

INPAINTING-GUIDED POLICY OPTIMIZATION FOR DIFFUSION LARGE LANGUAGE MODELS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Masked diffusion large language models (dLLMs) are emerging as promising alternatives to autoregressive LLMs, offering competitive performance while supporting unique generation capabilities such as *inpainting*. We explore how *inpainting* can inform RL algorithm design for dLLMs. Aligning LLMs with reinforcement learning faces an exploration challenge: sparse reward signals and sample waste when LLMs fail to discover correct solutions. While this inefficiency affects LLMs broadly, dLLMs offer a distinctive opportunity—their inpainting ability can guide exploration. We introduce IGPO (Inpainting Guided Policy Optimization), an RL framework that strategically injects partial ground-truth reasoning traces during online sampling. Unlike providing full solutions, inpainting steers exploration toward promising trajectory spaces while preserving self-generated reasoning, bridging supervised fine-tuning and reinforcement learning. We apply IGPO to group-based optimization methods such as GRPO, where exploration failures cause zero advantages and gradients. IGPO restores meaningful gradients while improving sample efficiency. We also propose supervised fine-tuning on synthetically rewritten concise traces that better align with dLLM generation patterns. With additional techniques including entropy-based filtering, our training recipe yields substantial gains across four mathematical benchmarks—GSM8K, Math500, AMC and Minerva—achieving new state-of-the-art results for full-attention masked dLLMs.

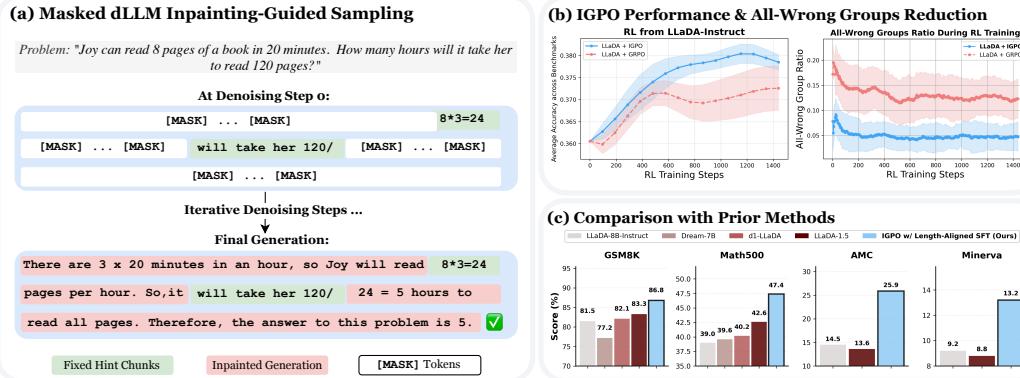


Figure 1: (a) Unlike autoregressive LLMs, diffusion LLMs can be conditioned on future reasoning hints during generation through *inpainting* via bidirectional attention, enabling guided exploration toward correct solutions. (b) Applying inpainting-guided exploration in policy optimization outperforms standard Group Relative Policy Optimization (GRPO) sampling and reduces all-wrong groups occurrences. (c) Our full training recipe combining *Length-Aligned* supervised fine-tuning on concise reasoning traces with IGPO achieves SoTA performance among full-attention masked dLLMs across four mathematical reasoning benchmarks.

054
055

1 INTRODUCTION

056
057 Recent research has shown that masked diffusion large language models (dLLMs) (Austin et al.,
058 Lou et al., 2024; Shi et al., 2024) such as LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025)
059 can achieve performance competitive with autoregressive LLMs of similar size. Their capabilities and
060 performance can be further enhanced via RL post-training (Zhao et al., 2025; Gong et al., 2025b) and
061 ability to flexibly include multimodal data (Li et al., 2025; Yang et al., 2025; You et al., 2025). Unlike
062 autoregressive LLMs, which decode in a left-to-right manner, dLLMs iteratively unmask tokens in
063 parallel. This brings potential for faster inference as shown in closed models like Mercury (Inception
064 Labs et al., 2025) and Gemini Diffusion (DeepMind, 2025), along with a flexible inductive bias for
065 operations such as *inpainting*, the ability to fill in missing content within existing text.

066 In this work, we explore how *inpainting* can be leveraged to inform post-training algorithms for
067 dLLMs. Recent work on post-training of dLLMs has adopted training approaches similar to autore-
068 gressive LLMs, applying Reinforcement Learning with Verifiable Reward (RLVR) methods (Zhao
069 et al., 2025; Yang et al., 2025; Gong et al., 2025b). However, a fundamental exploration challenge
070 persists: for challenging tasks, policies struggle to discover correct solutions and binary rewards
071 provide minimal learning signal when most generated solutions are incorrect. This leads to substantial
072 sample waste and poor training efficiency, exacerbating the computational costs of online RL.

073 The bidirectional generative structure of diffusion LLMs provides a unique mechanism to address this
074 exploration challenge. Since dLLMs are trained through stochastic masking patterns, they possess
075 inherent capability for accepting externally provided partial hints through *inpainting*. We leverage
076 this ability to introduce IGPO (Inpainting Guided Policy Optimization), a novel RL framework that
077 strategically guides exploration for dLLMs by injecting reasoning hints when answering difficult
078 problems. Specifically, when the policy is unlikely to generate correct solutions, partial reasoning
079 traces are injected into the generation region, and the dLLM is tasked with completing the remaining
080 reasoning sequence and output final answer. The final answers are verified against ground truth, and
081 only successful completions are used for downstream policy optimization.

082 We demonstrate IGPO’s effectiveness in group-based policy optimization methods such as
083 GRPO (Shao et al., 2024), which are particularly vulnerable to exploration failures: when a group’s
084 responses are all incorrect, group-normalized advantage collapses to zero and resulting in zero gradi-
085 ents. This occurs with alarming frequency in challenging domains. By reducing the prevalence of
086 all-wrong groups, IGPO restores gradient signals and enables more effective RL. More broadly, IGPO
087 can be viewed as a form of *guided exploration* that interpolates between supervised and RL paradigms.
088 The injected tokens act as conditioning context that **steers the policy’s action distribution toward**
089 **high-reward regions**. Unlike pure SFT, which might suffer from distribution shift between data and
090 policy rollouts (Zhang et al., 2025), IGPO maintains on-policy generation for the non-injected tokens.
091 Finally, we augment IGPO with techniques that improve learning stability and performance, including
092 entropy-based gradient filtering for injected tokens, and conduct comprehensive experiments across
093 math benchmarks. We evaluate each component of our approach through ablation studies. Our work
094 makes the following key novel contributions:

- 095 • We propose IGPO, the **first work to utilize the unique inpainting capabilities of diffusion LLMs**
096 for reinforcement learning. By strategically injecting partial reasoning traces during exploration,
097 IGPO alleviates the inefficiency of sparse verifiable rewards and mitigates the zero-advantage
098 dilemma in group-based policy optimization methods, substantially reducing the proportion of
099 all-wrong groups (by approximately 60% as shown in Fig 1 (b)) in our training.
- 100 • We propose a *Length-Aligned* SFT for full-attention based dLLMs using synthetically rewritten,
101 concise reasoning traces. This design better aligns SFT data length with RL sampling and evaluation
102 length, avoids the limitations of verbose traces, and provides stronger initialization for RL.
- 103 • Our full training recipe achieves substantial improvements on mathematical benchmarks, including
104 **+5.3% on GSM8K, +8.4% on Math500, +11.4% on AMC, and +4.0% on Minerva** relative to
105 the LLaDA-Instruct, achieving **SoTA performance among full-attention based dLLMs**.
- 106 • We conduct a comprehensive ablation study that disentangles the mechanisms of IGPO. We show
107 that partial inpainting consistently outperforms full ground-truth inpainting by staying closer to the
108 policy distribution in online RL, and propose an entropy-based gradient filtering mechanism that
109 stabilizes training dynamics.

108

2 PRELIMINARIES

109

2.1 MASKED DIFFUSION LARGE LANGUAGE MODELS

110 Masked diffusion LLMs (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024; Lou et al., 2024) employ a forward diffusion (masking) process that progressively corrupts clean sequences x_0 by introducing mask tokens. This process is indexed by continuous time $t \in [0, 1]$. At any timestep $t \in (0, 1)$, the partially corrupted sequence x_t is obtained by independently masking tokens so that each token remains unmasked with probability α_t , where the schedule α_t is strictly decreasing in t . At $t = 1$, the sequence is fully masked. Training specifies the forward process via α_t and learns a bidirectional *unmasking predictor* f_θ to recover the original tokens from x_t . Each step samples $t \in [0, 1)$, applies the forward masking to obtain $x_t \sim q_{t|0}(x_t | x_0)$, and optimizes a masked-token objective derived from the negative evidence lower bound (NELBO), which upper-bounds the data negative log-likelihood (NLL). For masked dLLMs this NELBO reduces to a weighted NLL with weights determined by transforms of α_t (Sahoo et al., 2024, Eq. (10)). For example, LLaDA (Nie et al., 2025) uses a linear schedule $\alpha_t = 1 - t$, leading to:

$$124 -\mathbb{E}_{t \sim \mathcal{U}[0,1], x_0 \sim p_{\text{data}}, x_t \sim q_{t|0}(x_t | x_0)} \left[\frac{1}{t} \sum_{k=1}^{|x_t|} \mathbf{1}[x_t^k = \text{mask}] \log f_\theta(x_0^k | x_t) \right], \quad (1)$$

125 where $|x_t|$ is the sequence length and x_t^k the k -th token. The loss is computed only on tokens masked 126 at time t . For prompt-conditional generation, prompt tokens are kept unmasked while continuation 127 tokens are initialized as `mask`. The model then simulates a reverse process $p_\theta(x_s | x_t)$ over timesteps 128 $t > s$, where f_θ provides denoising predictions for masked positions. Throughout the reverse 129 trajectory, already unmasked tokens are preserved and carried forward unchanged.

130

2.2 POLICY OPTIMIZATION FOR MASKED DIFFUSION LARGE LANGUAGE MODELS

131 Policy-gradient post-training is widely used for LLM alignment (Ouyang et al., 2022; Bai et al., 132 2022; Li et al., 2023; Ahmadian et al., 2024). GRPO (Shao et al., 2024; Guo et al., 2025; Team et al., 133 2025) is a value-free variant of PPO (Schulman et al., 2017) that uses group-wise, sequence-level 134 advantages for G responses $\{o_i\}_{i=1}^G$ to a query q :

$$135 A_i = r(o_i) - \frac{1}{G} \sum_{j=1}^G r(o_j). \quad (2)$$

136 The GRPO objective integrates ratio clipping and reverse-KL regularization:

$$137 \mathcal{L}_{\text{GRPO}}(\theta) = \mathbb{E}_{\substack{q \sim \mathcal{D} \\ o_1, \dots, o_G \sim \pi_{\theta_{\text{old}}}(\cdot | q)}} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{k=1}^{|o_i|} \min \left(\rho_i^k A_i, \text{clip} \left(\rho_i^k, 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta D_{\text{KL}} [\pi_\theta(\cdot | q) \| \pi_{\text{ref}}(\cdot | q)] \right], \quad (3)$$

138 where $\rho_i^k = \frac{\pi_\theta(o_i^k | q, o_i^{<k})}{\pi_{\theta_{\text{old}}}(o_i^k | q, o_i^{<k})}$ is the probability ratio, $r(\cdot)$ is a reward function, $\beta > 0$ is the KL regularization coefficient, $\varepsilon > 0$ is the clipping parameter, and π_{ref} is the reference policy. In autoregressive models, the reverse-KL is tractable via the chain rule, $\log \pi_{\text{AR}}(o | q) = \sum_{k=1}^{|o|} \log \pi_{\text{AR}}(o^k | q, o^{<k})$, but masked diffusion LLMs do not admit a left-to-right factorization because π_θ arises from composing reverse denoising steps of the mask predictor. To make GRPO practical for masked diffusion policies, DiffuGRPO (Zhao et al., 2025) adopts a mean-field approximation that yields single-pass estimators for token-level ratios and the reverse-KL; we use these estimators throughout. We provide a detailed background discussion in Appendix B.

139

3 METHODS

140

3.1 IGPO: INPAINTING GUIDED POLICY OPTIMIZATION

141 **Zero-Advantage Dilemma.** In the GRPO framework, when sampling G responses $\{o_1, o_2, \dots, o_G\}$ for a given prompt q , the advantage computation relies on reward variance across 142 the group. However, when all responses receive identical rewards—either all correct or all incorrect

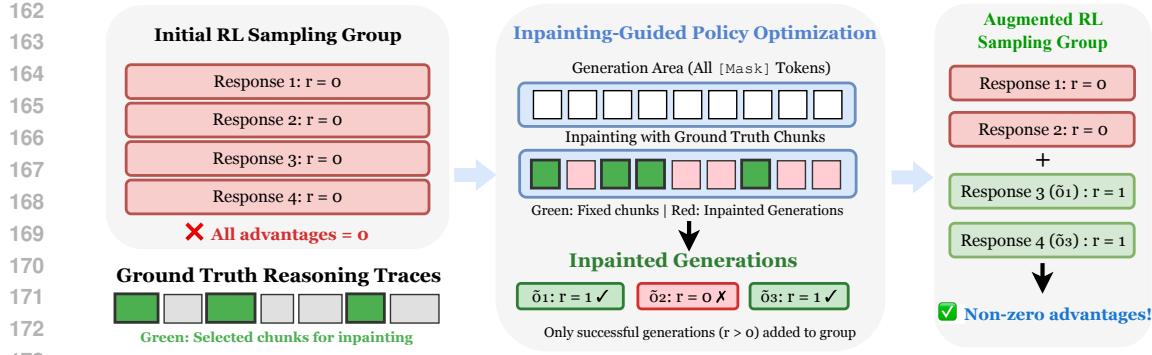


Figure 2: **Overview of IGPO:** When all sampled responses yield identical incorrect rewards (zero-advantage scenario), we perform hint-guided inpainting by generating additional responses using ground truth reasoning chunks as injected hints. Ground truth traces y^* are segmented into variable-length chunks, and selected chunks are injected as fixed hints during generation while the model generates the remaining tokens. We then replace a fraction of the original incorrect responses with correct responses generated through inpainting, creating reward variance that enables non-zero advantages for effective policy gradient updates.

