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ABSTRACT

Deep learning based image Super-Resolution (ISR) relies on large training datasets
to optimize model generalization; this requires substantial computational and
storage resources during training. While dataset condensation has shown potential
in improving data efficiency and privacy for high-level computer vision tasks, it has
not yet been fully exploited for ISR. In this paper, we propose a novel Instance Data
Condensation (IDC) framework specifically for ISR, which achieves instance-level
data condensation through Random Local Fourier Feature Extraction and Multi-
level Feature Distribution Matching. This aims to optimize feature distributions at
both global and local levels and obtain high-quality synthesized training content
with fine detail. This framework has been utilized to condense the most commonly
used training dataset for ISR, DIV2K, with a 10% condensation rate. The resulting
synthetic dataset offers comparable or (in certain cases) even superior performance
compared to the original full dataset and excellent training stability when used to
train various popular ISR models. To the best of our knowledge, this is the first
time that a condensed/synthetic dataset (with a 10% data volume) has demonstrated
such performance. The associated code and synthetic dataset are available here.

1 INTRODUCTION

Image super-resolution (ISR) is a well-established research area in low-level computer vision, which
aims to up-sample a low-resolution image to higher resolutions, while recovering fine spatial details.
In recent years, deep learning inspired methods (Liang et al., 2021; Jiang et al., 2024) have been
dominant in this field, offering significant improvements over conventional ISR methods based on
classic signal processing theory. These learning-based solutions are typically optimized offline with a
large training dataset and deployed online for processing arbitrary input images. The training data is
thus crucial for maintaining the model generalization ability and for avoiding overfitting issues.

To this end, it is common practice to simply increase the amount of training material, but this
introduces two primary issues. (i) Training efficiency: a large amount of training content inevitably
leads to higher training costs with longer training time and greater storage/memory requirements
(Paul et al., 2021). Although efforts have been made to accelerate the training process by using large
batch sizes, these cannot fully reduce training costs due to increased memory consumption (Lin et al.,
2022). (ii) Data quality: increased data volume does not guarantee performance improvement - large
datasets can be associated with unbalanced content distributions (or bias) and data redundancy, which
may result in suboptimal inference performance on certain content and reduced model generalization
(Zhao et al., 2021). Moreover, privacy concerns can also arise when using large-scale data, as models
can inadvertently memorize sensitive information, making them vulnerable to membership inference
attacks that could potentially expose training data details (Melis et al., 2019; Lyu et al., 2020).

To address these problems, various dataset refinement approaches have been proposed, including
coreset selection (Phillips, 2017; Katharopoulos & Fleuret, 2018) and dataset pruning (Ding et al.,
2023; Moser et al., 2024), which result in a smaller, representative subset, derived from the large
training dataset based on gradient or deep feature statistics. However, these content selection/pruning
methods are constrained by the characteristics of the original content, and hence they cannot achieve
optimal performance compared to the large dataset, in particular when the subset is much smaller than
the original. It is also noted that dataset distillation (Wang et al., 2018a) and condensation (Zhao et al.,
2021; Wang et al., 2025) techniques have been proposed recently for high-level computer vision tasks
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Figure 1: (Left): Visual comparison between synthetic patches generated by our IDC framework and those
selected/synthesized by Random Selection, DCSR (Ding et al., 2023), and NCFD (v1 in our ablation study)
(Wang et al., 2025). IDC’s patches contain more diverse information than selection-based methods, and data
condensation techniques like NCFD (designed for high-level vision) fail to produce meaningful results. (Right):
Quantitative results show that an IDC-synthesized dataset (10% volume) can outperform the full DIV2K dataset
when training ISR models.

(e.g., image classification with ground truth labels). These are designed to distill/condense a large
dataset into a small but “informative” version with synthetic content. The aim is to achieve improved
training efficiency, comparable model generalization ability (with the original dataset), and enhanced
data privacy (Chen et al., 2022; Dong et al., 2022). However, these techniques cannot be directly
applied to low-level tasks, such as ISR, due to the requirement for image labels. Although there have
been early attempts that focus on ISR dataset condensation (Zhang et al., 2024; Dietz et al., 2025),
these exhibit relatively poor performance or can only be deployed for limited application scenarios.

In this context, this paper proposes a new Instance Data Condensation (IDC) framework specifically
for image super-resolution, which can significantly reduce the amount of training material and speed
up the training process, while maintaining (or even enhancing) the model performance. Taking all the
cropped patches from each individual image (instance) in a large dataset as input, this framework
generates a small amount of synthetic low-resolution training patches with condensed information
based on Random Local Fourier Features and Multi-level Feature Distribution Matching. These
methods are designed to retain the distribution of the local features in the original patches and ensure
the fidelity and diversity of the synthesized patches. These synthetic low-resolution patches are
then up-sampled by a pre-trained ISR model to obtain their high-resolution counterparts. Targeting
ISR, this framework has been utilized to condense the most commonly used training dataset in
the ISR literature, DIV2K (Agustsson & Timofte, 2017), resulting in a synthetic dataset with only
10% training patches. The condensed dataset was then used to train three popular ISR network
architectures, EDSR (Lim et al., 2017), SwinIR (Liang et al., 2021) and MambaIRv2 (Guo et al.,
2024a), which achieve similar or even better evaluation performance compared to the same networks
trained with the full DIV2K dataset. The main contributions of this work are summarized below.

1. We propose a new data condensation framework specifically for ISR that operates at the instance
(image) level, a paradigm that effectively bypasses the need for class labels common in high-level
vision tasks. It is the first time that a highly condensed dataset has achieved better performance
than the original full dataset when used for training ISR models (as shown in Figure 1.(Right)).

2. We design a Multi-level Feature Distribution Matching approach, which learns feature distribu-
tions at instance and group levels. This hierarchical strategy progressively refines the synthetic
data, enhancing feature quality and diversity and leading to well-conditioned samples, enabling
high-quality visual feature learning in distribution matching, as shown in Figure 1.(Left).

3. We develop the novel Random Local Fourier Features, which captures high-frequency details
and local features to facilitate distribution matching in learning high-fidelity synthetic images.

2 RELATED WORK

Image Super-Resolution (ISR) is a fundamental task in low-level computer vision that aims to
reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts. Over the past
decade, advances in deep learning have significantly improved ISR performance, employing ISR
models based on network architectures including convolutional neural networks (CNNs) (Kim et al.,
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2016; Zhang et al., 2018), vision transformers (Wang et al., 2022c; Jiang et al., 2025), and structured
state-space models (Guo et al., 2024b; Shi et al., 2025). These ISR methods, due to their data-driven
nature, are typically trained offline on a large training dataset and then deployed online for real-world
applications. In this case, the training dataset is critical to model performance and generalization.

To facilitate ISR model training, a series of datasets have been developed including small ones such
as T91 (Yang et al., 2010) and BSD200 (Martin et al., 2001), which contain 91 and 200 natural
images, respectively. A significant milestone was the release of DIV2K (Agustsson & Timofte, 2017),
consisting of 800 high-resolution images, which is now the most commonly used training dataset
for ISR. Other alternatives also exist including Flickr2K (Timofte et al., 2017) that comprises 2,650
high-resolution images collected from online sources, and LSDIR (Li et al., 2023) with more than
85,000 images. In this paper, we employ DIV2K as the original training dataset to demonstrate the
data condensation process due to its popularity. Based on the common practice in ISR literature
(Wang et al., 2022b), existing methods typically crop each image in the training dataset into small
patches. For example, the 800 original images in DIV2K (Agustsson & Timofte, 2017) along with
their corresponding low-resolution counterparts (e.g., down-sampled by a factor of 4) are partitioned
into overlapped patches, producing approximately 120K pairs (LR and HR), which are used in the
training process as the input (LR) and output target (HR) of ISR models.

