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ABSTRACT

Masked diffusion large language models (dLLMs) are emerging as promising alter-
natives to autoregressive LLMs, offering competitive performance while supporting
unique generation capabilities such as inpainting. We explore how inpainting can
inform RL algorithm design for dLLMs. Aligning LLMs with reinforcement
learning faces an exploration challenge: sparse reward signals and sample waste
when LLMs fail to discover correct solutions. While this inefficiency affects LLMs
broadly, dLLMs offer a distinctive opportunity—their inpainting ability can guide
exploration. We introduce IGPO (Inpainting Guided Policy Optimization), an RL
framework that strategically injects partial ground-truth reasoning traces during on-
line sampling. Unlike providing full solutions, inpainting steers exploration toward
promising trajectory spaces while preserving self-generated reasoning, bridging
supervised fine-tuning and reinforcement learning. We apply IGPO to group-based
optimization methods such as GRPO, where exploration failures cause zero ad-
vantages and gradients. IGPO restores meaningful gradients while improving
sample efficiency. We also propose supervised fine-tuning on synthetically rewrit-
ten concise traces that better align with dLLM generation patterns. With additional
techniques including entropy-based filtering, our training recipe yields substan-
tial gains across four mathematical benchmarks—GSM8K, Math500, AMC and
Minerva—achieving new state-of-the-art results for full-attention masked dLLMs.

(a) Masked dLLM Inpainting-Guided Sampling 

At Denoising Step 0:

Problem: "Joy can read 8 pages of a book in 20 minutes.  How many hours will it take her
to read 120 pages?"

[MASK] ... [MASK]

8*3=24

will take her 120/

[MASK] ... [MASK]

Fixed Hint Chunks Inpainted Generation

[MASK] ... [MASK]

[MASK] Tokens

[MASK] ... [MASK]

(b) IGPO Performance & All-Wrong Groups Reduction

There are 3 x 20 minutes in an hour, so Joy will read

pages per hour. So,it 24 = 5 hours to will take her 120/

read all pages. Therefore, the answer to this problem is 5.

8*3=24

Final Generation:

Iterative Denoising Steps ... (c) Comparison with Prior Methods 

Figure 1: (a) Unlike autoregressive LLMs, diffusion LLMs can be conditioned on future reasoning
hints during generation through inpainting via bidirectional attention, enabling guided exploration
toward correct solutions. (b) Applying inpainting-guided exploration in policy optimization outper-
forms standard Group Relative Policy Optimization (GRPO) sampling and reduces all-wrong groups
occurrences. (c) Our full training recipe combining Length-Aligned supervised fine-tuning on concise
reasoning traces with IGPO achieves SoTA performance among full-attention masked dLLMs across
four mathematical reasoning benchmarks.
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1 INTRODUCTION

Recent research has shown that masked diffusion large language models (dLLMs) (Austin et al.,
2021; Lou et al., 2024; Shi et al., 2024) such as LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025)
can achieve performance competitive with autoregressive LLMs of similar size. Their capabilities and
performance can be further enhanced via RL post-training (Zhao et al., 2025; Gong et al., 2025b) and
ability to flexibly include multimodal data (Li et al., 2025; Yang et al., 2025; You et al., 2025). Unlike
autoregressive LLMs, which decode in a left-to-right manner, dLLMs iteratively unmask tokens in
parallel. This brings potential for faster inference as shown in closed models like Mercury (Inception
Labs et al., 2025) and Gemini Diffusion (DeepMind, 2025), along with a flexible inductive bias for
operations such as inpainting, the ability to fill in missing content within existing text.

In this work, we explore how inpainting can be leveraged to inform post-training algorithms for
dLLMs. Recent work on post-training of dLLMs has adopted training approaches similar to autore-
gressive LLMs, applying Reinforcement Learning with Verifiable Reward (RLVR) methods (Zhao
et al., 2025; Yang et al., 2025; Gong et al., 2025b). However, a fundamental exploration challenge
persists: for challenging tasks, policies struggle to discover correct solutions and binary rewards
provide minimal learning signal when most generated solutions are incorrect. This leads to substantial
sample waste and poor training efficiency, exacerbating the computational costs of online RL.

The bidirectional generative structure of diffusion LLMs provides a unique mechanism to address this
exploration challenge. Since dLLMs are trained through stochastic masking patterns, they possess
inherent capability for accepting externally provided partial hints through inpainting. We leverage
this ability to introduce IGPO (Inpainting Guided Policy Optimization), a novel RL framework that
strategically guides exploration for dLLMs by injecting reasoning hints when answering difficult
problems. Specifically, when the policy is unlikely to generate correct solutions, partial reasoning
traces are injected into the generation region, and the dLLM is tasked with completing the remaining
reasoning sequence and output final answer. The final answers are verified against ground truth, and
only successful completions are used for downstream policy optimization.

We demonstrate IGPO’s effectiveness in group-based policy optimization methods such as
GRPO (Shao et al., 2024), which are particularly vulnerable to exploration failures: when a group’s
responses are all incorrect, group-normalized advantage collapses to zero and resulting in zero gradi-
ents. This occurs with alarming frequency in challenging domains. By reducing the prevalence of
all-wrong groups, IGPO restores gradient signals and enables more effective RL. More broadly, IGPO
can be viewed as a form of guided exploration that interpolates between supervised and RL paradigms.
The injected tokens act as conditioning context that steers the policy’s action distribution toward
high-reward regions. Unlike pure SFT, which might suffer from distribution shift between data and
policy rollouts (Zhang et al., 2025), IGPO maintains on-policy generation for the non-injected tokens.
Finally, we augment IGPO with techniques that improve learning stability and performance, including
entropy-based gradient filtering for injected tokens, and conduct comprehensive experiments across
math benchmarks. We evaluate each component of our approach through ablation studies. Our work
makes the following key novel contributions:

• We propose IGPO, the first work to utilize the unique inpainting capabilities of diffusion LLMs
for reinforcement learning. By strategically injecting partial reasoning traces during exploration,
IGPO alleviates the inefficiency of sparse verifiable rewards and mitigates the zero-advantage
dilemma in group-based policy optimization methods, substantially reducing the proportion of
all-wrong groups (by approximately 60% as shown in Fig 1 (b)) in our training.

• We propose a Length-Aligned SFT for full-attention based dLLMs using synthetically rewritten,
concise reasoning traces. This design better aligns SFT data length with RL sampling and evaluation
length, avoids the limitations of verbose traces, and provides stronger initialization for RL.

• Our full training recipe achieves substantial improvements on mathematical benchmarks, including
+5.3% on GSM8K, +8.4% on Math500, +11.4% on AMC, and +4.0% on Minerva relative to
the LLaDA-Instruct, achieving SoTA performance among full-attention based dLLMs.

• We conduct a comprehensive ablation study that disentangles the mechanisms of IGPO. We show
that partial inpainting consistently outperforms full ground-truth inpainting by staying closer to the
policy distribution in online RL, and propose an entropy-based gradient filtering mechanism that
stabilizes training dynamics.
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2 PRELIMINARIES

2.1 MASKED DIFFUSION LARGE LANGUAGE MODELS

Masked diffusion LLMs (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024;
Lou et al., 2024) employ a forward diffusion (masking) process that progressively corrupts clean
sequences x0 by introducing mask tokens. This process is indexed by continuous time t ∈ [0, 1]. At
any timestep t ∈ (0, 1), the partially corrupted sequence xt is obtained by independently masking
tokens so that each token remains unmasked with probability αt, where the schedule αt is strictly
decreasing in t. At t = 1, the sequence is fully masked. Training specifies the forward process via αt

and learns a bidirectional unmasking predictor fθ to recover the original tokens from xt. Each step
samples t ∈ [0, 1), applies the forward masking to obtain xt ∼ qt|0(xt|x0), and optimizes a masked-
token objective derived from the negative evidence lower bound (NELBO), which upper-bounds the
data negative log-likelihood (NLL). For masked dLLMs this NELBO reduces to a weighted NLL with
weights determined by transforms of αt (Sahoo et al., 2024, Eq. (10)). For example, LLaDA (Nie
et al., 2025) uses a linear schedule αt = 1− t, leading to:

−Et∼U [0,1), x0∼pdata, xt∼qt|0(xt|x0)

1
t

|xt|∑
k=1

1[xk
t = mask] log fθ(x

k
0 | xt)

 , (1)

where |xt| is the sequence length and xk the k-th token. The loss is computed only on tokens masked
at time t. For prompt-conditional generation, prompt tokens are kept unmasked while continuation
tokens are initialized as mask. The model then simulates a reverse process pθ(xs | xt) over timesteps
t > s, where fθ provides denoising predictions for masked positions. Throughout the reverse
trajectory, already unmasked tokens are preserved and carried forward unchanged.

2.2 POLICY OPTIMIZATION FOR MASKED DIFFUSION LARGE LANGUAGE MODELS

Policy-gradient post-training is widely used for LLM alignment (Ouyang et al., 2022; Bai et al.,
2022; Li et al., 2023; Ahmadian et al., 2024). GRPO (Shao et al., 2024; Guo et al., 2025; Team et al.,
2025) is a value-free variant of PPO (Schulman et al., 2017) that uses group-wise, sequence-level
advantages for G responses {oi}Gi=1 to a query q:

Ai = r(oi) − 1
G

G∑
j=1

r(oj). (2)

The GRPO objective integrates ratio clipping and reverse-KL regularization:

LGRPO(θ) = E q∼D
o1,...,oG∼πθold (·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

min
(
ρkiAi, clip

(
ρki , 1− ε, 1 + ε

)
Ai

)
− βDKL [πθ(·|q)∥πref(·|q)]

 , (3)

where ρki =
πθ(o

k
i |q,o

<k
i )

πθold (o
k
i |q,o

<k
i )

is the probability ratio, r(·) is a reward function, β > 0 is the KL regulariza-

tion coefficient, ε > 0 is the clipping parameter, and πref is the reference policy. In autoregressive mod-
els, the reverse-KL is tractable via the chain rule, log πAR(o | q) =

∑|o|
k=1 log πAR(o

k | q, o<k), but
masked diffusion LLMs do not admit a left-to-right factorization because πθ arises from composing
reverse denoising steps of the mask predictor. To make GRPO practical for masked diffusion policies,
DiffuGRPO (Zhao et al., 2025) adopts a mean-field approximation that yields single-pass estimators
for token-level ratios and the reverse-KL; we use these estimators throughout. We provide a detailed
background discussion in Appendix B.

