exp

(
H∑
t=1

γt−1(r(st, at)−Rmax)

)
,

where Rmax is the least upper bound of the reward function r. We assign a prior on the trajectory space, defined by the
equation

p(τ) = ρ(s0)

H∏
t=1

[U(at)p(st+1|st, at)] ,

where U is the uniform distribution on the action space A. Then, the probability distribution of optimal trajectories can be
written as

p(τ | O = 1) =
p(O = 1 | τ)p(τ)

p(O = 1)
=

p(O = 1 | τ)p(τ)∫
p(O = 1 | τ)p(τ) dτ

The computation of the integral
∫
p(O = 1 | τ)p(τ) dτ is intractable, so instead we aim to find a policy π that produces

optimal trajectories.

The probability distribution qθ(τ) of τ generated by a policy πθ, which is parametrized by a parameter θ, can be written as

qθ(τ) = ρ(s0)

H∏
t=1

[πθ(at | st)p(st+1 | st, at)] .
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Our goal is to find the optimal parameter θ∗ that minimizes the KL divergence between qθ(τ) and p(τ | O = 1), that is,

θ∗ = argmin
θ

KL(qθ(τ) ∥ p(τ | O = 1)).

Simplifying the equation, we obtain the following:

KL (qθ(τ) ∥ p(τ | O = 1))

= Eτ∼qθ
[
log

qθ(τ)p(O = 1)

p(O = 1 | τ)p(τ)

]

= Eτ∼qθ

log ρ(s0)
[∏H

t=1 πθ(at | st)p(st+1 | st, at)
]
p(O = 1)

exp
(∑H

t=1 γ
t−1(rt −Rmax)

)
ρ(s0)

[∏H
t=1 U(at)p(st+1 | st, at)

]


= Eτ∼qθ

log
[∏H

t=1 πθ(at | st)
]
p(O = 1)

exp
(∑H

t=1 γ
t−1(rt −Rmax)

) [∏H
t=1 U(at)

]


= Eτ∼qθ

[
H∑
t=1

log πθ(at | st)−
H∑
t=1

γt−1rt

]

+ Eτ∼qθ

[
log p(O = 1) +

H∑
t=1

γt−1Rmax +

H∑
t=1

log |A|

]

where A is the Lebesgue measure of A. Note that log p(O = 1),
∑H
t=1 γ

t−1Rmax, and
∑H
t=1 log |A| are constant with

respect to τ , so we can remove the expectation.

KL (qθ(τ) ∥ p(τ | O = 1))

= Eτ∼qθ

[
H∑
t=1

log πθ(at | st)−
H∑
t=1

γt−1rt

]
+ log p(O = 1) +

H∑
t=1

γt−1Rmax +H log |A|

Since log p(O = 1),
∑H
t=1 γ

t−1Rmax, and
∑H
t=1 log |A| are constant with respect to θ, we have

θ∗ = argmin
θ

Eτ∼qθ

[
log πθ(at | st)−

H∑
t=1

γt−1rt

]

= argmax
θ

Eτ∼qθ

[
H∑
t=1

γt−1rt − log πθ(at | st)

]
.

Note that for each t = 1, 2, . . . ,H ,

Eτ∼qθ lr[− log πθ(at | st)] = Est∼qθ
[
Ea∼πθ(·|st) [− log πθ(a | st)]

]
= Est∼qθ [H(πθ(· | st))],

where H is the entropy function. Therefore, we have

θ∗ = argmax
θ

Eτ∼qθ

[
H∑
t=1

γt−1rt +

H∑
t=1

H(πθ(· | st))

]
.

Since the expectation can be replaced by the empirical mean of trajectories sampled from the MDP using the policy πθ,
the objective can be estimated even when we do not have access to the true initial state distribution ρ(s0) and transition
probability p(at | st).

Interestingly, the first term corresponds to the expected return and the second term corresponds to the expected entropy of
policy πθ(·|s). The theory tells that we should consider both return(exploitation) and entropy(exploration) in order to find a
policy that is optimal under the Bayesian framework.
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F. A Simple Grid-World Example of Simplicity Bias

Figure 11. Simple Grid-world Toy example for Multi-task RL

To strengthen our motivation regarding ”simplicity bias”, we conducted additional experiments in a simple grid-world
environment shown in Figure 11. This environment features two tasks, T1 and T2, each with the goal of reaching different
endpoints, G1 and G2, respectively, starting from a common point S.

We conducted two separate experiments with this simple grid-world environment. In the first experiment, we designed two
tasks: T1 and T2 so that T1 is easier with a dense reward setting and T2 is more challenging with a sparse reward setting,
thereby introducing varying levels of task difficulty. The second experiment is designed so that both T1 and T2 are of sparse
reward setting, aligning their difficulty levels. The result of these experiments is shown in the Figure 12. The result shows
that overfitting to the relatively easier task complicates the learning process for the more difficult task. Indeed, the simplicity
bias is a significant challenge within the realm of Multi-Task Reinforcement Learning (MTRL).