Dataset condensation and distillation aims to condense or distill a large-scale original training
set into a smaller synthetic one, capable of offering comparable performance on unseen test data
when used to train a model for a downstream task. Based on the optimization objectives, current
dataset condensation methods can be categorized into three classes: performance matching, parameter
matching, and distribution matching. Performance matching based approaches (Wang et al., 2018a;
Zhou et al., 2022) are designed to optimize the synthetic dataset to achieve minimum training loss
(for the downstream task) compared to using the original training dataset, while parameter matching

(Yu et al., 2024) encourages models trained on the synthetic dataset to maintain consistency in the
parameter space with those trained on the original dataset. Both types of approaches are similar to
bi-level meta-learning (Finn et al., 2017) and gradient-based hyperparameter optimization techniques
(Du et al., 2023), which are associated with high computation graph storage costs and are difficult to
apply to high resolution and large scale datasets (Cazenavette et al., 2022; Yu et al., 2023). Distribution

matching generates synthetic data by directly optimizing the distribution distance between synthetic
and real data, which typically leverages feature embeddings extracted from networks with different
initializations to construct the distribution space, utilizing Maximum Mean Discrepancy as the
distribution metric (Zhao et al., 2023). This has been further enhanced by incorporating batch
normalization statistics (Yin et al., 2023; Du et al., 2024; Shao et al., 2024) or neural features in the
complex plane (Wang et al., 2025), to achieve enhanced performance on large-scale datasets.

For ISR, multiple contributions have targeted the generation of a small subset of representative
samples, based on diversity criteria such as texture complexity and blockiness distributions (Ding
et al., 2023; Ohtani et al., 2024). Given the distinct differences between image classification and ISR,
it is difficult to directly apply the dataset distillation/condensation techniques mentioned above to the
ISR task (Liu et al., 2021). To the best of our knowledge, there has been very limited investigation
into this research topic, with only one notable work (Zhang et al., 2024), which utilizes GAN-based
pretrained models to generate synthetic training images. However, this is still only applicable on an
SR dataset with labels (Wang et al., 2018b).

3 METHOD

Data condensation for ISR. The training of ISR models employs paired high- and low-resolution
(HR and LR) image patches, typically with a spatial resolution larger than 192→192 (for HR patches)
(Lim et al., 2017; Liang et al., 2021; Guo et al., 2024a). However, most current mainstream dataset
condensation methods proposed for high-level vision tasks are designed and validated on much
lower resolution content (e.g. 32→32 or 64→64) (Wang et al., 2018a; Zhao et al., 2021; Wang et al.,
2025). As a result, there are significant challenges when these methods are directly applied to the ISR
task. First, the training with high-resolution images that contain more pixels requires significantly
increased optimization space (e.g., features, gradients, etc.), resulting in a much slower (or even
impossible) training process. This is in particular relevant to the dataset condensation methods based
on performance or gradient matching. Secondly, existing data condensation methods often rely
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Figure 2: Illustration of the proposed Instance Data Condensation (IDC) framework.

on class labels to calculate task losses (such as the cross-entropy loss, soft labels, etc.) to guide
the optimization of synthetic samples, while commonly used datasets in ISR tasks (e.g., DIV2K
(Agustsson & Timofte, 2017)) are not associated with real class labels.

In this paper, our approach is based on distribution matching, which minimizes the distance of
distributions between two datasets. Specifically, given a real, original dataset T to a synthetic dataset
S , |S| ↑ |T |. The optimization goal is formulated as:

S = argmin
S

L(S, T ), (1)

where L stands for the distance measurement function.

Distance measurement functions. Early approaches (Wang et al., 2022a; Zhao & Bilen, 2023) em-
ploy Mean Squared Error or Maximum Mean Discrepancy as L, while recently, Neural Characteristic
Function Discrepancy (NCFD) (Wang et al., 2025) has been proposed to capture distributional dis-
crepancies by aligning the phases and amplitudes of neural features in the complex plane, achieving a
balance between realism and diversity in the synthetic samples. Specifically, the optimization process
is described by:

min
DS

max
ω

Ldist(DT , DS , f,ω) = min
DS

max
ω

Ex→DT ,x̂→DS

∫
t

√
Chf(t; f) dF (t;ω), (2)

Chf(t; f) = ε

((∣∣!f(x)(t)↓ !f(x̂)(t)
∣∣)2

)

︸ ︷︷ ︸
amplitude difference

+(1↓ ε) · (2
∣∣!f(x)(t)

∣∣ ∣∣!f(x̂)(t)
∣∣) · (1↓ cos(af(x)(t)↓ af(x̂)(t)))︸ ︷︷ ︸

phase difference

.

(3)

Here D denotes the distribution of a dataset. f is the feature extractor that maps input training
samples, i.e., x ↔ T or x̂ ↔ S, into the latent space. F (t,ω) is the cumulative distribution function
of the frequency argument t, while ω is a parameterized sampling network to obtain the distribution
of t. !f(x)(t) = Ef(x)

[
e
j↑t,f(x)↓] stands for the characteristic function. Chf(t; f) calculates the

distributional discrepancy between training and synthesized samples in the complex plane - here
phase stands for data centers which is crucial for realism, and amplitude captures the distribution
scale, contributing to the diversity. ε is a hyper-parameter to balance the amplitude and phase
information during the optimization process.

It is noted that while NCFD (Wang et al., 2025) has contributed to the SOTA dataset condensation
method for image classification, it cannot capture sufficient high-frequency details and rich local
semantic information when directly applied to condense training datasets for ISR. This is illustrated
in Figure 1. This may be because the high-dimensional feature distribution is intractable, directly
learning the joint distribution of features with dimensions C→H→W . Furthermore, it uses a random
Gaussian matrix for mapping features - f(·)N↔C↔H↔W ↗↘ f(·)N↔D (when the sampling network is
not used (Wang et al., 2025)) - (i) the random Gaussian projection fuses information globally, which,
however, is unsuitable for many low-level vision tasks including ISR, where the fine-grained local
information; (ii) it does not capture the high-frequency features within high-resolution feature maps
extracted by ISR models, thus limiting the capacity to learn fine details in the synthesis process.
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3.1 INSTANCE DATA CONDENSATION

To address the above issues, specifically for the ISR task, we propose a novel Instance Data
Condensation (IDC) framework, which performs distribution matching for the local features at
multiple levels. This approach efficiently handles the requirements of high-resolution patches for
training ISR models and effectively preserves high-frequency details in the original dataset. The
proposed IDC framework, shown in Figure 2, generates synthetic training patch pairs in two stages.

In the first stage, given a real training dataset T , which contains training patch pairs cropped from C

original, high-resolution (HR) images and their low-resolution counterparts, we first perform teacher
ISR model training, which will be used in the distribution matching process. We then consider each
image as an individual class, and take its corresponding, LR training patches x ↔ RN↔3↔H↔W as
the input of the distribution matching process. A set of synthetic patches x̂ ↔ Rn↔3↔H↔W will then
be registered as learnable parameters, which are eventually the LR output synthetic patches of the
IDC framework. To reduce computational cost, we utilize the feature extractor f in the teacher ISR
model to map x and x̂ into the latent space, resulting in f(x) and f(x̂), similar to previous works in
distribution matching (Deng et al., 2024; Wang et al., 2025). Here N is the total number of patches
cropped from the current RGB image/class. H →W represents the spatial resolution of the training
patches. r ↔ (0, 1) is the condensation ratio, i.e. n = N ≃ r.

