

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INSTANCE DATA CONDENSATION FOR IMAGE SUPER-RESOLUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep learning based image Super-Resolution (ISR) relies on large training datasets to optimize model generalization; this requires substantial computational and storage resources during training. While dataset condensation has shown potential in improving data efficiency and privacy for high-level computer vision tasks, it has not yet been fully exploited for ISR. In this paper, we propose a novel Instance Data Condensation (IDC) framework specifically for ISR, which achieves instance-level data condensation through Random Local Fourier Feature Extraction and Multi-level Feature Distribution Matching. This aims to optimize feature distributions at both global and local levels and obtain high-quality synthesized training content with fine detail. This framework has been utilized to condense the most commonly used training dataset for ISR, DIV2K, with a 10% condensation rate. The resulting synthetic dataset offers comparable or (in certain cases) even superior performance compared to the original full dataset and excellent training stability when used to train various popular ISR models. To the best of our knowledge, this is the first time that a condensed/synthetic dataset (with a 10% data volume) has demonstrated such performance. The associated code and synthetic dataset are available [here](#).

1 INTRODUCTION

Image super-resolution (ISR) is a well-established research area in low-level computer vision, which aims to up-sample a low-resolution image to higher resolutions, while recovering fine spatial details. In recent years, deep learning inspired methods (Liang et al., 2021; Jiang et al., 2024) have been dominant in this field, offering significant improvements over conventional ISR methods based on classic signal processing theory. These learning-based solutions are typically optimized offline with a large training dataset and deployed online for processing arbitrary input images. The training data is thus crucial for maintaining the model generalization ability and for avoiding overfitting issues.

To this end, it is common practice to simply increase the amount of training material, but this introduces two primary issues. (i) Training efficiency: a large amount of training content inevitably leads to higher training costs with longer training time and greater storage/memory requirements (Paul et al., 2021). Although efforts have been made to accelerate the training process by using large batch sizes, these cannot fully reduce training costs due to increased memory consumption (Lin et al., 2022). (ii) Data quality: increased data volume does not guarantee performance improvement - large datasets can be associated with unbalanced content distributions (or bias) and data redundancy, which may result in suboptimal inference performance on certain content and reduced model generalization (Zhao et al., 2021). Moreover, privacy concerns can also arise when using large-scale data, as models can inadvertently memorize sensitive information, making them vulnerable to membership inference attacks that could potentially expose training data details (Melis et al., 2019; Lyu et al., 2020).

To address these problems, various dataset refinement approaches have been proposed, including coresnet selection (Phillips, 2017; Katharopoulos & Fleuret, 2018) and dataset pruning (Ding et al., 2023; Moser et al., 2024), which result in a smaller, representative subset, derived from the large training dataset based on gradient or deep feature statistics. However, these content selection/pruning methods are constrained by the characteristics of the original content, and hence they cannot achieve optimal performance compared to the large dataset, in particular when the subset is much smaller than the original. It is also noted that dataset distillation (Wang et al., 2018a) and condensation (Zhao et al., 2021; Wang et al., 2025) techniques have been proposed recently for high-level computer vision tasks

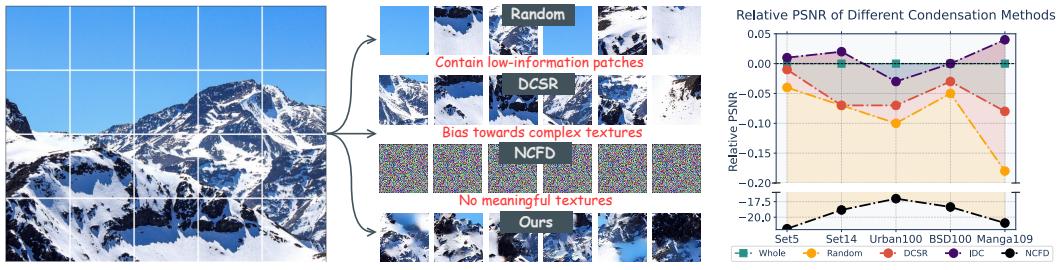


Figure 1: **(Left)**: Visual comparison between synthetic patches generated by our IDC framework and those selected/synthesized by Random Selection, DCSR (Ding et al., 2023), and NCFD (v1 in our ablation study) (Wang et al., 2025). IDC’s patches contain more diverse information than selection-based methods, and data condensation techniques like NCFD (designed for high-level vision) fail to produce meaningful results. **(Right)**: Quantitative results show that an IDC-synthesized dataset (10% volume) can outperform the full DIV2K dataset when training ISR models.

(e.g., image classification with ground truth labels). These are designed to distill/condense a large dataset into a small but “informative” version with *synthetic* content. The aim is to achieve improved training efficiency, comparable model generalization ability (with the original dataset), and enhanced data privacy (Chen et al., 2022; Dong et al., 2022). However, these techniques cannot be directly applied to low-level tasks, such as ISR, due to the requirement for image labels. Although there have been early attempts that focus on ISR dataset condensation (Zhang et al., 2024; Dietz et al., 2025), these exhibit relatively poor performance or can only be deployed for limited application scenarios.

In this context, this paper proposes a new **Instance Data Condensation** (IDC) framework specifically for image super-resolution, which can significantly reduce the amount of training material and speed up the training process, while maintaining (or even enhancing) the model performance. Taking all the cropped patches from each individual image (instance) in a large dataset as input, this framework generates a small amount of synthetic low-resolution training patches with *condensed* information based on **Random Local Fourier Features** and **Multi-level Feature Distribution Matching**. These methods are designed to retain the distribution of the local features in the original patches and ensure the fidelity and diversity of the synthesized patches. These synthetic low-resolution patches are then up-sampled by a pre-trained ISR model to obtain their high-resolution counterparts. Targeting ISR, this framework has been utilized to condense the most commonly used training dataset in the ISR literature, DIV2K (Agustsson & Timofte, 2017), resulting in a synthetic dataset with only 10% training patches. The condensed dataset was then used to train three popular ISR network architectures, EDSR (Lim et al., 2017), SwinIR (Liang et al., 2021) and MambaIRv2 (Guo et al., 2024a), which achieve similar or even better evaluation performance compared to the same networks trained with the full DIV2K dataset. The main contributions of this work are summarized below.

1. We propose a new data condensation framework specifically for ISR that operates at the **instance (image) level**, a paradigm that effectively bypasses the need for class labels common in high-level vision tasks. It is the **first time** that a highly condensed dataset has achieved better performance than the original full dataset when used for training ISR models (as shown in Figure 1(Right)).
2. We design a **Multi-level Feature Distribution Matching** approach, which learns feature distributions at instance and group levels. This hierarchical strategy progressively refines the synthetic data, enhancing feature quality and diversity and leading to well-conditioned samples, enabling high-quality visual feature learning in distribution matching, as shown in Figure 1(Left).
3. We develop the novel **Random Local Fourier Features**, which captures high-frequency details and local features to facilitate distribution matching in learning high-fidelity synthetic images.

2 RELATED WORK

Image Super-Resolution (ISR) is a fundamental task in low-level computer vision that aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts. Over the past decade, advances in deep learning have significantly improved ISR performance, employing ISR models based on network architectures including convolutional neural networks (CNNs) (Kim et al.,

108 2016; Zhang et al., 2018), vision transformers (Wang et al., 2022c; Jiang et al., 2025), and structured
 109 state-space models (Guo et al., 2024b; Shi et al., 2025). These ISR methods, due to their data-driven
 110 nature, are typically trained offline on a large training dataset and then deployed online for real-world
 111 applications. In this case, the training dataset is critical to model performance and generalization.

112 To facilitate ISR model training, a series of datasets have been developed including small ones such
 113 as T91 (Yang et al., 2010) and BSD200 (Martin et al., 2001), which contain 91 and 200 natural
 114 images, respectively. A significant milestone was the release of DIV2K (Agustsson & Timofte, 2017),
 115 consisting of 800 high-resolution images, which is now the most commonly used training dataset
 116 for ISR. Other alternatives also exist including Flickr2K (Timofte et al., 2017) that comprises 2,650
 117 high-resolution images collected from online sources, and LSDIR (Li et al., 2023) with more than
 118 85,000 images. In this paper, we employ DIV2K as the original training dataset to demonstrate the
 119 data condensation process due to its popularity. Based on the common practice in ISR literature
 120 (Wang et al., 2022b), existing methods typically crop each image in the training dataset into small
 121 patches. For example, the 800 original images in DIV2K (Agustsson & Timofte, 2017) along with
 122 their corresponding low-resolution counterparts (e.g., down-sampled by a factor of 4) are partitioned
 123 into overlapped patches, producing approximately 120K pairs (LR and HR), which are used in the
 124 training process as the input (LR) and output target (HR) of ISR models.

125 **Dataset condensation and distillation** aims to condense or distill a large-scale original training
 126 set into a smaller synthetic one, capable of offering comparable performance on unseen test data
 127 when used to train a model for a downstream task. Based on the optimization objectives, current
 128 dataset condensation methods can be categorized into three classes: performance matching, parameter
 129 matching, and distribution matching. *Performance matching* based approaches (Wang et al., 2018a;
 130 Zhou et al., 2022) are designed to optimize the synthetic dataset to achieve minimum training loss
 131 (for the downstream task) compared to using the original training dataset, while *parameter matching*
 132 (Yu et al., 2024) encourages models trained on the synthetic dataset to maintain consistency in the
 133 parameter space with those trained on the original dataset. Both types of approaches are similar to
 134 bi-level meta-learning (Finn et al., 2017) and gradient-based hyperparameter optimization techniques
 135 (Du et al., 2023), which are associated with high computation graph storage costs and are difficult to
 136 apply to high resolution and large scale datasets (Cazenavette et al., 2022; Yu et al., 2023). *Distribution*
 137 *matching* generates synthetic data by directly optimizing the distribution distance between synthetic
 138 and real data, which typically leverages feature embeddings extracted from networks with different
 139 initializations to construct the distribution space, utilizing Maximum Mean Discrepancy as the
 140 distribution metric (Zhao et al., 2023). This has been further enhanced by incorporating batch
 141 normalization statistics (Yin et al., 2023; Du et al., 2024; Shao et al., 2024) or neural features in the
 142 complex plane (Wang et al., 2025), to achieve enhanced performance on large-scale datasets.

143 For ISR, multiple contributions have targeted the generation of a small subset of representative
 144 samples, based on diversity criteria such as texture complexity and blockiness distributions (Ding
 145 et al., 2023; Ohtani et al., 2024). Given the distinct differences between image classification and ISR,
 146 it is difficult to directly apply the dataset distillation/condensation techniques mentioned above to the
 147 ISR task (Liu et al., 2021). To the best of our knowledge, there has been very limited investigation
 148 into this research topic, with only one notable work (Zhang et al., 2024), which utilizes GAN-based
 149 pretrained models to generate synthetic training images. However, this is still only applicable on an
 150 SR dataset with labels (Wang et al., 2018b).

151 3 METHOD

152 **Data condensation for ISR.** The training of ISR models employs paired high- and low-resolution
 153 (HR and LR) image patches, typically with a spatial resolution larger than 192×192 (for HR patches)
 154 (Lim et al., 2017; Liang et al., 2021; Guo et al., 2024a). However, most current mainstream dataset
 155 condensation methods proposed for high-level vision tasks are designed and validated on much
 156 lower resolution content (e.g. 32×32 or 64×64) (Wang et al., 2018a; Zhao et al., 2021; Wang et al.,
 157 2025). As a result, there are significant challenges when these methods are directly applied to the ISR
 158 task. First, the training with high-resolution images that contain more pixels requires significantly
 159 increased optimization space (e.g., features, gradients, etc.), resulting in a much slower (or even
 160 impossible) training process. This is in particular relevant to the dataset condensation methods based
 161 on performance or gradient matching. Secondly, existing data condensation methods often rely

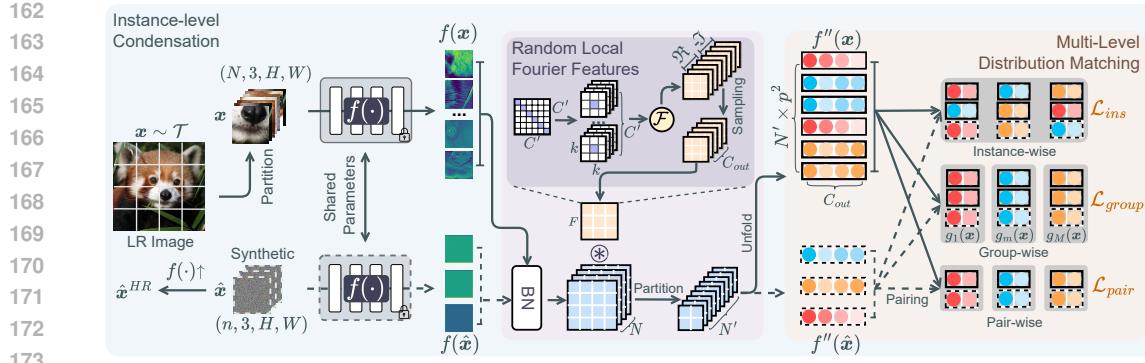


Figure 2: Illustration of the proposed Instance Data Condensation (IDC) framework.

on class labels to calculate task losses (such as the cross-entropy loss, soft labels, etc.) to guide the optimization of synthetic samples, while commonly used datasets in ISR tasks (e.g., DIV2K (Agustsson & Timofte, 2017)) are not associated with real class labels.