Figure 12. Result of two different experiments on the Simple Grid-world
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G. Additional Ablation Studies
G.1. Ablation Study on the Hyperparameter κ

As seen in Table 3, performance varies significantly depending on the hyperparameter κ compared to other hyperparameters.
The reason is as follows:

Consider the first main training phase B1 . In our current sample time assignment method, the sample time assigned to a
scheduled task at current time is κ ∗ (B1–Bused)/K, where Bused is the used sample time and K is the number of scheduled
tasks. So, initially, κ ∗B1/K sample time is assigned to each scheduled task, and we want that this time is reasonably long
to train a hard task successfully. Anyway, a task’s successful training is continuously checked by measuring the latest five
episode return average. So, an easy task ending quickly leaves the training pool, moves to the successful pool, and a new
task is scheduled. However, with too large a κ, too difficult unsolvable tasks scheduled earlier will consume most of B1 and
there remains not many samples for easy tasks later. So, there exists a trade-off between hard tasks and easy tasks.

Our additional ablation study on κ, shown in Table 7 and Figure 13 clearly shows this trade-off. As κ increases, the
performance of difficult tasks increases while that of easy tasks decreases. However, we observe that the performance is not
so sensitive and there exist quite a wide range of soft spots over 0.8 to 0.9. Please note that our performance over the whole
range of κ is better than other baselines as shown in the right figure of Figure 13.

Table 7. Ablation studies on the hyperparameter κ

κ

Task Set 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

Ceasy 99.8 ± 0.1 99.6 ± 0.1 99.8± 0.1 99.3± 0.3 99.4± 0.3 95.6± 3.7 91.7± 6.4 90.8± 7.2
Cdifficult 42.1 ± 28.9 50.3±34.3 56.7±28.3 68.0±16.1 66.9±18.7 69.8±19.6 68.3±17.5 69.0±18.4

C 76.7±16.2 79.8±14.5 82.6±9.8 86.8±8.6 86.4±12.7 85.3±9.8 82.3±10.3 82.1±9.9
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Figure 13. Results depending on the hyperparameter κ
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G.2. Ablation Study on the Hyperparameter neval

We conducted further experiments with various values for the hyperparameter neval ranging from [1, 5, 10, 20, 50], where
the main paper adopted 5. The result of this experiment is shown in Table 8 and Figure 14. As evident from the result, the
performance does not significantly change with variations in neval.

Table 8. Ablation studies on the hyperparameter neval

neval

Task Set 1 5 10 20 50

Ceasy 99.8 ± 0.1 99.3 ± 0.3 99.1± 0.4 99.4± 0.2 99.5± 0.2
Cdifficult 61.1±18.5 68.0±16.1 70.2±14.4 68.1±15.3 69.3±16.5

C 84.3±10.9 86.8±8.6 87.5±8.1 86.9±8.3 87.4±9.0
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Figure 14. Result depending on the hyperparameter neval

G.3. Integrating of the SMT Framework Using Soft Modular Method

We applied our SMT framework, including the scheduling method and reset mechanism, to the Soft Modular approach and
denoted this variant as SMT (Soft Modular). The results in the MT10 benchmark is presented in Table 9. From the result,
we confirm that our SMT framework can be effectively integrated into existing MTRL algorithms.

Table 9. Results of the SMT Framework Using the Soft Modular Method

Algorithm

Task Set Soft Modular SMT(Ours) SMT(Soft Modular)

Ceasy 99.7±0.1 99.3±0.3 99.6±0.2
Cdifficult 36.0±25.4 68.0±16.1 69.4±15.2

Average Success Ratio 74.4±10.5 86.8±8.6 87.5±9.9
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H. Comprehensive Overview of Stage 1
We will add more explanation on the overall operation of our method in Figure 15. The brief explanation is as follows:

Figure 15. Overview of the Stage 1 in the SMT framework.

In Stage 1, we introduce four distinct pools: the training task pool Pt, the main pool Pm, the solved task pool Ps, and
the unsolved task pool Pu. To understand how Stage 1 operates, let us consider the example in Figure 15, where we can
simultaneously train up to K = 2 tasks.

(1) Initially, before Stage 1, all tasks reside within the main pool Pm. At the beginning of Stage 1, we randomly select
two tasks, say, T2 and TN−1, from the main pool Pm and transfer them to the training task pool Pt. Concurrently, we
allocate a budget and collect trajectories for each task in Pt, which currently consists of two tasks: T2 and TN−1. We
perform gradient updates based on the collected trajectories.

(2) Upon completion of two episodes, task TN−1 is deemed solved, as it surpasses our threshold M . It is thus moved to
the solved task pool Ps. To fill the vacancy in Pt caused by the departure of TN−1, another task is selected from the
start of the 3rd episode. In this example, T4 is randomly selected from the main pool Pm.

(3) Following the end of the fifth episode, the entire budget for T2 is expended. We then assess the solvability of T2 based
on the threshold m.

In this scenario, the training return of T2 failed to exceed the threshold m, leading to its transfer to the unsolved task
pool Pu. Then, another task, T1, is randomly selected from the main pool Pm and transfer it to Pt.

(4) After the end of the sixth episode, which marks the reset period, we evaluate all tasks using the trained policy by
sampling neval trajectories. Subsequently, random task selection is finished (random task selection is only for the
time before the first reset) and tasks are selected from the main pool Pm based on the evaluation metric defined by
equation (5) of the paper under the principle of hard task first. Note that the evaluation metric computation period is
synchronized with the reset period for implementation simplicity. After reset, scheduling is based on the renewed
evaluation metric values.
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