As mentioned above, the latest distribution matching method (Wang et al., 2025) employs a random
Gaussian matrix for global matching, which works well when representing the feature distributions
of image classification task, but cannot capture local high-frequency details that are essential for ISR.
In this work, we propose to use Random Local Fourier Features, which can represent more fine-
grained local features, and unfold the obtained feature maps into a batch of features for performing
distribution matching. This enables the capturing of fine local details. As shown in Figure 2, both the
real and synthetic feature maps, f(x) and f(x̂), are processed to obtain their corresponding local
features, f ↗(x) and f

↗(x̂). Given the extracted local features, we then optimize a multi-level feature
distribution loss, consisting of instance-level distribution (Lins), group-level distribution (Lgroup),
and pair-wise (Lpair) losses, in order to obtain the synthetic LR patches x̂ for this image/class.

In the second stage, we employ the pre-trained teacher ISR model to up-sample x̂ to obtain their
corresponding HR patches x̂HR, which effectively leverages knowledge distillation (Hinton et al.,
2015) by directly exploiting the LR-to-HR mapping of the teacher model.

3.2 RANDOM LOCAL FOURIER FEATURES

Given that the extracted feature maps of the real training patches are denoted as f(x) ↔ RN↔c↔h↔w,
in which c, h, w are the channel number, size of the feature map, respectively, we first define an
identity matrix IC→↔C→ and reshape it into a convolutional filter, E ↔ RC

→↔c↔k↔k where C ↗ = c→k
2,

and k is the kernel size. This filter is used to map f(x) from the channel-spatial domain to the
channel domain to extract local features, while keeping the spatial structure information. To extract
the high frequency details, we further apply the Fourier transform F after extracting local features by
E, which in practice, is achieved by directly applying F to the convolutional filter E in the output
channel dimension, and decomposing the real and imaginary parts to form a new Fourier-based
convolution filter F ↔ R2C→↔c↔k↔k:

F = [⇐(F(E)),↓⇒(F(E))]. (4)
The feature maps, f(x), are transformed by F , to a more informative representation, f ↗(x), which
fully encodes the local spatial and channel information in the frequency domain that is particularly
suitable for data and textures with periodic structures.

f
↗(x) = f(x)↭ F. (5)

Here, to reduce the size of f ↗(x) and the complexity for loss computation, we implement channel-
wise random sampling to get F ↔ RCout↔c↔k↔k

, Cout < C
↗ (Wang et al., 2025). We also apply

batch normalization to f(x) before convolution.

Finally, we partition f
↗(x) to obtain local feature patches f

↗↗(x) ↔ RN
→↔Cout↔p↔p, where N

↗ =
N ≃ ⇑h/p⇓ ≃ ⇑w/p⇓, and p is the patch size. In order to learn local features in the later multi-level
distribution matching, we further unfold f

↗↗(x) from RN
→↔Cout↔p↔p to R(N →↔p↔p)↔Cout , which

treats features in the patches as different samples in a batch.
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This operation (Random Local Fourier Features) has also been applied to the feature maps of the
synthetic patches, f(x̂), before performing the multi-level distribution matching detailed below.

3.3 MULTI-LEVEL DISTRIBUTION MATCHING

To adapt to the nature of the ISR task, rather than directly using existing distribution matching losses,
we propose a Multi-level Distribution Matching approach to optimize the feature distribution of
synthetic patches at both instance (class) and group levels and match pair-wise feature patches.

Matching instance-level feature distributions. After obtaining local features for both real and
synthetic patches, f ↗↗(x) and f

↗↗(x̂), the instance-level feature distribution loss, Lins, is calculated to
minimize the distributional discrepancy between the real and synthetic patches. Here we do not use
the sampling network mentioned in its original literature (Wang et al., 2025) for efficient computation:

Lins = Ldist(x, x̂, f) = Ex,x̂

∫

t

√
Chf(t; f) dF (t). (6)

Matching group-wise feature distributions. While instance-level feature distribution matching
ensures consistency in the overall (global) feature distribution between synthetic and original patches,
local features often exhibit significant complexity and diversity, preventing instance-level matching
from sufficiently capturing all distributional differences. To address this issue, we designed a more
fine-grained, group-level feature distribution matching loss, Lgroup, which first partitions the real
local features f ↗↗(x) into M groups using K-means clustering. Each synthetic local feature is then
iteratively assigned to its nearest group centroid with a progressive assigning strategy.

Here, the number of synthetic features assigned to each group is proportional to the number of real
features in that group, and the assignment is updated in steps to maintain stable optimization. To
ensure that the assignments of neighboring features are consistent and to reduce the complexity, the
unfolded local features which originally come from the same local feature patch, are grouped together.
The resulting grouped local features are denoted as {gm(x)} and {gm(x̂)} ,m = 1, . . . ,M .

After this assignment, we compute the feature distribution matching loss for each group to more
accurately learn the synthetic data, by reflecting the real data distribution at the group level. This is
described by the following equation:

Lgroup =
M∑

m=1

Ldist(gm(x), gm(x̂), id(·)), (7)

in which id denotes the identity function, i.e. id(x) = x.

Matching pair-wise features. Moreover, to further address the unique nature of the ISR task, which
aims to reconstruct content with high fidelity and fine local details, we also introduce a pair-wise
loss, Lpair, within each local feature group described above. Specifically, for each synthetic feature
patch assigned to a group, we identify the most similar real local feature patch within the same group
and construct a pair. We then compute the L1 loss between the paired features to minimize their
discrepancy. This is expected to encourage the synthetic data to better match the real data at the local
detail level and to improve the fidelity of fine details and the overall visual quality of the synthesized
images. This process can be described by the equation below:

Lpair =
M∑

m=1

Nm∑

i=1

1

Nm

⇔f ↗↗(x)gm(i) ↓ f
↗↗(x̂)gm(i)⇔1, (8)

in which Nm is the number of feature patch pairs in the group m. f ↗↗(x)gm(i) represents the real
feature in the i

th pair, and f
↗↗(x̂)gm(i) is the corresponding synthetic feature in this pair.

These three losses are used at different stages in the proposed IDC framework for synthetic data
optimization, and the training algorithm is described in Algorithm 1.

4 EXPERIMENT CONFIGURATION

Implementation details. IDC is a novel dataset condensation method specifically designed for the
ISR task, which can be applied to any dataset with or without labels. In this experiment, we employ

6
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Algorithm 1: Instance Data Condensation.

Input: Training dataset T = {[xc,x
HR

c ], c = 1, . . . , C}; Synthetic dataset S = ⊋; ISR model f
pre-trained on T ; image/class index c; condense ratio r; instance-level distribution loss weight wins;
group-level distribution loss weight wgroup; pair-wise loss weight wpair; learning rate ω.

for each real patch xc in T do
Randomly initialize the synthetic patches x̂c, subject to |x̂c| = r|xc|;
Extract the feature maps using f for xc;
for i in num_iters do

Extract the feature maps using f for x̂c;
Extract their Random Local Fourier features and Unfold the feature maps into local patches;
if i in warm up then

Compute L = winsLins;
else

if i in assigning then
Increase grouping;
Increase pairing;

Compute L = winsLins + wgroupLgroup + wpairLpair ;

ε Subsection 3.3

Update x̂c → x̂c ↑ ω↓x̂cL;

ε Subsection 3.2

x̂HR

c = f(x̂c) ↔;
S = S ↗ {[x̂c, x̂

HR

c ]};
Output: S

SwinIR (Liang et al., 2021) and MambaIRv2 (Guo et al., 2024a) that are optimized on the original
real training dataset T obtained from DIV2K as the feature extractor and the up-sampling ISR model,
respectively. For each instance/class, we can generate the synthetic dataset with a 10% condense
ratio for 20k iterations with a single Nvidia-A40 GPU. For HR patch up-sampling, we choose one of
the latest ISR models, MambaIRv2. Here, the outputs of up-sampling ISR models (teacher) act as
a form of knowledge distillation, providing regularized targets that guide the model to learn more
generalizable features (The effect of different up-sampling ISR models is provided in Appendix D).
Other training and hyper-parameter configurations are also provided in Subsection C.1.