3 METHODS

3.1 IGPO: INPAINTING GUIDED POLICY OPTIMIZATION

Zero-Advantage Dilemma. In the GRPO framework, when sampling G responses
{o1, o2, . . . , oG} for a given prompt q, the advantage computation relies on reward variance across
the group. However, when all responses receive identical rewards—either all correct or all incorrect

3
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Inpainting-Guided Policy Optimization

Generation Area (All [Mask] Tokens)

Augmented RL 
Sampling Group 

✅  Non-zero advantages!

Response 1: r = 0

Green: Fixed chunks | Red: Inpainted Generations

Response 2: r = 0

Response 3 (õ₁) : r = 1

Response 4 (õ₃) : r = 1

+

Inpainted Generations

õ₁: r = 1 ✓ õ₂: r = 0 ✗ õ₃: r = 1 ✓

Only successful generations (r > 0) added to group

Initial RL Sampling Group 

Response 1: r = 0

Response 2: r = 0

Response 3: r = 0

Response 4: r = 0

❌  All advantages = 0

Ground Truth Reasoning Traces

Green: Selected chunks for inpainting

Inpainting with Ground Truth Chunks

Figure 2: Overview of IGPO: When all sampled responses yield identical incorrect rewards (zero-
advantage scenario), we perform hint-guided inpainting by generating additional responses using
ground truth reasoning chunks as injected hints. Ground truth traces y∗ are segmented into variable-
length chunks, and selected chunks are injected as fixed hints during generation while the model
generates the remaining tokens. We then replace a fraction of the original incorrect responses with
correct responses generated through inpainting, creating reward variance that enables non-zero
advantages for effective policy gradient updates.

—the advantages become zero: Ai = r(oi)− 1
G

∑G
j=1 r(oj) = 0. This zero-advantage scenario makes

the policy gradient component degenerate. Specifically, the clipped surrogate objective collapses to
zero regardless of whether the update lies in the clipped or unclipped region, since both terms contain
Ai = 0. The policy gradient for this prompt q therefore becomes:

1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

Ai ρ
k
i ∇θ log πθ(o

k
i | q) = 0 since Ai = 0 ∀i.

As a result, no meaningful policy update can be extracted from the reward signal, wasting compute
sampling these responses. In this work, we specifically focus on mitigating the all-wrong case.

Masked dLLM Generation and Inpainting. In full-attention masked dLLM generation, the
model input at denoising step 0 is the concatenation [q; zmask], where q represents the prompt and
zmask = [mask,mask, . . . ,mask] denotes a fully masked completion sequence of predetermined
length L. The generation process progressively unmasks these positions through iterative denoising
until producing the final output.

Hint injection modifies this formulation by fixing selected positions of zmask to ground-truth tokens.
During RL training, we assume access to ground-truth reasoning trace y∗ = [y∗1 , y

∗
2 , . . . , y

∗
|y∗|] for

every question q. For injection, we create a binary mask m ∈ {0, 1}L indicating which positions to
inject as fixed hints, we construct the hint-injected initialization:

zhint[i] =

{
y∗i if m[i] = 1 and i ≤ |y∗|,
mask otherwise.

(4)

The masked dLLM then performs bidirectional denoising on [q; zhint] through the inpainting process,
leveraging both the prompt and injected hint tokens to generate coherent responses. The injected hint
tokens remain fixed throughout the iterative denoising steps.

Constructing Hint Patterns for Inpainting. To construct meaningful hint patterns for the inpaint-
ing process, we segment the ground truth reasoning trace y∗ into variable-length contiguous chunks
C = {c1, c2, . . . , cN}, where each chunk length |cj | is sampled from U [smin, smax]. We explicitly
exclude the final answer tokens from chunking to prevent reward hacking behaviors where the model
ignores reasoning and collapses. For a given hint injection ratio η ∈ [0, 1], we randomly select ⌊η ·N⌋
chunks and set their corresponding positions in the binary mask m to 1 for hint injection.

4
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Algorithm 1 IGPO: Inpainting-Guided Policy Optimization for Masked dLLMs

Require: Reference model πref, prompt distribution D, ground-truth reasoning traces {y∗}, number
of completions per prompt G, number of inner updates µ, hint injection ratio range [ηlow, ηhigh],
replacement fraction λ, entropy filter threshold τ , chunk size range [smin, smax]

1: Initialize πθ ← πref
2: while not converged do
3: πold ← πθ; sample prompt q∼D and responses o1:G∼πold(· |q); compute rewards r1:G
4: if all ri = 0 (zero-advantage case) then
5: Segment ground-truth reasoning y∗ into chunks {c1, . . . , cN} with |cj | ∼ U [smin, smax]
6: for i = 1, . . . , G do
7: Sample hint injection ratio η ∼ U [ηlow, ηhigh] and select ⌊ηN⌋ chunks from
{c1, . . . , cN} randomly

8: Inject selected chunk tokens as fixed hints at corresponding positions
9: Generate õi via inpainting: denoise only masked positions, keep hint tokens fixed

10: Evaluate rewards r(õi) and replace up to ⌊λG⌋ incorrect oi with correct õi
11: Compute advantages Ai on the updated response set
12: for n = 1, . . . , µ do
13: Estimate log πθ, log πold, log πref; apply top-τ entropy filter on hint positions
14: Update πθ via LIGPO(θ) (Eq. 5)
15: return πθ

Elastic Inpainting-Triggered Sampling. With the above inpainting setup, we design IGPO (as in
Algorithm 1) to be elastic: hint injection is only triggered when all sampled responses in a group
yield incorrect rewards (the zero-advantage case), and when activated, both the hint injection ratio η
and chunk sizes (U [smin, smax]) are randomized to provide diverse training signals. Concretely, when
detecting that all sampled responses {o1, . . . , oG} for query q yield identical rewards r(oi) = 0, we
generate an additional set of responses {õ1, . . . , õG} through the inpainting process. Each response
õi is generated via inpainting with a distinct hint injection ratio ηi ∼ U [ηlow, ηhigh] to ensure diverse
hint densities. Following inpainting generation, we evaluate the correctness of {õi} and only use the
correct ones for replacement. Specifically, we replace K = min(|{õi : r(õi) = 1}|, ⌊λG⌋) of the
original incorrect responses with correct responses generated through inpainting, where λ ∈ (0, 1)
controls the replacement fraction.

The only modification introduced by IGPO lies in the sampling step: when the all-wrong condition
is detected, the original G on-policy responses are partially replaced by K correctness-verified
inpainted samples. The IGPO objective therefore differs from the standard GRPO formulation only
at the sampling level; all other components remain unchanged. In particular, the advantages Ai are
computed normally according to Eq. 2. The resulting objective for an all-wrong group is identical to
GRPO except for this sampling change, highlighted in blue below.

LIGPO(θ) = E q∼D
{o1,...,oG−K ,õ1,...,õK}∼IGPO-Sample(πθ,q,y∗)

[(
1

G

G∑
i=1

1

Li

Li∑
k=1

min
(
ρkiA

k
i , clip

(
ρki , 1− ε, 1 + ε

)
Ak

i

))
− βDKL [πθ(·|q)∥πref(·|q)]

]
,

(5)

where IGPO-Sample(πθ, q, y
∗) denotes the augmented sampling procedure that applies inpainting-

based augmentation when zero-advantage scenarios are detected, producing the augmented RL
sampling group {o1, . . . , oG−K , õ1, . . . , õK} containing (G−K) original responses and K verified
correct inpainted responses {õi} after replacement. Li denotes the length of the i-th response (whether
oi or õi). Crucially, only inpainted responses that pass correctness verification are included in the
augmented group, satisfying r(õi) = 1. We built IGPO with DiffuGRPO (Zhao et al., 2025)’s log
probability estimation methods, where all completion tokens are masked during estimation and we
remove the random masking applied to prompt tokens as done in DiffuGRPO. Since we use a small
number of policy iterations (i.e. µ = 4), this alleviates the need for random prompt masking to reduce
overfitting. Inspired by Zheng et al. (2025), we compute sequence-level importance-ratio through
mean-field approximation for stability purposes.

Entropy-based Gradient Filtering for Hint Tokens. When applying IGPO to zero-advantage
scenarios, the responses generated through inpainting contain ground truth reasoning chunks that

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

originate from a different distribution than the current policy πθ. This creates an off-policy learning
scenario where gradient updates from ground truth tokens can conflict with the model’s current
beliefs, particularly at positions where the model has high confidence (low entropy). To mitigate
potential training instability from this distribution mismatch, we implement an entropy-based filtering
approach that restricts learning to hint token positions where the model exhibits sufficient uncertainty,
as inspired by Huang et al. (2025). Specifically, for each hint token position (i.e., positions with
injected ground-truth tokens) we compute the entropy. We then apply gradient updates only to
the top τ percentile of hint token positions with highest entropy values. This selective learning
strategy serves two purposes: high-entropy positions represent genuine decision boundaries where
the model is naturally uncertain and thus more receptive to external guidance, and they correspond to
flatter probability distributions that yield more stable gradient updates when incorporating ground
truth information. This approach controls the policy shift by focusing learning on positions where
the model is already open to change, rather than forcing updates against strong existing beliefs at
low-entropy positions.