—the advantages become zero: $A_i = r(o_i) - \frac{1}{G} \sum_{j=1}^G r(o_j) = 0$. This zero-advantage scenario makes the policy gradient component degenerate. Specifically, the clipped surrogate objective collapses to zero regardless of whether the update lies in the clipped or unclipped region, since both terms contain $A_i = 0$. The policy gradient for this prompt q therefore becomes:

$$\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{k=1}^{|o_i|} A_i \rho_i^k \nabla_{\theta} \log \pi_{\theta}(o_i^k | q) = 0 \quad \text{since } A_i = 0 \forall i.$$

As a result, no meaningful policy update can be extracted from the reward signal, wasting compute sampling these responses. **In this work, we specifically focus on mitigating the *all-wrong* case.**

Masked dLLM Generation and Inpainting. In full-attention masked dLLM generation, the model input at denoising step 0 is the concatenation $[q; z_{\text{mask}}]$, where q represents the prompt and $z_{\text{mask}} = [\text{mask}, \text{mask}, \dots, \text{mask}]$ denotes a fully masked completion sequence of predetermined length L . The generation process progressively unmasks these positions through iterative denoising until producing the final output.

Hint injection modifies this formulation by fixing selected positions of z_{mask} to ground-truth tokens. During RL training, we assume access to ground-truth reasoning trace $y^* = [y_1^*, y_2^*, \dots, y_{|y^*|}^*]$ for every question q . For injection, we create a binary mask $m \in \{0, 1\}^L$ indicating which positions to inject as fixed hints, we construct the hint-injected initialization:

$$z^{\text{hint}}[i] = \begin{cases} y_i^* & \text{if } m[i] = 1 \text{ and } i \leq |y^*|, \\ \text{mask} & \text{otherwise.} \end{cases} \quad (4)$$

The masked dLLM then performs bidirectional denoising on $[q; z^{\text{hint}}]$ through the inpainting process, leveraging both the prompt and injected hint tokens to generate coherent responses. The injected hint tokens remain fixed throughout the iterative denoising steps.

Constructing Hint Patterns for Inpainting. To construct meaningful hint patterns for the inpainting process, we segment the ground truth reasoning trace y^* into variable-length contiguous chunks $\mathcal{C} = \{c_1, c_2, \dots, c_N\}$, where each chunk length $|c_j|$ is sampled from $\mathcal{U}[s_{\min}, s_{\max}]$. We explicitly exclude the final answer tokens from chunking to prevent reward hacking behaviors where the model ignores reasoning and collapses. For a given hint injection ratio $\eta \in [0, 1]$, we randomly select $\lfloor \eta \cdot N \rfloor$ chunks and set their corresponding positions in the binary mask m to 1 for hint injection.

216 **Algorithm 1** IGPO: Inpainting-Guided Policy Optimization for Masked dLLMs

217 **Require:** Reference model π_{ref} , prompt distribution \mathcal{D} , ground-truth reasoning traces $\{y^*\}$, number
 218 of completions per prompt G , number of inner updates μ , hint injection ratio range $[\eta_{\text{low}}, \eta_{\text{high}}]$,
 219 replacement fraction λ , entropy filter threshold τ , chunk size range $[s_{\text{min}}, s_{\text{max}}]$

220 1: Initialize $\pi_\theta \leftarrow \pi_{\text{ref}}$

221 2: **while** not converged **do**

222 3: $\pi_{\text{old}} \leftarrow \pi_\theta$; sample prompt $q \sim \mathcal{D}$ and responses $o_{1:G} \sim \pi_{\text{old}}(\cdot | q)$; compute rewards $r_{1:G}$

223 4: **if** all $r_i = 0$ (zero-advantage case) **then**

224 5: Segment ground-truth reasoning y^* into chunks $\{c_1, \dots, c_N\}$ with $|c_j| \sim \mathcal{U}[s_{\text{min}}, s_{\text{max}}]$

225 6: **for** $i = 1, \dots, G$ **do**

226 7: Sample hint injection ratio $\eta \sim \mathcal{U}[\eta_{\text{low}}, \eta_{\text{high}}]$ and select $\lfloor \eta N \rfloor$ chunks from
 227 $\{c_1, \dots, c_N\}$ randomly

228 8: Inject selected chunk tokens as fixed hints at corresponding positions

229 9: Generate \tilde{o}_i via inpainting: denoise only masked positions, keep hint tokens fixed

230 10: Evaluate rewards $r(\tilde{o}_i)$ and replace up to $\lfloor \lambda G \rfloor$ incorrect o_i with correct \tilde{o}_i

231 11: Compute advantages A_i on the updated response set

232 12: **for** $n = 1, \dots, \mu$ **do**

233 13: Estimate $\log \pi_\theta$, $\log \pi_{\text{old}}$, $\log \pi_{\text{ref}}$; apply top- τ entropy filter on hint positions

234 14: Update π_θ via $\mathcal{L}_{\text{IGPO}}(\theta)$ (Eq. 5)

235 15: **return** π_θ

236
 237 **Elastic Inpainting-Triggered Sampling.** With the above inpainting setup, we design IGPO (as in
 238 **Algorithm 1**) to be **elastic**: hint injection is only triggered when all sampled responses in a group
 239 yield incorrect rewards (the zero-advantage case), and when activated, both the hint injection ratio η
 240 and chunk sizes ($\mathcal{U}[s_{\text{min}}, s_{\text{max}}]$) are randomized to provide diverse training signals. Concretely, when
 241 detecting that all sampled responses $\{o_1, \dots, o_G\}$ for query q yield identical rewards $r(o_i) = 0$, we
 242 generate an additional set of responses $\{\tilde{o}_1, \dots, \tilde{o}_G\}$ through the inpainting process. Each response
 243 \tilde{o}_i is generated via inpainting with a distinct hint injection ratio $\eta_i \sim \mathcal{U}[\eta_{\text{low}}, \eta_{\text{high}}]$ to ensure diverse
 244 hint densities. Following inpainting generation, we evaluate the correctness of $\{\tilde{o}_i\}$ and only use the
 245 correct ones for replacement. Specifically, we replace $K = \min(|\{\tilde{o}_i : r(\tilde{o}_i) = 1\}|, \lfloor \lambda G \rfloor)$ of the
 246 original incorrect responses with correct responses generated through inpainting, where $\lambda \in (0, 1)$
 247 controls the replacement fraction.

248 The only modification introduced by IGPO lies in the sampling step: when the all-wrong condition
 249 is detected, the original G on-policy responses are partially replaced by K correctness-verified
 250 inpainted samples. The IGPO objective therefore differs from the standard GRPO formulation only
 251 at the sampling level; all other components remain unchanged. In particular, the advantages A_i are
 252 computed normally according to Eq. 2. The resulting objective for an all-wrong group is identical to
 253 GRPO except for this sampling change, highlighted in blue below.

254

$$\mathcal{L}_{\text{IGPO}}(\theta) = \mathbb{E}_{\{o_1, \dots, o_{G-K}, \tilde{o}_1, \dots, \tilde{o}_K\} \sim \mathcal{D}, \text{IGPO-Sample}(\pi_\theta, q, y^*)} \left[\left(\frac{1}{G} \sum_{i=1}^G \frac{1}{L_i} \sum_{k=1}^{L_i} \min(\rho_i^k A_i^k, \text{clip}(\rho_i^k, 1 - \varepsilon, 1 + \varepsilon) A_i^k) \right) - \beta D_{\text{KL}}[\pi_\theta(\cdot | q) \| \pi_{\text{ref}}(\cdot | q)] \right], \quad (5)$$

255

256 where $\text{IGPO-Sample}(\pi_\theta, q, y^*)$ denotes the augmented sampling procedure that applies inpainting-
 257 based augmentation when zero-advantage scenarios are detected, producing the augmented RL
 258 sampling group $\{o_1, \dots, o_{G-K}, \tilde{o}_1, \dots, \tilde{o}_K\}$ containing $(G - K)$ original responses and K verified
 259 correct inpainted responses $\{\tilde{o}_i\}$ after replacement. L_i denotes the length of the i -th response (whether
 260 o_i or \tilde{o}_i). Crucially, only inpainted responses that pass correctness verification are included in the
 261 augmented group, satisfying $r(\tilde{o}_i) = 1$. We built IGPO with DiffuGRPO (Zhao et al., 2025)'s log
 262 probability estimation methods, where all completion tokens are masked during estimation and we
 263 remove the random masking applied to prompt tokens as done in DiffuGRPO. Since we use a small
 264 number of policy iterations (i.e. $\mu = 4$), this alleviates the need for random prompt masking to reduce
 265 overfitting. Inspired by Zheng et al. (2025), we compute sequence-level importance-ratio through
 266 mean-field approximation for stability purposes.

267 **Entropy-based Gradient Filtering for Hint Tokens.** When applying IGPO to zero-advantage
 268 scenarios, the responses generated through inpainting contain ground truth reasoning chunks that

270 originate from a different distribution than the current policy π_θ . This creates an off-policy learning
 271 scenario where gradient updates from ground truth tokens can conflict with the model’s current
 272 beliefs, particularly at positions where the model has high confidence (low entropy). To mitigate
 273 potential training instability from this distribution mismatch, we implement an entropy-based filtering
 274 approach that restricts learning to hint token positions where the model exhibits sufficient uncertainty,
 275 as inspired by [Huang et al. \(2025\)](#). Specifically, for each hint token position (i.e., positions with
 276 injected ground-truth tokens) we compute the entropy. We then apply gradient updates only to
 277 the top τ percentile of hint token positions with highest entropy values. This selective learning
 278 strategy serves two purposes: high-entropy positions represent genuine decision boundaries where
 279 the model is naturally uncertain and thus more receptive to external guidance, and they correspond to
 280 flatter probability distributions that yield more stable gradient updates when incorporating ground
 281 truth information. This approach controls the policy shift by focusing learning on positions where
 282 the model is already open to change, rather than forcing updates against strong existing beliefs at
 283 low-entropy positions.

284 3.2 LENGTH-ALIGNED SFT VIA CONCISE REASONING TRACE REWRITING

285 To further strengthen our training recipe, we seek better RL initialization via SFT but identified
 286 generation length mismatches across SFT, RL sampling, and evaluation phases. Full-attention masked
 287 dLLMs like LLaDA lack KV cache optimization ([Wu et al., 2025](#)) by default, requiring full-sequence
 288 attention at every denoising step, which dominates online RL training cost. As a result, we restrict RL
 289 rollouts to 256 tokens for faster convergence within a reduced exploration space, and evaluation setups
 290 in recent work ([Zhao et al., 2025](#); [Zhu et al., 2025](#); [Nie et al., 2025](#)) typically use 256–1024 tokens. In
 291 contrast, popular reasoning SFT corpora (e.g., OpenR1) contain verbose traces often exceeding 10k
 292 tokens, creating distribution mismatch across SFT, RL, and evaluation, and include repeated reflective
 293 behaviors unsuited for limited context. To resolve this, we systematically rewrite verbose traces into
 294 concise, structured forms that preserve logical flow while respecting dLLM computational limits.
 295 Using LLaMA-4-Maverick ([Meta, 2025](#)) with prompts detailed in [Appendix I](#), we remove redundant
 296 reflections, condense multi-sentence elaborations into precise, mathematically rigorous statements,
 297 and retain essential reasoning. Examples of revision length distributions and before/after traces are
 298 in [Appendix D](#) and [I](#). Our *Length-Aligned SFT* trains LLaDA solely on rewritten traces, improving
 299 RL initialization by avoiding implicit length compression and focusing learning on reasoning quality
 300 within fixed compute budgets. Empirical results show clear gains over training on verbose traces, and
 301 we further observe that masked dLLMs benefit from extended training (e.g., 100 epochs) relative to
 302 AR LLMs, consistent with recent works ([Ni and the team, 2025](#); [Prabhudesai et al., 2025](#)).