Datasets and metrics. To evaluate the performance of the proposed method, we used the widely
used training dataset for ISR, DIV2K (Agustsson & Timofte, 2017), as the original training dataset;
this contains 800 images with a 2K resolution. We follow the common practice (Wang et al., 2022b;
Lim et al., 2017; Zhang et al., 2018; Wang et al., 2022c; Liang et al., 2021; Shi et al., 2025) to crop all
the images into overlapped patches with a spatial resolution of 256→256 and down-sample them into
corresponding LR patches (64→64) targeting the →4 task. This results in a total number of 120,765
HR-LR patch pairs, forming the real dataset T mentioned above. For performance evaluation, we
use five commonly used datasets (Bevilacqua et al., 2012; Zeyde et al., 2012; Huang et al., 2015;
Martin et al., 2001; Fujimoto et al., 2016) and perform the →4 ISR task. The performance has been
measured by PSNR and SSIM (Wang et al., 2004).

Benchmarks. We compared the proposed methods with four dataset core-selection/pruning methods,
including random selection, Herding (Welling, 2009), Kcenter (Sener & Savarese, 2018) and DCSR
(Ding et al., 2023). All these benchmarks were applied on T with the same ratio (10%) to obtain the
selected/pruned (real) patches and the implementation details are provided in Subsection C.2. We
also provide the results based on the whole original training set T for reference. We did not compare
IDC to the only available dataset condensation method designed for ISR, GSDD (Zhang et al., 2024),
because it is only suitable for datasets with classification labels and was evaluated with GAN-based
ISR models, which is not the common practice in ISR literature. Moreover, we did not directly
benchmark our approach against dataset condensation methods proposed for high-level vision tasks
due to their label-based nature. However, we do take them into account in the ablation study below.

ISR models. Three popular ISR models including EDSR-baseline (Lim et al., 2017), SwinIR (Liang
et al., 2021) and MambaIRv2 (Guo et al., 2024a) have been trained here on different datasets generated
by the proposed and benchmark methods in this experiment based on the same training configurations.
The training and evaluation configurations for ISR methods are summarized in Subsection C.3.
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Table 1: Comparison with coreset selection and dataset pruning methods. For all methods (except the Whole),
we generated/selected 12,076 LR-HR pairs with the condense ratio r=10%. The results are based on PSNR (dB)
and SSIM. The best and second best results are highlighted in red and yellow cells, respectively.

PSNR (dB)↖ Set5 (Bevilacqua et al., 2012) Set14 (Zeyde et al., 2012) Urban100 (Huang et al., 2015)

EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2

Whole 30.17 30.28 30.52 26.61 26.78 26.88 24.50 24.92 25.21
Random 30.13 30.20 30.49 26.54 26.68 26.86 24.40 24.70 25.02
Herding (Welling, 2009) 29.94 30.03 30.36 26.43 26.54 26.65 24.10 24.40 24.65
Kcenter (Sener & Savarese, 2018) 30.01 30.12 30.45 26.50 26.61 26.79 24.28 24.56 24.86
DCSR (Ding et al., 2023) 30.16 30.33 30.51 26.54 26.69 26.86 24.43 24.78 25.10
IDC (ours) 30.18 30.34 30.52 26.63 26.78 26.91 24.47 24.86 25.16

PSNR (dB)↖ BSD100 (Martin et al., 2001) Manga109 (Fujimoto et al., 2016)

EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2

Whole 26.24 26.34 26.40 28.50 28.98 29.22
Random 26.19 26.28 26.37 28.32 28.74 29.07
Herding (Welling, 2009) 26.11 26.19 26.30 27.88 28.30 28.54
Kcenter (Sener & Savarese, 2018) 26.17 26.25 26.34 28.19 28.64 28.89
DCSR (Ding et al., 2023) 26.21 26.31 26.39 28.42 28.86 29.14
IDC (ours) 26.24 26.34 26.40 28.54 29.02 29.26

SSIM↖ Set5 (Bevilacqua et al., 2012) Set14 (Zeyde et al., 2012) Urban100 (Huang et al., 2015)

EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2

Whole 0.8645 0.8679 0.8699 0.7435 0.7492 0.7507 0.7627 0.7769 0.7861
Random 0.8639 0.8664 0.8694 0.7424 0.7469 0.7498 0.7594 0.7707 0.7801
Herding (Welling, 2009) 0.8607 0.8646 0.8674 0.7397 0.7439 0.7455 0.7504 0.7617 0.7701
Kcenter (Sener & Savarese, 2018) 0.8626 0.8655 0.8686 0.7412 0.7452 0.7481 0.7558 0.7674 0.7759
DCSR (Ding et al., 2023) 0.8642 0.8679 0.8696 0.7426 0.7478 0.7504 0.7608 0.7737 0.7825
IDC (ours) 0.8644 0.8680 0.8702 0.7445 0.7487 0.7516 0.7610 0.7749 0.7824

SSIM↖ BSD100 (Martin et al., 2001) Manga109 (Fujimoto et al., 2016)

EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2

Whole 0.7137 0.7185 0.7202 0.8788 0.8877 0.8903
Random 0.7126 0.7172 0.7195 0.8767 0.8854 0.8889
Herding (Welling, 2009) 0.7102 0.7145 0.7174 0.8704 0.8792 0.8822
Kcenter (Sener & Savarese, 2018) 0.7130 0.7162 0.7185 0.8776 0.8839 0.8860
DCSR (Ding et al., 2023) 0.7125 0.7178 0.7202 0.8773 0.8866 0.8895
IDC (ours) 0.7137 0.7184 0.7198 0.8795 0.8882 0.8895

5 RESULTS AND DISCUSSION

Overall performance. Table 1 summarizes the quantitative results of our proposed IDC approach
and other dataset selection/pruning methods for ISR, while the comparison of reconstruction quality
for different ISR methods is provided in Appendix F. It can be observed that IDC consistently
achieves superior performance compared to the benchmark methods, across most of the test datasets
and quality metrics. In particular, with only 10% of the data volume, it offers even better evaluation
performance compared to the whole original training set on four out of five datasets. To further
validate the robustness of our framework, we conducted experiments with a more aggressive 1%
condensation ratio and evaluated our framework on other datasets, with detailed results presented in
Appendix E. Moreover, we provide visual examples of synthetic training patches in Figure 3, which
show that IDC can preserve high-frequency details and texture information. As far as we are aware,
this is the first data condensation method that achieves this level of performance for the ISR task.