3.2 LENGTH-ALIGNED SFT VIA CONCISE REASONING TRACE REWRITING

To further strengthen our training recipe, we seek better RL initialization via SFT but identified
generation length mismatches across SFT, RL sampling, and evaluation phases. Full-attention masked
dLLMs like LLaDA lack KV cache optimization (Wu et al., 2025) by defualt, requiring full-sequence
attention at every denoising step, which dominates online RL training cost. As a result, we restrict RL
rollouts to 256 tokens for faster convergence within a reduced exploration space, and evaluation setups
in recent work (Zhao et al., 2025; Zhu et al., 2025; Nie et al., 2025) typically use 256–1024 tokens. In
contrast, popular reasoning SFT corpora (e.g., OpenR1) contain verbose traces often exceeding 10k
tokens, creating distribution mismatch across SFT, RL, and evaluation, and include repeated reflective
behaviors unsuited for limited context. To resolve this, we systematically rewrite verbose traces into
concise, structured forms that preserve logical flow while respecting dLLM computational limits.
Using LLaMA-4-Maverick (Meta, 2025) with prompts detailed in Appendix I, we remove redundant
reflections, condense multi-sentence elaborations into precise, mathematically rigorous statements,
and retain essential reasoning. Examples of revision length distributions and before/after traces are
in Appendix D and I. Our Length-Aligned SFT trains LLaDA solely on rewritten traces, improving
RL initialization by avoiding implicit length compression and focusing learning on reasoning quality
within fixed compute budgets. Empirical results show clear gains over training on verbose traces, and
we further observe that masked dLLMs benefit from extended training (e.g., 100 epochs) relative to
AR LLMs, consistent with recent works (Ni and the team, 2025; Prabhudesai et al., 2025).

4 EXPERIMENTS

To investigate how the inpainting capabilities of masked dLLMs can address the exploration chal-
lenges in RL and how Length-Aligned SFT improves performance, we conduct comprehensive
experiments to answer the following main research questions:

(1) How effectively does our complete training approach (Length-aligned SFT with rewritten reason-
ing traces followed by reinforcement learning with IGPO) improve the mathematical reasoning
performance of LLaDA and reduce all-wrong groups occurrences? (§4.3)

(2) How does partial hint injection in IGPO bridge on-policy generation with ground truth guidance,
and how does this improve learning compared to full supervision? (§4.4)

(3) How do key design choices—including entropy filtering thresholds and reasoning trace rewrit-
ing—affect RL training dynamics and learning stability? (§4.4)

4.1 COMPLETE TRAINING RECIPE

Our complete learning framework consists of a two-stage pipeline: Stage 1: Supervised Fine-Tuning
with Rewritten Traces. We begin with Length-Aligned SFT on the LLaDA-8B-Instruct model using
the OpenR1-Math-220K dataset’s default split (94k math problems), but with all reasoning traces
rewritten (See Appendix D for length distribution before and after revision). This ensures consistency
between training distribution and downstream RL/evaluation phases by aligning trace lengths. Stage
2: Reinforcement Learning with IGPO. Following Length-aligned SFT, we apply IGPO to further
enhance reasoning capabilities through strategic inpainting-guided policy optimization. We utilize the
reasoning traces from the MetaMathQA dataset for the elastic inpainting process, creating effective

6
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Figure 3: RL training curves of IGPO versus normal GRPO sampling. (a) Starting from LLaDA-
8B-Instruct. (b) Starting from the length-aligned SFT checkpoint. IGPO exhibits superior and
more stable training performance under both initialization checkpoints compared to standard GRPO
sampling. Results are averaged over 3 random seeds across four mathematical reasoning benchmarks
(GSM8K, MATH500, AMC and Minerva Math), with standard errors shown as shaded regions.

guidance signals that fit within our computational constraints. Detailed training hyperparameters are
provided in Appendix F.

4.2 EXPERIMENTAL SETUP

We conduct experiments using LLaDA-8B-Instruct as the base model with a sampling temperature of
1.2 for RL online generation, where the temperature is selected based on exploration and exploitation
analysis detailed in Appendix F.1. For reinforcement learning, we train on the MetaMathQA
dataset (Yu et al., 2023), specifically using the “Answer Augmentation” split and combining questions
from both GSM8K and MATH500. After deduplicating identical questions, we obtain 12,794 unique
training examples. For supervised fine-tuning, we utilize the OpenR1-Math-220K dataset with
rewritten reasoning traces as described in Section 3.2. We evaluate our approach on four mathematics
benchmarks: GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021), AMC (LI et al.,
2024) and Minerva Math (Lewkowycz et al., 2022). Experiments are conducted on 8×8 80GB H100
GPUs. For UniGRPO (Yang et al., 2025) baseline, we reproduce based on their Algorithm 1. We
provide detailed experiment hyperparameter setups in Appendix F and Appendix H.

4.3 MAIN RESULTS

Table 1: Performance across multiple mathematics tasks. GSM8K, MATH500 and Minerva are
evaluated with pass@1 at temperature of 0.0, and AMC with avg@16 at temperature 0.1. Underlined
scores indicate the best within each initialization group. Parenthesized deltas typeset via (+) denote
absolute percentage-point improvements relative to the LLaDA-8B-Instruct baseline.

Model
GSM8K
(pass@1)

MATH500
(pass@1)

AMC
(avg@16)

Minerva
(pass@1) Average

Similar-sized autoregressive LLMs

LLaMA3-8B (AI@Meta, 2024) 79.6 30.0 – – –
Qwen2.5-7B (Team, 2024) 85.4 49.8 – – –

Prior masked dLLM baselines

Dream-7B (Ye et al., 2025) 77.2 39.6 – – –
d1-LLaDA (Zhao et al., 2025) 82.1 40.2 – – –
wd1 (Tang et al., 2025) 82.3 39.0 – – –
LLaDA-1.5 (Zhu et al., 2025) 83.3 42.6 13.6 8.8 37.1
LLaDA-Instruct (Nie et al., 2025) 81.5 (+0) 39.0 (+0) 14.5 (+0) 9.2 (+0) 36.0 (+0)

RL from LLaDA-Instruct

LLaDA-Instruct + UniGRPO (Yang et al., 2025) 82.2 (+0.7) 39.2 (+0.2) 15.0 (+0.5) 11.0 (+1.8) 36.9 (+0.9)

LLaDA-Instruct + DiffuGRPO (Zhao et al., 2025) 82.4 (+0.9) 40.2 (+1.2) 15.5 (+1.0) 10.3 (+1.1) 37.1 (+1.1)

LLaDA-Instruct + IGPO (ours) 83.1 (+1.6) 42.8 (+3.8) 17.5 (+3.0) 12.1 (+2.9) 38.9 (+2.9)

Length-aligned SFT on LLaDA-Instruct and RL on the SFT checkpoint

LLaDA-Instruct + Length-aligned SFT (ours) 83.6 (+2.1) 45.2 (+6.2) 22.3 (+7.8) 10.3 (+1.1) 40.4 (+4.4)

LLaDA-Instruct + Length-aligned SFT + IGPO (ours) 86.8 (+5.3) 47.4 (+8.4) 25.9 (+11.4) 13.2 (+4.0) 43.3 (+7.3)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

As shown in Table 1, our training recipe demonstrates consistent improvements across all mathe-
matical reasoning benchmarks. With Length-Aligned SFT on rewritten traces, LLaDA achieves an
average improvement of 4.4% compared to the base LLaDA-8B-Instruct model. When applying
IGPO on top of the SFT model, we observe additional improvements, resulting in a total average
improvement of 7.3%. The complete two-stage pipeline yields cumulative improvements of 5.3% on
GSM8K, 8.4% on MATH500, 11.4% on AMC, and 4.0% on Minerva relative to the LLaDA-Instruct
baseline. Notably, on the challenging AMC benchmark, our approach achieves 25.9% (avg@16). As
shown in Figure 3, IGPO exhibits superior training dynamics compared to standard GRPO sampling
when initializing from before or after SFT. IGPO effectively reduces the all-wrong group ratio by
approximately 60%, as shown in Figure 1(b). Our final model (LLaDA + Length-Aligned SFT
+ IGPO) outperforms all baseline approaches including the recent LLaDA-1.5 model across all
evaluated benchmarks. Notably, even without SFT, applying IGPO directly on LLaDA achieves
better performance than the previous LLaDA-1.5 and other RL methods for full-attention dLLMs,
establishing a new state-of-the-art recipe for mathematical reasoning in masked diffusion language
models.

4.4 ANALYSIS AND ABLATION STUDIES

0 200 400 600 800 1000 1200 1400
RL Training Steps

0.445

0.450

0.455

0.460

0.465

0.470
Av

er
ag

e 
Ac

cu
ra

cy
 a

cr
os

s 3
 B

en
ch

m
ar

ks Hint Inject Ratio Comparison
Hint Inject Ratio = 1.0
Hint Inject Ratio ~ U[0.2, 0.6]
without Inpaint

Figure 4: Impact of hint injection ratio. across
3 datasets (GSM8K, MATH500 and AMC) and 3
seeds with standard error shown as shaded areas.
We compare partial hint injection (η ∼ U [0.2, 0.6])
versus full hint injection (η = 1.0). Partial hint
injection consistently outperforms full hint injec-
tion, demonstrating the benefits of self-generated
reasoning. Both hint-guided inpainting variants
outperform the baseline without any hint injection.