303 4 EXPERIMENTS

304 To investigate how the inpainting capabilities of masked dLLMs can address the exploration chal-
 305 lenges in RL and how *Length-Aligned SFT* improves performance, we conduct comprehensive
 306 experiments to answer the following main research questions:

- 308 (1) How effectively does our complete training approach (Length-aligned SFT with rewritten reason-
 309 ing traces followed by reinforcement learning with IGPO) improve the mathematical reasoning
 310 performance of LLaDA and reduce all-wrong groups occurrences? ([§4.3](#))
- 311 (2) How does partial hint injection in IGPO bridge on-policy generation with ground truth guidance,
 312 and how does this improve learning compared to full supervision? ([§4.4](#))
- 313 (3) How do key design choices—including entropy filtering thresholds and reasoning trace rewrit-
 314 ing—affect RL training dynamics and learning stability? ([§4.4](#))

315 4.1 COMPLETE TRAINING RECIPE

317 Our complete learning framework consists of a two-stage pipeline: **Stage 1: Supervised Fine-Tuning**
 318 with **Rewritten Traces**. We begin with *Length-Aligned SFT* on the LLaDA-8B-Instruct model using
 319 the OpenR1-Math-220K dataset’s default split (94k math problems), but with all reasoning traces
 320 rewritten (See [Appendix D](#) for length distribution before and after revision). This ensures consistency
 321 between training distribution and downstream RL/evaluation phases by aligning trace lengths. **Stage**
 322 **2: Reinforcement Learning with IGPO**. Following *Length-aligned SFT*, we apply IGPO to further
 323 enhance reasoning capabilities through strategic inpainting-guided policy optimization. We utilize the
 324 reasoning traces from the MetaMathQA dataset for the elastic inpainting process, creating effective

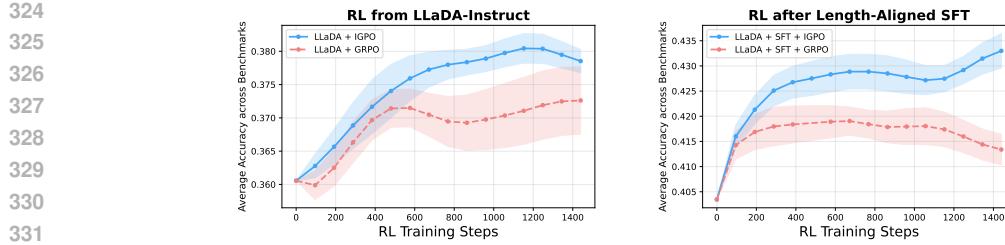


Figure 3: **RL training curves of IGPO versus normal GRPO sampling.** (a) Starting from LLaDA-8B-Instruct. (b) Starting from the *length-aligned* SFT checkpoint. IGPO exhibits superior and more stable training performance under both initialization checkpoints compared to standard GRPO sampling. Results are averaged over 3 random seeds across four mathematical reasoning benchmarks (GSM8K, MATH500, AMC and Minerva Math), with standard errors shown as shaded regions.

guidance signals that fit within our computational constraints. Detailed training hyperparameters are provided in Appendix F.

4.2 EXPERIMENTAL SETUP

We conduct experiments using LLaDA-8B-Instruct as the base model with a sampling temperature of 1.2 for RL online generation, where the temperature is selected based on exploration and exploitation analysis detailed in Appendix F.1. For reinforcement learning, we train on the MetaMathQA dataset (Yu et al., 2023), specifically using the “Answer Augmentation” split and combining questions from both GSM8K and MATH500. After deduplicating identical questions, we obtain 12,794 unique training examples. For supervised fine-tuning, we utilize the OpenR1-Math-220K dataset with rewritten reasoning traces as described in Section 3.2. We evaluate our approach on four mathematics benchmarks: GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021), AMC (LI et al., 2024) and Minerva Math (Lewkowycz et al., 2022). Experiments are conducted on 8x8 80GB H100 GPUs. For UniGRPO (Yang et al., 2025) baseline, we reproduce based on their Algorithm 1. We provide detailed experiment hyperparameter setups in Appendix F and Appendix H.

4.3 MAIN RESULTS

Table 1: Performance across multiple mathematics tasks. GSM8K, MATH500 and Minerva are evaluated with pass@1 at temperature of 0.0, and AMC with avg@16 at temperature 0.1. Underlined scores indicate the best *within each initialization group*. Parenthesized deltas typeset via $(+)$ denote absolute percentage-point improvements *relative to the LLaDA-8B-Instruct baseline*.

Model	GSM8K (pass@1)	MATH500 (pass@1)	AMC (avg@16)	Minerva (pass@1)	Average
<i>Similar-sized autoregressive LLMs</i>					
LLaMA3-8B (AI@Meta, 2024)	79.6	30.0	–	–	–
Qwen2.5-7B (Team, 2024)	85.4	49.8	–	–	–
<i>Prior masked dLLM baselines</i>					
Dream-7B (Ye et al., 2025)	77.2	39.6	–	–	–
d1-LLaDA (Zhao et al., 2025)	82.1	40.2	–	–	–
wd1 (Tang et al., 2025)	82.3	39.0	–	–	–
LLaDA-1.5 (Zhu et al., 2025)	83.3	42.6	13.6	8.8	37.1
LLaDA-Instruct (Nie et al., 2025)	81.5 ₍₊₀₎	39.0 ₍₊₀₎	14.5 ₍₊₀₎	9.2 ₍₊₀₎	36.0 ₍₊₀₎
<i>RL from LLaDA-Instruct</i>					
LLaDA-Instruct + UniGRPO (Yang et al., 2025)	82.2 _(+0.7)	39.2 _(+0.2)	15.0 _(+0.5)	11.0 _(+1.8)	36.9 _(+0.9)
LLaDA-Instruct + DiffuGRPO (Zhao et al., 2025)	82.4 _(+0.9)	40.2 _(+1.2)	15.5 _(+1.0)	10.3 _(+1.1)	37.1 _(+1.1)
LLaDA-Instruct + IGPO (ours)	83.1 _(+1.6)	42.8 _(+3.8)	17.5 _(+3.0)	12.1 _(+2.9)	38.9 _(+2.9)
<i>Length-aligned SFT on LLaDA-Instruct and RL on the SFT checkpoint</i>					
LLaDA-Instruct + Length-aligned SFT (ours)	83.6 _(+2.1)	45.2 _(+6.2)	22.3 _(+7.8)	10.3 _(+1.1)	40.4 _(+4.4)
LLaDA-Instruct + Length-aligned SFT + IGPO (ours)	86.8 _(+5.3)	47.4 _(+8.4)	25.9 _(+11.4)	13.2 _(+4.0)	43.3 _(+7.3)

378 As shown in Table 1, our training recipe demonstrates consistent improvements across all mathematical reasoning benchmarks. With *Length-Aligned* SFT on rewritten traces, LLaDA achieves an
 379 average improvement of 4.4% compared to the base LLaDA-8B-Instruct model. When applying
 380 IGPO on top of the SFT model, we observe additional improvements, resulting in a total average
 381 improvement of 7.3%. The complete two-stage pipeline yields cumulative improvements of 5.3% on
 382 GSM8K, 8.4% on MATH500, 11.4% on AMC, and 4.0% on Minerva relative to the LLaDA-Instruct
 383 baseline. Notably, on the challenging AMC benchmark, our approach achieves 25.9% (avg@16). As
 384 shown in Figure 3, IGPO exhibits superior training dynamics compared to standard GRPO sampling
 385 when initializing from before or after SFT. IGPO effectively reduces the all-wrong group ratio by
 386 approximately 60%, as shown in Figure 1(b). Our final model (LLaDA + *Length-Aligned* SFT
 387 + IGPO) outperforms all baseline approaches including the recent LLaDA-1.5 model across all
 388 evaluated benchmarks. Notably, even without SFT, applying IGPO directly on LLaDA achieves
 389 better performance than the previous LLaDA-1.5 and other RL methods for full-attention dLLMs,
 390 establishing a new state-of-the-art recipe for mathematical reasoning in masked diffusion language
 391 models.

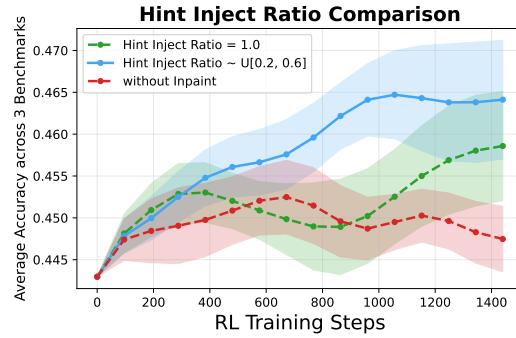
392 4.4 ANALYSIS AND ABLATION STUDIES

393 **Self-generated inpainted traces provide better** 394 **learning signal than ground truth traces.**

395 The results in Figure 4 show that partial hint injection achieves higher performance than full
 396 hint injection. When the hint injection ratio varies within the lower range, the model needs to
 397 generate self-rationalized inpainting traces (with an example shown in Appendix G), and only
 398 those that lead to correct solutions are added to the group for gradient updates. Through
 399 inpainting, the model attempts to coherently connect provided hint chunks with its own reasoning
 400 steps. The inpainted generation produces a learning signal that bridges the gap between
 401 the model’s current capabilities and the target behavior. The self-generated portions reflect the
 402 model’s current reasoning patterns and are more “on-policy” while incorporating structural guidance
 403 from ground truth chunks, resulting in more effective policy optimization compared to pure
 404 supervised learning, reducing the distributional mismatch. **This bridging of SFT and online**
 405 **RL through partial self-generation leads to**
 406 **more effective policy optimization.**

407 **Entropy clipping prevents training instability from off-policy tokens.** As shown in Figure 5a,
 408 we observe that learning from only the top 20% highest-entropy hint token positions ($\tau = 0.2$)
 409 achieves the best performance and exhibits the most stable training dynamics. In contrast, learning
 410 from all hint token positions ($\tau = 1.0$) or a large fraction ($\tau = 0.8$) leads to more unstable training
 411 with performance fluctuations compared to lower values like 0.2. This empirical finding supports our
 412 motivation that restricting gradient updates to high-entropy positions prevents the destabilizing effects
 413 of large gradients on high-entropy positions. The validates the necessity of entropy-based filtering
 414 when incorporating ground truth traces from hint-guided inpainting into policy gradient training.

415 **Effect of reasoning trace rewriting for SFT and subsequent RL training.** The results in
 416 Figure 5b illustrate two key findings. First, SFT on rewritten reasoning traces produces substantially
 417 stronger checkpoints than SFT on the original traces. Our rewritten traces eliminate verbose reflection
 418 behaviors and compress reasoning into concise trajectories (up to 1024 tokens), which are better
 419 aligned with LLaDA’s generation budget (256 tokens) and evaluation sequence length. This alignment
 420 improves SFT accuracy at step 0 relative to models trained on the longer 4096-token traces. Second,
 421 while RL training can partially compensate for weaker SFT checkpoints—the models trained on
 422 4096-token traces recover accuracy rapidly in early RL steps—starting from stronger rewritten SFT



423 **Figure 4: Impact of hint injection ratio.** across
 424 3 datasets (GSM8K, MATH500 and AMC) and 3
 425 seeds with standard error shown as shaded areas.
 426 We compare partial hint injection ($\eta \sim \mathcal{U}[0.2, 0.6]$)
 427 versus full hint injection ($\eta = 1.0$). Partial hint
 428 injection consistently outperforms full hint injection,
 429 demonstrating the benefits of self-generated
 430 reasoning. Both hint-guided inpainting variants
 431 outperform the baseline without any hint injection.

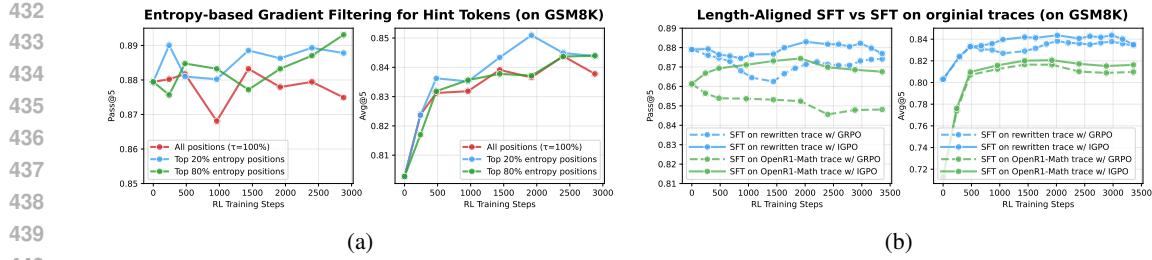


Figure 5: (a) **Impact of entropy clipping threshold on hint tokens.** Performance comparison across different entropy clipping thresholds τ applied to hint token positions in IGPO, where $\tau = 0.2$ represents learning from only the top 20% highest-entropy hint token positions, while $\tau = 1.0$ indicates learning from all hint token positions without filtering. (b) **SFT and RL dynamics with rewritten vs. original traces.** We compare models fine-tuned on concise rewritten traces (max 1024 tokens) vs on original OpenR1-Math traces truncated at LLaDA’s 4096 context limit. RL is then applied (GRPO or IGPO) to both models. Rewritten traces yield stronger SFT performance and superior RL outcomes. IGPO consistently outperforms GRPO with stable pass@5 while GRPO suffers from diversity collapse. Results are run on GSM8K with temperature 0.1 and length 256.

checkpoints leads to consistently higher final performance. Importantly, across both initialization settings, IGPO outperforms standard RL without inpainting. Additionally, IGPO preserves output diversity and stabilizes pass@5 performance throughout training, whereas standard GRPO exhibits a decline in pass@k metrics, indicative of reduced exploration and mode collapse.

Elastic inpainting outperforms sequential SFT and GRPO We further validate the effectiveness of our elastic inpainting approach by comparing it against sequentially performing SFT on the RL dataset’s reasoning traces followed by standard GRPO (see Appendix E for details). This ablation confirms that IGPO’s elastic hint injection during zero-advantage scenarios is superior to uniformly applying SFT on concise reasoning traces across all prompts before applying GRPO. The uniform SFT approach can degrade initial performance due to distribution shift in reasoning patterns, whereas injecting partial hints allows dLLMs to inpaint longer, more “on-policy” reasoning traces.

5 RELATED WORK

Diffusion Language Models: Recent advances in diffusion language models have progressed from continuous approaches mapping discrete text to continuous representations (Chen et al., 2022; Li et al., 2022; Gong et al., 2023) to scaled discrete diffusion models, with masked diffusion emerging as a prominent approach (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024; Nie et al., 2024). Notable developments include DiffuLLaMA (Gong et al., 2025a) and Dream (Ye et al., 2025) adapted from pretrained autoregressive LLMs, and LLaDA (Nie et al., 2025) as a masked diffusion LLM trained from scratch achieving comparable performance to autoregressive models. Commercial models like Mercury (Inception Labs et al., 2025) and Gemini Diffusion (DeepMind, 2025) have demonstrated practical viability with significantly faster inference. **Reinforcement Learning for Diffusion Language Models:** Applying RL to diffusion LLMs faces unique challenges due to intractable likelihood estimation, which is required for policy optimization. Recent solutions include diffu-GRPO (Zhao et al., 2025) with mean-field approximation, MMaDA (Yang et al., 2025) and coupled-GRPO (Gong et al., 2025b) with improved masking strategies, LLaDA 1.5 (Zhu et al., 2025) addressing variance through preference optimization, wd1 (Tang et al., 2025) eliminating policy ratios via weighted likelihood objectives, and SDPO (Han et al., 2025) decomposing trajectory alignment into stepwise subproblems. More detailed related works are discussed in Section C.