In this paper, our approach is based on distribution matching, which minimizes the distance of distributions between two datasets. Specifically, given a real, original dataset \mathcal{T} to a synthetic dataset \mathcal{S} , $|\mathcal{S}| \ll |\mathcal{T}|$. The optimization goal is formulated as:

$$\mathcal{S} = \operatorname{argmin}_{\mathcal{S}} \mathcal{L}(\mathcal{S}, \mathcal{T}), \quad (1)$$

where \mathcal{L} stands for the distance measurement function.

Distance measurement functions. Early approaches (Wang et al., 2022a; Zhao & Bilen, 2023) employ Mean Squared Error or Maximum Mean Discrepancy as \mathcal{L} , while recently, Neural Characteristic Function Discrepancy (NCFD) (Wang et al., 2025) has been proposed to capture distributional discrepancies by aligning the phases and amplitudes of neural features in the complex plane, achieving a balance between realism and diversity in the synthetic samples. Specifically, the optimization process is described by:

$$\min_{\mathcal{D}_{\mathcal{S}}} \max_{\psi} \mathcal{L}_{dist}(\mathcal{D}_{\mathcal{T}}, \mathcal{D}_{\mathcal{S}}, f, \psi) = \min_{\mathcal{D}_{\mathcal{S}}} \max_{\psi} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathcal{T}}, \hat{\mathbf{x}} \sim \mathcal{D}_{\mathcal{S}}} \int_t \sqrt{\operatorname{Chf}(\mathbf{t}; f)} dF(\mathbf{t}; \psi), \quad (2)$$

$$\operatorname{Chf}(\mathbf{t}; f) = \underbrace{\alpha \left(\left(|\Phi_{f(\mathbf{x})}(\mathbf{t}) - \Phi_{f(\hat{\mathbf{x}})}(\mathbf{t})| \right)^2 \right)}_{\text{amplitude difference}} + \underbrace{(1 - \alpha) \cdot (2 |\Phi_{f(\mathbf{x})}(\mathbf{t})| |\Phi_{f(\hat{\mathbf{x}})}(\mathbf{t})|) \cdot (1 - \cos(\mathbf{a}_{f(\mathbf{x})}(\mathbf{t}) - \mathbf{a}_{f(\hat{\mathbf{x}})}(\mathbf{t})))}_{\text{phase difference}}. \quad (3)$$

Here D denotes the distribution of a dataset. f is the feature extractor that maps input training samples, i.e., $\mathbf{x} \in \mathcal{T}$ or $\hat{\mathbf{x}} \in \mathcal{S}$, into the latent space. $F(\mathbf{t}, \psi)$ is the cumulative distribution function of the frequency argument \mathbf{t} , while ψ is a parameterized sampling network to obtain the distribution of \mathbf{t} . $\Phi_{f(\mathbf{x})}(\mathbf{t}) = \mathbb{E}_{f(\mathbf{x})} [e^{j\langle \mathbf{t}, f(\mathbf{x}) \rangle}]$ stands for the characteristic function. $\operatorname{Chf}(\mathbf{t}; f)$ calculates the distributional discrepancy between training and synthesized samples in the complex plane - here *phase* stands for data centers which is crucial for realism, and *amplitude* captures the distribution scale, contributing to the diversity. α is a hyper-parameter to balance the amplitude and phase information during the optimization process.

It is noted that while NCFD (Wang et al., 2025) has contributed to the SOTA dataset condensation method for image classification, it cannot capture sufficient high-frequency details and rich local semantic information when directly applied to condense training datasets for ISR. This is illustrated in Figure 1. This may be because the high-dimensional feature distribution is intractable, directly learning the joint distribution of features with dimensions $C \times H \times W$. Furthermore, it uses a random Gaussian matrix for mapping features - $f(\cdot)^{N \times C \times H \times W} \mapsto f(\cdot)^{N \times D}$ (when the sampling network is not used (Wang et al., 2025)) - (i) the random Gaussian projection fuses information globally, which, however, is unsuitable for many low-level vision tasks including ISR, where the fine-grained local information; (ii) it does not capture the high-frequency features within high-resolution feature maps extracted by ISR models, thus limiting the capacity to learn fine details in the synthesis process.

216 3.1 INSTANCE DATA CONDENSATION
217

218 To address the above issues, specifically for the ISR task, we propose a novel **Instance Data**
219 **Condensation** (IDC) framework, which performs distribution matching for the local features at
220 multiple levels. This approach efficiently handles the requirements of high-resolution patches for
221 training ISR models and effectively preserves high-frequency details in the original dataset. The
222 proposed IDC framework, shown in Figure 2, generates synthetic training patch pairs in two stages.

223 In the first stage, given a real training dataset \mathcal{T} , which contains training patch pairs cropped from C
224 original, high-resolution (HR) images and their low-resolution counterparts, we first perform teacher
225 ISR model training, which will be used in the distribution matching process. We then **consider each**
226 **image as an individual class**, and take its corresponding, LR training patches $\mathbf{x} \in \mathbb{R}^{N \times 3 \times H \times W}$ as
227 the input of the distribution matching process. A set of synthetic patches $\hat{\mathbf{x}} \in \mathbb{R}^{n \times 3 \times H \times W}$ will then
228 be registered as learnable parameters, which are eventually the LR output synthetic patches of the
229 IDC framework. To reduce computational cost, we utilize the feature extractor f in the teacher ISR
230 model to map \mathbf{x} and $\hat{\mathbf{x}}$ into the latent space, resulting in $f(\mathbf{x})$ and $f(\hat{\mathbf{x}})$, similar to previous works in
231 distribution matching (Deng et al., 2024; Wang et al., 2025). Here N is the total number of patches
232 cropped from the current RGB image/class. $H \times W$ represents the spatial resolution of the training
233 patches. $r \in (0, 1)$ is the condensation ratio, i.e. $n = N * r$.

234 As mentioned above, the latest distribution matching method (Wang et al., 2025) employs a random
235 Gaussian matrix for global matching, which works well when representing the feature distributions
236 of image classification task, but cannot capture local high-frequency details that are essential for ISR.
237 In this work, we propose to use **Random Local Fourier Features**, which can represent more fine-
238 grained local features, and unfold the obtained feature maps into a batch of features for performing
239 distribution matching. This enables the capturing of fine local details. As shown in Figure 2, both the
240 real and synthetic feature maps, $f(\mathbf{x})$ and $f(\hat{\mathbf{x}})$, are processed to obtain their corresponding local
241 features, $f'(\mathbf{x})$ and $f'(\hat{\mathbf{x}})$. Given the extracted local features, we then optimize a **multi-level feature**
242 **distribution loss**, consisting of instance-level distribution (\mathcal{L}_{ins}), group-level distribution (\mathcal{L}_{group}),
243 and pair-wise (\mathcal{L}_{pair}) losses, in order to obtain the synthetic LR patches $\hat{\mathbf{x}}$ for this image/class.

244 In the second stage, we employ the **pre-trained teacher ISR model to up-sample** $\hat{\mathbf{x}}$ to obtain their
245 corresponding HR patches $\hat{\mathbf{x}}^{HR}$, which effectively leverages knowledge distillation (Hinton et al.,
246 2015) by directly exploiting the LR-to-HR mapping of the teacher model.

247 3.2 RANDOM LOCAL FOURIER FEATURES
248

249 Given that the extracted feature maps of the real training patches are denoted as $f(\mathbf{x}) \in \mathbb{R}^{N \times c \times h \times w}$,
250 in which c, h, w are the channel number, size of the feature map, respectively, we first define an
251 identity matrix $I_{C' \times C'}$ and reshape it into a convolutional filter, $E \in \mathbb{R}^{C' \times c \times k \times k}$ where $C' = c \times k^2$,
252 and k is the kernel size. This filter is used to map $f(\mathbf{x})$ from the channel-spatial domain to the
253 channel domain to extract local features, while keeping the spatial structure information. To extract
254 the high frequency details, we further apply the Fourier transform \mathcal{F} after extracting local features by
255 E , which in practice, is achieved by directly applying \mathcal{F} to the convolutional filter E in the output
256 channel dimension, and decomposing the real and imaginary parts to form a new Fourier-based
257 convolution filter $F \in \mathbb{R}^{2C' \times c \times k \times k}$.

$$F = [\Re(\mathcal{F}(E)), -\Im(\mathcal{F}(E))]. \quad (4)$$

258 The feature maps, $f(\mathbf{x})$, are transformed by F , to a more informative representation, $f'(\mathbf{x})$, which
259 fully encodes the local spatial and channel information in the frequency domain that is particularly
260 suitable for data and textures with periodic structures.

$$f'(\mathbf{x}) = f(\mathbf{x}) \circledast F. \quad (5)$$

261 Here, to reduce the size of $f'(\mathbf{x})$ and the complexity for loss computation, we implement channel-
262 wise random sampling to get $F \in \mathbb{R}^{C_{out} \times c \times k \times k}$, $C_{out} < C'$ (Wang et al., 2025). We also apply
263 batch normalization to $f(\mathbf{x})$ before convolution.

264 Finally, we partition $f'(\mathbf{x})$ to obtain local feature patches $f''(\mathbf{x}) \in \mathbb{R}^{N' \times C_{out} \times p \times p}$, where $N' =$
265 $N * \lceil h/p \rceil * \lceil w/p \rceil$, and p is the patch size. In order to learn local features in the later multi-level
266 distribution matching, we further *unfold* $f''(\mathbf{x})$ from $\mathbb{R}^{N' \times C_{out} \times p \times p}$ to $\mathbb{R}^{(N' \times p \times p) \times C_{out}}$, which
267 treats features in the patches as different samples in a batch.