Self-generated inpainted traces provide bet-
ter learning signal than ground truth traces.
The results in Figure 4 show that partial hint in-
jection achieves higher performance than full
hint injection. When the hint injection ratio
varies within the lower range, the model needs to
generate self-rationalized inpainting traces (with
an example shown in Appendix G), and only
those that lead to correct solutions are added
to the group for gradient updates. Through in-
painting, the model attempts to coherently con-
nect provided hint chunks with its own reason-
ing steps. The inpainted generation produces
a learning signal that bridges the gap between
the model’s current capabilities and the target
behavior. The self-generated portions reflect the
model’s current reasoning patterns and are more
“on-policy” while incorporating structural guid-
ance from ground truth chunks, resulting in more
effective policy optimization compared to pure
supervised learning, reducing the distributional
mismatch. This bridging of SFT and online
RL through partial self-generation leads to
more effective policy optimization.
Entropy clipping prevents training instability from off-policy tokens. As shown in Figure 5a,
we observe that learning from only the top 20% highest-entropy hint token positions (τ = 0.2)
achieves the best performance and exhibits the most stable training dynamics. In contrast, learning
from all hint token positions (τ = 1.0) or a large fraction (τ = 0.8) leads to more unstable training
with performance fluctuations compared to lower values like 0.2. This empirical finding supports our
motivation that restricting gradient updates to high-entropy positions prevents the destabilizing effects
of large gradients on high-entropy positions. The validates the necessity of entropy-based filtering
when incorporating ground truth traces from hint-guided inpainting into policy gradient training.

Effect of reasoning trace rewriting for SFT and subsequent RL training. The results in
Figure 5b illustrate two key findings. First, SFT on rewritten reasoning traces produces substantially
stronger checkpoints than SFT on the original traces. Our rewritten traces eliminate verbose reflection
behaviors and compress reasoning into concise trajectories (up to 1024 tokens), which are better
aligned with LLaDA’s generation budget (256 tokens) and evaluation sequence length. This alignment
improves SFT accuracy at step 0 relative to models trained on the longer 4096-token traces. Second,
while RL training can partially compensate for weaker SFT checkpoints—the models trained on
4096-token traces recover accuracy rapidly in early RL steps—starting from stronger rewritten SFT
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Figure 5: (a) Impact of entropy clipping threshold on hint tokens. Performance comparison
across different entropy clipping thresholds τ applied to hint token positions in IGPO, where τ = 0.2
represents learning from only the top 20% highest-entropy hint token positions, while τ = 1.0
indicates learning from all hint token positions without filtering. (b) SFT and RL dynamics with
rewritten vs. original traces. We compare models fine-tuned on concise rewritten traces (max 1024
tokens) vs on original OpenR1-Math traces truncated at LLaDA’s 4096 context limit. RL is then
applied (GRPO or IGPO) to both models. Rewritten traces yield stronger SFT performance and
superior RL outcomes. IGPO consistently outperforms GRPO with stable pass@5 while GRPO
suffers from diversity collapse. Results are run on GSM8K with temperature 0.1 and length 256.

checkpoints leads to consistently higher final performance. Importantly, across both initialization
settings, IGPO outperforms standard RL without inpainting. Additionally, IGPO preserves output
diversity and stabilizes pass@5 performance throughout training, whereas standard GRPO exhibits a
decline in pass@k metrics, indicative of reduced exploration and mode collapse.

Elastic inpainting outperforms sequential SFT and GRPO We further validate the effectiveness
of our elastic inpainting approach by comparing it against sequentially performing SFT on the RL
dataset’s reasoning traces followed by standard GRPO (see Appendix E for details). This ablation
confirms that IGPO’s elastic hint injection during zero-advantage scenarios is superior to uniformly
applying SFT on concise reasoning traces across all prompts before applying GRPO. The uniform
SFT approach can degrade initial performance due to distribution shift in reasoning patterns, whereas
injecting partial hints allows dLLMs to inpaint longer, more “on-policy” reasoning traces.

5 RELATED WORK

Diffusion Language Models: Recent advances in diffusion language models have progressed from
continuous approaches mapping discrete text to continuous representations (Chen et al., 2022; Li
et al., 2022; Gong et al., 2023) to scaled discrete diffusion models, with masked diffusion emerging
as a prominent approach (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024;
Nie et al., 2024). Notable developments include DiffuLLaMA (Gong et al., 2025a) and Dream (Ye
et al., 2025) adapted from pretrained autoregressive LLMs, and LLaDA (Nie et al., 2025) as a masked
diffusion LLM trained from scratch achieving comparable performance to autoregressive models.
Commercial models like Mercury (Inception Labs et al., 2025) and Gemini Diffusion (DeepMind,
2025) have demonstrated practical viability with significantly faster inference. Reinforcement
Learning for Diffusion Language Models: Applying RL to diffusion LLMs faces unique challenges
due to intractable likelihood estimation, which is required for policy optimization. Recent solutions
include diffu-GRPO (Zhao et al., 2025) with mean-field approximation, MMaDA (Yang et al., 2025)
and coupled-GRPO (Gong et al., 2025b) with improved masking strategies, LLaDA 1.5 (Zhu et al.,
2025) addressing variance through preference optimization, wd1 (Tang et al., 2025) eliminating
policy ratios via weighted likelihood objectives, and SDPO (Han et al., 2025) decomposing trajectory
alignment into stepwise subproblems. More detailed related works are discussed in Section C.

6 CONCLUSION

We introduced IGPO, a reinforcement learning algorithm that leverages the inpainting capabilities
of masked diffusion language models. By injecting ground-truth reasoning hints during denoising,
IGPO steers the policy toward high-reward regions and alleviates the exploration bottleneck in
RL. It resolves the zero-advantage dilemma by inducing reward variance that supports effective
policy gradient updates when standard sampling yields uniform outcomes. To further strengthen

9
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RL initialization, we proposed Length-Aligned SFT, which reduces the length mismatch across SFT,
RL, and evaluation stages. Combined with entropy-based gradient filtering, our approach achieves
new state-of-the-art performance among full-attention masked dLLMs on multiple mathematical
reasoning benchmarks. These results highlight a new paradigm for reinforcement learning in masked
diffusion language models, showing how architectural properties can be systematically exploited to
address critical optimization challenges.
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ETHICS STATEMENT

This work focuses on algorithmic contributions to reinforcement learning and supervised fine-tuning
for diffusion language models, specifically targeting mathematical reasoning tasks. Our research
does not involve human subjects, does not collect or release new datasets containing personal
information, and addresses computational methods for improving model performance on well-
established mathematical benchmarks. The mathematical reasoning domain we target does not raise
concerns about harmful applications, bias amplification, or misuse potential. Our methodology
improvements are designed to enhance model accuracy and training efficiency, which we believe
contributes positively to the field of AI research. We have adhered to standard research practices and
have no conflicts of interest to declare.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. Complete experimental details are
provided in Table 2 and Table 3 in the appendix, including all hyperparameters for both supervised
fine-tuning and reinforcement learning phases. Our use of existing datasets (OpenR1-Math-220K
for SFT and MetaMathQA for RL training) is fully disclosed, and the revision prompt used for trace
rewriting is provided in Section I. The evaluation methodology and metrics for all four mathematical
benchmarks (GSM8K, MATH500, AMC, and Minerva) are clearly specified. All algorithmic
components of IGPO are detailed in Algorithm 1 with mathematical formulations provided throughout.
We commit to releasing our implementation code upon publication to facilitate reproduction of our
results.
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A USE OF LARGE LANGUAGE MODELS DISCLOSURE

LLMs were used only for minor editing (grammar and phrasing) and to generate speech narration
for the supplementary presentation video from an author-written script. All research ideas, meth-
ods, experiments, analyses, and substantive writing were carried out by the authors without LLM
assistance.

B PRELIMINARIES

B.1 MASKED DIFFUSION LARGE LANGUAGE MODELS

Masked diffusion LLMs (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024;
Lou et al., 2024) employ a forward diffusion process that progressively corrupts token sequences x0

through introduction of mask tokens. This corruption process is parameterized by time t ∈ [0, 1]. At
any given timestep t, the resulting sequence xt contains partial masking, where each token maintains a
probability αt of remaining unmasked. The noise schedule αt exhibits strict monotonic decrease with
respect to t. Complete masking occurs at t = 1, where all tokens in x1 become masked. The training
procedure for masked dLLMs follows a forward process through definition of αt and a bidirectional
unmasking predictor fθ with learnable parameters. During each training step, we stochastically
sample timestep t ∈ [0, 1) and apply token masking according to the designated forward process.
Given these corrupted sequences, the training objective seeks to recover the original tokens. The
standard optimization criterion employs the negative evidence lower bound (NELBO), which provides
an upper bound for the negative log-likelihood (NLL) of the training data. For masked dLLMs,
this NELBO reduces to a weighted NLL formulation, with weighting coefficients derived from
transformations of αt (Sahoo et al., 2024, Equation (10)). For example, LLaDA (Nie et al., 2025)
specifies the forward process through αt = 1− t, yielding the following NELBO formulation:

−Et∼U [0,1), x0∼pdata, xt∼qt|0(xt|x0)

1
t

|xt|∑
k=1

1[xk
t = mask] log fθ(x

k
0 | xt)

 , (6)

where |xt| denotes the sequence length of x, and xk represents the k-th token position. The loss
computation is restricted to tokens masked at timestep t.

During prompt conditional generation, the model starts with a sequence where prompt tokens remain
unmasked and continuation tokens are initially masked, then progressively unmasks the continuation
tokens through ancestral sampling from the reverse process pθ(xs | xt) for timesteps t > s, where
the model fθ provides the denoising predictions for masked positions. The reverse process maintains
the property that unmasked tokens are carried over unchanged throughout all denoising steps.

B.2 POLICY OPTIMIZATION FOR MASKED DIFFUSION LARGE LANGUAGE MODELS

Policy-gradient methods have gained widespread adoption for post-training LLMs (Ouyang et al.,
2022; Bai et al., 2022; Li et al., 2023; Ahmadian et al., 2024). Online RL—particularly Group
Relative Policy Optimization (GRPO)—has proved effective for improving language models (Shao
et al., 2024; Guo et al., 2025; Team et al., 2025). GRPO (Shao et al., 2024) offers a computationally
efficient alternative to PPO (Schulman et al., 2017) by using group-based statistics for advantage
estimation, avoiding separate value-function training.