Alongside evaluation performance, training datasets should also support reduced optimization time
and stable training behavior. To assess these characteristics, we plot the performance comparison
between our proposed IDC method, Random selection, and the DCSR approach on the Set14 dataset
with different learning rates during the training process, using SwinIR as the ISR model with a
1% condensation ratio (a more challenging case). It has been observed that the DCSR method,
which employs Sobel filters to preserve real high-gradient image regions, exhibits evident overfitting
behavior across all four different learning rate configurations. In contrast, our method demonstrates
better stability and generalization capability, maintaining a steady upward trend throughout the
training process. More analysis and limitations are discussed in the Appendix G.

Ablation study. In order to compare our approach with SOTA dataset condensation methods
proposed for high-level vision tasks, we first start with the original NCFD (Wang et al., 2025), and
progressively add each component, resulting in four variants v1-v4. In addition, to thoroughly verify
the contributions of the main components in the proposed IDC framework, we further obtained
another three variants v5-v7 by removing Unfolding, Local Feature, Instance Loss, Group/Pair Losses
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Table 2: Results of the ablation study. ↫: included, ✁: excluded. Here, we only condense 80 images/classes for
each setting but with the same condense ratio 10% in each class (effectively 1% condense ratio for the whole
dataset). We choose the EDSR-baseline (Lim et al., 2017) as the ISR model, evaluated on three test datasets.

Variant Local Feature Unfolding Instance Loss Group Loss Pair Loss Set5 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM

IDC ↫ ↫ ↫ ↫ ↫ 30.02 0.8616 24.07 0.7474 28.00 0.8723
v1 ✁ ✁ ↫ ✁ ✁ -21.71 -0.7606 -16.60 -0.6674 -20.44 -0.7499
v2 ↫ ✁ ↫ ✁ ✁ –0.49 -0.0092 -0.60 -0.0247 -0.56 -0.0108
v3 ↫ ↫ ↫ ✁ ✁ -0.16 -0.0024 -0.12 -0.0059 -0.04 -0.0015
v4 ↫ ↫ ↫ ↫ ✁ -0.05 -0.0008 -0.04 -0.0020 0.06 0.0007
v5 ✁ ↫ ↫ ↫ ↫ -0.19 -0.0023 -0.04 -0.0017 -0.06 -0.0005
v6 ↫ ✁ ↫ ↫ ↫ -0.29 -0.0034 -0.10 -0.0048 -0.10 -0.0017
v7 ↫ ↫ ✁ ↫ ↫ -0.22 -0.0032 -0.02 -0.0012 -0.09 -0.0011

Figure 3: (Left): Visual Examples of our synthetic images. (Right): Validation trajectory on the Set14.

Original v1 v2 v3 v4 IDC v1 v2 v3 v4 IDCOriginal

Figure 4: Starting from the original NCFD (v1), the visual evolution for adding each contribution.

(v3 already exists)1, or Pair Loss (v4 already exists), respectively. The ablation results, based on
Set5, Urban100 and Manga109 datasets, are shown in Table 2, which confirms the effectiveness and
necessity of each component in the IDC framework. More experiment and analysis for the novel
RLFF are shown in Subsection D.3. We also provide their synthetic patch examples of v1-v4 in
Figure 4 for visualization. More visual examples are provided in the Appendix F.

6 CONCLUSION

This paper presents Instance Data Condensation (IDC) specifically targeting image super-resolution.
It synthesizes a small yet informative training dataset from a large dataset containing real images. By
leveraging a multi-level distribution matching framework and the new Random Local Fourier Features,
IDC captures essential structural and textural features from the original high-resolution images and
achieves significant data condensation. Trained on the resulting small synthetic dataset (with only
10% of the original data volume) ISR models can achieve comparable or (in some cases) even superior
performance compared to using the entire real training dataset (DIV2K), when benchmarked on
multiple test datasets. As far as we are aware, this is the first data condensation approach designed
specifically for ISR capable of this level of performance. More importantly, compared to other
benchmarks based on data selection and pruning, it offers better training stability and (potentially)
improved data privacy. The proposed instance-level paradigm may also inspire new approaches for
data condensation in other unlabeled, low-level vision tasks. We recommend that future work should
focus on further performance improvement and speeding up the condensation process.

1We cannot solely remove Group loss as the Pair loss is based on the Group loss in our method.
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A APPENDIX

B ALGORITHM DETAILS

Grouping and pairing. For group assignment and pairing, we utilize the K-means algorithm (Arthur
& Vassilvitskii, 2006) to obtain multiple group centroids, and compute the distance between the
synthetic features and the group centroids. Specifically, after extracting and normalizing features (we
chose the highest level network block’s output), we compute the distance between the average of each
small local feature patch (partitioned from the synthetic feature patches) and the centroids of real
feature groups (obtained via K-means clustering). Each synthetic patch is then assigned to the group
from which the corresponding distance (from the patch to the group centroid) is minimized, with
a constraint that the number of allocated synthetic patches per group is proportional to the number
of real feature patches per group. For pairing, within each group, we further compute the pairwise
L2 distances between synthetic and real patches within the same group, and assign each synthetic
patch to its closest real patch. We only map one real patch to at most one synthetic patch, ensuring
the synthetic-to-real mapping is one-to-one.

Warm-up and progressive assignment. To stabilize the training process and avoid abrupt changes
in the early training stage due to the grouping and pairing (which change the loss calculation), we
introduce a warm-up phase, in which group and pair assignments are not performed. After that, our
framework increases the number of grouped and paired synthetic patches every few hundred training
iterations. At each interval, we perform the grouping step with the ungrouped features and then
perform pairing with the features that were grouped in the last interval. This ensures that the features
are optimized by the group loss for a period and learned toward the group feature distribution, before
they are further paired with the features that are within the same group. We also add for the learned
deformation, which is regularized by L2 loss, before computing the pair loss. Overall, our framework
introduces different optimization objectives to different feature patches progressively, which makes
the assignment process smooth and the optimization stable.
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C IMPLEMENTATION DETAILS

C.1 THE IMPLEMENTATION DETAILS FOR IDC FRAMEWORK

Hyper-parameters. By default, we partition the feature patches into smaller local feature patches
with a size of 4 for grouping and pairing, and we use the last building block features for computing
the distances in order to perform grouping and pairing. We use a kernel size of 7, with 256 randomly
sampled channels for extracting the Random Local Fourier Features. The weights for balancing three
loss terms, wins, wgroup and wpair, are 300, 300 and 300k, respectively. We conducted additional
experiments to validate these parameter choices, with detailed ablation studies and sensitivity analyses
presented in the Subsection D.1.

Training configurations and time. We adopt the Adam optimizer (Maclaurin et al., 2015) in the
condensation process. The learning rate is set to 1→10↘2, with scheduled decays at 15k, 17k, and 19k
steps (milestones), where the learning rate is multiplied by a factor of ϑ = 0.1 at each milestone. The
loss function is a weighted sum with ε = 0.2 and ϖ = 0.8. The total training steps for condensing
each class are 20k, including a 4k-step warm-up phase. In the assignment process, the number of
groups is set to 16, where we increase the number of grouped and paired patches for every 400
training steps and a total of 25 times.

For the feature extractor f and the upsampling ISR model f ↖, we employ SwinIR lightweight (in
Table 3) (Liang et al., 2021) and MambaIRv2 (in Table 6) (Guo et al., 2024a), respectively, both of
which are pre-trained on the original large-scale training dataset T (DIV2K).