270 This operation (Random Local Fourier Features) has also been applied to the feature maps of the
 271 synthetic patches, $f(\hat{x})$, before performing the multi-level distribution matching detailed below.
 272

273 **3.3 MULTI-LEVEL DISTRIBUTION MATCHING**
 274

275 To adapt to the nature of the ISR task, rather than directly using existing distribution matching losses,
 276 we propose a Multi-level Distribution Matching approach to optimize the feature distribution of
 277 synthetic patches at both instance (class) and group levels and match pair-wise feature patches.
 278

279 **Matching instance-level feature distributions.** After obtaining local features for both real and
 280 synthetic patches, $f''(\mathbf{x})$ and $f''(\hat{\mathbf{x}})$, the instance-level feature distribution loss, \mathcal{L}_{ins} , is calculated to
 281 minimize the distributional discrepancy between the real and synthetic patches. Here we do not use
 282 the sampling network mentioned in its original literature (Wang et al., 2025) for efficient computation:
 283

$$\mathcal{L}_{ins} = \mathcal{L}_{dist}(\mathbf{x}, \hat{\mathbf{x}}, f) = \mathbb{E}_{\mathbf{x}, \hat{\mathbf{x}}} \int_t \sqrt{\text{Chf}(\mathbf{t}; f)} dF(\mathbf{t}). \quad (6)$$

284 **Matching group-wise feature distributions.** While instance-level feature distribution matching
 285 ensures consistency in the overall (global) feature distribution between synthetic and original patches,
 286 local features often exhibit significant complexity and diversity, preventing instance-level matching
 287 from sufficiently capturing all distributional differences. To address this issue, we designed a more
 288 fine-grained, group-level feature distribution matching loss, \mathcal{L}_{group} , which first partitions the real
 289 local features $f''(\mathbf{x})$ into M groups using K-means clustering. Each synthetic local feature is then
 290 iteratively assigned to its nearest group centroid with a progressive assigning strategy.
 291

292 Here, the number of synthetic features assigned to each group is proportional to the number of real
 293 features in that group, and the assignment is updated in steps to maintain stable optimization. To
 294 ensure that the assignments of neighboring features are consistent and to reduce the complexity, the
 295 unfolded local features which originally come from the same local feature patch, are grouped together.
 296 The resulting grouped local features are denoted as $\{g_m(\mathbf{x})\}$ and $\{g_m(\hat{\mathbf{x}})\}$, $m = 1, \dots, M$.
 297

298 After this assignment, we compute the feature distribution matching loss for each group to more
 299 accurately learn the synthetic data, by reflecting the real data distribution at the group level. This is
 300 described by the following equation:
 301

$$\mathcal{L}_{group} = \sum_{m=1}^M \mathcal{L}_{dist}(g_m(\mathbf{x}), g_m(\hat{\mathbf{x}}), id(\cdot)), \quad (7)$$

303 in which id denotes the identity function, i.e. $id(x) = x$.
 304

305 **Matching pair-wise features.** Moreover, to further address the unique nature of the ISR task, which
 306 aims to reconstruct content with high fidelity and fine local details, we also introduce a pair-wise
 307 loss, \mathcal{L}_{pair} , within each local feature group described above. Specifically, for each synthetic feature
 308 patch assigned to a group, we identify the most similar real local feature patch within the same group
 309 and construct a pair. We then compute the L1 loss between the paired features to minimize their
 310 discrepancy. This is expected to encourage the synthetic data to better match the real data at the local
 311 detail level and to improve the fidelity of fine details and the overall visual quality of the synthesized
 312 images. This process can be described by the equation below:
 313

$$\mathcal{L}_{pair} = \sum_{m=1}^M \sum_{i=1}^{N_m} \frac{1}{N_m} \|f''(\mathbf{x})^{g_m(i)} - f''(\hat{\mathbf{x}})^{g_m(i)}\|_1, \quad (8)$$

314 in which N_m is the number of feature patch pairs in the group m . $f''(\mathbf{x})^{g_m(i)}$ represents the real
 315 feature in the i^{th} pair, and $f''(\hat{\mathbf{x}})^{g_m(i)}$ is the corresponding synthetic feature in this pair.
 316

317 These three losses are used at different stages in the proposed IDC framework for synthetic data
 318 optimization, and the training algorithm is described in [Algorithm 1](#).
 319

320 **4 EXPERIMENT CONFIGURATION**
 321

322 **Implementation details.** IDC is a novel dataset condensation method specifically designed for the
 323 ISR task, which can be applied to any dataset with or without labels. In this experiment, we employ

324

Algorithm 1: Instance Data Condensation.

325

Input: Training dataset $\mathcal{T} = \{[\mathbf{x}_c, \mathbf{x}_c^{HR}], c = 1, \dots, C\}$; Synthetic dataset $\mathcal{S} = \emptyset$; ISR model f pre-trained on \mathcal{T} ; image/class index c ; condense ratio r ; instance-level distribution loss weight w_{ins} ; group-level distribution loss weight w_{group} ; pair-wise loss weight w_{pair} ; learning rate η .

for *each real patch \mathbf{x}_c in \mathcal{T} do*

Randomly initialize the synthetic patches $\hat{\mathbf{x}}_c$, subject to $|\hat{\mathbf{x}}_c| = r|\mathbf{x}_c|$;

Extract the feature maps using f for \mathbf{x}_c ;

for *i in num_iters do*

Extract the feature maps using f for $\hat{\mathbf{x}}_c$; ▷ Subsection 3.2

Extract their Random Local Fourier features and Unfold the feature maps into local patches;

if *i in warm up then*

Compute $\mathcal{L} = w_{ins}\mathcal{L}_{ins}$;

else ▷ Subsection 3.3

if *i in assigning then*

Increase grouping;

Increase pairing;

Compute $\mathcal{L} = w_{ins}\mathcal{L}_{ins} + w_{group}\mathcal{L}_{group} + w_{pair}\mathcal{L}_{pair}$;

Update $\hat{\mathbf{x}}_c \leftarrow \hat{\mathbf{x}}_c - \eta \nabla_{\hat{\mathbf{x}}_c} \mathcal{L}$;

$\hat{\mathbf{x}}_c^{HR} = f(\hat{\mathbf{x}}_c) \uparrow$;

$\mathcal{S} = \mathcal{S} \cup \{[\hat{\mathbf{x}}_c, \hat{\mathbf{x}}_c^{HR}]\}$;

344

Output: \mathcal{S}

345

346

347

SwinIR (Liang et al., 2021) and MambaIRv2 (Guo et al., 2024a) that are optimized on the original real training dataset \mathcal{T} obtained from DIV2K as the feature extractor and the up-sampling ISR model, respectively. For each instance/class, we can generate the synthetic dataset with a 10% condense ratio for 20k iterations with a single Nvidia-A40 GPU. For HR patch up-sampling, we choose one of the latest ISR models, MambaIRv2. Here, the outputs of up-sampling ISR models (teacher) act as a form of knowledge distillation, providing regularized targets that guide the model to learn more generalizable features (The effect of different up-sampling ISR models is provided in Appendix D). Other training and hyper-parameter configurations are also provided in Subsection C.1.

355

Datasets and metrics. To evaluate the performance of the proposed method, we used the widely used training dataset for ISR, DIV2K (Agustsson & Timofte, 2017), as the original training dataset; this contains 800 images with a 2K resolution. We follow the common practice (Wang et al., 2022b; Lim et al., 2017; Zhang et al., 2018; Wang et al., 2022c; Liang et al., 2021; Shi et al., 2025) to crop all the images into overlapped patches with a spatial resolution of 256×256 and down-sample them into corresponding LR patches (64×64) targeting the $\times 4$ task. This results in a total number of 120,765 HR-LR patch pairs, forming the real dataset \mathcal{T} mentioned above. For performance evaluation, we use five commonly used datasets (Bevilacqua et al., 2012; Zeyde et al., 2012; Huang et al., 2015; Martin et al., 2001; Fujimoto et al., 2016) and perform the $\times 4$ ISR task. The performance has been measured by PSNR and SSIM (Wang et al., 2004).

365

Benchmarks. We compared the proposed methods with four dataset core-selection/pruning methods, including random selection, Herding (Welling, 2009), Kcenter (Sener & Savarese, 2018) and DCSR (Ding et al., 2023). All these benchmarks were applied on \mathcal{T} with the same ratio (10%) to obtain the selected/pruned (real) patches and the implementation details are provided in Subsection C.2. We also provide the results based on the whole original training set \mathcal{T} for reference. We did not compare IDC to the only available dataset condensation method designed for ISR, GSDD (Zhang et al., 2024), because it is only suitable for datasets with classification labels and was evaluated with GAN-based ISR models, which is not the common practice in ISR literature. Moreover, we did not directly benchmark our approach against dataset condensation methods proposed for high-level vision tasks due to their label-based nature. However, we do take them into account in the ablation study below.

375

ISR models. Three popular ISR models including EDSR-baseline (Lim et al., 2017), SwinIR (Liang et al., 2021) and MambaIRv2 (Guo et al., 2024a) have been trained here on different datasets generated by the proposed and benchmark methods in this experiment based on the same training configurations. The training and evaluation configurations for ISR methods are summarized in Subsection C.3.

378 Table 1: Comparison with coreset selection and dataset pruning methods. For all methods (except the Whole),
379 we generated/selected 12,076 LR-HR pairs with the condense ratio $r=10\%$. The results are based on PSNR (dB)
380 and SSIM. The best and second best results are highlighted in red and yellow cells, respectively.

381 PSNR (dB)↑	382 Set5 [Bevilacqua et al., 2012]			383 Set14 [Zeyde et al., 2012]			384 Urban100 [Huang et al., 2015]		
	385 EDSR	386 SwinIR	387 MambaIRv2	388 EDSR	389 SwinIR	390 MambaIRv2	391 EDSR	392 SwinIR	393 MambaIRv2
388 Whole	30.17	30.28	30.52	26.61	26.78	26.88	24.50	24.92	25.21
389 Random	30.13	30.20	30.49	26.54	26.68	26.86	24.40	24.70	25.02
390 Herding [Welling, 2009]	29.94	30.03	30.36	26.43	26.54	26.65	24.10	24.40	24.65
391 Kcenter [Sener & Savarese, 2018]	30.01	30.12	30.45	26.50	26.61	26.79	24.28	24.56	24.86
392 DCSR [Ding et al., 2023]	30.16	30.33	30.51	26.54	26.69	26.86	24.43	24.78	25.10
393 IDC (ours)	30.18	30.34	30.52	26.63	26.78	26.91	24.47	24.86	25.16
387 PSNR (dB)↑	388 BSD100 [Martin et al., 2001]			389 Manga109 [Fujimoto et al., 2016]			390		
	391 EDSR	392 SwinIR	393 MambaIRv2	394 EDSR	395 SwinIR	396 MambaIRv2	397 EDSR	398 SwinIR	399 MambaIRv2
395 Whole	26.24	26.34	26.40	28.50	28.98	29.22			
396 Random	26.19	26.28	26.37	28.32	28.74	29.07			
397 Herding [Welling, 2009]	26.11	26.19	26.30	27.88	28.30	28.54			
398 Kcenter [Sener & Savarese, 2018]	26.17	26.25	26.34	28.19	28.64	28.89			
399 DCSR [Ding et al., 2023]	26.21	26.31	26.39	28.42	28.86	29.14			
400 IDC (ours)	26.24	26.34	26.40	28.54	29.02	29.26			
393 SSIM↑	394 Set5 [Bevilacqua et al., 2012]			395 Set14 [Zeyde et al., 2012]			396 Urban100 [Huang et al., 2015]		
	397 EDSR	398 SwinIR	399 MambaIRv2	400 EDSR	401 SwinIR	402 MambaIRv2	403 EDSR	404 SwinIR	405 MambaIRv2
405 Whole	0.8645	0.8679	0.8699	0.7435	0.7492	0.7507	0.7627	0.7769	0.7861
406 Random	0.8639	0.8664	0.8694	0.7424	0.7469	0.7498	0.7594	0.7707	0.7801
407 Herding [Welling, 2009]	0.8607	0.8646	0.8674	0.7397	0.7439	0.7455	0.7504	0.7617	0.7701
408 Kcenter [Sener & Savarese, 2018]	0.8626	0.8655	0.8686	0.7412	0.7452	0.7481	0.7558	0.7674	0.7759
409 DCSR [Ding et al., 2023]	0.8642	0.8679	0.8696	0.7426	0.7478	0.7504	0.7608	0.7737	0.7825
410 IDC (ours)	0.8644	0.8680	0.8702	0.7445	0.7487	0.7516	0.7610	0.7749	0.7824
405 SSIM↑	406 BSD100 [Martin et al., 2001]			407 Manga109 [Fujimoto et al., 2016]			408		
	409 EDSR	410 SwinIR	411 MambaIRv2	412 EDSR	413 SwinIR	414 MambaIRv2	415 EDSR	416 SwinIR	417 MambaIRv2
417 Whole	0.7137	0.7185	0.7202	0.8788	0.8877	0.8903			
418 Random	0.7126	0.7172	0.7195	0.8767	0.8854	0.8889			
419 Herding [Welling, 2009]	0.7102	0.7145	0.7174	0.8704	0.8792	0.8822			
420 Kcenter [Sener & Savarese, 2018]	0.7130	0.7162	0.7185	0.8776	0.8839	0.8860			
421 DCSR [Ding et al., 2023]	0.7125	0.7178	0.7202	0.8773	0.8866	0.8895			
422 IDC (ours)	0.7137	0.7184	0.7198	0.8795	0.8882	0.8895			

5 RESULTS AND DISCUSSION

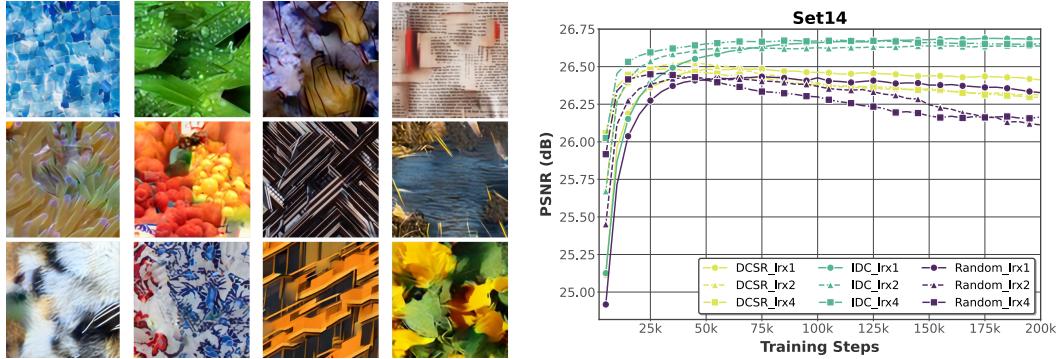
Overall performance. Table 1 summarizes the quantitative results of our proposed IDC approach and other dataset selection/pruning methods for ISR, while the comparison of reconstruction quality for different ISR methods is provided in Appendix F. It can be observed that IDC consistently achieves superior performance compared to the benchmark methods, across most of the test datasets and quality metrics. In particular, with only 10% of the data volume, it offers even better evaluation performance compared to the whole original training set on four out of five datasets. To further validate the robustness of our framework, we conducted experiments with a more aggressive 1% condensation ratio and evaluated our framework on other datasets, with detailed results presented in Appendix E. Moreover, we provide visual examples of synthetic training patches in Figure 3, which show that IDC can preserve high-frequency details and texture information. As far as we are aware, this is the first data condensation method that achieves this level of performance for the ISR task.