The GRPO objective integrates clipping for stability and reverse KL regularization:

LGRPO(θ) = E q∼D
o1,...,oG∼πθold (·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

min
(
ρkiAi, clip

(
ρki , 1− ε, 1 + ε

)
Ai

)
− βDKL [πθ(·|q)∥πref(·|q)]

 , (7)

where ρki =
πθ(o

k
i |q,o

<k
i )

πθold (o
k
i |q,o

<k
i )

is the likelihood ratio.

For a query q, GRPO samples G responses {o1, . . . , oG} from the behavior policy πθold and assigns a
single sequence-level advantage per response. Following Liu et al. (2025b), we use the unnormalized
group-relative advantage Ai = r(oi) − 1

G

∑G
j=1 r(oj), where r is the reward function. This scalar

Ai is shared by all tokens in oi when forming the tokenwise objective.
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Applying Policy Gradient Methods to Diffusion LLMs Applying GRPO to dLLMs is nontriv-
ial. The objective in Equation (7) requires (i) token-level probabilities for importance ratios and
(ii) sequence-level probabilities for KL regularization. Autoregressive models provide per-token
conditionals via sequential factorization, enabling one-pass sequence scoring by the chain rule:
log πAR(o | q) =

∑|o|
k=1 log πAR(o

k | q, o<k). Accordingly, the reverse-KL decomposes as

DKL

[
πθ(· | q)

∥∥πref(· | q)
]
= Eo∼πθ(·|q)

 |o|∑
k=1

log
πθ(o

k | q, o<k)

πref(ok | q, o<k)

 . (8)

In contrast, dLLMs do not admit a sequential factorization of π(o | q). dLLM’s generation invokes the
unmasking predictor fθ across M denoising steps, making πθ a composition of M mappings. Exact
tokenwise probabilities would require marginalization over denoising trajectories and maintaining
(and differentiating through) full denoising trajectories, which is computationally prohibitive. To
address this, recent work develops efficient approximations for policy optimization in masked
diffusion LLMs. DiffuGRPO (Zhao et al., 2025) employs a mean-field approximation that yields
single-pass estimates of both token-level and sequence-level terms, replacing explicit multi-step
unrolling with a single-sample Monte Carlo estimate. While this introduces bias relative to the
exact diffusion policy, it provides a practical framework for GRPO-style optimization on dLLMs.
In our method, we adopt the mean-field estimators of Zhao et al. (2025) to compute the token-level
importance ratios ρki and the reverse-KL term with one forward pass per policy.

C RELATED WORK

C.1 DIFFUSION LANGUAGE MODELS

Diffusion language models was first explored through continuous approaches that map discrete text to
continuous representations, including learned embeddings, sequence-to-sequence conditioning, and
binary bit representations (Chen et al., 2022; Li et al., 2022; Gong et al., 2023). Recently, discrete
diffusion language models have been scaled up significantly, with masked diffusion established as a
specific instance of discrete diffusion (Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024; Ou
et al., 2024; Nie et al., 2024). Notable developments include DiffuLLaMA (Gong et al., 2025a) and
Dream (Ye et al., 2025), both adapted from pretrained autoregressive LLMs. LLaDA (Nie et al.,
2025) represents a breakthrough as a masked diffusion LLM trained from scratch using full-attention,
achieving performance comparable to similarly-sized autoregressive models. These approaches are
predominantly based on masked modeling. Unlike these full-attention dLLMs, Block Diffusion
(Arriola et al., 2025) introduced a hybrid approach that models sequences block-by-block while
applying diffusion within each block, enabling flexible length generation and improved inference
efficiency through kv-caching. Recent commercial models like Mercury (Inception Labs et al., 2025)
and Gemini Diffusion (DeepMind, 2025) have demonstrated the practical viability of diffusion-based
code generation, achieving performance comparable to leading autoregressive models while offering
significantly faster inference. More recent works have introduced caching and parallel decoding
algorithms (Wu et al., 2025; Liu et al., 2025a; Ma et al., 2025; Israel et al., 2025; Sahoo et al., 2025;
Hu et al., 2025) that significantly improve inference efficiency for masked diffusion language models.
In this work, we focus on full-attention masked dLLMs.

C.2 REINFORCEMENT LEARNING FOR DIFFUSION LANGUAGE MODELS

Applying reinforcement learning to diffusion language models presents unique challenges compared
to autoregressive models. The primary obstacle is the intractability of likelihood functions in
diffusion models, which necessitates approximating response likelihoods for policy optimization. This
requirement introduces computational overhead and potential bias, particularly when approximation
errors occur in policy ratios used for importance sampling. d1 proposed diffu-GRPO (Zhao et al.,
2025) which adopts an efficient approximation through mean-field approximation. MMaDA (Yang
et al., 2025) and diffucoder’s coupled-GRPO (Gong et al., 2025b) further improve the masking
strategy in log probabilities estimation to achieve better learning efficiency. LLaDA 1.5 (Zhu et al.,
2025) tackles the variance issues in ELBO-based likelihood estimates through preference optimization.
Recently, wd1 (Tang et al., 2025) addresses these challenges by reformulating policy optimization as
a weighted likelihood objective that eliminates the need for policy ratios. SDPO (Han et al., 2025)
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decomposes the diffusion trajectory alignment problem into stepwise subproblems that align the
posterior at each diffusion step. Our inpainting method can also be applicable to some of the above
online RL methods.

Additionally, a closely related work in RL for AR LLMs is Prefix-RFT (Huang et al., 2025), which
samples prefixes from demonstrations to guide online exploration, though this is limited to left-
to-right sequential generation that does not leverage the bidirectional conditioning capabilities of
diffusion LLMs.

D LENGTH-ALIGNED SFT: SFT TRACE REVISION LENGTH DISTRIBUTION
COMPARISON

As illustrated in Figure 6, the original OpenR1-Math-220K dataset exhibits substantial token length
diversity, with reasoning traces extending beyond 10,000 tokens while LLaDA’s maximum context
length is only 4096 tokens. Naively applying SFT on this dataset would result in many truncated
sequences, and even for samples within the 4096-token limit, significant distribution mismatch
persists across training phases—we use 256 tokens for RL sampling and 512 tokens for evaluation.
Our rewriting using LLaMA-4-Maverick successfully constrains all traces to under 1500 tokens,
creating alignment between SFT training, RL sampling, and evaluation phases. Additionally, while
reflective behavior has been found helpful for LLaDA in prior work (Zhao et al., 2025), the excessive
repeated reflective patterns in the original dataset are unsuitable for its constrained generation space.
The rewriting process eliminates this redundancy while preserving essential reasoning structure.
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Figure 6: Token Length Distribution of SFT Dataset Before and After Revision. Comparison of
token length distributions for the OpenR1-Math-220K dataset (94k math problems). After revision
using LLaMA-4-Maverick, token lengths are constrained to below 1500 tokens, eliminating the
extreme range of the original dataset where traces could exceed 20,000 tokens. This addresses the
generation length mismatch across SFT training, RL sampling (256 tokens), and evaluation (512
tokens) phases.
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E ABLATION: SFT ON HINT TRACES THEN APPLY GRPO VS IGPO

In our RL training setup, we assume access to ground-truth reasoning traces for every query in
the training dataset. To investigate whether direct supervised fine-tuning on these traces provides
comparable benefits to our elastic inpainting approach, we conduct an ablation study comparing
two strategies: (1) applying SFT on the RL dataset’s reasoning traces followed by standard GRPO
sampling, versus (2) directly applying IGPO with elastic hint injection only when all generated
responses are incorrect.

Specifically, we first fine-tune the LLaDA-8B-Instruct model on the MetaMath dataset’s reasoning
traces for 20 epochs, then apply standard GRPO sampling. We compare this against our IGPO
approach, which selectively injects partial reasoning hints from the same MetaMath dataset only
when zero-advantage scenarios occur (i.e., when all sampled responses yield incorrect rewards).

The results in Figure 7 demonstrate that IGPO consistently outperforms the SFT-first variant. Notably,
after SFT on the MetaMath dataset for 20 epochs, the model’s initial performance drops significantly
compared to the original LLaDA-8B-Instruct baseline. This degradation occurs because the MetaMath
dataset contains very concise reasoning traces, many shorter than our 256-token generation length
limit. Consequently, the model adopts overly concise reasoning patterns that prove insufficient for
the challenging problems in our evaluation benchmarks (such as AMC and Minerva).