C.2 THE IMPLEMENTATION DETAILS OF BASELINE METHODS

For all core-set selection methods, we first randomly divide the original dataset into 20 groups to
improve computational efficiency. Each selection algorithm is then applied independently within each
group, and the selected samples from all groups are aggregated to form the final dataset. Random:
We randomly select a subset of samples from each group without considering any other information.
This serves as a simple baseline for comparison. Herding: Herding (Welling, 2009) is a greedy
algorithm that iteratively selects samples whose features are closest to the mean feature of the group.
Specifically, at each step, the sample that, when added to the current selection, minimizes the distance
between the mean of the selected features and the mean of all features in the group is chosen. K-
Center Greedy: The K-Center Greedy (Sener & Savarese, 2018) algorithm aims to select a subset of
samples such that the maximum distance from any sample in the group to its nearest selected center
is minimized. We apply the K-Center Greedy algorithm: starting from a randomly chosen sample, we
iteratively select the sample that is farthest from the current set of selected centers until the desired
number of samples is reached.

We follow the instruction (Chengcheng Guo & Bai, 2022) to implement these methods.

DCSR (Ding et al., 2023) is a gradient-based dataset pruning method designed to enhance the
complexity and diversity of the training set. The algorithm consists of two stages. In the first stage,
the gradients of all input images are computed using the Sobel filter (Kanopoulos et al., 1988), and
images with gradient values below the average are removed, thereby selecting samples with higher
complexity. In the second stage, the remaining high-complexity inputs are mapped into the feature
space (Zhang et al., 2017) and clustered into 15 groups. Then, 80% of the images in each group are
randomly removed, resulting in only about 10% of the original data being retained for training.

It is important to note that, for all the above methods, the selection is performed on low-resolution
(LR) input patches. After selection, the final training set is constructed by pairing the selected LR
patches with their corresponding high-resolution (HR) patches from the original dataset T .

C.3 TRAINING AND TEST CONFIGURATIONS FOR ISR MODELS

To evaluate the performance of the synthetic training dataset condensed by our proposed IDC
framework, we trained three representative ISR models EDSR (Lim et al., 2017), SwinIR (Liang
et al., 2021) and MambaIRv2 (Guo et al., 2024a) on our synthetic dataset from scratch. The detailed
architectures of these ISR models and training configurations are listed in Table 3.
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After completing the training, we test the performance of these models on five test datasets under the
setting of the crop_border is 2, using PSNR and SSIM as quality metrics.

Table 3: Training configurations for different ISR models in the evaluation phase.

network training steps learning rate

EDSR

upscale: 4
num_feat: 64

num_block: 16
res_scale: 1

img_range: 255.
rgb_mean: [0.4488, 0.4371, 0.4040]

300k 1e-4

SwinIR

upscale: 4
window_size: 8
img_range: 1.

depths: [6, 6, 6, 6]
embed_dim: 60

num_heads: [6, 6, 6, 6]
mlp_ratio: 2.0

upsampler: ‘pixelshuffledirect’
resi_connection: ‘1conv’

500k 2e-4

Mambairv2

upscale: 4
img_range: 1.

embed_dim: 48
d_state: 8

depths: [ 5, 5, 5, 5 ]
num_heads: [ 4, 4, 4, 4 ]

window_size: 16
inner_rank: 32

num_tokens: 64
convffn_kernel_size: 5

mlp_ratio: 1.0
upsampler: ‘pixelshuffledirect’

resi_connection: ‘1conv’

500k 1e-4

D ABLATION STUDY

D.1 ABLATION STUDY WITH THE CHOICE OF THE HYPER-PARAMETERS

Here, we provide additional ablation study results for the hyper-parameters setting, including patch
size p, kernel size k and the sampling rate used in the Random Local Fourier Features (Section 3.3).
We also tested the effect of the number of layers for feature extraction and the weights for the group
wgroup and pair wpair losses. The results are shown in the Table 4. It can be observed that the
changes in PSNR and SSIM under different hyper-parameter settings are minor for different hyper
parameter values. This demonstrates that our method is robust to hyper-parameter variations and can
achieve stable performance.

D.2 THE EFFECT OF THE DIFFERENT UP-SAMPLING ISR MODELS

We also evaluated the effectiveness of the different up-sampling ISR models f ↖ for the synthetic
dataset. The results are shown in the Table 5 and the detailed architectures, training configurations
of these ISR models are listed in Table 6. As shown in Table 5, the choice of ISR up-sampling
model (EDSR, SwinIR, MambaIRv2) has only resulted in a minor impact on the final performance.
For example, although MambaIRv2 is generally considered a stronger ISR model than SwinIR, we
observe that many of the models trained on datasets up-sampled by SwinIR can still outperform those
up-sampled by MambaIRv2. This indicates that the up-sampling ISR model used for our proposed
data condensation is not sensible to the test ISR model in the evaluation phase.
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Table 4: Ablation study of hyper-parameters. Each variant changes only one parameter from the default (a0).

Variant Patch size Kernel size Sampling rate Feature layer wgroup wpair

Set5 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM

a0 (default) 4 7 256 last 300 300k 30.02 0.8616 24.07 0.7474 28.00 0.8723
a1 2 - - - - - -0.18 -0.0025 -0.10 -0.0042 -0.14 -0.0028
a2 8 - - - - - -0.15 -0.0014 -0.02 -0.0002 -0.11 -0.0014
a3 - 5 - - - - -0.22 -0.0018 -0.03 -0.0002 -0.06 -0.0005
a4 - 9 - - - - -0.21 -0.0028 -0.09 -0.0033 -0.15 -0.0022
a5 - - 128 - - - -0.14 -0.0016 -0.03 -0.0012 -0.09 -0.0014
a6 - - 512 - - - -0.09 -0.0010 -0.03 -0.0014 -0.10 -0.0015
a7 - - - - 30 - -0.39 -0.0050 -0.13 -0.0046 -0.22 -0.0035
a8 - - - - 3000 - -0.10 -0.0020 -0.04 -0.0019 +0.08 +0.0009
a9 - - - - - 30k -0.12 -0.0018 -0.02 -0.0019 +0.07 +0.0006

a10 - - - - - 3000k -0.41 -0.0053 -0.13 -0.0048 -0.25 -0.0038
a11 - - - first - - -0.35 -0.0034 -0.03 -0.0007 -0.07 -0.0011

Table 5: Comparison with different the up-sampling ISR models f ↔ with condense ratio r=10%. The results are
based on PSNR (dB) and SSIM. The best result is highlighted in red .

PSNR (dB)↖ Set5 (Bevilacqua et al., 2012) Set14 (Zeyde et al., 2012) Urban100 (Huang et al., 2015)

EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2

IDC (EDSR) 30.25 30.36 30.48 26.66 26.73 26.80 24.51 24.72 24.87
IDC (SwinIR) 30.25 30.39 30.56 26.64 26.83 26.92 24.49 24.90 25.04

IDC (MambaIRv2) 30.18 30.34 30.52 26.63 26.78 26.91 24.47 24.86 25.16

PSNR (dB)↖ BSD100 (Martin et al., 2001) Manga109 (Fujimoto et al., 2016)

EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2

IDC (EDSR) 26.27 26.33 26.38 28.60 28.92 29.13
IDC (SwinIR) 26.26 26.37 26.42 28.59 29.10 29.21

IDC (MambaIRv2) 26.24 26.34 26.40 28.54 29.02 29.26

SSIM↖ Set5 (Bevilacqua et al., 2012) Set14 (Zeyde et al., 2012) Urban100 (Huang et al., 2015)

EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2

IDC (EDSR) 0.8658 0.8680 0.8693 0.7445 0.7478 0.7488 0.7620 0.7702 0.7747
IDC (SwinIR) 0.8658 0.8689 0.8707 0.7443 0.7503 0.7517 0.7621 0.7771 0.7811