Alongside evaluation performance, training datasets should also support reduced optimization time and stable training behavior. To assess these characteristics, we plot the performance comparison between our proposed IDC method, Random selection, and the DCSR approach on the Set14 dataset with different learning rates during the training process, using SwinIR as the ISR model with a 1% condensation ratio (a more challenging case). It has been observed that the DCSR method, which employs Sobel filters to preserve real high-gradient image regions, exhibits evident overfitting behavior across all four different learning rate configurations. In contrast, our method demonstrates better stability and generalization capability, maintaining a steady upward trend throughout the training process. More analysis and limitations are discussed in the Appendix G.

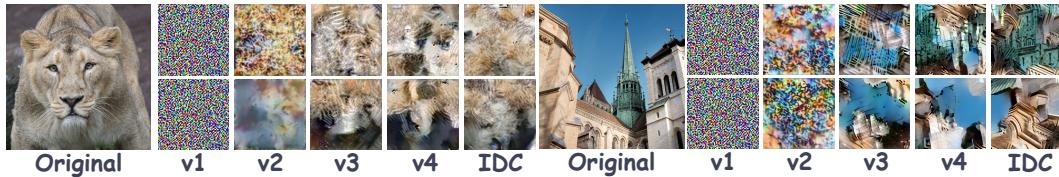
Ablation study. In order to compare our approach with SOTA dataset condensation methods proposed for high-level vision tasks, we first start with the original NCFD (Wang et al., 2025), and progressively add each component, resulting in four variants v1-v4. In addition, to thoroughly verify the contributions of the main components in the proposed IDC framework, we further obtained another three variants v5-v7 by removing Unfolding, Local Feature, Instance Loss, Group/Pair Losses

432 Table 2: Results of the ablation study. ✓: included, ✗: excluded. Here, we only condense 80 images/classes for
 433 each setting but with the same condense ratio 10% in each class (effectively 1% condense ratio for the whole
 434 dataset). We choose the EDSR-baseline (Lim et al., 2017) as the ISR model, evaluated on three test datasets.

Variant	Local Feature	Unfolding	Instance Loss	Group Loss	Pair Loss	Set5		Urban100		Manga109	
						PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
IDC	✓	✓	✓	✓	✓	30.02	0.8616	24.07	0.7474	28.00	0.8723
v1	✗	✗	✓	✗	✗	-21.71	-0.7606	-16.60	-0.6674	-20.44	-0.7499
v2	✓	✗	✓	✗	✗	-0.49	-0.0092	-0.60	-0.0247	-0.56	-0.0108
v3	✓	✓	✓	✗	✗	-0.16	-0.0024	-0.12	-0.0059	-0.04	-0.0015
v4	✓	✓	✓	✓	✗	-0.05	-0.0008	-0.04	-0.0020	0.06	0.0007
v5	✗	✓	✓	✓	✓	-0.19	-0.0023	-0.04	-0.0017	-0.06	-0.0005
v6	✓	✗	✓	✓	✓	-0.29	-0.0034	-0.10	-0.0048	-0.10	-0.0017
v7	✓	✓	✗	✓	✓	-0.22	-0.0032	-0.02	-0.0012	-0.09	-0.0011



455 Figure 3: **(Left)**: Visual Examples of our synthetic images. **(Right)**: Validation trajectory on the Set14.



462 Figure 4: Starting from the original NCFD (v1), the visual evolution for adding each contribution.

464 (v3 already exists)¹ or Pair Loss (v4 already exists), respectively. The ablation results, based on
 465 Set5, Urban100 and Manga109 datasets, are shown in Table 2, which confirms the effectiveness and
 466 necessity of each component in the IDC framework. More experiment and analysis for the novel
 467 RLFF are shown in Subsection D.3. We also provide their synthetic patch examples of v1-v4 in
 468 Figure 4 for visualization. More visual examples are provided in the Appendix F.

471 6 CONCLUSION

473 This paper presents Instance Data Condensation (IDC) specifically targeting image super-resolution.
 474 It synthesizes a small yet informative training dataset from a large dataset containing real images. By
 475 leveraging a multi-level distribution matching framework and the new Random Local Fourier Features,
 476 IDC captures essential structural and textural features from the original high-resolution images and
 477 achieves significant data condensation. Trained on the resulting small synthetic dataset (with only
 478 10% of the original data volume) ISR models can achieve comparable or (in some cases) even superior
 479 performance compared to using the entire real training dataset (DIV2K), when benchmarked on
 480 multiple test datasets. As far as we are aware, this is the first data condensation approach designed
 481 specifically for ISR capable of this level of performance. More importantly, compared to other
 482 benchmarks based on data selection and pruning, it offers better training stability and (potentially)
 483 improved data privacy. The proposed instance-level paradigm may also inspire new approaches for
 484 data condensation in other unlabeled, low-level vision tasks. We recommend that future work should
 485 focus on further performance improvement and speeding up the condensation process.

486 ¹We cannot solely remove Group loss as the Pair loss is based on the Group loss in our method.

486 REFERENCES
487

488 Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution:
489 Dataset and study. In *Proceedings of the IEEE conference on computer vision and pattern*
490 *recognition workshops*, pp. 126–135, 2017.

491 David Arthur and Sergei Vassilvitskii. K-Means++: The advantages of careful seeding. Technical
492 report, Stanford, 2006.

493 Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Alberi Morel. Low-complexity
494 single-image super-resolution based on nonnegative neighbor embedding. In *British Machine*
495 *Vision Conference (BMVC)*, 2012.

496 George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
497 distillation by matching training trajectories. In *Proceedings of the IEEE/CVF Conference on*
498 *Computer Vision and Pattern Recognition*, pp. 4750–4759, 2022.

499 Dingfan Chen, Raouf Kerkouche, and Mario Fritz. Private set generation with discriminative
500 information. *Advances in Neural Information Processing Systems*, 35:14678–14690, 2022.

501 Bo Zhao Chengcheng Guo and Yanbing Bai. DeepCore: A comprehensive library for coresnet selection
502 in deep learning. <https://github.com/patrickzh/deepcore>, 2022.

503 Wenxiao Deng, Wenbin Li, Tianyu Ding, Lei Wang, Hongguang Zhang, Kuihua Huang, Jing Huo, and
504 Yang Gao. Exploiting inter-sample and inter-feature relations in dataset distillation. In *Proceedings*
505 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17057–17066,
506 2024.

507 Tobias Dietz, Brian B Moser, Tobias Nauen, Federico Raue, Stanislav Frolov, and Andreas Dengel.
508 A study in dataset distillation for image super-resolution. *arXiv preprint arXiv:2502.03656*, 2025.

509 Qingtang Ding, Zhengyu Liang, Longguang Wang, Yingqian Wang, and Jungang Yang. Not all
510 patches are equal: Hierarchical dataset condensation for single image super-resolution. *IEEE*
511 *Signal Processing Letters*, 30:1752–1756, 2023.

512 Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
513 privacy? In *International Conference on Machine Learning*, pp. 5378–5396. PMLR, 2022.

514 Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumu-
515 lated trajectory error to improve dataset distillation. In *Proceedings of the IEEE/CVF conference*
516 *on computer vision and pattern recognition*, pp. 3749–3758, 2023.

517 Jiawei Du, Juncheng Hu, Wenxin Huang, Joey Tianyi Zhou, et al. Diversity-driven synthesis:
518 Enhancing dataset distillation through directed weight adjustment. *Advances in neural information*
519 *processing systems*, 37:119443–119465, 2024.

520 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
521 deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

522 Azuma Fujimoto, Toru Ogawa, Kazuyoshi Yamamoto, Yusuke Matsui, Toshihiko Yamasaki, and
523 Kiyooharu Aizawa. Manga109 dataset and creation of metadata. In *Proceedings of the 1st*
524 *international workshop on comics analysis, processing and understanding*, pp. 1–5, 2016.

525 Hang Guo, Yong Guo, Yaohua Zha, Yulun Zhang, Wenbo Li, Tao Dai, Shu-Tao Xia, and Yawei Li.
526 MambaIRv2: Attentive state space restoration. *arXiv preprint arXiv:2411.15269*, 2024a.

527 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. MambaIR: A simple
528 baseline for image restoration with state-space model. In *ECCV*, 2024b.

529 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
530 *preprint arXiv:1503.02531*, 2015.

531 Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
532 self-exemplars. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
533 pp. 5197–5206, 2015.

540 Yuxuan Jiang, Ho Man Kwan, Tianhao Peng, Ge Gao, Fan Zhang, Xiaoqing Zhu, Joel Sole, and David
 541 Bull. HIIIF: Hierarchical encoding based implicit image function for continuous super-resolution.
 542 *arXiv preprint arXiv:2412.03748*, 2024.

543 Yuxuan Jiang, Chengxi Zeng, Siyue Teng, Fan Zhang, Xiaoqing Zhu, Joel Sole, and David Bull.
 544 C2D-ISR: Optimizing attention-based image super-resolution from continuous to discrete scales.
 545 *arXiv preprint arXiv:2503.13740*, 2025.

546 Nick Kanopoulos, Nagesh VasanthaVada, and Robert L Baker. Design of an image edge detection
 547 filter using the sobel operator. *IEEE Journal of solid-state circuits*, 23(2):358–367, 1988.

548 Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
 549 importance sampling. In *International conference on machine learning*, pp. 2525–2534. PMLR,
 550 2018.

551 Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
 552 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern
 553 recognition*, pp. 1646–1654, 2016.

554 Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun
 555 Liu, Denis Demanrolx, et al. LSDIR: A large scale dataset for image restoration. In *Proceedings
 556 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1775–1787, 2023.

557 Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. SwinIR: Im-
 558 age restoration using swin transformer. In *Proceedings of the IEEE/CVF international conference
 559 on computer vision*, pp. 1833–1844, 2021.

560 Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
 561 networks for single image super-resolution. In *Proceedings of the IEEE conference on computer
 562 vision and pattern recognition workshops*, pp. 136–144, 2017.

563 Zudi Lin, Prateek Garg, Atmadeep Banerjee, Salma Abdel Magid, Deqing Sun, Yulun Zhang, Luc
 564 Van Gool, Donglai Wei, and Hanspeter Pfister. Revisiting RCAN: Improved training for image
 565 super-resolution. *arXiv preprint arXiv:2201.11279*, 2022.

566 Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao, and Chao Dong. Discovering
 567 distinctive "semantics" in super-resolution networks. *arXiv preprint arXiv:2108.00406*, 2021.

568 Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey. *arXiv preprint
 569 arXiv:2003.02133*, 2020.

570 Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
 571 through reversible learning. In *International conference on machine learning*, pp. 2113–2122.
 572 PMLR, 2015.

573 David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
 574 natural images and its application to evaluating segmentation algorithms and measuring ecological
 575 statistics. In *Proceedings eighth IEEE international conference on computer vision. ICCV 2001*,
 576 volume 2, pp. 416–423. IEEE, 2001.

577 Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
 578 feature leakage in collaborative learning. In *2019 IEEE symposium on security and privacy (SP)*,
 579 pp. 691–706. IEEE, 2019.