6 CONCLUSION

We introduced IGPO, a reinforcement learning algorithm that leverages the inpainting capabilities of masked diffusion language models. By injecting ground-truth reasoning hints during denoising, IGPO steers the policy toward high-reward regions and alleviates the exploration bottleneck in RL. It resolves the zero-advantage dilemma by inducing reward variance that supports effective policy gradient updates when standard sampling yields uniform outcomes. To further strengthen

486 RL initialization, we proposed *Length-Aligned* SFT, which reduces the length mismatch across SFT,
487 RL, and evaluation stages. Combined with entropy-based gradient filtering, our approach achieves
488 new state-of-the-art performance among full-attention masked dLLMs on multiple mathematical
489 reasoning benchmarks. These results highlight a new paradigm for reinforcement learning in masked
490 diffusion language models, showing how architectural properties can be systematically exploited to
491 address critical optimization challenges.

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
549
550
This work focuses on algorithmic contributions to reinforcement learning and supervised fine-tuning
for diffusion language models, specifically targeting mathematical reasoning tasks. Our research
does not involve human subjects, does not collect or release new datasets containing personal
information, and addresses computational methods for improving model performance on well-
established mathematical benchmarks. The mathematical reasoning domain we target does not raise
concerns about harmful applications, bias amplification, or misuse potential. Our methodology
improvements are designed to enhance model accuracy and training efficiency, which we believe
contributes positively to the field of AI research. We have adhered to standard research practices and
have no conflicts of interest to declare.551
552
REPRODUCIBILITY STATEMENT
553554
555
556
557
558
559
560
561
We have made efforts to ensure the reproducibility of our work. Complete experimental details are
provided in [Table 2](#) and [Table 3](#) in the appendix, including all hyperparameters for both supervised
fine-tuning and reinforcement learning phases. Our use of existing datasets (OpenR1-Math-220K
for SFT and MetaMathQA for RL training) is fully disclosed, and the revision prompt used for trace
rewriting is provided in [Section I](#). The evaluation methodology and metrics for all four mathematical
benchmarks (GSM8K, MATH500, AMC, and Minerva) are clearly specified. All algorithmic
components of IGPO are detailed in [Algorithm 1](#) with mathematical formulations provided throughout.
We commit to releasing our implementation code upon publication to facilitate reproduction of our
results.562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
597 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
598 from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

599 AI@Meta. Llama 3 model card. 2024. [https://github.com/meta-llama/llama3/bl
600 ob/main/MODEL_CARD.md](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md).

601 Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu,
602 Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scaling
603 reinforcement learning on advanced reasoning models, 2025. [https://hkunlp.github.io
604 /blog/2025/Polaris](https://hkunlp.github.io/blog/2025/Polaris).

605 Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
606 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
607 gressive and diffusion language models. In *The Thirteenth International Conference on Learning
608 Representations*, 2025.

609 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
610 denoising diffusion models in discrete state-spaces. *Advances in neural information processing
611 systems*, 34:17981–17993, 2021.

612 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
613 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
614 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

615 Ting Chen, Ruixiang Zhang, and Geoffrey E. Hinton. Analog bits: Generating discrete data using
616 diffusion models with self-conditioning. *ArXiv*, abs/2208.04202, 2022.

617 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
618 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
619 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

620 DeepMind. Gemini diffusion, 2025. [https://deepmind.google/models/gemini-dif
622 fusion/](https://deepmind.google/models/gemini-dif
621 fusion/).

623 Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq: Sequence
624 to sequence text generation with diffusion models. In *International Conference on Learning
625 Representations, ICLR*, 2023.

626 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
627 Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
628 models via adaptation from autoregressive models. In *The Thirteenth International Conference on
629 Learning Representations*, 2025a.

630 Shansan Gong, Huangjie Zheng, Ruixiang Zhang, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
631 Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code
632 generation. 2025b. <https://arxiv.org/abs/2506.20639>.

633 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
634 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
635 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

636 Jiaqi Han, Austin Wang, Minkai Xu, Wenda Chu, Meihua Dang, Yisong Yue, and Stefano Ermon.
637 Discrete diffusion trajectory alignment via stepwise decomposition, 2025. <https://arxiv.org/abs/2507.04832>.

638 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
639 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
640 preprint arXiv:2103.03874*, 2021.

641 Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S. Abdelfattah, Jae sun Seo, Zhiru Zhang, and
642 Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
643 diffusion, 2025. <https://arxiv.org/abs/2505.21467>.

648 Zeyu Huang, Tianhao Cheng, Zihan Qiu, Zili Wang, Yinghui Xu, Edoardo M. Ponti, and Ivan
 649 Titov. Blending supervised and reinforcement fine-tuning with prefix sampling, 2025. <https://arxiv.org/abs/2507.01679>.
 650

651 Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
 652 Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, and
 653 Volodymyr Kuleshov. Mercury: Ultra-fast language models based on diffusion. 2025. <https://arxiv.org/abs/2506.17298>.
 654

655 Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
 656 parallel decoding, 2025. <https://arxiv.org/abs/2506.00413>.
 657

658 Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
 659 *Proceedings of the nineteenth international conference on machine learning*, pages 267–274, 2002.
 660

661 Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
 662 Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai
 663 Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems
 664 with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
 665 editors, *Advances in Neural Information Processing Systems*, 2022. <https://openreview.net/forum?id=IFXTZERXdM7>.
 666

667 Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
 668 Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
 669 Guillaume Lample, and Stanislas Polu. Numinamath. https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf,
 670 2024.
 671

672 Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
 673 Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
 674 model for multimodal understanding. *ArXiv preprint*, abs/2505.16839, 2025. <https://arxiv.org/abs/2505.16839>.
 675

676 Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-lm
 677 improves controllable text generation. *ArXiv*, abs/2205.14217, 2022.
 678

679 Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
 680 simple, effective, and efficient reinforcement learning method for aligning large language models.
 681 *arXiv preprint arXiv:2310.10505*, 2023.
 682

683 Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and
 684 Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
 685 *arXiv preprint arXiv:2506.06295*, 2025a.
 686

687 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 688 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 689 2025b.
 690

691 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 692 of the data distribution. In *Forty-first International Conference on Machine Learning*, 2024.
 693

694 Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
 695 language models, 2025. <https://arxiv.org/abs/2505.15781>.
 696

697 AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
 698 <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>, 2025.
 699

700 Jinjie Ni and the team. Diffusion language models are super data learners. <https://jinjie-ni.notion.site/Diffusion-Language-Models-are-Super-Data-Learner-s-239d8f03a866800ab196e49928c019ac>, 2025. Notion Blog.
 701

702 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 703 Li. Scaling up masked diffusion models on text. *arXiv preprint arXiv:2410.18514*, 2024.

702 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 703 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. <https://arxiv.org/abs/2502.09992>.

704

705 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
 706 Your absorbing discrete diffusion secretly models the conditional distributions of clean data. *arXiv*
 707 *preprint arXiv:2406.03736*, 2024.

708

709 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 710 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 711 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 712 27744, 2022.

713

714 Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffusion
 715 beats autoregressive in data-constrained settings, 2025. <https://arxiv.org/abs/2507.15857>.

716

717 Subham S. Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T. Chiu,
 718 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models.
 719 In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
 720 Tomczak, and Cheng Zhang, editors, *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. http://papers.nips.cc/paper_files/paper/2024/hash/eb0b13cc515724ab8015bc978fdde0ad-Abstract-Conference.html.

721

722 Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
 723 Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models, 2025.
 724 <https://arxiv.org/abs/2506.01928>.

725

726 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 727 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

728

729 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 730 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 731 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

732

733 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
 734 generalized masked diffusion for discrete data. In Amir Globersons, Lester Mackey, Danielle
 735 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, *Advances in
 736 Neural Information Processing Systems 38: Annual Conference on Neural Information Processing
 737 Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aead5e5cc60cef70f-Abstract-Conference.html.

738

739 Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy
 740 optimization for reasoning in diffusion language models, 2025. <https://arxiv.org/abs/2507.08838>.

741

742 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 743 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 744 llms. *arXiv preprint arXiv:2501.12599*, 2025.

745

746 Qwen Team. Qwen2.5: A party of foundation models, September 2024. [https://qwenlm.git hub.io/blog/qwen2.5/](https://qwenlm.git

 747 hub.io/blog/qwen2.5/).

748

749 Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
 750 Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
 751 and parallel decoding, 2025. <https://arxiv.org/abs/2505.22618>.

752

753 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
 754 Multimodal large diffusion language models. *ArXiv preprint, abs/2505.15809*, 2025. <https://arxiv.org/abs/2505.15809>.

755

756 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
757 Kong. Dream 7b, 2025. <https://hkunlp.github.io/blog/2025/dream>.
758

759 Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
760 Li. Llada-v: Large language diffusion models with visual instruction tuning. *arXiv preprint*
761 *arXiv:2505.16933*, 2025.

762 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
763 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
764 large language models. *arXiv preprint arXiv:2309.12284*, 2023.

765

766 Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
767 and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and
768 reinforcement learning via dynamic weighting, 2025. <https://arxiv.org/abs/2508.1408>.

769

770 Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
771 large language models via reinforcement learning. *arXiv preprint arXiv:2504.12216*, 2025.

772

773 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
774 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint*
775 *arXiv:2507.18071*, 2025.

776

777 Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
778 Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
779 optimization for large language diffusion models. *ArXiv preprint*, abs/2505.19223, 2025. <https://arxiv.org/abs/2505.19223>.

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A USE OF LARGE LANGUAGE MODELS DISCLOSURE

811
 812 LLMs were used only for minor editing (grammar and phrasing) and to generate speech narration
 813 for the supplementary presentation video from an author-written script. All research ideas, meth-
 814 ods, experiments, analyses, and substantive writing were carried out by the authors without LLM
 815 assistance.

816 B PRELIMINARIES

817 B.1 MASKED DIFFUSION LARGE LANGUAGE MODELS

818
 819 Masked diffusion LLMs (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024;
 820 Lou et al., 2024) employ a forward diffusion process that progressively corrupts token sequences x_0
 821 through introduction of mask tokens. This corruption process is parameterized by time $t \in [0, 1]$. At
 822 any given timestep t , the resulting sequence x_t contains partial masking, where each token maintains a
 823 probability α_t of remaining unmasked. The noise schedule α_t exhibits strict monotonic decrease with
 824 respect to t . Complete masking occurs at $t = 1$, where all tokens in x_1 become masked. The training
 825 procedure for masked dLLMs follows a forward process through definition of α_t and a bidirectional
 826 unmasking predictor f_θ with learnable parameters. During each training step, we stochastically
 827 sample timestep $t \in [0, 1)$ and apply token masking according to the designated forward process.
 828 Given these corrupted sequences, the training objective seeks to recover the original tokens. The
 829 standard optimization criterion employs the negative evidence lower bound (NELBO), which provides
 830 an upper bound for the negative log-likelihood (NLL) of the training data. For masked dLLMs,
 831 this NELBO reduces to a weighted NLL formulation, with weighting coefficients derived from
 832 transformations of α_t (Sahoo et al., 2024, Equation (10)). For example, LLaDA (Nie et al., 2025)
 833 specifies the forward process through $\alpha_t = 1 - t$, yielding the following NELBO formulation:
 834

$$835 -\mathbb{E}_{t \sim \mathcal{U}[0,1], x_0 \sim p_{\text{data}}, x_t \sim q_{t|0}(x_t|x_0)} \left[\frac{1}{t} \sum_{k=1}^{|x_t|} \mathbf{1}[x_t^k = \text{mask}] \log f_\theta(x_0^k | x_t) \right], \quad (6)$$

836 where $|x_t|$ denotes the sequence length of x , and x^k represents the k -th token position. The loss
 837 computation is restricted to tokens masked at timestep t .

838 During prompt conditional generation, the model starts with a sequence where prompt tokens remain
 839 unmasked and continuation tokens are initially masked, then progressively unmasks the continuation
 840 tokens through ancestral sampling from the reverse process $p_\theta(x_s | x_t)$ for timesteps $t > s$, where
 841 the model f_θ provides the denoising predictions for masked positions. The reverse process maintains
 842 the property that unmasked tokens are carried over unchanged throughout all denoising steps.

843 B.2 POLICY OPTIMIZATION FOR MASKED DIFFUSION LARGE LANGUAGE MODELS

844 Policy-gradient methods have gained widespread adoption for post-training LLMs (Ouyang et al.,
 845 2022; Bai et al., 2022; Li et al., 2023; Ahmadian et al., 2024). Online RL—particularly Group
 846 Relative Policy Optimization (GRPO)—has proved effective for improving language models (Shao
 847 et al., 2024; Guo et al., 2025; Team et al., 2025). GRPO (Shao et al., 2024) offers a computationally
 848 efficient alternative to PPO (Schulman et al., 2017) by using group-based statistics for advantage
 849 estimation, avoiding separate value-function training.

850 The GRPO objective integrates clipping for stability and reverse KL regularization:

$$851 \mathcal{L}_{\text{GRPO}}(\theta) = \mathbb{E}_{o_1, \dots, o_G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{k=1}^{|o_i|} \min \left(\rho_i^k A_i, \text{clip} \left(\rho_i^k, 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta D_{\text{KL}} [\pi_\theta(\cdot | q) \| \pi_{\text{ref}}(\cdot | q)] \right], \quad (7)$$

852 where $\rho_i^k = \frac{\pi_\theta(o_i^k | q, o_i^{<k})}{\pi_{\theta_{\text{old}}}(o_i^k | q, o_i^{<k})}$ is the likelihood ratio.