IDC (MambaIRv2) 0.8644 0.8680 0.8702 0.7445 0.7487 0.7516 0.7610 0.7749 0.7824

SSIM↖ BSD100 (Martin et al., 2001) Manga109 (Fujimoto et al., 2016)

EDSR SwinIR MambaIRv2 EDSR SwinIR MambaIRv2

IDC (EDSR) 0.7148 0.7175 0.7184 0.8805 0.8861 0.8877
IDC (SwinIR) 0.7147 0.7202 0.7212 0.8804 0.8892 0.8893

IDC (MambaIRv2) 0.7137 0.7184 0.7198 0.8795 0.8882 0.8895

Although we chose MambaIRv2 for our main experiments for f ↖, this was primarily to ensure
compatibility and flexibility with a wide range of ISR models. Our method is designed to easily
adapt to future advances in ISR architectures. The most computationally expensive part is the
one-off condensation of LR patches, which does not involve the teacher model. If a superior SR
model emerges in the future, we simply perform a quick inference to generate an updated set of HR
patches—typically taking only a few hours—which can effectively raise the performance ceiling with
minimal effort.

D.3 ABLATION STUDY OF RLFF VS. ALTERNATIVES

We conducted an ablation study to validate our novel Random Local Fourier Features (RLFF)
against alternative transformations. Our framework requires transformations that can preserve
spatial structures while extracting local information, i.e., the outputs of the transformation such be
feature maps. We compared RLFF against three variants: (x1) identity function without RLFF, (x2)
DCT applied to convolutional filters (The standard DCT does not preserve the spatial structures
in its output), and (x3) DWT with spatial resolution preservation. The results are presented in the
Table 7 and demonstrate that RLFF consistently outperforms all alternatives across different datasets,
validating our design for effective local feature distribution modeling.
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Table 6: Training configurations for different up-sampling ISR models f ↔ for HR up-sampling.

network training steps learning rate

EDSR

upscale: 4
num_feat: 256
num_block: 32
res_scale: 0.1

img_range: 255.
rgb_mean: [0.4488, 0.4371, 0.4040]

300k 1e-4

SwinIR

upscale: 4
window_size: 8
img_range: 1.

depths: [6, 6, 6, 6, 6, 6]
embed_dim: 180

num_heads: [6, 6, 6, 6, 6, 6]
mlp_ratio: 2.0

upsampler: ‘pixelshuffle’
resi_connection: ‘1conv’

500k 2e-4

MambaIRv2

upscale: 4
img_range: 1.

embed_dim: 174
d_state: 16

depths: [6, 6, 6, 6, 6, 6, 6, 6, 6]
num_heads: [6, 6, 6, 6, 6, 6, 6, 6, 6]

window_size: 16
inner_rank: 64

num_tokens: 128
convffn_kernel_size: 5

mlp_ratio: 2.0
upsampler: ‘pixelshuffle’
resi_connection: ‘1conv’

500k 1e-4

Table 7: Performance comparison of different feature transformation methods. Values shown are differences
from the RLFF baseline.

variant Set5 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM

RLFF (default) 30.02 0.8616 24.07 0.7474 28.00 0.8723
x1 (w/o RLFF) -0.32 -0.0059 -0.23 -0.0110 -0.17 -0.0044

x2 (DCT filters) -0.10 -0.0017 -0.05 -0.0036 -0.02 -0.0009
x3 (Wavelets) -0.58 -0.0107 -0.64 -0.0228 -0.52 -0.0095

E ADDITIONAL RESULTS

E.1 ADDITIONAL RESULTS WITH 1% TRAINING DATA

We also provide the results on the SwinIR with the condense ratio=1% on DIV2K compared with
Random and DCSR (Ding et al., 2023). As shown in Table 8, our proposed IDC method achieves
the best performance among all methods at both condense ratios. Notably, when the condense ratio
decreases from 10% to 1%, the performance drop of IDC is the smallest compared to Random and
DCSR. This demonstrates that our method is more robust and data efficient, and can better preserve
performance with a high condensation ratio.

E.2 ADDITIONAL RESULTS ON OTHER DATASET

We also conducted an additional experiment on the Flickr2K (Lim et al., 2017) dataset (2650 images
in total), and provided the results in Table 9 with a 1% condensation ratio. The results further confirm
our findings on DIV2K - our IDC method significantly outperforms baselines like Uniform Selection
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Table 8: Comparison with coreset selection and dataset pruning methods with condense ratio r=1%. For our
IDC method, we generate synthetic dataset for all classes with the condense ratio r=1%. The results are based
on PSNR (dB) and SSIM.

condense ratio Set5 Set14 Urban100 BSD100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Whole - 30.28 0.8679 26.78 0.7492 24.92 0.7769 26.34 0.7185 28.98 0.8877

Random 10% 30.20 0.8664 26.68 0.7469 24.70 0.7707 26.28 0.7172 28.74 0.8854
1% 29.68 0.8594 26.038 0.7330 23.74 0.7423 25.80 0.7042 27.65 0.8715

DCSR 10% 30.33 0.8679 26.68 0.7478 24.78 0.7737 26.31 0.7178 28.87 0.8866
1% 29.90 0.8622 26.22 0.7362 23.96 0.7484 25.96 0.7074 27.83 0.8738

IDC (ours) 10% 30.34 0.8680 26.78 0.7487 24.86 0.7749 26.34 0.7184 29.02 0.8882
1% 30.18 0.8658 26.64 0.7461 24.48 0.7623 26.25 0.7152 28.57 0.8827

Table 9: Additional results on Flickr2K (Lim et al., 2017) dataset with condense ratio r=1% and evaluated on
SwinIR model. The results are based on PSNR (dB) and SSIM.

condense ratio Set5 Set14 Urban100 BSD100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Whole(Flickr2K) - 30.39 0.8688 26.85 0.7505 24.97 0.7779 26.36 0.7193 29.13 0.8891

Random 1% 30.19 0.8659 26.57 0.7444 24.45 0.7634 26.22 0.7151 28.53 0.8823

DCSR 1% 30.24 0.8662 26.63 0.7453 24.49 0.7652 26.24 0.7160 28.60 0.8831

IDC (ours) 1% 30.34 0.8678 26.75 0.7482 24.84 0.7738 26.35 0.7183 29.01 0.8878

and DCSR. This demonstrates that the effectiveness of our framework is not limited to a single
dataset.

F QUALITATIVE COMPARISONS

Additional samples generated from the IDC framework. Here, we provide additional samples
generated from our proposed IDC framework in Figure 5, which shows multiple generated LR and
HR pairs from original images. As shown in these examples, our framework is capable of generating
high fidelity samples that contain the visual features similar to those in the original image, and for
producing per-instance sample patches with high diversity. These characteristics allow the resulting
synthetic dataset to closely mimic the original dataset feature distribution, contributing to the final
high performance of the trained ISR models.

Additional samples between different variants of the IDC framework. We also provide additional
generated samples which are obtained from different variants of our framework, used in the ablation
study in Figure 6. These samples confirm that all of our contributions summarized in Section 1
provide substantial visual quality improvement, and they all contribute to the final performance as
evaluated in Section 4.

Comparison between ISR models trained with datasets from different methods. We provide
the visual comparison between the ISR models trained with the datasets, generated/sampled from
different methods Figure 7, Figure 8 and Figure 9. The results here support our quantitative results,
where the synthetic dataset generated by our IDC framework can provide a consistent performance
improvement for all tested ISR models.