580 Brian B Moser, Federico Raue, and Andreas Dengel. A study in dataset pruning for image super-
 581 resolution. In *International Conference on Artificial Neural Networks*, pp. 351–363. Springer,
 582 2024.

583 Go Ohtani, Ryu Tadokoro, Ryosuke Yamada, Yuki M Asano, Iro Laina, Christian Rupprecht,
 584 Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka, and Yoshimitsu Aoki. Rethinking image super-
 585 resolution from training data perspectives. In *European Conference on Computer Vision*, pp. 19–36.
 586 Springer, 2024.

594 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
 595 important examples early in training. *Advances in neural information processing systems*, 34:
 596 20596–20607, 2021.

597

598 Jeff M Phillips. Coresets and sketches. In *Handbook of discrete and computational geometry*, pp.
 599 1269–1288. Chapman and Hall/CRC, 2017.

600 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 601 approach. *ICLR*, 2018.

602

603 Shitong Shao, Zeyuan Yin, Muxin Zhou, Xindong Zhang, and Zhiqiang Shen. Generalized large-scale
 604 data condensation via various backbone and statistical matching. In *Proceedings of the IEEE/CVF*
 605 *Conference on Computer Vision and Pattern Recognition*, pp. 16709–16718, 2024.

606

607 Yuan Shi, Bin Xia, Xiaoyu Jin, Xing Wang, Tianyu Zhao, Xin Xia, Xuefeng Xiao, and Wenming
 608 Yang. VmambaIR: Visual state space model for image restoration. *IEEE Transactions on Circuits*
 609 and *Systems for Video Technology*, 2025.

610 Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. NTIRE 2017
 611 challenge on single image super-resolution: Methods and results. In *Proceedings of the IEEE*
 612 *conference on computer vision and pattern recognition workshops*, pp. 114–125, 2017.

613

614 Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
 615 Bilen, Xinchao Wang, and Yang You. CAfE: Learning to condense dataset by aligning features.
 616 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 617 12196–12205, 2022a.

618

619 Shaobo Wang, Yicun Yang, Zhiyuan Liu, Chenghao Sun, Xuming Hu, Conghui He, and Linfeng
 620 Zhang. Dataset distillation with neural characteristic function: A minmax perspective. *arXiv*
 621 preprint *arXiv:2502.20653*, 2025.

622

623 Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv*
 624 preprint *arXiv:1811.10959*, 2018a.

625

626 Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Recovering realistic texture in image
 627 super-resolution by deep spatial feature transform. In *Proceedings of the IEEE conference on*
 628 *computer vision and pattern recognition*, pp. 606–615, 2018b.

629

630 Xintao Wang, Liangbin Xie, Ke Yu, Kelvin C.K. Chan, Chen Change Loy, and Chao Dong. BasicSR:
 631 Open source image and video restoration toolbox. <https://github.com/XPixelGroup/BasicSR>, 2022b.

632

633 Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
 634 Uformer: A general U-shaped transformer for image restoration. In *Proceedings of the IEEE/CVF*
 635 *conference on computer vision and pattern recognition*, pp. 17683–17693, 2022c.

636

637 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
 638 error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612,
 639 2004.

640

641 Max Welling. Herding dynamical weights to learn. In *Proceedings of the 26th annual international*
 642 *conference on machine learning*, pp. 1121–1128, 2009.

643

644 Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-resolution via sparse
 645 representation. *IEEE transactions on image processing*, 19(11):2861–2873, 2010.

646

647 Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at
 648 imangenet scale from a new perspective. *Advances in Neural Information Processing Systems*, 36:
 649 73582–73603, 2023.

650

651 Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review. *IEEE*
 652 *transactions on pattern analysis and machine intelligence*, 46(1):150–170, 2023.

648 Ruonan Yu, Songhua Liu, Jingwen Ye, and Xinchao Wang. Teddy: Efficient large-scale dataset
 649 distillation via taylor-approximated matching. In *European Conference on Computer Vision*, pp.
 650 1–17. Springer, 2024.

651 Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
 652 representations. In *Curves and Surfaces: 7th International Conference, Avignon, France, June*
 653 *24-30, 2010, Revised Selected Papers 7*, pp. 711–730. Springer, 2012.

654 Haiyu Zhang, Shaolin Su, Yu Zhu, Jinqiu Sun, and Yanning Zhang. GSDD: Generative space
 655 dataset distillation for image super-resolution. In *Proceedings of the AAAI Conference on Artificial*
 656 *Intelligence*, volume 38 (07), pp. 7069–7077, 2024.

657 Hang Zhang, Jia Xue, and Kristin Dana. Deep ten: Texture encoding network. In *Proceedings of the*
 658 *IEEE conference on computer vision and pattern recognition*, pp. 708–717, 2017.

659 Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution
 660 using very deep residual channel attention networks. In *Proceedings of the European conference*
 661 *on computer vision (ECCV)*, pp. 286–301, 2018.

662 Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In *Proceedings of the*
 663 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 6514–6523, 2023.

664 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
 665 *Ninth International Conference on Learning Representations 2021*, 2021.

666 Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
 667 condensation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 668 *Recognition*, pp. 7856–7865, 2023.

669 Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
 670 sion. *Advances in Neural Information Processing Systems*, 35:9813–9827, 2022.

671

672 A APPENDIX

673 B ALGORITHM DETAILS

674 **Grouping and pairing.** For group assignment and pairing, we utilize the K-means algorithm (Arthur
 675 & Vassilvitskii, 2006) to obtain multiple group centroids, and compute the distance between the
 676 synthetic features and the group centroids. Specifically, after extracting and normalizing features (we
 677 chose the highest level network block’s output), we compute the distance between the average of each
 678 small local feature patch (partitioned from the synthetic feature patches) and the centroids of real
 679 feature groups (obtained via K-means clustering). Each synthetic patch is then assigned to the group
 680 from which the corresponding distance (from the patch to the group centroid) is minimized, with
 681 a constraint that the number of allocated synthetic patches per group is proportional to the number
 682 of real feature patches per group. For pairing, within each group, we further compute the pairwise
 683 L2 distances between synthetic and real patches within the same group, and assign each synthetic
 684 patch to its closest real patch. We only map one real patch to at most one synthetic patch, ensuring
 685 the synthetic-to-real mapping is one-to-one.

686 **Warm-up and progressive assignment.** To stabilize the training process and avoid abrupt changes
 687 in the early training stage due to the grouping and pairing (which change the loss calculation), we
 688 introduce a warm-up phase, in which group and pair assignments are not performed. After that, our
 689 framework increases the number of grouped and paired synthetic patches every few hundred training
 690 iterations. At each interval, we perform the grouping step with the ungrouped features and then
 691 perform pairing with the features that were grouped in the last interval. This ensures that the features
 692 are optimized by the group loss for a period and learned toward the group feature distribution, before
 693 they are further paired with the features that are within the same group. We also add for the learned
 694 deformation, which is regularized by L2 loss, before computing the pair loss. Overall, our framework
 695 introduces different optimization objectives to different feature patches progressively, which makes
 696 the assignment process smooth and the optimization stable.

702
703 C IMPLEMENTATION DETAILS704
705 C.1 THE IMPLEMENTATION DETAILS FOR IDC FRAMEWORK

706 **Hyper-parameters.** By default, we partition the feature patches into smaller local feature patches
 707 with a size of 4 for grouping and pairing, and we use the last building block features for computing
 708 the distances in order to perform grouping and pairing. We use a kernel size of 7, with 256 randomly
 709 sampled channels for extracting the Random Local Fourier Features. The weights for balancing three
 710 loss terms, w_{ins} , w_{group} and w_{pair} , are 300, 300 and 300k, respectively. We conducted additional
 711 experiments to validate these parameter choices, with detailed ablation studies and sensitivity analyses
 712 presented in the [Subsection D.1](#).

713 **Training configurations and time.** We adopt the Adam optimizer (Maclaurin et al., 2015) in the
 714 condensation process. The learning rate is set to 1×10^{-2} , with scheduled decays at 15k, 17k, and 19k
 715 steps (milestones), where the learning rate is multiplied by a factor of $\gamma = 0.1$ at each milestone. The
 716 loss function is a weighted sum with $\alpha = 0.2$ and $\beta = 0.8$. The total training steps for condensing
 717 each class are 20k, including a 4k-step warm-up phase. In the assignment process, the number of
 718 groups is set to 16, where we increase the number of grouped and paired patches for every 400
 719 training steps and a total of 25 times.

720 For the feature extractor f and the upsampling ISR model $f \uparrow$, we employ SwinIR lightweight (in
 721 [Table 3](#)) (Liang et al., 2021) and MambaIRv2 (in [Table 6](#)) (Guo et al., 2024a), respectively, both of
 722 which are pre-trained on the original large-scale training dataset \mathcal{T} (DIV2K).

723
724 C.2 THE IMPLEMENTATION DETAILS OF BASELINE METHODS
725

726 For all core-set selection methods, we first randomly divide the original dataset into 20 groups to
 727 improve computational efficiency. Each selection algorithm is then applied independently within each
 728 group, and the selected samples from all groups are aggregated to form the final dataset. **Random:**
 729 We randomly select a subset of samples from each group without considering any other information.
 730 This serves as a simple baseline for comparison. **Herding:** Herding (Welling, 2009) is a greedy
 731 algorithm that iteratively selects samples whose features are closest to the mean feature of the group.
 732 Specifically, at each step, the sample that, when added to the current selection, minimizes the distance
 733 between the mean of the selected features and the mean of all features in the group is chosen. **K-
 734 Center Greedy:** The K-Center Greedy (Sener & Savarese, 2018) algorithm aims to select a subset of
 735 samples such that the maximum distance from any sample in the group to its nearest selected center
 736 is minimized. We apply the K-Center Greedy algorithm: starting from a randomly chosen sample, we
 737 iteratively select the sample that is farthest from the current set of selected centers until the desired
 738 number of samples is reached.

739 We follow the instruction (Chengcheng Guo & Bai, 2022) to implement these methods.

740 **DCSR** (Ding et al., 2023) is a gradient-based dataset pruning method designed to enhance the
 741 complexity and diversity of the training set. The algorithm consists of two stages. In the first stage,
 742 the gradients of all input images are computed using the Sobel filter (Kanopoulos et al., 1988), and
 743 images with gradient values below the average are removed, thereby selecting samples with higher
 744 complexity. In the second stage, the remaining high-complexity inputs are mapped into the feature
 745 space (Zhang et al., 2017) and clustered into 15 groups. Then, 80% of the images in each group are
 746 randomly removed, resulting in only about 10% of the original data being retained for training.

747 It is important to note that, for all the above methods, the selection is performed on low-resolution
 748 (LR) input patches. After selection, the final training set is constructed by pairing the selected LR
 749 patches with their corresponding high-resolution (HR) patches from the original dataset \mathcal{T} .

750
751 C.3 TRAINING AND TEST CONFIGURATIONS FOR ISR MODELS
752

753 To evaluate the performance of the synthetic training dataset condensed by our proposed IDC
 754 framework, we trained three representative ISR models EDSR (Lim et al., 2017), SwinIR (Liang
 755 et al., 2021) and MambaIRv2 (Guo et al., 2024a) on our synthetic dataset from scratch. The detailed
 architectures of these ISR models and training configurations are listed in [Table 3](#).

756 After completing the training, we test the performance of these models on five test datasets under the
 757 setting of the crop_border is 2, using PSNR and SSIM as quality metrics.
 758

759 Table 3: Training configurations for different ISR models in the evaluation phase.
 760

	network	training steps	learning rate
761	upscale: 4		
762	num_feat: 64		
763	EDSR	300k	1e-4
764	num_block: 16		
765	res_scale: 1		
766	img_range: 255.		
767	rgb_mean: [0.4488, 0.4371, 0.4040]		
768	upscale: 4		
769	window_size: 8		
770	img_range: 1.		
771	SwinIR	500k	2e-4
772	depths: [6, 6, 6, 6]		
773	embed_dim: 60		
774	num_heads: [6, 6, 6, 6]		
775	mlp_ratio: 2.0		
776	upsampler: ‘pixelshuffledirect’		
777	resi_connection: ‘1conv’		
778	upscale: 4		
779	img_range: 1.		
780	embed_dim: 48		
781	Mambairv2	500k	1e-4
782	d_state: 8		
783	depths: [5, 5, 5, 5]		
784	num_heads: [4, 4, 4, 4]		
785	window_size: 16		
786	inner_rank: 32		
787	num_tokens: 64		
788	convffn_kernel_size: 5		
789	mlp_ratio: 1.0		
790	upsampler: ‘pixelshuffledirect’		
791	resi_connection: ‘1conv’		

789

D ABLATION STUDY

790

D.1 ABLATION STUDY WITH THE CHOICE OF THE HYPER-PARAMETERS

793 Here, we provide additional ablation study results for the hyper-parameters setting, including patch
 794 size p , kernel size k and the sampling rate used in the Random Local Fourier Features (Section 3.3).
 795 We also tested the effect of the number of layers for feature extraction and the weights for the group
 796 w_{group} and pair w_{pair} losses. The results are shown in the Table 4. It can be observed that the
 797 changes in PSNR and SSIM under different hyper-parameter settings are minor for different hyper
 798 parameter values. This demonstrates that our method is robust to hyper-parameter variations and can
 799 achieve stable performance.