853 For a query q , GRPO samples G responses $\{o_1, \dots, o_G\}$ from the behavior policy $\pi_{\theta_{\text{old}}}$ and assigns a
 854 *single sequence-level* advantage per response. Following Liu et al. (2025b), we use the unnormalized
 855 group-relative advantage $A_i = r(o_i) - \frac{1}{G} \sum_{j=1}^G r(o_j)$, where r is the reward function. This scalar
 856 A_i is shared by *all tokens* in o_i when forming the tokenwise objective.

864 **Applying Policy Gradient Methods to Diffusion LLMs** Applying GRPO to dLLMs is nontrivial.
 865 The objective in [Equation \(7\)](#) requires (i) *token-level* probabilities for importance ratios and
 866 (ii) *sequence-level* probabilities for KL regularization. Autoregressive models provide per-token
 867 conditionals via sequential factorization, enabling one-pass sequence scoring by the chain rule:
 868 $\log \pi_{\text{AR}}(o \mid q) = \sum_{k=1}^{|o|} \log \pi_{\text{AR}}(o^k \mid q, o^{<k})$. Accordingly, the reverse-KL decomposes as
 869

$$870 D_{\text{KL}}[\pi_{\theta}(\cdot \mid q) \parallel \pi_{\text{ref}}(\cdot \mid q)] = \mathbb{E}_{o \sim \pi_{\theta}(\cdot \mid q)} \left[\sum_{k=1}^{|o|} \log \frac{\pi_{\theta}(o^k \mid q, o^{<k})}{\pi_{\text{ref}}(o^k \mid q, o^{<k})} \right]. \quad (8)$$

873 In contrast, dLLMs do not admit a sequential factorization of $\pi(o \mid q)$. dLLM’s generation invokes the
 874 unmasking predictor f_{θ} across M denoising steps, making π_{θ} a composition of M mappings. Exact
 875 tokenwise probabilities would require marginalization over denoising trajectories and maintaining
 876 (and differentiating through) full denoising trajectories, which is computationally prohibitive. To
 877 address this, recent work develops efficient approximations for policy optimization in masked
 878 diffusion LLMs. DiffuGRPO ([Zhao et al., 2025](#)) employs a mean-field approximation that yields
 879 *single-pass* estimates of both token-level and sequence-level terms, replacing explicit multi-step
 880 unrolling with a single-sample Monte Carlo estimate. While this introduces bias relative to the
 881 exact diffusion policy, it provides a practical framework for GRPO-style optimization on dLLMs.
 882 In our method, we adopt the mean-field estimators of [Zhao et al. \(2025\)](#) to compute the token-level
 883 importance ratios ρ_i^k and the reverse-KL term with one forward pass per policy.
 884

885 C RELATED WORK

886 C.1 DIFFUSION LANGUAGE MODELS

888 Diffusion language models was first explored through continuous approaches that map discrete text to
 889 continuous representations, including learned embeddings, sequence-to-sequence conditioning, and
 890 binary bit representations ([Chen et al., 2022](#); [Li et al., 2022](#); [Gong et al., 2023](#)). Recently, discrete
 891 diffusion language models have been scaled up significantly, with masked diffusion established as a
 892 specific instance of discrete diffusion ([Austin et al., 2021](#); [Sahoo et al., 2024](#); [Shi et al., 2024](#); [Ou](#)
 893 [et al., 2024](#); [Nie et al., 2024](#)). Notable developments include DiffuLLaMA ([Gong et al., 2025a](#)) and
 894 Dream ([Ye et al., 2025](#)), both adapted from pretrained autoregressive LLMs. LLaDA ([Nie et al., 2025](#)) represents a breakthrough as a masked diffusion LLM trained from scratch using full-attention,
 895 achieving performance comparable to similarly-sized autoregressive models. These approaches are
 896 predominantly based on masked modeling. Unlike these full-attention dLLMs, Block Diffusion
 897 ([Arriola et al., 2025](#)) introduced a hybrid approach that models sequences block-by-block while
 898 applying diffusion within each block, enabling flexible length generation and improved inference
 899 efficiency through kv-caching. Recent commercial models like Mercury ([Inception Labs et al., 2025](#))
 900 and Gemini Diffusion ([DeepMind, 2025](#)) have demonstrated the practical viability of diffusion-based
 901 code generation, achieving performance comparable to leading autoregressive models while offering
 902 significantly faster inference. More recent works have introduced caching and parallel decoding
 903 algorithms ([Wu et al., 2025](#); [Liu et al., 2025a](#); [Ma et al., 2025](#); [Israel et al., 2025](#); [Sahoo et al., 2025](#);
 904 [Hu et al., 2025](#)) that significantly improve inference efficiency for masked diffusion language models.
 905 In this work, we focus on full-attention masked dLLMs.

906 C.2 REINFORCEMENT LEARNING FOR DIFFUSION LANGUAGE MODELS

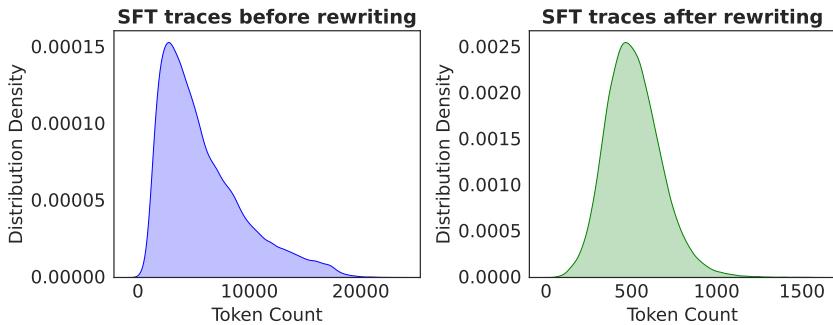
907 Applying reinforcement learning to diffusion language models presents unique challenges compared
 908 to autoregressive models. The primary obstacle is the intractability of likelihood functions in
 909 diffusion models, which necessitates approximating response likelihoods for policy optimization. This
 910 requirement introduces computational overhead and potential bias, particularly when approximation
 911 errors occur in policy ratios used for importance sampling. d1 proposed diffu-GRPO ([Zhao et al.,](#)
 912 [2025](#)) which adopts an efficient approximation through mean-field approximation. MMaDA ([Yang](#)
 913 [et al., 2025](#)) and diffucoder’s coupled-GRPO ([Gong et al., 2025b](#)) further improve the masking
 914 strategy in log probabilities estimation to achieve better learning efficiency. LLaDA 1.5 ([Zhu et al.,](#)
 915 [2025](#)) tackles the variance issues in ELBO-based likelihood estimates through preference optimization.
 916 Recently, wd1 ([Tang et al., 2025](#)) addresses these challenges by reformulating policy optimization as
 917 a weighted likelihood objective that eliminates the need for policy ratios. SDPO ([Han et al., 2025](#))

918 decomposes the diffusion trajectory alignment problem into stepwise subproblems that align the
 919 posterior at each diffusion step. Our inpainting method can also be applicable to some of the above
 920 online RL methods.

921 Additionally, a closely related work in RL for AR LLMs is Prefix-RFT (Huang et al., 2025), which
 922 samples prefixes from demonstrations to guide online exploration, though this is limited to left-
 923 to-right sequential generation that does not leverage the bidirectional conditioning capabilities of
 924 diffusion LLMs.

926 D LENGTH-ALIGNED SFT: SFT TRACE REVISION LENGTH DISTRIBUTION 927 COMPARISON

930 As illustrated in Figure 6, the original OpenR1-Math-220K dataset exhibits substantial token length
 931 diversity, with reasoning traces extending beyond 10,000 tokens while LLaDA’s maximum context
 932 length is only 4096 tokens. Naively applying SFT on this dataset would result in many truncated
 933 sequences, and even for samples within the 4096-token limit, significant distribution mismatch
 934 persists across training phases—we use 256 tokens for RL sampling and 512 tokens for evaluation.
 935 Our rewriting using LLaMA-4-Maverick successfully constrains all traces to under 1500 tokens,
 936 creating alignment between SFT training, RL sampling, and evaluation phases. Additionally, while
 937 reflective behavior has been found helpful for LLaDA in prior work (Zhao et al., 2025), the excessive
 938 repeated reflective patterns in the original dataset are unsuitable for its constrained generation space.
 939 The rewriting process eliminates this redundancy while preserving essential reasoning structure.



951 **Figure 6: Token Length Distribution of SFT Dataset Before and After Revision.** Comparison of
 952 token length distributions for the OpenR1-Math-220K dataset (94k math problems). After revision
 953 using LLaMA-4-Maverick, token lengths are constrained to below 1500 tokens, eliminating the
 954 extreme range of the original dataset where traces could exceed 20,000 tokens. This addresses the
 955 generation length mismatch across SFT training, RL sampling (256 tokens), and evaluation (512
 956 tokens) phases.

957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 E ABLATION: SFT ON HINT TRACES THEN APPLY GRPO VS IGPO 973

974 In our RL training setup, we assume access to ground-truth reasoning traces for every query in
975 the training dataset. To investigate whether direct supervised fine-tuning on these traces provides
976 comparable benefits to our elastic inpainting approach, we conduct an ablation study comparing
977 two strategies: (1) applying SFT on the RL dataset’s reasoning traces followed by standard GRPO
978 sampling, versus (2) directly applying IGPO with elastic hint injection only when all generated
979 responses are incorrect.

980 Specifically, we first fine-tune the LLaDA-8B-Instruct model on the MetaMath dataset’s reasoning
981 traces for 20 epochs, then apply standard GRPO sampling. We compare this against our IGPO
982 approach, which selectively injects partial reasoning hints from the same MetaMath dataset only
983 when zero-advantage scenarios occur (i.e., when all sampled responses yield incorrect rewards).

984 The results in Figure 7 demonstrate that IGPO consistently outperforms the SFT-first variant. Notably,
985 after SFT on the MetaMath dataset for 20 epochs, the model’s initial performance drops significantly
986 compared to the original LLaDA-8B-Instruct baseline. This degradation occurs because the MetaMath
987 dataset contains very concise reasoning traces, many shorter than our 256-token generation length
988 limit. Consequently, the model adopts overly concise reasoning patterns that prove insufficient for
989 the challenging problems in our evaluation benchmarks (such as AMC and Minerva).

990 While subsequent RL training can recover performance to some extent—as evidenced by the rapid
991 improvement in early training steps—it ultimately fails to match the effectiveness of IGPO. This
992 comparison highlights two key advantages of our approach: (1) the effectiveness of applying inpainting
993 guidance selectively only when the model struggles with specific queries, rather than forcing a
994 uniform reasoning style through SFT, and (2) the critical importance of reducing all-wrong group
995 occurrences, which successfully recovers gradient signals from otherwise degenerate zero-advantage
996 scenarios.

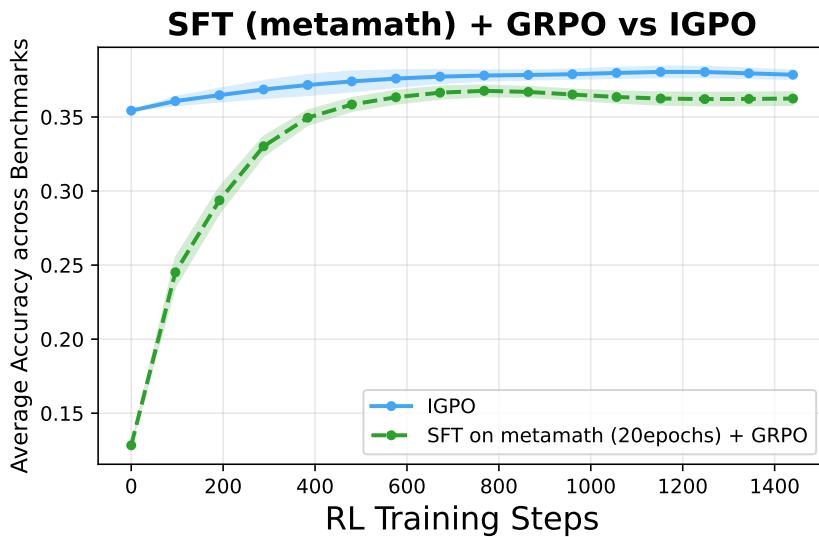


Figure 7: Comparison of SFT-first approach versus direct IGPO application. The SFT-first strategy involves fine-tuning on MetaMath reasoning traces for 20 epochs followed by standard GRPO, while IGPO applies inpainting-guided exploration elastically only during zero-advantage scenarios. IGPO demonstrates superior and more stable performance, avoiding the performance degradation caused by overly concise reasoning patterns learned during SFT on short traces. Results are averaged across four mathematical reasoning benchmarks with standard errors shown as shaded regions.