G LIMITATION

Condensation efficiency. Currently, condensing a single class (image) requires 20,000 steps, which
takes about 2 GPU hours on an NVIDIA A40. To condense the entire DIV2K dataset, the total
computational cost is approximately 1,600 GPU hours. Although this is just a one-off process, and
the condensed dataset is fixed for ISR model training, the initial time investment remains substantial.
Therefore, further optimization of the condensation process is necessary to improve efficiency.

Upper bound of dataset performance. In our current approach, we generate LR patches and then
use a pre-trained ISR model to up-sample them into HR patches. As shown in Table 5, the choice
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of ISR upsampling model has a limited impact on the dataset’s performance. We note that this is
also an inherent limitation for applying distribution matching to the super-resolution task, where
direct condensation of high-resolution images is not feasible due to the large amount of resources
required. Our method, which utilizes an ISR model to efficiently obtain HR images and effectively
performs knowledge distillation (Hinton et al., 2015), is able to closely match the performance of
models trained on the condensed dataset to those trained on the original dataset. However, if more
advanced ISR models are developed in the future, it would be necessary to re-perform the upsampling
process from LR synthetic patches to their HR versions. However, we don’t need to redo the most
time-consuming condensation operation.

Data privacy. While IDC has the potential to enhance data privacy by generating synthetic datasets
that do not directly expose original sensitive data, as illustrated in Figure 5, this aspect is not the
main focus of our current work. We acknowledge that privacy-preserving properties of synthetic data
are an important direction, especially for applications involving personal or confidential information.
However, a thorough investigation of privacy guarantees, potential risks of data leakage, and the
effectiveness of IDC in various privacy-sensitive scenarios is beyond the scope of this paper, and we
leave a more comprehensive study of data privacy aspects, including formal privacy analysis and
empirical evaluation, for future work (Dong et al., 2022).

H BROADER IMPACT

Our data condensation method, designed for generating smaller synthetic datasets, can reduce the need
for using large-scale real databases for algorithm training. This helps lower the carbon footprint and
saves storage resources in the development phase. In practical applications like video streaming, our
approach can also potentially improve the perceptual quality of streamed content if super-resolution
techniques are involved, leading to a better user experience.

I DATASET/CODE LICENSE.

We list the licenses of all datasets and the code used in this paper in Table 10.

Table 10: The links and licenses of all datasets and the used in our paper.

Code/Dataset Repo link License

EDSR (Lim et al., 2017) https://github.com/sanghyun-son/EDSR-PyTorch MIT license
SwinIR (Liang et al., 2021) https://github.com/hyunbo9/SwinIR MIT license

MambaIRv2 (Guo et al., 2024a) https://github.com/csguoh/MambaIR Apache-2.0 license
DCSR (Ding et al., 2023) https://github.com/QingtangDing/DCSR MIT license

DeepCore (Chengcheng Guo & Bai, 2022) https://github.com/patrickzh/deepcore MIT license
BasicSR (Wang et al., 2022b) https://github.com/XPixelGroup/BasicSR Apache-2.0 license

NCFD/NCFM (Wang et al., 2025) https://github.com/gszfwsb/NCFM This code is available for academic research.

DIV2K (Agustsson & Timofte, 2017) https://data.vision.ee.ethz.ch/cvl/DIV2K/ All images are available for academic research.
Set5 (Bevilacqua et al., 2012) https://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html All images are available for academic research.

Set14 (Zeyde et al., 2012) https://sites.google.com/site/romanzeyde/research-interests All images are available for academic research.
Urban100 (Huang et al., 2015) https://github.com/jbhuang0604/SelfExSR All images are available for academic research.
BSD100 (Martin et al., 2001) https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ All images are available for academic research.

Manga109 (Fujimoto et al., 2016) http://www.manga109.org/en/ All images are available for academic research.
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Figure 5: Additional visual results of the proposed IDC framework.

Figure 6: Additional qualitative comparison between different variants.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

024 (Urban100, ↘4) HR LR

Whole DCSR IDC(ours)

Figure 7: Qualitative comparison between different methods evaluated on EDSR (Lim et al., 2017)

019 (Urban100, ↘4) HR LR

Whole DCSR IDC(ours)

Figure 8: Qualitative comparison between different methods evaluated on SwinIR (Liang et al., 2021)

074 (Urban100, ↘4) HR LR

Whole DCSR IDC(ours)

Figure 9: Qualitative comparison between different methods evaluated on MambaIRv2 (Guo et al., 2024a)
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J QUANTITATIVE ANALYSIS

J.1 ANALYSIS OF GENERALIZATION PERFORMANCE

We further evaluated the generalization performance of the SR model (SwinIR (Liang et al., 2021))
trained on the condensed dataset produced by our framework. Figure 10 and Figure 11 show the
training and validation curves in terms of L1 loss and PSNR. The training curves are computed on
the condensed DIV2K (Timofte et al., 2017) dataset, and the validation curves are computed on
the five validation datasets used in the main paper. In all cases, the training and validation curves
are well aligned: both improve as training progresses and we do not observe any degradation over
time. This indicates that no overfitting occurs and suggests that the model trained on our compact
condensed dataset generalizes well, and continues to learn features that are helpful for the task, rather
than simply memorizing the condensed set.

Note that the training and validation curves lie in different loss/PSNR ranges. This can be caused
by several factors: (i) our condensed dataset does not contain real ground-truth high resolution
images, and the learning target are generated by the teacher model, and (ii) the condensed dataset
contains synthesized content instead of only real images. As a result, the absolute metric values on
the condensed dataset are not directly comparable to those on the real validation benchmarks.

J.2 ANALYSIS OF TRAINING EFFICIENCY

To quantitatively evaluate the training efficiency of our proposed framework, we compared the
validation trajectories of a SwinIR model (Liang et al., 2021) trained on our 10% condensed dataset
(IDC), the full dataset ("Whole"), a 10% DCSR subset (Ding et al., 2023), and a 10% uniformly
sampled subset. As illustrated by the PSNR curves in Figure 12, our IDC-trained model demonstrates
significantly faster convergence. To quantify this, Table 11 shows that our method consistently
reaches target PSNR milestones in as little as 25% to 50% of the training steps required by the full
dataset. Crucially, our method not only learns faster but also achieves a final performance that is
superior or highly comparable to training on the complete dataset, while consistently outperforming
the other 10% methods. This provides strong evidence that our IDC method produces a highly
efficient and information-dense dataset, accelerating training without sacrificing—and in many cases,
even improving—final model performance.

Table 11: Comparison of training iterations (in thousands, ’k’) required to reach target PSNR values. The target
PSNR values are selected base on the full dataset training.

Test Dataset Target PSNR Whole Uniform (10%) DCSR (10%) IDC (10%)

Set5 29.38 20k 20k 15k 10k
29.99 60k 60k 35k 20k

Set14 26.00 15k 15k 15k 10k
26.54 50k 55k 40k 20k

Urban100 24.18 45k 45k 30k 20k
24.67 135k 180k 105k 55k

BSD100 25.55 10k 10k 10k 5k
26.07 35k 35k 25k 15k

Manga109 28.11 45k 50k 30k 15k
28.69 125k 150k 90k 40k
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Figure 10: Train and validation loss of the model (SwinIR) trained with our condensed dataset. Validation are
performed across five datasets.
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Figure 11: Train and validation PSNR of the model (SwinIR) trained with our condensed dataset. Validation are
performed across five datasets.
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Figure 12: Validation trajectory for different methods (training datasets) across five datasets.
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