801

D.2 THE EFFECT OF THE DIFFERENT UP-SAMPLING ISR MODELS

803 We also evaluated the effectiveness of the different up-sampling ISR models $f \uparrow$ for the synthetic
 804 dataset. The results are shown in the Table 5 and the detailed architectures, training configurations
 805 of these ISR models are listed in Table 6. As shown in Table 5, the choice of ISR up-sampling
 806 model (EDSR, SwinIR, MambaIRv2) has only resulted in a minor impact on the final performance.
 807 For example, although MambaIRv2 is generally considered a stronger ISR model than SwinIR, we
 808 observe that many of the models trained on datasets up-sampled by SwinIR can still outperform those
 809 up-sampled by MambaIRv2. This indicates that the up-sampling ISR model used for our proposed
 810 data condensation is not sensible to the test ISR model in the evaluation phase.

810 Table 4: Ablation study of hyper-parameters. Each variant changes only one parameter from the default (a0).
811

812 Variant	Patch size	Kernel size	Sampling rate	Feature layer	w_{group}	w_{pair}	Set5		Urban100		Manga109	
							PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
a0 (default)	4	7	256	last	300	300k	30.02	0.8616	24.07	0.7474	28.00	0.8723
a1	2	-	-	-	-	-	-0.18	-0.0025	-0.10	-0.0042	-0.14	-0.0028
a2	8	-	-	-	-	-	-0.15	-0.0014	-0.02	-0.0002	-0.11	-0.0014
a3	-	5	-	-	-	-	-0.22	-0.0018	-0.03	-0.0002	-0.06	-0.0005
a4	-	9	-	-	-	-	-0.21	-0.0028	-0.09	-0.0033	-0.15	-0.0022
a5	-	-	128	-	-	-	-0.14	-0.0016	-0.03	-0.0012	-0.09	-0.0014
a6	-	-	512	-	-	-	-0.09	-0.0010	-0.03	-0.0014	-0.10	-0.0015
a7	-	-	-	-	30	-	-0.39	-0.0050	-0.13	-0.0046	-0.22	-0.0035
a8	-	-	-	-	3000	-	-0.10	-0.0020	-0.04	-0.0019	+0.08	+0.0009
a9	-	-	-	-	-	30k	-0.12	-0.0018	-0.02	-0.0019	+0.07	+0.0006
a10	-	-	-	-	-	3000k	-0.41	-0.0053	-0.13	-0.0048	-0.25	-0.0038
a11	-	-	-	first	-	-	-0.35	-0.0034	-0.03	-0.0007	-0.07	-0.0011

821
822
823 Table 5: Comparison with different the up-sampling ISR models $f \uparrow$ with condense ratio $r=10\%$. The results are
824 based on PSNR (dB) and SSIM. The best result is highlighted in red.
825

826 PSNR (dB)↑	Set5 [Bevilacqua et al., 2012]			Set14 [Zeyde et al., 2012]			Urban100 [Huang et al., 2015]		
	EDSR	SwinIR	MambaIRv2	EDSR	SwinIR	MambaIRv2	EDSR	SwinIR	MambaIRv2
IDC (EDSR)	30.25	30.36	30.48	26.66	26.73	26.80	24.51	24.72	24.87
IDC (SwinIR)	30.25	30.39	30.56	26.64	26.83	26.92	24.49	24.90	25.04
IDC (MambaIRv2)	30.18	30.34	30.52	26.63	26.78	26.91	24.47	24.86	25.16
831 PSNR (dB)↑	BSD100 [Martin et al., 2001]			Manga109 [Fujimoto et al., 2016]			Urban100 [Huang et al., 2015]		
	EDSR	SwinIR	MambaIRv2	EDSR	SwinIR	MambaIRv2	EDSR	SwinIR	MambaIRv2
IDC (EDSR)	26.27	26.33	26.38	28.60	28.92	29.13			
IDC (SwinIR)	26.26	26.37	26.42	28.59	29.10	29.21			
IDC (MambaIRv2)	26.24	26.34	26.40	28.54	29.02	29.26			
835 SSIM↑	Set5 [Bevilacqua et al., 2012]			Set14 [Zeyde et al., 2012]			Urban100 [Huang et al., 2015]		
	EDSR	SwinIR	MambaIRv2	EDSR	SwinIR	MambaIRv2	EDSR	SwinIR	MambaIRv2
IDC (EDSR)	0.8658	0.8680	0.8693	0.7445	0.7478	0.7488	0.7620	0.7702	0.7747
IDC (SwinIR)	0.8658	0.8689	0.8707	0.7443	0.7503	0.7517	0.7621	0.7771	0.7811
IDC (MambaIRv2)	0.8644	0.8680	0.8702	0.7445	0.7487	0.7516	0.7610	0.7749	0.7824
839 SSIM↑	BSD100 [Martin et al., 2001]			Manga109 [Fujimoto et al., 2016]			Urban100 [Huang et al., 2015]		
	EDSR	SwinIR	MambaIRv2	EDSR	SwinIR	MambaIRv2	EDSR	SwinIR	MambaIRv2
IDC (EDSR)	0.7148	0.7175	0.7184	0.8805	0.8861	0.8877			
IDC (SwinIR)	0.7147	0.7202	0.7212	0.8804	0.8892	0.8893			
IDC (MambaIRv2)	0.7137	0.7184	0.7198	0.8795	0.8882	0.8895			

844
845
846 Although we chose MambaIRv2 for our main experiments for $f \uparrow$, this was primarily to ensure
847 compatibility and flexibility with a wide range of ISR models. Our method is designed to easily
848 adapt to future advances in ISR architectures. The most computationally expensive part is the
849 one-off condensation of LR patches, which does not involve the teacher model. If a superior SR
850 model emerges in the future, we simply perform a quick inference to generate an updated set of HR
851 patches—typically taking only a few hours—which can effectively raise the performance ceiling with
852 minimal effort.
853
854

855 D.3 ABLATION STUDY OF RLFF VS. ALTERNATIVES

856
857 We conducted an ablation study to validate our novel Random Local Fourier Features (RLFF)
858 against alternative transformations. Our framework requires transformations that can preserve
859 spatial structures while extracting local information, i.e., the outputs of the transformation such be
860 feature maps. We compared RLFF against three variants: (x1) identity function without RLFF, (x2)
861 DCT applied to convolutional filters (The standard DCT does not preserve the spatial structures
862 in its output), and (x3) DWT with spatial resolution preservation. The results are presented in the
863 Table 7 and demonstrate that RLFF consistently outperforms all alternatives across different datasets,
864 validating our design for effective local feature distribution modeling.

864 Table 6: Training configurations for different up-sampling ISR models $f \uparrow$ for HR up-sampling.
865

	network	training steps	learning rate
EDSR	upscale: 4 num_feat: 256 num_block: 32 res_scale: 0.1 img_range: 255. rgb_mean: [0.4488, 0.4371, 0.4040]	300k	1e-4
SwinIR	upscale: 4 window_size: 8 img_range: 1. depths: [6, 6, 6, 6, 6] embed_dim: 180 num_heads: [6, 6, 6, 6, 6] mlp_ratio: 2.0 upsampler: ‘pixelshuffle’ resi_connection: ‘1conv’	500k	2e-4
MambaIRv2	upscale: 4 img_range: 1. embed_dim: 174 d_state: 16 depths: [6, 6, 6, 6, 6, 6, 6] num_heads: [6, 6, 6, 6, 6, 6, 6] window_size: 16 inner_rank: 64 num_tokens: 128 convffn_kernel_size: 5 mlp_ratio: 2.0 upsampler: ‘pixelshuffle’ resi_connection: ‘1conv’	500k	1e-4

892 Table 7: Performance comparison of different feature transformation methods. Values shown are differences
893 from the RLFF baseline.
894

variant	Set5		Urban100		Manga109	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
RLFF (default)	30.02	0.8616	24.07	0.7474	28.00	0.8723
x1 (w/o RLFF)	-0.32	-0.0059	-0.23	-0.0110	-0.17	-0.0044
x2 (DCT filters)	-0.10	-0.0017	-0.05	-0.0036	-0.02	-0.0009
x3 (Wavelets)	-0.58	-0.0107	-0.64	-0.0228	-0.52	-0.0095

903

E ADDITIONAL RESULTS

904

E.1 ADDITIONAL RESULTS WITH 1% TRAINING DATA

905 We also provide the results on the SwinIR with the condense ratio=1% on DIV2K compared with
906 Random and DCSR (Ding et al., 2023). As shown in Table 8, our proposed IDC method achieves
907 the best performance among all methods at both condense ratios. Notably, when the condense ratio
908 decreases from 10% to 1%, the performance drop of IDC is the smallest compared to Random and
909 DCSR. This demonstrates that our method is more robust and data efficient, and can better preserve
910 performance with a high condensation ratio.

911

E.2 ADDITIONAL RESULTS ON OTHER DATASET

912 We also conducted an additional experiment on the Flickr2K (Lim et al., 2017) dataset (2650 images
913 in total), and provided the results in Table 9 with a 1% condensation ratio. The results further confirm
914 our findings on DIV2K - our IDC method significantly outperforms baselines like Uniform Selection

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 8: Comparison with coresnet selection and dataset pruning methods with condense ratio $r=1\%$. For our IDC method, we generate synthetic dataset for all classes with the condense ratio $r=1\%$. The results are based on PSNR (dB) and SSIM.

	condense ratio	Set5		Set14		Urban100		BSD100		Manga109	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Whole	-	30.28	0.8679	26.78	0.7492	24.92	0.7769	26.34	0.7185	28.98	0.8877
Random	10%	30.20	0.8664	26.68	0.7469	24.70	0.7707	26.28	0.7172	28.74	0.8854
	1%	29.68	0.8594	26.038	0.7330	23.74	0.7423	25.80	0.7042	27.65	0.8715
DCSR	10%	30.33	0.8679	26.68	0.7478	24.78	0.7737	26.31	0.7178	28.87	0.8866
	1%	29.90	0.8622	26.22	0.7362	23.96	0.7484	25.96	0.7074	27.83	0.8738
IDC (ours)	10%	30.34	0.8680	26.78	0.7487	24.86	0.7749	26.34	0.7184	29.02	0.8882
	1%	30.18	0.8658	26.64	0.7461	24.48	0.7623	26.25	0.7152	28.57	0.8827

Table 9: Additional results on Flickr2K (Lim et al., 2017) dataset with condense ratio $r=1\%$ and evaluated on SwinIR model. The results are based on PSNR (dB) and SSIM.

	condense ratio	Set5		Set14		Urban100		BSD100		Manga109	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Whole(Flickr2K)	-	30.39	0.8688	26.85	0.7505	24.97	0.7779	26.36	0.7193	29.13	0.8891
Random	1%	30.19	0.8659	26.57	0.7444	24.45	0.7634	26.22	0.7151	28.53	0.8823
DCSR	1%	30.24	0.8662	26.63	0.7453	24.49	0.7652	26.24	0.7160	28.60	0.8831
IDC (ours)	1%	30.34	0.8678	26.75	0.7482	24.84	0.7738	26.35	0.7183	29.01	0.8878

and DCSR. This demonstrates that the effectiveness of our framework is not limited to a single dataset.

F QUALITATIVE COMPARISONS

Additional samples generated from the IDC framework. Here, we provide additional samples generated from our proposed IDC framework in Figure 5, which shows multiple generated LR and HR pairs from original images. As shown in these examples, our framework is capable of generating high fidelity samples that contain the visual features similar to those in the original image, and for producing per-instance sample patches with high diversity. These characteristics allow the resulting synthetic dataset to closely mimic the original dataset feature distribution, contributing to the final high performance of the trained ISR models.