1026 **F EXPERIMENTS HYPERPARAMETERS**
10271028 Table 2: Training Hyperparameters
1029

1030 Parameter	1031 Value
SFT Training Parameters	
1033 Per Device Train Batch Size	4
1034 Hardware Configuration	8×8 H100 GPUs
1035 Gradient Accumulation Steps	8
1036 Learning Rate	5×10^{-6}
1037 LR Schedule	Warmup-stable-decay
1038 LR Warmup Steps	200
1039 LR Min Value	1×10^{-6}
1040 LR Decay Period	Final 10% of steps
1041 Number of Epochs	100
RL Sampling Parameters	
1042 RL Online Sampling Generation Length L	256
1043 Diffusion Steps	128
1044 Block Length	32
1045 Sampling Temperature	1.2
1046 Generations Per Group G	8
RL Training Parameters	
1047 Per Device Train Batch Size	8
1048 Hardware Configuration	8×8 H100 GPUs
1049 Gradient Accumulation Steps	1
1050 Effective Batch Size	512
1051 KL Beta β	0.01
1052 Policy Gradient Inner Iterations per Generation μ	4
1053 Learning Rate	5×10^{-7}
1054 LR Schedule	Linear decay to 0
1055 LR Warmup Steps	50
1056 LR Decay Period	10 epochs
1057 Training Steps	1440
1058 Clip Ratio Epsilon ε	0.2
IGPO Specific Parameters	
1059 Chunk Size $ c_j \sim \mathcal{U}[s_{\min}, s_{\max}]$	$\mathcal{U}[5, 10]$
1060 Inpainting Ratio $\eta_i \sim \mathcal{U}[\eta_{\text{low}}, \eta_{\text{high}}]$	$\mathcal{U}[0.2, 0.6]$
1061 replacement fraction λ	0.5
1062 Entropy-based Gradient Filtering for Inpainted Tokens τ	0.2

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081

F.1 TEMPERATURE SELECTION FOR RL TRAINING

1082

1083 Following the methodology established by Polaris An et al. (2025) for scaling reinforcement learning
 1084 on advanced reasoning models, we conduct a systematic analysis to determine the optimal sampling
 1085 temperature for our RL training process. We evaluate our model’s performance across different
 1086 sampling temperatures by analyzing both Pass@5 and Average@5 scores on the MATH500 dataset.
 1087 We also divide three temperature regions: low temperatures (≤ 0.8) yield high accuracy but reduced
 1088 diversity in generated rollouts, restricting the model’s ability to explore diverse reasoning paths; high
 1089 temperatures (≥ 1.6) preserve rollout diversity but significantly degrade accuracy due to increased
 1090 noise in token generation; and the middle Controlled Exploration Zone (0.9-1.5) provides the optimal
 1091 trade-off between maintaining reasonable accuracy and achieving sufficient diversity for effective RL
 1092 training. Based on this analysis, we select temperature $T = 1.2$ to balance exploration with sample
 1093 quality and provide sufficient diversity for RL training.

1094

1095

1096

1097

1098

1099

1100

1101

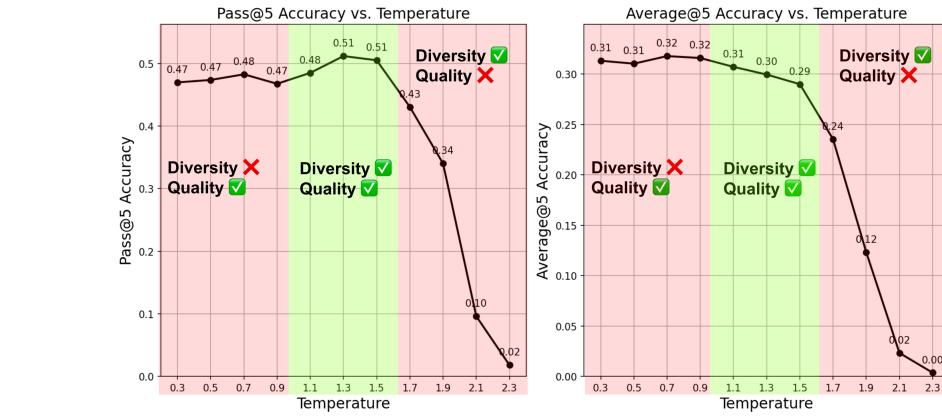
1102

1103

1104

1105

1106



1107 Figure 8: Performance analysis across different sampling temperatures on MATH500. The plot shows
 1108 Pass@5 and Average@5 scores, revealing three distinct regions: low temperatures with high accuracy
 1109 but low diversity, high temperatures with preserved diversity but degraded accuracy, and the middle
 1110 region offering the desired trade-off. We select $T = 1.2$ for our RL training.

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 **G INPAINTING GENERATION QUALITATIVE EXAMPLES**
1135

1136

1137 **Blue text:** Question Prompt **Green text:** Injected Hints **Black text:** Inpainted Generation

1138

1139

1140

1141

1142

Problem: Circle C has radius 6 cm. How many square centimeters are in the area of the largest possible inscribed triangle having one side as a diameter of circle C ?

Inpainting Input At Denosing Step 0:

```

1143 <|start_header_id|>user<|end_header_id|>
1144 Respond in the following format:
1145 <reasoning>
1146 ...
1147 </reasoning>
1148 <answer>
1149 \ boxed{<Your answer>}
1150 </answer>
1151 Circle  $C$  has radius 6 cm. How many square centimeters are in the area
1152 of the largest possible inscribed triangle having one side as a diameter of
1153 circle  $C$ ?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
1154
1155 <|mdm_mask|><|mdm_mask|>...<|mdm_mask|>
1156 Since the diameter is twice the radius, the base of the triangle will have
1157 length  $2 \times 6 = 12$  cm.
1158 To <|mdm_mask|>...<|mdm_mask|>, we want the height to be as large
1159 <|mdm_mask|>...<|mdm_mask|>
1160 of the triangle is the distance from the midpoint of the base to the
1161 circumference of the circle.
1162 This is equal to the radius of the circle, <|mdm_mask|>...<|mdm_mask|>
1163 <|mdm_mask|>...<|mdm_mask|> <|mdm_mask|>...<|mdm_mask|>
1164 12 <|mdm_mask|>...<|mdm_mask|>
1165 12 <|mdm_mask|>...<|mdm_mask|>
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
```

Inpainted Generation After Denoising:

```

1162 <reasoning>
1163 We know to find the largest possible inscribed triangle in circle  $C$ , the base
1164 of the triangle should be the diameter of the circle.
1165 Since the diameter is twice the radius, the base of the triangle will have
1166 length  $2 \times 6 = 12$  cm.
1167 To find the largest possible area of the triangle, we want the height to be
1168 as large as possible.
1169 The largest possible height of the triangle is the distance from the midpoint of
1170 the base to the
1171 circumference of the circle.
1172 This is equal to the radius of the circle, which is 6 cm.
1173 Therefore, the area of the largest possible inscribed triangle is given by the
1174 formula for the area of a triangle, which is  $\frac{1}{2} \times \text{base} \times \text{height}$ . The base is 12 cm and the height is 6 cm, so the area is  $\frac{1}{2} \times 12 \times 6 = 36$  square centimeters.
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
```

1188 **H EVALUATION HYPERPARAMETERS**1189
1190 We evaluate all models with a fixed decoding setup per benchmark. Unless otherwise noted, the same
1191 prompts and decoding hyperparameters are applied to both LLaDA-8B-Instruct and LLaDA-1.5.
11921193 Table 3: Evaluation hyperparameters by benchmark.
1194

Benchmark	Temp.	Block Len.	Diffusion Steps	Gen. Len.	Metric
GSM8K	0.0	32	512	512	pass@1
MATH500	0.0	32	512	512	pass@1
AMC	0.5	128	512	512	avg@16
Minerva	0.0	128	512	512	pass@1

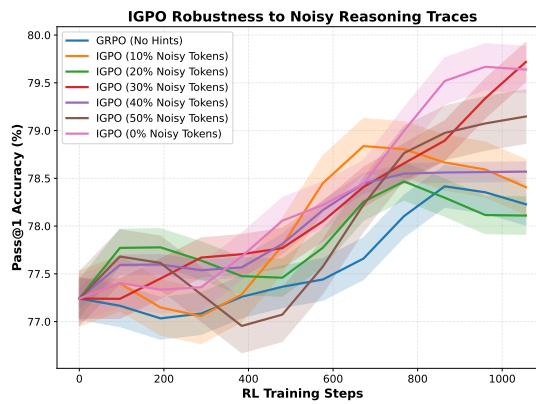
1200
1201 **I PROMPT FOR SFT TRACES REVISION**
12021203
1204 Prompt for SFT traces revision sent to LLaMA 4 Maverick
12051206 Please rewrite the original solution to make it more concise and easier to understand without
1207 changing the details. Please put the explanation in the solution between <reasoning> and
1208 </reasoning> and put the final numerical answer between <answer> and </answer>
1209 in boxed format. Please shorten or rewrite the rewritten solution to a random length between
1210 100 and 1000 words while keeping sufficient details of the reasoning steps. Please do not
1211 return anything other than the rewritten solution.1212 **Example:**1213 <reasoning>
1214 xxx
1215 </reasoning>
1216
1217 <answer>
1218 \boxed{14}
1219 </answer>1220 **Original solution:** {generations}.1221 **Your response:**1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **J ROBUSTNESS OF IGPO TO NOISY REASONING TRACES**
 1243

1244 We evaluate IGPO’s robustness when the ground-truth reasoning traces used for hint injection are
 1245 corrupted with simulated realistic noise: we design numeric errors (e.g., “ $8 \times 15 = 130$ ”), operator
 1246 swaps (e.g., $\div \rightarrow \times$), logical word inconsistencies (e.g., “therefore” \rightarrow “however”), and replacing
 1247 hesitation tokens (e.g., “umm”, “wait”). We vary the corruption rate ρ from 0 to 0.5, where each token
 1248 is independently corrupted with probability ρ . Examples of trace corruption is shown in Table 4.

1249 Our evaluation results are shown in Figure 9 shows that IGPO remains effective even under introduced
 1250 noise: although performance gradually degrades with noises, IGPO consistently outperforms GRPO.
 1251 This robustness arises from IGPO’s gating mechanisms: (i) only *partial* reasoning chunks are injected
 1252 and the final answers must still be generated by the model, so only correctness-verified responses
 1253 are used; and (ii) only the top 20% most uncertain injected tokens are allowed to contribute to the
 1254 gradient, limiting exposure to incorrect hints.

1255 We note that extremely corrupted traces violate the intended use of IGPO, whose goal is to leverage
 1256 mostly correct reasoning to guide exploration; in practice, IGPO should not be applied to heavily
 1257 inaccurate reasoning datasets.



1259
 1260 Figure 9: Pass@1 accuracy on GSM8K with generation length 256 under simulated reasoning-trace
 1261 noise. A fraction ρ of inpainting tokens are randomly corrupted.
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271

Type	Example
Original	Let’s calculate: $8 \times 15 = 120$, then $120 \div 4 = 30$. Therefore, the answer is 30.
Number	Let’s calculate: $8 \times 15 = 130$, then $130 \div 4 = 32$. Therefore, the answer is 32.
Operator	Let’s calculate: $8 \times 15 = 120$, then $120 \times 4 = 480$. Therefore, the answer is 480.
Logic	Let’s calculate: $8 \times 15 = 120$, then $120 \div 4 = 30$. However , the answer is 30.
Mixed	Umm let’s calculate: $8 \times 15 = 125$, then $125 \div 4 = 31$. Wait , therefore the answer is 31.

1285 Table 4: Example reasoning traces corrupted. Red text indicates corrupted tokens.
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **K THEORETICAL ANALYSIS: GRADIENT RECOVERY AND KL-CONTROLLED
 1297 INPAINTING**
 1298

1299 We analyze why IGPO improves policy optimization exactly in the regime where vanilla GRPO
 1300 fails: the *all-wrong, zero-advantage* case. This is precisely the event that triggers inpainting in our
 1301 algorithm. Throughout, $x \in \mathcal{X}$ denotes a query, $o \in \mathcal{O}$ a response sequence, and $r(o) \in \{0, 1\}$ a
 1302 verifiable reward. The policy π_θ is parameterized by θ .
 1303

1304 Our main conclusions are: (1) In all-wrong groups, GRPO has a zero gradient, whereas IGPO restores
 1305 a non-zero gradient whose magnitude scales as $\rho(1 - \rho)$, where ρ is the *effective replacement ratio*
 1306 of inpainted correct responses. (2) The same replacement mechanism admits a mixture-policy view:
 1307 replacing an α fraction of the response distribution with the correct solution o^* yields a mixture policy
 1308 π_α that weakly improves the expected reward and strictly improves it whenever the base policy is
 1309 imperfect. (3) Partial hint injection controls the KL shift to the current policy linearly in the mixture
 1310 weight α , providing a soft trust-region-like stability guarantee. In our implementation, the batch-level
 1311 replacement hyperparameter λ upper-bounds the effective mixture weight $\alpha \approx \rho \leq \lambda$.
 1312

1313 **K.1 SETUP AND ZERO-ADVANTAGE DILEMMA**

1314 We aim to maximize the expected reward

$$J(\theta) = \mathbb{E}_x J(\pi_\theta; x), \quad J(\pi_\theta; x) = \mathbb{E}_{o \sim \pi_\theta(\cdot | x)} [r(o)]. \quad (9)$$

1315 In GRPO, for each query x we sample a group $\mathcal{S} = \{o_1, \dots, o_G\}$ i.i.d. from $\pi_\theta(\cdot | x)$ and compute
 1316 group-normalized advantages
 1317

$$\bar{r} = \frac{1}{G} \sum_{i=1}^G r(o_i), \quad A_i = r(o_i) - \bar{r}, \quad (10)$$

1318 which yields the per-query policy gradient estimator
 1319

$$\hat{g}_{\text{GRPO}}(x) = \frac{1}{G} \sum_{i=1}^G A_i \nabla_\theta \log \pi_\theta(o_i | x). \quad (11)$$

1320 We focus on the *all-wrong* event
 1321

$$\mathcal{E}_{\text{wrong}} = \{r(o_i) = 0 \quad \forall i \in \{1, \dots, G\}\}. \quad (12)$$

1322 **Zero-gradient dilemma of GRPO.** Conditioned on $\mathcal{E}_{\text{wrong}}$, we have $\hat{g}_{\text{GRPO}}(x) = \mathbf{0}$. This follows
 1323 immediately since under $\mathcal{E}_{\text{wrong}}$, $r(o_i) = 0$ for all i , so $\bar{r} = \frac{1}{G} \sum_i r(o_i) = 0$ and $A_i = r(o_i) - \bar{r} = 0$
 1324 for all i . Substituting into equation 11 yields
 1325

$$\hat{g}_{\text{GRPO}}(x) = \frac{1}{G} \sum_{i=1}^G 0 \cdot \nabla_\theta \log \pi_\theta(o_i | x) = \mathbf{0}. \quad (13)$$

1326 **K.2 GRADIENT RECOVERY AND POLICY IMPROVEMENT**
 1327

1328 We now analyze IGPO under $\mathcal{E}_{\text{wrong}}$. For a fixed query x , the IGPO batch construction proceeds as
 1329 follows:
 1330

- 1331 • Sample G original responses $\{o_1, \dots, o_G\}$ with $r(o_i) = 0$.
- 1332 • Generate an additional set $\{\tilde{o}_1, \dots, \tilde{o}_G\}$ via inpainting using hint injection based on the ground-
 1333 truth trace o^* .
- 1334 • Keep only inpainted responses that pass correctness verification, $r(\tilde{o}_j) = 1$, and replace at most
 1335 $\lfloor \lambda G \rfloor$ of the original failures, where $\lambda \in (0, 1)$ is a hyperparameter controlling the *maximum
 1336 replacement fraction*.