While subsequent RL training can recover performance to some extent—as evidenced by the rapid
improvement in early training steps—it ultimately fails to match the effectiveness of IGPO. This
comparison highlights two key advantages of our approach: (1) the effectiveness of applying inpaint-
ing guidance selectively only when the model struggles with specific queries, rather than forcing a
uniform reasoning style through SFT, and (2) the critical importance of reducing all-wrong group
occurrences, which successfully recovers gradient signals from otherwise degenerate zero-advantage
scenarios.
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Figure 7: Comparison of SFT-first approach versus direct IGPO application. The SFT-first strategy
involves fine-tuning on MetaMath reasoning traces for 20 epochs followed by standard GRPO, while
IGPO applies inpainting-guided exploration elastically only during zero-advantage scenarios. IGPO
demonstrates superior and more stable performance, avoiding the performance degradation caused by
overly concise reasoning patterns learned during SFT on short traces. Results are averaged across
four mathematical reasoning benchmarks with standard errors shown as shaded regions.
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F EXPERIMENTS HYPERPARAMETERS

Table 2: Training Hyperparameters

Parameter Value
SFT Training Parameters

Per Device Train Batch Size 4
Hardware Configuration 8×8 H100 GPUs
Gradient Accumulation Steps 8
Learning Rate 5× 10−6

LR Schedule Warmup-stable-decay
LR Warmup Steps 200
LR Min Value 1× 10−6

LR Decay Period Final 10% of steps
Number of Epochs 100

RL Sampling Parameters
RL Online Sampling Generation Length L 256
Diffusion Steps 128
Block Length 32
Sampling Temperature 1.2
Generations Per Group G 8

RL Training Parameters
Per Device Train Batch Size 8
Hardware Configuration 8×8 H100 GPUs
Gradient Accumulation Steps 1
Effective Batch Size 512
KL Beta β 0.01
Policy Gradient Inner Iterations per Generation µ 4
Learning Rate 5× 10−7

LR Schedule Linear decay to 0
LR Warmup Steps 50
LR Decay Period 10 epochs
Training Steps 1440
Clip Ratio Epsilon ε 0.2

IGPO Specific Parameters
Chunk Size |cj | ∼ U [smin, smax] U [5, 10]
Inpainting Ratio ηi ∼ U [ηlow, ηhigh] U [0.2, 0.6]
replacement fraction λ 0.5
Entropy-based Gradient Filtering for Inpainted Tokens τ 0.2
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F.1 TEMPERATURE SELECTION FOR RL TRAINING

Following the methodology established by Polaris An et al. (2025) for scaling reinforcement learning
on advanced reasoning models, we conduct a systematic analysis to determine the optimal sampling
temperature for our RL training process. We evaluate our model’s performance across different
sampling temperatures by analyzing both Pass@5 and Average@5 scores on the MATH500 dataset.
We also divide three temperature regions: low temperatures (≤ 0.8) yield high accuracy but reduced
diversity in generated rollouts, restricting the model’s ability to explore diverse reasoning paths; high
temperatures (≥ 1.6) preserve rollout diversity but significantly degrade accuracy due to increased
noise in token generation; and the middle Controlled Exploration Zone (0.9-1.5) provides the optimal
trade-off between maintaining reasonable accuracy and achieving sufficient diversity for effective RL
training. Based on this analysis, we select temperature T = 1.2 to balance exploration with sample
quality and provide sufficient diversity for RL training.

Figure 8: Performance analysis across different sampling temperatures on MATH500. The plot shows
Pass@5 and Average@5 scores, revealing three distinct regions: low temperatures with high accuracy
but low diversity, high temperatures with preserved diversity but degraded accuracy, and the middle
region offering the desired trade-off. We select T = 1.2 for our RL training.
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G INPAINTING GENERATION QUALITATIVE EXAMPLES

Blue text: Question Prompt Green text: Injected Hints Black text: Inpainted Generation

Problem: Circle C has radius 6 cm. How many square centimeters are in the area of the largest possible
inscribed triangle having one side as a diameter of circle C?

Inpainting Input At Denosing Step 0:

<|start_header_id|>user<|end_header_id|>
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
\ boxed{<Your answer>}
</answer>
Circle $C$ has radius 6 cm. How many square centimeters are in the area
of the largest possible inscribed triangle having one side as a diameter of
circle $C$?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

<|mdm_mask|><|mdm_mask|>...<|mdm_mask|>
Since the diameter is twice the radius, the base of the triangle will have
length $2 \ times 6 = 12$ cm.
To <|mdm_mask|>...<|mdm_mask|> , we want the height to be as large
<|mdm_mask|>...<|mdm_mask|>
of the triangle is the distance from the midpoint of the base to the
circumference of the circle.
This is equal to the radius of the circle, <|mdm_mask|>...<|mdm_mask|>
<|mdm_mask|>...<|mdm_mask|> <|mdm_mask|>...<|mdm_mask|>
12 \ times <|mdm_mask|>...<|mdm_mask|>

Inpainted Generation After Denoising:

<reasoning>
We know to find the largest possible inscribed triangle in circle $C$, the base
of the triangle should be the diameter of the circle.
Since the diameter is twice the radius, the base of the triangle will have
length $2 \ times 6 = 12$ cm.
To find the largest possible area of the triangle, we want the height to be
as large as possible.
The largest possible height of the triangle is the distance from the midpoint of
the base to the
circumference of the circle.
This is equal to the radius of the circle, which is 6 cm.
Therefore, the area of the largest possible inscribed triangle is given by the
formula for the area of a triangle, which is $$\ frac{1}{2} \ times \ textbase
\ times \ textheight = \ frac{1}{2} \ times 12 \ times 6 = 36$$ square centimeters.
</reasoning>
<answer>
\ boxed{36}
</answer>
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H EVALUATION HYPERPARAMETERS

We evaluate all models with a fixed decoding setup per benchmark. Unless otherwise noted, the same
prompts and decoding hyperparameters are applied to both LLaDA-8B-Instruct and LLaDA-1.5.

Table 3: Evaluation hyperparameters by benchmark.

Benchmark Temp. Block Len. Diffusion Steps Gen. Len. Metric

GSM8K 0.0 32 512 512 pass@1
MATH500 0.0 32 512 512 pass@1
AMC 0.5 128 512 512 avg@16
Minerva 0.0 128 512 512 pass@1

I PROMPT FOR SFT TRACES REVISION

Prompt for SFT traces revision sent to LLaMA 4 Maverick

Please rewrite the original solution to make it more concise and easier to understand without
changing the details. Please put the explanation in the solution between <reasoning> and
</reasoning> and put the final numerical answer between <answer> and </answer>
in boxed format. Please shorten or rewrite the rewritten solution to a random length between
100 and 1000 words while keeping sufficient details of the reasoning steps. Please do not
return anything other than the rewritten solution.
Example:
<reasoning>
xxx
</reasoning>

<answer>
\boxed{14}
</answer>

Original solution: {generations}.
Your response:
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J ROBUSTNESS OF IGPO TO NOISY REASONING TRACES

We evaluate IGPO’s robustness when the ground-truth reasoning traces used for hint injection are
corrupted with simulated realistic noise: we design numeric errors (e.g., “8× 15 = 130”), operator
swaps (e.g., ÷→×), logical word inconsistencies (e.g., “therefore”→ “however”), and replacing
hesitation tokens (e.g., “umm”, “wait”). We vary the corruption rate ρ from 0 to 0.5, where each token
is independently corrupted with probability ρ. Examples of trace corruption is shown in Table 4.

Our evaluation results are shown in Figure 9 shows that IGPO remains effective even under introduced
noise: although performance gradually degrades with noises, IGPO consistently outperforms GRPO.
This robustness arises from IGPO’s gating mechanisms: (i) only partial reasoning chunks are injected
and the final answers must still be generated by the model, so only correctness-verified responses
are used; and (ii) only the top 20% most uncertain injected tokens are allowed to contribute to the
gradient, limiting exposure to incorrect hints.

We note that extremely corrupted traces violate the intended use of IGPO, whose goal is to leverage
mostly correct reasoning to guide exploration; in practice, IGPO should not be applied to heavily
inaccurate reasoning datasets.
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IGPO Robustness to Noisy Reasoning Traces
GRPO (No Hints)
IGPO (10% Noisy Tokens)
IGPO (20% Noisy Tokens)
IGPO (30% Noisy Tokens)
IGPO (40% Noisy Tokens)
IGPO (50% Noisy Tokens)
IGPO (0% Noisy Tokens)

Figure 9: Pass@1 accuracy on GSM8K with generation length 256 under simulated reasoning-trace
noise. A fraction ρ of inpainting tokens are randomly corrupted.

Type Example

Original Let’s calculate: 8× 15 = 120, then 120÷ 4 = 30. Therefore, the answer is 30.

Number Let’s calculate: 8× 15 = 130, then 130÷ 4 = 32. Therefore, the answer is 32.

Operator Let’s calculate: 8× 15 = 120, then 120×4 = 480. Therefore, the answer is 480.

Logic Let’s calculate: 8× 15 = 120, then 120÷ 4 = 30. However, the answer is 30.

Mixed Umm let’s calculate: 8× 15 = 125, then 125÷ 4 = 31. Wait, therefore the answer
is 31.

Table 4: Example reasoning traces corrupted. Red text indicates corrupted tokens.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

K THEORETICAL ANALYSIS: GRADIENT RECOVERY AND KL-CONTROLLED
INPAINTING

We analyze why IGPO improves policy optimization exactly in the regime where vanilla GRPO
fails: the all-wrong, zero-advantage case. This is precisely the event that triggers inpainting in our
algorithm. Throughout, x ∈ X denotes a query, o ∈ O a response sequence, and r(o) ∈ {0, 1} a
verifiable reward. The policy πθ is parameterized by θ.

Our main conclusions are: (1) In all-wrong groups, GRPO has a zero gradient, whereas IGPO restores
a non-zero gradient whose magnitude scales as ρ(1− ρ), where ρ is the effective replacement ratio
of inpainted correct responses. (2) The same replacement mechanism admits a mixture-policy view:
replacing an α fraction of the response distribution with the correct solution o⋆ yields a mixture policy
πα that weakly improves the expected reward and strictly improves it whenever the base policy is
imperfect. (3) Partial hint injection controls the KL shift to the current policy linearly in the mixture
weight α, providing a soft trust-region-like stability guarantee. In our implementation, the batch-level
replacement hyperparameter λ upper-bounds the effective mixture weight α ≈ ρ ≤ λ.

K.1 SETUP AND ZERO-ADVANTAGE DILEMMA

We aim to maximize the expected reward

J(θ) = Ex J(πθ;x), J(πθ;x) = Eo∼πθ(·|x)[r(o)]. (9)

In GRPO, for each query x we sample a group S = {o1, . . . , oG} i.i.d. from πθ(· | x) and compute
group-normalized advantages

r̄ = 1
G

G∑
i=1

r(oi), Ai = r(oi)− r̄, (10)

which yields the per-query policy gradient estimator

ĝGRPO(x) =
1

G

G∑
i=1

Ai∇θ log πθ(oi | x). (11)

We focus on the all-wrong event

Ewrong =
{
r(oi) = 0 ∀i ∈ {1, . . . , G}

}
. (12)

Zero-gradient dilemma of GRPO. Conditioned on Ewrong, we have ĝGRPO(x) = 0. This follows
immediately since under Ewrong, r(oi) = 0 for all i, so r̄ = 1

G

∑
i r(oi) = 0 and Ai = r(oi)− r̄ = 0

for all i. Substituting into equation 11 yields

ĝGRPO(x) =
1

G

G∑
i=1

0 · ∇θ log πθ(oi | x) = 0. (13)

K.2 GRADIENT RECOVERY AND POLICY IMPROVEMENT

We now analyze IGPO under Ewrong. For a fixed query x, the IGPO batch construction proceeds as
follows:

• Sample G original responses {o1, . . . , oG} with r(oi) = 0.