Additional samples between different variants of the IDC framework. We also provide additional generated samples which are obtained from different variants of our framework, used in the ablation study in Figure 6. These samples confirm that all of our contributions summarized in Section 1 provide substantial visual quality improvement, and they all contribute to the final performance as evaluated in Section 4.

Comparison between ISR models trained with datasets from different methods. We provide the visual comparison between the ISR models trained with the datasets, generated/sampled from different methods Figure 7, Figure 8 and Figure 9. The results here support our quantitative results, where the synthetic dataset generated by our IDC framework can provide a consistent performance improvement for all tested ISR models.

G LIMITATION

Condensation efficiency. Currently, condensing a single class (image) requires 20,000 steps, which takes about 2 GPU hours on an NVIDIA A40. To condense the entire DIV2K dataset, the total computational cost is approximately 1,600 GPU hours. Although this is just a one-off process, and the condensed dataset is fixed for ISR model training, the initial time investment remains substantial. Therefore, further optimization of the condensation process is necessary to improve efficiency.

Upper bound of dataset performance. In our current approach, we generate LR patches and then use a pre-trained ISR model to up-sample them into HR patches. As shown in Table 5, the choice

of ISR upsampling model has a limited impact on the dataset’s performance. We note that this is also an inherent limitation for applying distribution matching to the super-resolution task, where direct condensation of high-resolution images is not feasible due to the large amount of resources required. Our method, which utilizes an ISR model to efficiently obtain HR images and effectively performs knowledge distillation (Hinton et al. 2015), is able to closely match the performance of models trained on the condensed dataset to those trained on the original dataset. However, if more advanced ISR models are developed in the future, it would be necessary to re-perform the upsampling process from LR synthetic patches to their HR versions. However, we don’t need to redo the most time-consuming condensation operation.

Data privacy. While IDC has the potential to enhance data privacy by generating synthetic datasets that do not directly expose original sensitive data, as illustrated in Figure 5, this aspect is not the main focus of our current work. We acknowledge that privacy-preserving properties of synthetic data are an important direction, especially for applications involving personal or confidential information. However, a thorough investigation of privacy guarantees, potential risks of data leakage, and the effectiveness of IDC in various privacy-sensitive scenarios is beyond the scope of this paper, and we leave a more comprehensive study of data privacy aspects, including formal privacy analysis and empirical evaluation, for future work (Dong et al. 2022).

H BROADER IMPACT

Our data condensation method, designed for generating smaller synthetic datasets, can reduce the need for using large-scale real databases for algorithm training. This helps lower the carbon footprint and saves storage resources in the development phase. In practical applications like video streaming, our approach can also potentially improve the perceptual quality of streamed content if super-resolution techniques are involved, leading to a better user experience.

I DATASET/CODE LICENSE.

We list the licenses of all datasets and the code used in this paper in Table 10.

Table 10: The links and licenses of all datasets and the used in our paper.

	Code/Dataset	Repo link	License
EDSR	Lim et al. 2017	https://github.com/sanghyun-son/EDSR-PyTorch	MIT license
SwinIR	Liang et al. 2021	https://github.com/hyunbo97/SwinIR	MIT license
MambaiRv2	Guo et al. 2024a	https://github.com/csquch/MambaiR	Apache-2.0 license
DCSR	Ding et al. 2023	https://github.com/QingtangQinng/DCSR	MIT license
DeepCore	Chengcheng Guo & Bai 2022	https://github.com/patriotkzh/deepcore	MIT license
BasicSR	Wang et al. 2024b	https://github.com/XPixelGroup/BasicSR	Apache-2.0 license
NCFD/NCFM	Wang et al., 2025	https://github.com/gszfwsl/NCFM	This code is available for academic research.
DIV2K	Agustsson & Timofte 2017	https://data.vision.ee.ethz.ch/cvl/DIV2K/	All images are available for academic research.
Sets5	Bevilacqua et al. 2012	https://people.rennes.inria.fr/Aline.RoumV/results/SR_BMVC12.html	All images are available for academic research.
Set14	Zeyde et al. 2012	https://sites.google.com/site/romanzeyde/research-interests	All images are available for academic research.
Urban100	Huang et al. 2015	https://github.com/jbhuang0604/SeIffExSR	All images are available for academic research.
BSD100	Martin et al. 2001	https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/	All images are available for academic research.
Manga109	Fujimoto et al. 2016	http://www.manga109.org/en/	All images are available for academic research.

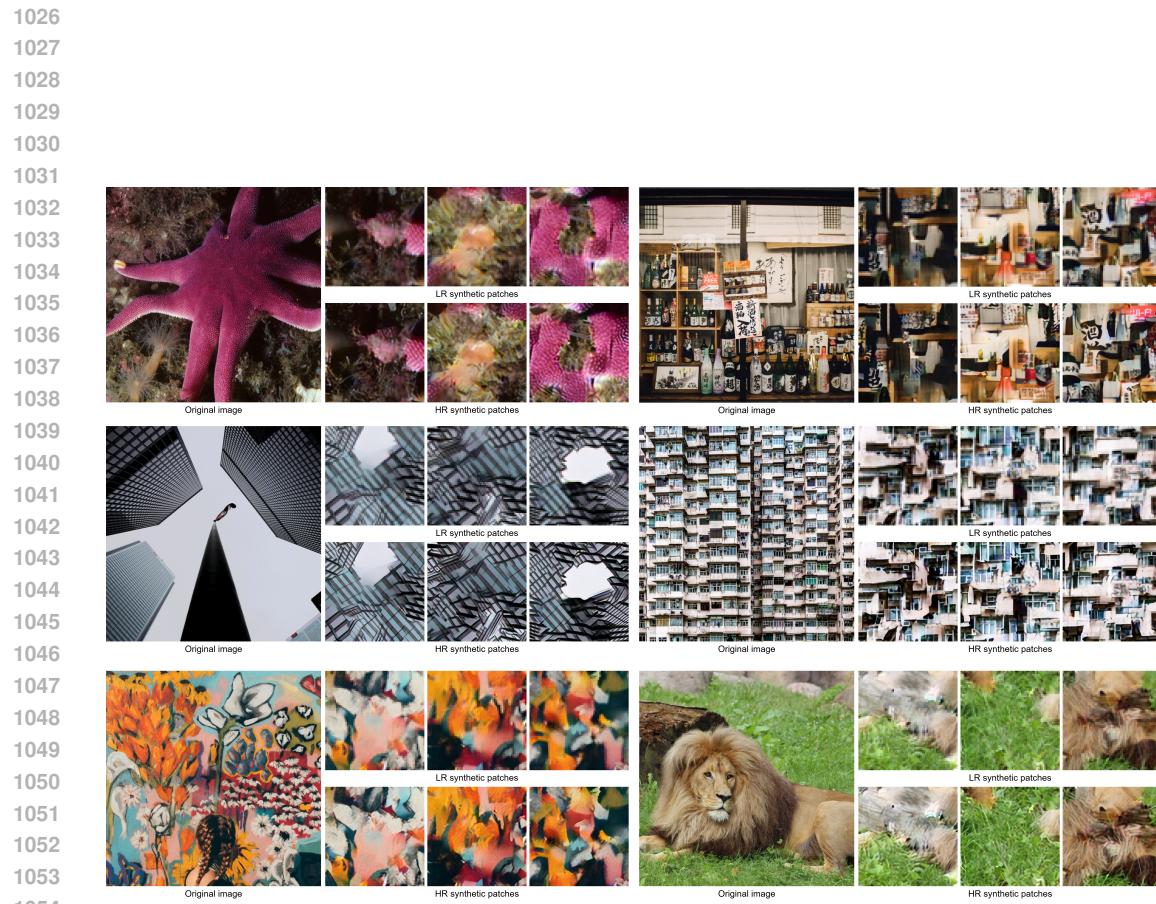


Figure 5: Additional visual results of the proposed IDC framework.

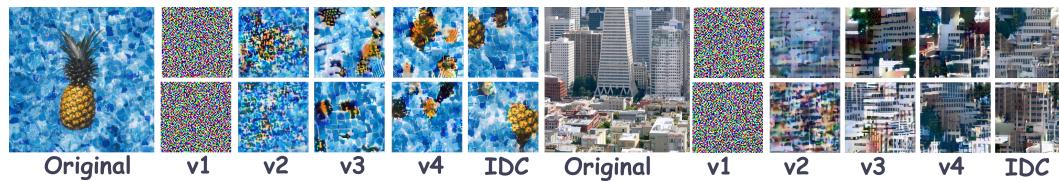


Figure 6: Additional qualitative comparison between different variants.

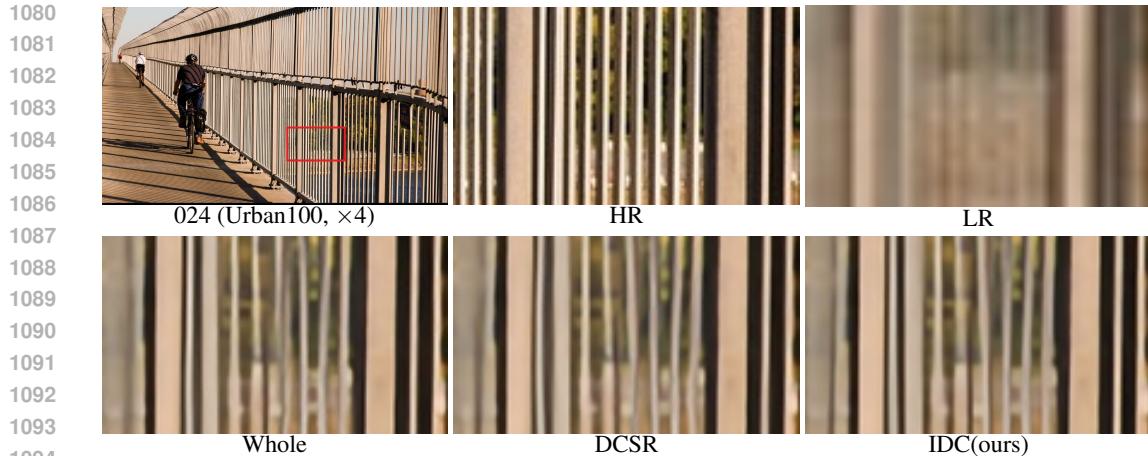


Figure 7: Qualitative comparison between different methods evaluated on EDSR (Lim et al., 2017)

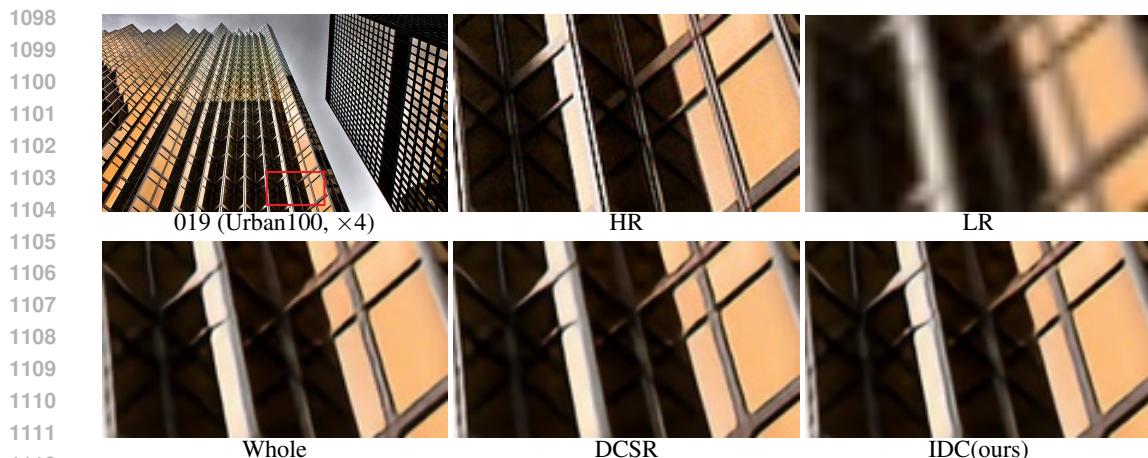


Figure 8: Qualitative comparison between different methods evaluated on SwinIR (Liang et al., 2021)