1350 Let K be the number of inpainted correct responses used for replacement ($K \leq \lfloor \lambda G \rfloor$) and define
 1351 the *effective replacement ratio*

$$1352 \quad 1353 \quad \rho = \frac{K}{G} \in [0, \lambda]. \quad (14)$$

1354 The augmented group is

$$1355 \quad 1356 \quad \mathcal{S}' = \{o'_1, \dots, o'_G\}, \quad |\{i : r(o'_i) = 1\}| = K, \quad |\{i : r(o'_i) = 0\}| = G - K. \quad (15)$$

1357 Let

$$1358 \quad \mathcal{I}_{\text{correct}} = \{i : r(o'_i) = 1\}, \quad \mathcal{I}_{\text{wrong}} = \{i : r(o'_i) = 0\}. \quad (16)$$

1359 The new group-average reward is

$$1360 \quad 1361 \quad \bar{r}_{\text{new}} = \frac{1}{G} \sum_{i=1}^G r(o'_i) = \frac{K}{G} = \rho, \quad (17)$$

1364 and the corresponding advantages are

$$1365 \quad 1366 \quad A'_i = \begin{cases} 1 - \rho, & i \in \mathcal{I}_{\text{correct}}, \\ -\rho, & i \in \mathcal{I}_{\text{wrong}}. \end{cases} \quad (18)$$

1368 The per-query IGPO gradient estimator (omitting clipping and KL terms for clarity) is

$$1369 \quad 1370 \quad \hat{g}_{\text{IGPO}}(x) = \frac{1}{G} \sum_{i=1}^G A'_i \nabla_{\theta} \log \pi_{\theta}(o'_i \mid x). \quad (19)$$

1373 **Mixture policy interpretation.** The effective replacement ratio $\rho = K/G$ can be viewed as the
 1374 weight of an idealized mixture policy that puts mass on the correct solution. For each query x with
 1375 ground-truth solution o^* , define

$$1376 \quad 1377 \quad \pi_{\alpha}(\cdot \mid x) = (1 - \alpha) \pi_{\theta}(\cdot \mid x) + \alpha \delta_{o^*}, \quad \alpha \in [0, 1], \quad (20)$$

1378 where δ_{o^*} is the Dirac distribution at o^* . In this view, replacing K of the G samples by o^* corresponds
 1379 to sampling approximately from π_{α} with $\alpha \approx \rho$; our implementation enforces $\rho \leq \lambda$ via the cap
 1380 $K \leq \lfloor \lambda G \rfloor$.

1381 We next relate this mixture to reward improvement. For a reference policy π_{θ} , define the advantage

$$1382 \quad 1383 \quad A^{\pi_{\theta}}(x, o) = r(o) - J(\pi_{\theta}; x). \quad (21)$$

1384 In our single-step, verifiable-reward setting, the performance-difference lemma (Kakade and Langford,
 1385 2002) simplifies to

$$1386 \quad J(\pi') - J(\pi_{\theta}) = \mathbb{E}_x \mathbb{E}_{o \sim \pi'(\cdot \mid x)} [A^{\pi_{\theta}}(x, o)], \quad (22)$$

1387 for any comparison policy π' . For π_{α} in equation 20 and fixed x ,

$$1388 \quad 1389 \quad \mathbb{E}_{o \sim \pi_{\alpha}(\cdot \mid x)} [A^{\pi_{\theta}}(x, o)] = (1 - \alpha) \mathbb{E}_{o \sim \pi_{\theta}(\cdot \mid x)} [A^{\pi_{\theta}}(x, o)] + \alpha A^{\pi_{\theta}}(x, o^*) \\ 1390 \quad = (1 - \alpha) \cdot 0 + \alpha (r(o^*) - J(\pi_{\theta}; x)) \\ 1391 \quad = \alpha (1 - J(\pi_{\theta}; x)), \quad (23)$$

1393 since $r(o^*) = 1$ and $\mathbb{E}_{o \sim \pi_{\theta}} [A^{\pi_{\theta}}(x, o)] = 0$ by definition in all-wrong case. Plugging into equation 22
 1394 yields

$$1395 \quad J(\pi_{\alpha}) - J(\pi_{\theta}) = \alpha \mathbb{E}_x [1 - J(\pi_{\theta}; x)]. \quad (24)$$

1396 **Lemma 1** (Closed-form expected IGPO gradient). *Define the gradient expectations under the correct
 1397 and wrong distributions separately:*

$$1398 \quad 1399 \quad g_{\text{correct}}(x) = \mathbb{E}_{o' \sim \delta_{o^*}} [\nabla_{\theta} \log \pi_{\theta}(o' \mid x)] = \nabla_{\theta} \log \pi_{\theta}(o^* \mid x), \quad (25)$$

$$1400 \quad 1401 \quad g_{\text{wrong}}(x) = \mathbb{E}_{o' \sim \pi_{\theta}(\cdot \mid x)} [\nabla_{\theta} \log \pi_{\theta}(o' \mid x)] \quad (26)$$

1402 where we note that $r(o') = 0$ for $o' \sim \pi_{\theta}(\cdot \mid x)$. Then

$$1403 \quad g_{\text{IGPO}}(x) = \mathbb{E}[\hat{g}_{\text{IGPO}}(x)] = \rho(1 - \rho)(g_{\text{correct}}(x) - g_{\text{wrong}}(x)). \quad (27)$$

1404
1405 *Proof.* The expectation in $g_{\text{IGPO}}(x) = \mathbb{E}[\hat{g}_{\text{IGPO}}(x)]$ is taken over all possible sets $\mathcal{S}' =$
1406 $\{o'_1, \dots, o'_G\}$ such that: (1) the set has size G , and (2) exactly K of the G outputs are correct
1407 (sampled from δ_{o^*}) while the remaining $G - K$ are wrong (sampled from $\pi_\theta(\cdot | x)$ conditioned on
1408 being incorrect).

1408 To compute this expectation, we first observe that for each valid set \mathcal{S}' , we can consider all $G!$
1409 permutations of its elements. By symmetry, each position $i \in \{1, \dots, G\}$ has the same marginal
1410 distribution when averaged over all permutations of all valid sets. Specifically, each o'_i is drawn from
1411 the mixture distribution:

$$1412 \quad o'_i \sim \pi_\alpha(\cdot | x) \quad \text{with} \quad \alpha = \rho = \frac{K}{G}. \quad (28)$$

1414 Therefore, we can decompose the expectation over groups into a sum of G identical expectations,
1415 each over the mixture distribution π_α :

$$1416 \quad g_{\text{IGPO}}(x) = \mathbb{E}_{\mathcal{S}'} \left[\frac{1}{G} \sum_{i=1}^G A'_i \nabla_\theta \log \pi_\theta(o'_i | x) \right] \\ 1417 \\ 1418 = \frac{1}{G} \sum_{i=1}^G \mathbb{E}_{o'_i \sim \pi_\alpha(\cdot | x)} [A'_i \nabla_\theta \log \pi_\theta(o'_i | x)] \\ 1419 \\ 1420 = \mathbb{E}_{o' \sim \pi_\alpha(\cdot | x)} [A'_i \nabla_\theta \log \pi_\theta(o' | x)], \quad (29)$$

1421 where the second equality follows from the symmetry argument and the third uses the fact that all G
1422 terms are identical.

1423 Now, expanding the mixture distribution $\pi_\alpha = (1 - \alpha)\pi_\theta + \alpha\delta_{o^*}$ with $\alpha = \rho$:

$$1424 \quad \mathbb{E}_{o' \sim \pi_\alpha(\cdot | x)} [A'_i \nabla_\theta \log \pi_\theta(o' | x)] \\ 1425 \\ 1426 = (1 - \rho)\mathbb{E}_{o' \sim \pi_\theta(\cdot | x)} [A'_i \nabla_\theta \log \pi_\theta(o' | x)] \\ 1427 \\ 1428 + \rho \mathbb{E}_{o' \sim \delta_{o^*}} [A'_i \nabla_\theta \log \pi_\theta(o' | x)]. \quad (30)$$

1429 For outputs sampled from π_θ (conditioned on being wrong), we have $r(o') = 0$, so from equation 18,
1430 $A'_i = -\rho$:

$$1431 \quad (1 - \rho)\mathbb{E}_{o' \sim \pi_\theta(\cdot | x)} [A'_i \nabla_\theta \log \pi_\theta(o' | x)] = (1 - \rho) \cdot (-\rho)\mathbb{E}_{o' \sim \pi_\theta(\cdot | x)} [\nabla_\theta \log \pi_\theta(o' | x)] \\ 1432 \\ 1433 = -\rho(1 - \rho) g_{\text{wrong}}(x). \quad (31)$$

1434 For outputs sampled from δ_{o^*} , we have $r(o') = 1$, so $A'_i = 1 - \rho$:

$$1435 \quad \rho \mathbb{E}_{o' \sim \delta_{o^*}} [A'_i \nabla_\theta \log \pi_\theta(o' | x)] = \rho \cdot (1 - \rho)\mathbb{E}_{o' \sim \delta_{o^*}} [\nabla_\theta \log \pi_\theta(o' | x)] \\ 1436 \\ 1437 = \rho(1 - \rho) g_{\text{correct}}(x). \quad (32)$$

1438 Combining both terms:

$$1439 \quad g_{\text{IGPO}}(x) = \rho(1 - \rho) g_{\text{correct}}(x) - \rho(1 - \rho) g_{\text{wrong}}(x) \\ 1440 \\ 1441 = \rho(1 - \rho)(g_{\text{correct}}(x) - g_{\text{wrong}}(x)). \quad (33)$$

□

1442 **Theorem 1** (Gradient recovery and policy improvement). *Conditioned on $\mathcal{E}_{\text{wrong}}$ and for $0 < \rho < 1$,
1443 the expected IGPO gradient satisfies*

$$1444 \quad g_{\text{IGPO}}(x) = \rho(1 - \rho)(g_{\text{correct}}(x) - g_{\text{wrong}}(x)), \quad (34)$$

1445 and is non-zero whenever $g_{\text{correct}}(x) \neq g_{\text{wrong}}(x)$. Furthermore, for the mixture policy π_α in equation 20,

$$1446 \quad J(\pi_\alpha) - J(\pi_\theta) = \alpha \mathbb{E}_x [1 - J(\pi_\theta; x)] \geq 0, \quad (35)$$

1447 with strict inequality whenever there exists a query x such that $J(\pi_\theta; x) < 1$. The scalar factor
1448 $\rho(1 - \rho)$ governing the gradient magnitude is maximized at $\rho = 1/2$.

1449 *Proof.* The expression and non-degeneracy of $g_{\text{IGPO}}(x)$ follow directly from Lemma 1. Equation
1450 equation 24 implies $J(\pi_\alpha) - J(\pi_\theta) \geq 0$ since $0 \leq J(\pi_\theta; x) \leq 1$ for all x (as $r(o) \in \{0, 1\}$). If
1451 there exists at least one x with $J(\pi_\theta; x) < 1$, then $1 - J(\pi_\theta; x) > 0$ on a set of positive measure,
1452 so for any $\alpha > 0$ the improvement is strictly positive. Finally, the quadratic $f(\rho) = \rho(1 - \rho)$ has
1453 derivative $f'(\rho) = 1 - 2\rho$ and second derivative $f''(\rho) = -2 < 0$, so f is maximized at $\rho = 1/2$. □

1458
 1459 **Connection to implementation.** In our method section, the *hint injection ratio* η controls how many
 1460 ground-truth chunks are injected during inpainting and thus only affects how candidate inpainted
 1461 responses $\{\tilde{o}_i\}$ are generated. The *replacement hyperparameter* λ caps how many correctness-verified
 1462 inpainted responses enter the RL group: $K \leq |\lambda G|$, so the effective replacement ratio satisfies
 1463 $\rho = K/G \leq \lambda$. In the mixture-policy view, the idealized mixture weight α is therefore realized in
 1464 practice as a random effective weight $\alpha \approx \rho$ bounded by λ .

1464

1465

KL CONTROL VIA PARTIAL HINT INJECTION

1466

1467 We now quantify the distributional shift induced by inpainting to argue that partial replacement leads
 1468 to a controlled KL change relative to the current policy.