• Generate an additional set {õ1, . . . , õG} via inpainting using hint injection based on the ground-
truth trace o⋆.

• Keep only inpainted responses that pass correctness verification, r(õj) = 1, and replace at most
⌊λG⌋ of the original failures, where λ ∈ (0, 1) is a hyperparameter controlling the maximum
replacement fraction.
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Let K be the number of inpainted correct responses used for replacement (K ≤ ⌊λG⌋) and define
the effective replacement ratio

ρ =
K

G
∈ [0, λ]. (14)

The augmented group is

S ′ = {o′1, . . . , o′G}, |{i : r(o′i) = 1}| = K, |{i : r(o′i) = 0}| = G−K. (15)

Let
Icorrect = {i : r(o′i) = 1}, Iwrong = {i : r(o′i) = 0}. (16)

The new group-average reward is

r̄new =
1

G

G∑
i=1

r(o′i) =
K

G
= ρ, (17)

and the corresponding advantages are

A′
i =

{
1− ρ, i ∈ Icorrect,

−ρ, i ∈ Iwrong.
(18)

The per-query IGPO gradient estimator (omitting clipping and KL terms for clarity) is

ĝIGPO(x) =
1

G

G∑
i=1

A′
i∇θ log πθ(o

′
i | x). (19)

Mixture policy interpretation. The effective replacement ratio ρ = K/G can be viewed as the
weight of an idealized mixture policy that puts mass on the correct solution. For each query x with
ground-truth solution o⋆, define

πα(· | x) = (1− α)πθ(· | x) + α δo⋆ , α ∈ [0, 1], (20)

where δo⋆ is the Dirac distribution at o⋆. In this view, replacing K of the G samples by o⋆ corresponds
to sampling approximately from πα with α ≈ ρ; our implementation enforces ρ ≤ λ via the cap
K ≤ ⌊λG⌋.
We next relate this mixture to reward improvement. For a reference policy πθ, define the advantage

Aπθ (x, o) = r(o)− J(πθ;x). (21)

In our single-step, verifiable-reward setting, the performance-difference lemma (Kakade and Langford,
2002) simplifies to

J(π′)− J(πθ) = Ex Eo∼π′(·|x)
[
Aπθ (x, o)

]
, (22)

for any comparison policy π′. For πα in equation 20 and fixed x,

Eo∼πα(·|x)
[
Aπθ (x, o)

]
= (1− α)Eo∼πθ(·|x)

[
Aπθ (x, o)

]
+ αAπθ (x, o⋆)

= (1− α) · 0 + α
(
r(o⋆)− J(πθ;x)

)
= α

(
1− J(πθ;x)

)
, (23)

since r(o⋆) = 1 and Eo∼πθ
[Aπθ (x, o)] = 0 by definition in all-wrong case. Plugging into equation 22

yields
J(πα)− J(πθ) = αEx

[
1− J(πθ;x)

]
. (24)

Lemma 1 (Closed-form expected IGPO gradient). Define the gradient expectations under the correct
and wrong distributions separately:

gcorrect(x) = Eo′∼δo⋆

[
∇θ log πθ(o

′ | x)
]
= ∇θ log πθ(o

⋆ | x), (25)

gwrong(x) = Eo′∼πθ(·|x)

[
∇θ log πθ(o

′ | x)
]

(26)

where we note that r(o′) = 0 for o′ ∼ πθ(· | x). Then

gIGPO(x) = E
[
ĝIGPO(x)

]
= ρ(1− ρ)

(
gcorrect(x)− gwrong(x)

)
. (27)
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Proof. The expectation in gIGPO(x) = E[ĝIGPO(x)] is taken over all possible sets S ′ =
{o′1, . . . , o′G} such that: (1) the set has size G, and (2) exactly K of the G outputs are correct
(sampled from δo⋆) while the remaining G−K are wrong (sampled from πθ(· | x) conditioned on
being incorrect).

To compute this expectation, we first observe that for each valid set S ′, we can consider all G!
permutations of its elements. By symmetry, each position i ∈ {1, . . . , G} has the same marginal
distribution when averaged over all permutations of all valid sets. Specifically, each o′i is drawn from
the mixture distribution:

o′i ∼ πα(· | x) with α = ρ =
K

G
. (28)

Therefore, we can decompose the expectation over groups into a sum of G identical expectations,
each over the mixture distribution πα:

gIGPO(x) = ES′

[
1

G

G∑
i=1

A′
i∇θ log πθ(o

′
i | x)

]

=
1

G

G∑
i=1

Eo′i∼πα(·|x) [A
′
i∇θ log πθ(o

′
i | x)]

= Eo′∼πα(·|x) [A
′
i∇θ log πθ(o

′ | x)] , (29)
where the second equality follows from the symmetry argument and the third uses the fact that all G
terms are identical.

Now, expanding the mixture distribution πα = (1− α)πθ + αδo⋆ with α = ρ:
Eo′∼πα(·|x) [A

′
i∇θ log πθ(o

′ | x)]
= (1− ρ)Eo′∼πθ(·|x) [A

′
i∇θ log πθ(o

′ | x)]
+ ρEo′∼δo⋆ [A

′
i∇θ log πθ(o

′ | x)] . (30)

For outputs sampled from πθ (conditioned on being wrong), we have r(o′) = 0, so from equation 18,
A′

i = −ρ:
(1− ρ)Eo′∼πθ|r(o′)=0 [A

′
i∇θ log πθ(o

′ | x)] = (1− ρ) · (−ρ)Eo′∼πθ|r(o′)=0 [∇θ log πθ(o
′ | x)]

= −ρ(1− ρ) gwrong(x). (31)

For outputs sampled from δo⋆ , we have r(o′) = 1, so A′
i = 1− ρ:

ρEo′∼δo⋆ [A
′
i∇θ log πθ(o

′ | x)] = ρ · (1− ρ)Eo′∼δo⋆ [∇θ log πθ(o
′ | x)]

= ρ(1− ρ) gcorrect(x). (32)

Combining both terms:
gIGPO(x) = ρ(1− ρ) gcorrect(x)− ρ(1− ρ) gwrong(x)

= ρ(1− ρ)
(
gcorrect(x)− gwrong(x)

)
. (33)

Theorem 1 (Gradient recovery and policy improvement). Conditioned on Ewrong and for 0 < ρ < 1,
the expected IGPO gradient satisfies

gIGPO(x) = ρ(1− ρ)
(
gcorrect(x)− gwrong(x)

)
, (34)

and is non-zero whenever gcorrect(x) ̸= gwrong(x). Furthermore, for the mixture policy πα in equa-
tion 20,

J(πα)− J(πθ) = αEx

[
1− J(πθ;x)

]
≥ 0, (35)

with strict inequality whenever there exists a query x such that J(πθ;x) < 1. The scalar factor
ρ(1− ρ) governing the gradient magnitude is maximized at ρ = 1/2.

Proof. The expression and non-degeneracy of gIGPO(x) follow directly from Lemma 1. Equa-
tion equation 24 implies J(πα)− J(πθ) ≥ 0 since 0 ≤ J(πθ;x) ≤ 1 for all x (as r(o) ∈ {0, 1}). If
there exists at least one x with J(πθ;x) < 1, then 1 − J(πθ;x) > 0 on a set of positive measure,
so for any α > 0 the improvement is strictly positive. Finally, the quadratic f(ρ) = ρ(1 − ρ) has
derivative f ′(ρ) = 1−2ρ and second derivative f ′′(ρ) = −2 < 0, so f is maximized at ρ = 1/2.
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Connection to implementation. In our method section, the hint injection ratio η controls how many
ground-truth chunks are injected during inpainting and thus only affects how candidate inpainted
responses {õi} are generated. The replacement hyperparameter λ caps how many correctness-verified
inpainted responses enter the RL group: K ≤ ⌊λG⌋, so the effective replacement ratio satisfies
ρ = K/G ≤ λ. In the mixture-policy view, the idealized mixture weight α is therefore realized in
practice as a random effective weight α ≈ ρ bounded by λ.

K.3 KL CONTROL VIA PARTIAL HINT INJECTION

We now quantify the distributional shift induced by inpainting to argue that partial replacement leads
to a controlled KL change relative to the current policy.
Theorem 2 (KL control via partial hint injection). For the mixture policy πα in equation 20, the KL
divergence to the current policy satisfies

DKL

(
πα(· | x) ∥πθ(· | x)

)
≤ αDKL

(
δo⋆ ∥πθ(· | x)

)
= −α log πθ(o

⋆ | x). (36)

Proof. The KL divergence DKL(P∥Q) is convex in its first argument. For any distributions P1, P2

and α ∈ [0, 1],

DKL

(
(1− α)P1 + αP2 ∥Q

)
≤ (1− α)DKL(P1∥Q) + αDKL(P2∥Q). (37)

Apply this with P1 = πθ(· | x), P2 = δo⋆ , Q = πθ(· | x):

DKL

(
πα(· | x) ∥πθ(· | x)

)
≤ (1− α)DKL

(
πθ(· | x) ∥πθ(· | x)

)
+ αDKL

(
δo⋆ ∥πθ(· | x)

)
= αDKL

(
δo⋆ ∥πθ(· | x)

)
, (38)

since DKL(πθ∥πθ) = 0. For the Dirac distribution,

DKL

(
δo⋆ ∥πθ(· | x)

)
=
∑
o

δo⋆(o) log
δo⋆(o)

πθ(o | x)
= log

1

πθ(o⋆ | x)
= − log πθ(o

⋆ | x), (39)

which proves equation 36.