1469

1470 **Theorem 2** (KL control via partial hint injection). *For the mixture policy π_α in equation 20, the KL*

divergence to the current policy satisfies

1471

1472
$$D_{\text{KL}}(\pi_\alpha(\cdot | x) \| \pi_\theta(\cdot | x)) \leq \alpha D_{\text{KL}}(\delta_{o^*} \| \pi_\theta(\cdot | x)) = -\alpha \log \pi_\theta(o^* | x). \quad (36)$$

1473

1474 *Proof.* The KL divergence $D_{\text{KL}}(P \| Q)$ is convex in its first argument. For any distributions P_1, P_2
 1475 and $\alpha \in [0, 1]$,

1476
$$D_{\text{KL}}((1 - \alpha)P_1 + \alpha P_2 \| Q) \leq (1 - \alpha)D_{\text{KL}}(P_1 \| Q) + \alpha D_{\text{KL}}(P_2 \| Q). \quad (37)$$

1477

1478 Apply this with $P_1 = \pi_\theta(\cdot | x)$, $P_2 = \delta_{o^*}$, $Q = \pi_\theta(\cdot | x)$:

1479
$$\begin{aligned} D_{\text{KL}}(\pi_\alpha(\cdot | x) \| \pi_\theta(\cdot | x)) &\leq (1 - \alpha)D_{\text{KL}}(\pi_\theta(\cdot | x) \| \pi_\theta(\cdot | x)) + \alpha D_{\text{KL}}(\delta_{o^*} \| \pi_\theta(\cdot | x)) \\ &= \alpha D_{\text{KL}}(\delta_{o^*} \| \pi_\theta(\cdot | x)), \end{aligned} \quad (38)$$

1480

1481 since $D_{\text{KL}}(\pi_\theta \| \pi_\theta) = 0$. For the Dirac distribution,

1482
$$D_{\text{KL}}(\delta_{o^*} \| \pi_\theta(\cdot | x)) = \sum_o \delta_{o^*}(o) \log \frac{\delta_{o^*}(o)}{\pi_\theta(o | x)} = \log \frac{1}{\pi_\theta(o^* | x)} = -\log \pi_\theta(o^* | x), \quad (39)$$

1483

1484 which proves equation 36. \square

1485

1486

1487 **Interpretation and link to λ and η .** When $\pi_\theta(o^* | x)$ is small (the model is far from the correct
 1488 solution), the full Dirac update ($\alpha = 1$) induces a large KL shift and may destabilize training. The
 1489 bound equation 36 shows that using a mixture weight $\alpha < 1$ scales the KL divergence linearly with
 1490 α , implementing a soft trust-region-like constraint: IGPO injects strong supervised-like corrections
 1491 while keeping the updated policy within a controlled KL neighborhood of the current iterate. Empirically,
 1492 we observe that intermediate values of λ —corresponding to partial hint injection and hence
 1493 intermediate ρ —yield the best performance.

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

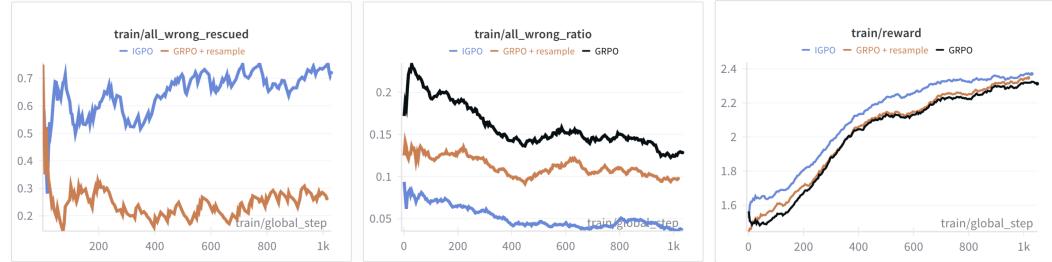
1511

28

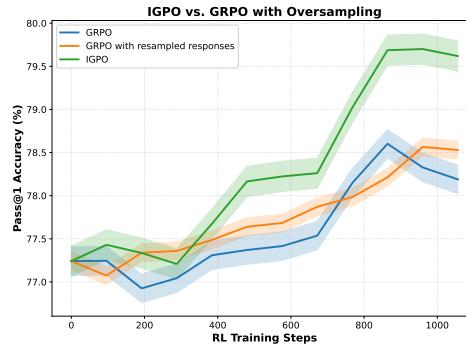
1512 L ABLATION: A SAMPLE-MATCHED GRPO BASELINE WITHOUT INPAINTING 1513

1514 To determine whether IGPO’s improvements arise from its hint-guided exploration or merely from
1515 an increased number of generated trajectories, we compare against a GRPO baseline that matches
1516 IGPO’s total sampling budget.

1517 In GRPO + resample, whenever a GRPO group produces only incorrect responses, we resample
1518 additional trajectories from the current policy, matching the number of samples that IGPO would
1519 have generated. In GRPO + resample, all trajectories remain fully on-policy, and no hint tokens are
1520 injected.



1523 Figure 10: Training statistics comparing IGPO, standard GRPO, and GRPO with sample-matched
1524 resampling. We report the *all-wrong rescued* rate (the proportion of all-wrong groups in which
1525 resampling yields at least one correct response), the overall *all-wrong ratio*, and the training reward.
1526 IGPO achieves the lowest all-wrong ratio and the highest reward.



1531 Figure 11: Evaluation curves on GSM8K (w/ generation length 256, greedy decoding), comparing
1532 IGPO, GRPO, and GRPO + resample. IGPO achieves higher pass@1, showing that its improvements
1533 are not explained by increased sampling alone.

1536 As shown in Figure 10, despite using the same number of sampled trajectories, GRPO + resample
1537 consistently exhibits a higher all-wrong ratio and lower training rewards. Simply increasing the
1538 sampling budget does not resolve all-wrong cases, as the policy remains unable to discover correct
1539 solutions on its own. In contrast, IGPO substantially reduces the frequency of all-wrong groups
1540 through its hint-guided exploration mechanism. As shown in Figure 11, IGPO also outperforms
1541 both baselines in evaluation. These results confirm that IGPO’s advantages stem from its inpainting-
1542 based guidance rather than from increased sampling volume. Partial hint injection provides targeted
1543 directional signals that pure resampling cannot replicate, while still preserving predominantly on-
1544 policy generation.

1566
1567
1568**SFT trace before rewritten by LLaMA 4 Maverick**
Problem: Find all primes between 1 and 15.1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

<think>
Okay, so I need to find all the prime numbers between 1 and 15. Hmm, let's start by remembering what a prime number is. From what I recall, a prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. So, numbers like 2, 3, 5, etc., are primes because you can't divide them evenly by any other number besides 1 and the number itself. On the other hand, numbers like 4, 6, 8, and so on are not primes because they can be divided by other numbers. For example, 4 can be divided by 2, so it's not prime. Alright, so the task is to list all primes between 1 and 15. Let me list out all numbers from 1 to 15 first to check them one by one. The numbers are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.

1579
1580
1581

Now, let's go through each number and see if it's prime. Starting with 1. **Wait, I remember that by definition, prime numbers are greater than 1.** So 1 is not considered a prime. So we can skip 1.

1582
1583

Next up is 2. Let's check if 2 is prime. The divisors of 2 are 1 and 2. There are no other divisors, so yes, 2 is a prime number.

1584
1585

Moving on to 3. Similarly, the divisors are 1 and 3. No other numbers divide into 3, so 3 is prime.

1586
1587

Next is 4. Let's check divisors. 4 divided by 2 is 2, which is an integer, so 4 is not prime. It can be divided by 2, so it's composite.

1588
1589

Then 5. The divisors of 5 are 1 and 5. No other numbers divide into 5, so 5 is prime.

6. Checking divisors. 6 divided by 2 is 3, so it's divisible by 2 and 3. Not prime.

7. Divisors are 1 and 7. No other divisors, so 7 is prime.

8. Divided by 2 gives 4, so 8 is not prime.

9. Divided by 3 gives 3, so 9 is not prime (since 3 times 3 is 9).

10. Divided by 2 is 5, so 10 is not prime.

11. Let's see, 11. Divided by 2? 11 divided by 2 is 5.5, not an integer. Divided by 3? 11 divided by 3 is approximately 3.666... Not an integer. Divided by 4? 2.75, nope. 5? 2.2, nope. Since 11 is a prime number because none of these divisions result in integers, so 11 is prime.

12. Divided by 2 is 6, so composite.

13. Checking divisors. 13 divided by 2 is 6.5, 13 divided by 3 is about 4.333..., 4? 3.25, 5? 2.6, 6? 2.166... None of these are integers. So 13 is prime.

14. Divided by 2 is 7, so composite.

15. Divided by 3 is 5, so composite.

Let me recap the numbers between 1 and 15 and their primality:

1600
1601

1: Not prime

1602
1603

2: Prime

1604
1605

3: Prime

1606
1607

4: Not

1608
1609

5: Prime

1610
1611

6: Not

7: Prime

1612
1613

8: Not

9: Not

10: Not

11: Prime

12: Not

13: Prime

14: Not

15: Not

So compiling the primes from this list: 2, 3, 5, 7, 11, 13.

Wait a second, let me verify each one again just to be sure I didn't make a mistake.

Starting with 2: Definitely prime. It's the only even prime.

3: Prime, yes.

5: Prime, yes.

7: Prime. Correct.

1620

1621

1622

1623

1624 11: Let's check again. 11 divided by 2 is not whole. 3? 3*3 is 9, 3*4 is 12. So no. 5? 5*2 is
 1625 10, 5*3 is 15. So 11 is prime.

1626 13: Similarly, 13 divided by 2 is 6.5, 3 is 4.333, 5 is 2.6. So, prime.

1627 Yes, those all check out. So primes between 1 and 15 are 2, 3, 5, 7, 11, and 13.

1628 **But hold on**, sometimes people might make a mistake with 9. **Wait, 9 is 3 times 3, so that's**
 1629 **composite, which I had down**. 15 is 3 times 5, composite. So all the non-primes are accounted
 1630 for.

1631 Is there any number I might have missed? Let's see. Let's list all numbers again:

1632 2, 3, 5, 7, 11, 13. Are there any others?

1633 Well, 1 is excluded. 4,6,8,9,10,12,14,15 are composite. So no, those six numbers are all
 1634 primes between 1 and 15.

1635 **Wait, but the question says "between 1 and 15." Does that include 15?** Hmm, the wording
 1636 is "between 1 and 15," which could be a bit ambiguous. But usually, when someone says
 1637 "between 1 and 15," they mean including both endpoints. However, since 15 is composite,
 1638 it's excluded either way. So primes are 2,3,5,7,11,13.

1639 Yes, that seems correct. I don't think I made any mistakes here. Let me cross-verify with
 1640 another method, like the Sieve of Eratosthenes. The Sieve is a method where you list all
 1641 numbers and cross out multiples.

1642 Starting with 2, cross out multiples: 4,6,8,10,12,14.

1643 Then 3, cross out multiples: 6,9,12,15.

1644 Then 5, cross out 10,15.

1645 7, cross out 14.

1646 11 and 13 are primes, and their multiples are beyond 15. So remaining numbers are
 1647 2,3,5,7,11,13. Which matches our previous list.

1648 Therefore, the primes between 1 and 15 are 2,3,5,7,11,13.

1649 ****Final Answer****

1650 The primes between 1 and 15 are 2, 3, 5, 7, 11, and 13.

1651 **</think>**

1652 To find all the prime numbers between 1 and 15, we start by recalling that a prime number is
 1653 a natural number greater than 1 that has no positive divisors other than 1 and itself. We then
 1654 check each number from 1 to 15:

- ****1****: Not a prime number (by definition).
- ****2****: Prime (divisors: 1, 2).
- ****3****: Prime (divisors: 1, 3).
- ****4****: Not prime (divisible by 2).
- ****5****: Prime (divisors: 1, 5).
- ****6****: Not prime (divisible by 2, 3).
- ****7****: Prime (divisors: 1, 7).
- ****8****: Not prime (divisible by 2).
- ****9****: Not prime (divisible by 3).
- ****10****: Not prime (divisible by 2, 5).
- ****11****: Prime (divisors: 1, 11).
- ****12****: Not prime (divisible by 2, 3, 4, 6).
- ****13****: Prime (divisors: 1, 13).
- ****14****: Not prime (divisible by 2, 7).
- ****15****: Not prime (divisible by 3, 5).

1655 Using the Sieve of Eratosthenes method to cross out non-prime numbers confirms the primes
 1656 listed above. Therefore, the prime numbers between 1 and 15 are:

1657 2, 3, 5, 7, 11, 13

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688

SFT trace after rewritten by LLaMA 4 Maverick

Problem: Find all primes between 1 and 15.

1689
 1690
 1691 <reasoning>
 1692 To find all the prime numbers between 1 and 15, we recall that a prime number is a natural
 1693 number greater than 1 that has no positive divisors other than 1 and itself.
 1694 We then check each number from 1 to 15 to determine if it is prime.
 1695 - **1**: Not a prime number (by definition).
 1696 - **2**: Prime (divisors: 1, 2).
 1697 - **3**: Prime (divisors: 1, 3).
 1698 - **4**: Not prime (divisible by 2).
 1699 - **5**: Prime (divisors: 1, 5).
 1700 - **6**: Not prime (divisible by 2, 3).
 1701 - **7**: Prime (divisors: 1, 7).
 1702 - **8**: Not prime (divisible by 2).
 1703 - **9**: Not prime (divisible by 3).
 1704 - **10**: Not prime (divisible by 2, 5).
 1705 - **11**: Prime (divisors: 1, 11).
 1706 - **12**: Not prime (divisible by 2, 3, 4, 6).
 1707 - **13**: Prime (divisors: 1, 13).
 1708 - **14**: Not prime (divisible by 2, 7).
 1709 - **15**: Not prime (divisible by 3, 5).
 1710 The Sieve of Eratosthenes method confirms the primes listed above.
 1711 </reasoning>
 1712 <answer>
 1713 2, 3, 5, 7, 11, 13

1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727