Interpretation and link to λ and η. When πθ(o
⋆ | x) is small (the model is far from the correct

solution), the full Dirac update (α = 1) induces a large KL shift and may destabilize training. The
bound equation 36 shows that using a mixture weight α < 1 scales the KL divergence linearly with
α, implementing a soft trust-region–like constraint: IGPO injects strong supervised-like corrections
while keeping the updated policy within a controlled KL neighborhood of the current iterate. Empiri-
cally, we observe that intermediate values of λ—corresponding to partial hint injection and hence
intermediate ρ—yield the best performance.
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L ABLATION: A SAMPLE-MATCHED GRPO BASELINE WITHOUT INPAINTING

To determine whether IGPO’s improvements arise from its hint-guided exploration or merely from
an increased number of generated trajectories, we compare against a GRPO baseline that matches
IGPO’s total sampling budget.

In GRPO + resample, whenever a GRPO group produces only incorrect responses, we resample
additional trajectories from the current policy, matching the number of samples that IGPO would
have generated. In GRPO + resample, all trajectories remain fully on-policy, and no hint tokens are
injected.

Figure 10: Training statistics comparing IGPO, standard GRPO, and GRPO with sample-matched
resampling. We report the all-wrong rescued rate (the proportion of all-wrong groups in which
resampling yields at least one correct response), the overall all-wrong ratio, and the training reward.
IGPO achieves the lowest all-wrong ratio and the highest reward.
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Figure 11: Evaluation curves on GSM8K (w/ generation length 256, greedy decoding), comparing
IGPO, GRPO, and GRPO + resample. IGPO achieves higher pass@1, showing that its improvements
are not explained by increased sampling alone.

As shown in Figure 10, despite using the same number of sampled trajectories, GRPO + resample
consistently exhibits a higher all-wrong ratio and lower training rewards. Simply increasing the
sampling budget does not resolve all-wrong cases, as the policy remains unable to discover correct
solutions on its own. In contrast, IGPO substantially reduces the frequency of all-wrong groups
through its hint-guided exploration mechanism. As shown in Figure 11, IGPO also outperforms
both baselines in evaluation. These results confirm that IGPO’s advantages stem from its inpainting-
based guidance rather than from increased sampling volume. Partial hint injection provides targeted
directional signals that pure resampling cannot replicate, while still preserving predominantly on-
policy generation.
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SFT trace before rewritten by LLaMA 4 Maverick
Problem: Find all primes between 1 and 15.

<think>
Okay, so I need to find all the prime numbers between 1 and 15. Hmm, let’s start by
remembering what a prime number is. From what I recall, a prime number is a natural
number greater than 1 that has no positive divisors other than 1 and itself. So, numbers like 2,
3, 5, etc., are primes because you can’t divide them evenly by any other number besides 1 and
the number itself. On the other hand, numbers like 4, 6, 8, and so on are not primes because
they can be divided by other numbers. For example, 4 can be divided by 2, so it’s not prime.
Alright, so the task is to list all primes between 1 and 15. Let me list out all numbers from 1
to 15 first to check them one by one. The numbers are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15.
Now, let’s go through each number and see if it’s prime. Starting with 1. Wait, I remember
that by definition, prime numbers are greater than 1. So 1 is not considered a prime. So we
can skip 1.
Next up is 2. Let’s check if 2 is prime. The divisors of 2 are 1 and 2. There are no other
divisors, so yes, 2 is a prime number.
Moving on to 3. Similarly, the divisors are 1 and 3. No other numbers divide into 3, so 3 is
prime.
Next is 4. Let’s check divisors. 4 divided by 2 is 2, which is an integer, so 4 is not prime. It
can be divided by 2, so it’s composite.
Then 5. The divisors of 5 are 1 and 5. No other numbers divide into 5, so 5 is prime.
6. Checking divisors. 6 divided by 2 is 3, so it’s divisible by 2 and 3. Not prime.
7. Divisors are 1 and 7. No other divisors, so 7 is prime.
8. Divided by 2 gives 4, so 8 is not prime.
9. Divided by 3 gives 3, so 9 is not prime (since 3 times 3 is 9).
10. Divided by 2 is 5, so 10 is not prime.
11. Let’s see, 11. Divided by 2? 11 divided by 2 is 5.5, not an integer. Divided by 3? 11
divided by 3 is approximately 3.666... Not an integer. Divided by 4? 2.75, nope. 5? 2.2, nope.
Since 11 is a prime number because none of these divisions result in integers, so 11 is prime.
12. Divided by 2 is 6, so composite.
13. Checking divisors. 13 divided by 2 is 6.5, 13 divided by 3 is about 4.333..., 4? 3.25, 5?
2.6, 6? 2.166... None of these are integers. So 13 is prime.
14. Divided by 2 is 7, so composite.
15. Divided by 3 is 5, so composite.
Let me recap the numbers between 1 and 15 and their primality:
1: Not prime
2: Prime
3: Prime
4: Not
5: Prime
6: Not
7: Prime
8: Not
9: Not
10: Not
11: Prime
12: Not
13: Prime
14: Not
15: Not
So compiling the primes from this list: 2, 3, 5, 7, 11, 13.
Wait a second, let me verify each one again just to be sure I didn’t make a mistake.
Starting with 2: Definitely prime. It’s the only even prime.
3: Prime, yes.
5: Prime, yes.
7: Prime. Correct.
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11: Let’s check again. 11 divided by 2 is not whole. 3? 3*3 is 9, 3*4 is 12. So no. 5? 5*2 is
10, 5*3 is 15. So 11 is prime.
13: Similarly, 13 divided by 2 is 6.5, 3 is 4.333, 5 is 2.6. So, prime.
Yes, those all check out. So primes between 1 and 15 are 2, 3, 5, 7, 11, and 13.
But hold on, sometimes people might make a mistake with 9. Wait, 9 is 3 times 3, so that’s
composite, which I had down. 15 is 3 times 5, composite. So all the non-primes are accounted
for.
Is there any number I might have missed? Let’s see. Let’s list all numbers again:
2, 3, 5, 7, 11, 13. Are there any others?
Well, 1 is excluded. 4,6,8,9,10,12,14,15 are composite. So no, those six numbers are all
primes between 1 and 15.
Wait, but the question says ”between 1 and 15.” Does that include 15? Hmm, the wording
is ”between 1 and 15,” which could be a bit ambiguous. But usually, when someone says
”between 1 and 15,” they mean including both endpoints. However, since 15 is composite,
it’s excluded either way. So primes are 2,3,5,7,11,13.
Yes, that seems correct. I don’t think I made any mistakes here. Let me cross-verify with
another method, like the Sieve of Eratosthenes. The Sieve is a method where you list all
numbers and cross out multiples.
Starting with 2, cross out multiples: 4,6,8,10,12,14.
Then 3, cross out multiples: 6,9,12,15.
Then 5, cross out 10,15.
7, cross out 14.
11 and 13 are primes, and their multiples are beyond 15. So remaining numbers are
2,3,5,7,11,13. Which matches our previous list.
Therefore, the primes between 1 and 15 are 2,3,5,7,11,13.
**Final Answer**
The primes between 1 and 15 are 2 , 3 , 5 , 7 , 11 , and 13 .
</think>
To find all the prime numbers between 1 and 15, we start by recalling that a prime number is
a natural number greater than 1 that has no positive divisors other than 1 and itself. We then
check each number from 1 to 15:
- **1**: Not a prime number (by definition).
- **2**: Prime (divisors: 1, 2).
- **3**: Prime (divisors: 1, 3).
- **4**: Not prime (divisible by 2).
- **5**: Prime (divisors: 1, 5).
- **6**: Not prime (divisible by 2, 3).
- **7**: Prime (divisors: 1, 7).
- **8**: Not prime (divisible by 2).
- **9**: Not prime (divisible by 3).
- **10**: Not prime (divisible by 2, 5).
- **11**: Prime (divisors: 1, 11).
- **12**: Not prime (divisible by 2, 3, 4, 6).
- **13**: Prime (divisors: 1, 13).
- **14**: Not prime (divisible by 2, 7).
- **15**: Not prime (divisible by 3, 5).
Using the Sieve of Eratosthenes method to cross out non-prime numbers confirms the primes
listed above. Therefore, the prime numbers between 1 and 15 are:

2 , 3 , 5 , 7 , 11 , 13
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1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
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SFT trace after rewritten by LLaMA 4 Maverick
Problem: Find all primes between 1 and 15.

<reasoning>
To find all the prime numbers between 1 and 15, we recall that a prime number is a natural
number greater than 1 that has no positive divisors other than 1 and itself.
We then check each number from 1 to 15 to determine if it is prime.
- **1**: Not a prime number (by definition).
- **2**: Prime (divisors: 1, 2).
- **3**: Prime (divisors: 1, 3).
- **4**: Not prime (divisible by 2).
- **5**: Prime (divisors: 1, 5).
- **6**: Not prime (divisible by 2, 3).
- **7**: Prime (divisors: 1, 7).
- **8**: Not prime (divisible by 2).
- **9**: Not prime (divisible by 3).
- **10**: Not prime (divisible by 2, 5).
- **11**: Prime (divisors: 1, 11).
- **12**: Not prime (divisible by 2, 3, 4, 6).
- **13**: Prime (divisors: 1, 13).
- **14**: Not prime (divisible by 2, 7).
- **15**: Not prime (divisible by 3, 5).
The Sieve of Eratosthenes method confirms the primes listed above.
</reasoning>
<answer>
2, 3, 5, 7, 11, 13

</answer>
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