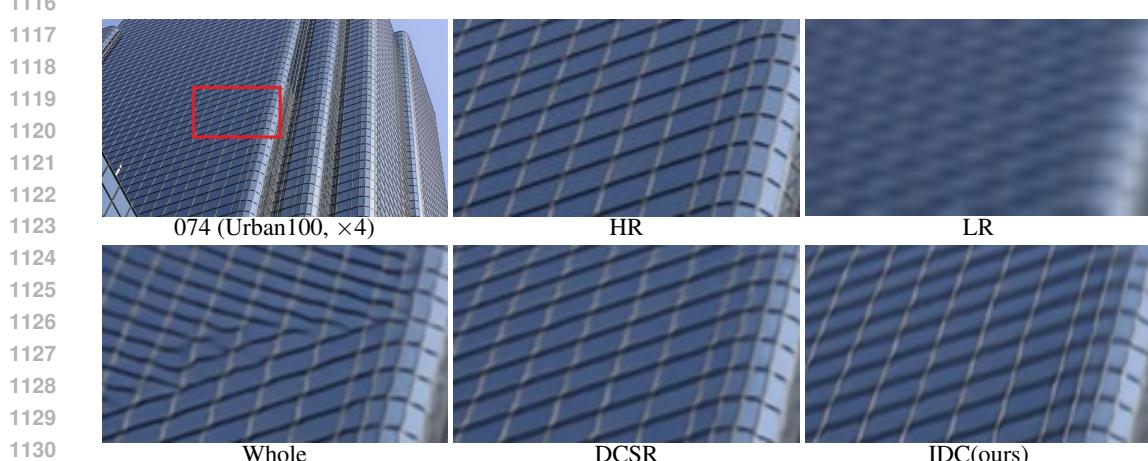


Figure 9: Qualitative comparison between different methods evaluated on MambaIRv2 (Guo et al., 2024a)

1134 **J QUANTITATIVE ANALYSIS**
11351136 **J.1 ANALYSIS OF GENERALIZATION PERFORMANCE**
1137

1138 We further evaluated the generalization performance of the SR model (SwinIR (Liang et al., 2021))
 1139 trained on the condensed dataset produced by our framework. Figure 10 and Figure 11 show the
 1140 training and validation curves in terms of L1 loss and PSNR. The training curves are computed on
 1141 the condensed DIV2K (Timofte et al., 2017) dataset, and the validation curves are computed on
 1142 the five validation datasets used in the main paper. In all cases, the training and validation curves
 1143 are well aligned: both improve as training progresses and we do not observe any degradation over
 1144 time. This indicates that no overfitting occurs and suggests that the model trained on our compact
 1145 condensed dataset generalizes well, and continues to learn features that are helpful for the task, rather
 1146 than simply memorizing the condensed set.

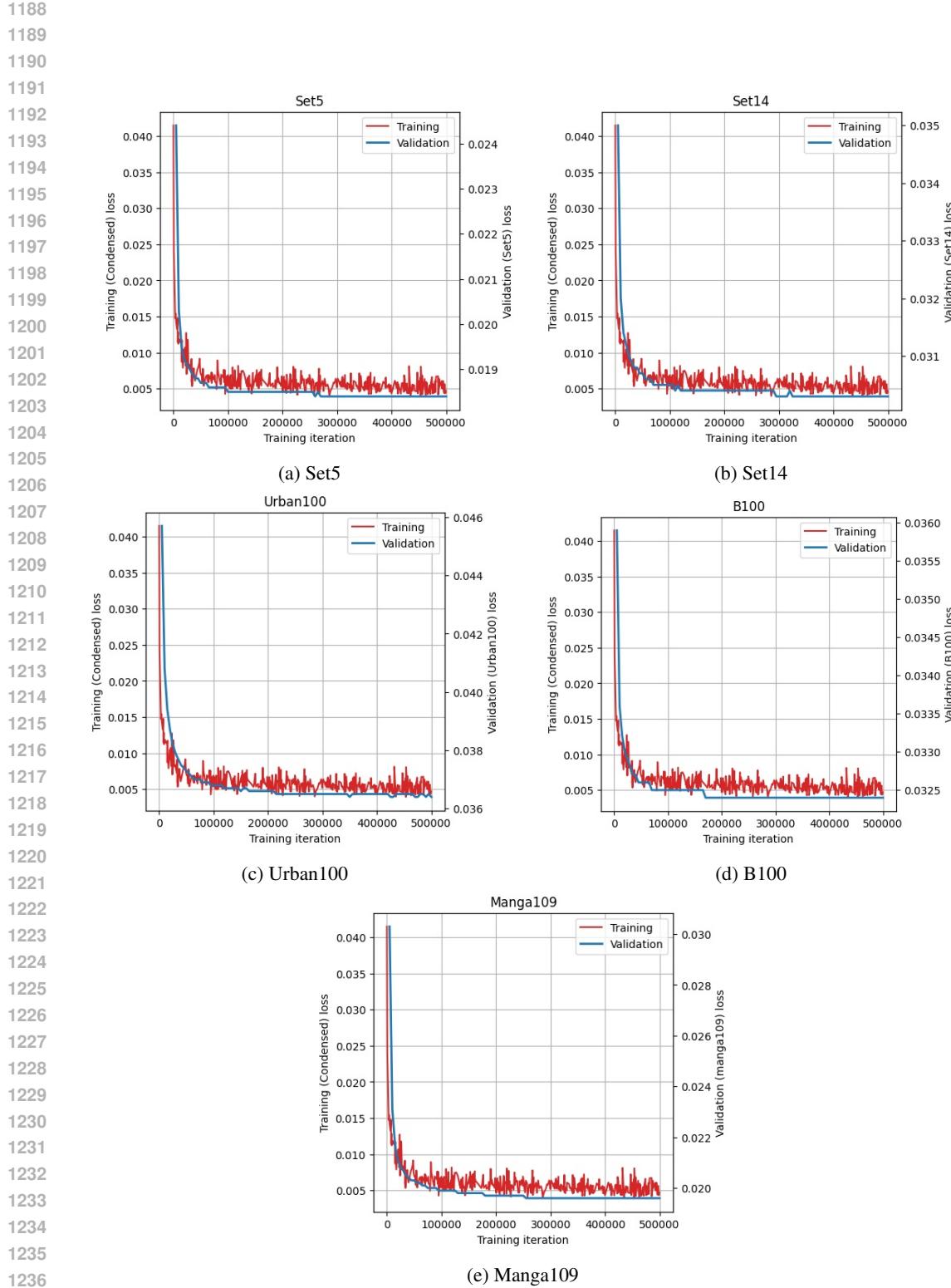
1147 Note that the training and validation curves lie in different loss/PSNR ranges. This can be caused
 1148 by several factors: (i) our condensed dataset does not contain real ground-truth high resolution
 1149 images, and the learning target are generated by the teacher model, and (ii) the condensed dataset
 1150 contains synthesized content instead of only real images. As a result, the absolute metric values on
 1151 the condensed dataset are not directly comparable to those on the real validation benchmarks.

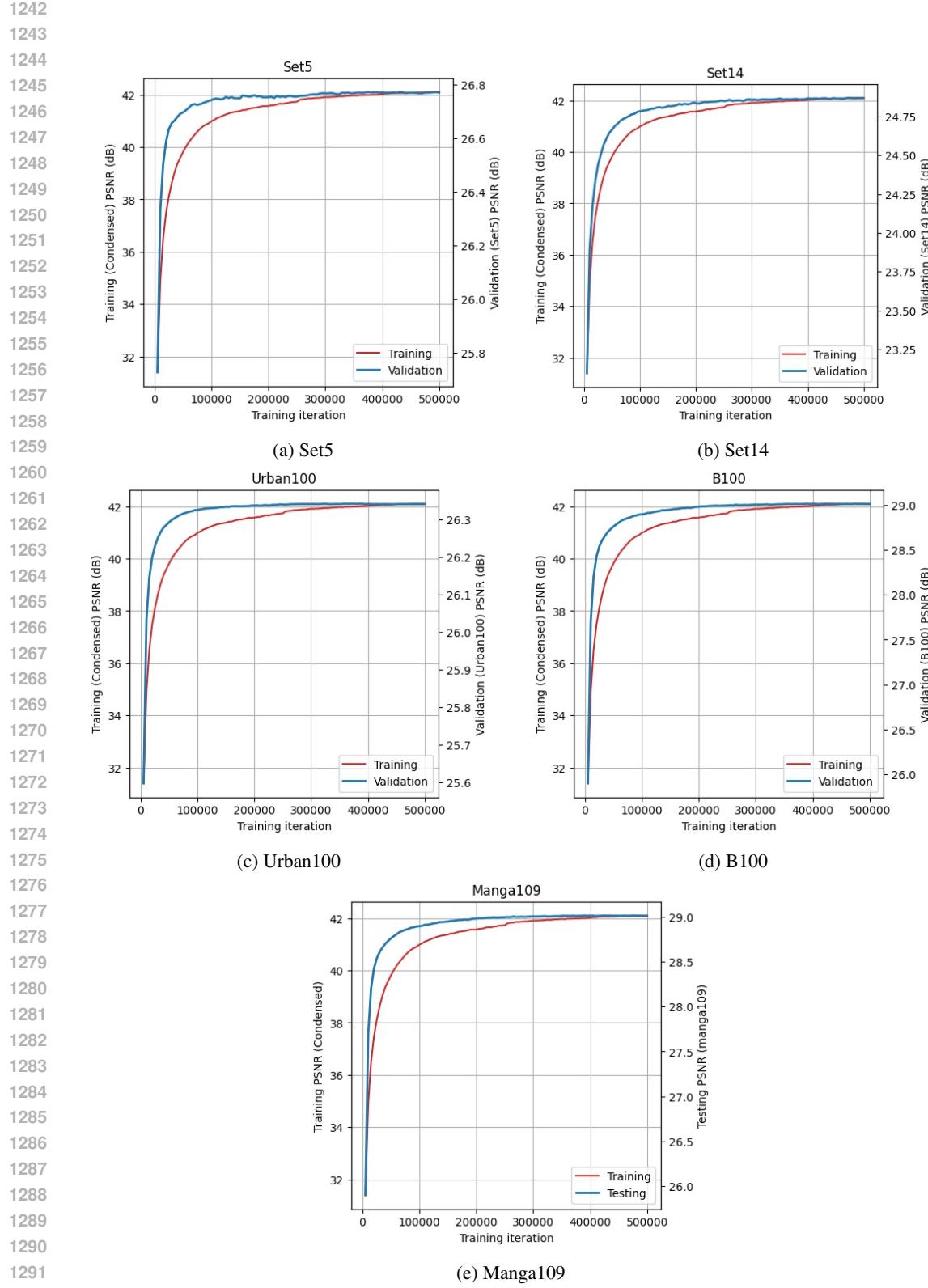
1152 **J.2 ANALYSIS OF TRAINING EFFICIENCY**
1153

1154 To quantitatively evaluate the training efficiency of our proposed framework, we compared the
 1155 validation trajectories of a SwinIR model (Liang et al., 2021) trained on our 10% condensed dataset
 1156 (IDC), the full dataset ("Whole"), a 10% DCSR subset (Ding et al., 2023), and a 10% uniformly
 1157 sampled subset. As illustrated by the PSNR curves in Figure 12, our IDC-trained model demonstrates
 1158 significantly faster convergence. To quantify this, Table 11 shows that our method consistently
 1159 reaches target PSNR milestones in as little as 25% to 50% of the training steps required by the full
 1160 dataset. Crucially, our method not only learns faster but also achieves a final performance that is
 1161 superior or highly comparable to training on the complete dataset, while consistently outperforming
 1162 the other 10% methods. This provides strong evidence that our IDC method produces a highly
 1163 efficient and information-dense dataset, accelerating training without sacrificing—and in many cases,
 1164 even improving—final model performance.

1165 Table 11: Comparison of training iterations (in thousands, 'k') required to reach target PSNR values. The target
 1166 PSNR values are selected base on the full dataset training.

Test Dataset	Target PSNR	Whole	Uniform (10%)	DCSR (10%)	IDC (10%)
Set5	29.38	20k	20k	15k	10k
	29.99	60k	60k	35k	20k
Set14	26.00	15k	15k	15k	10k
	26.54	50k	55k	40k	20k
Urban100	24.18	45k	45k	30k	20k
	24.67	135k	180k	105k	55k
BSD100	25.55	10k	10k	10k	5k
	26.07	35k	35k	25k	15k
Manga109	28.11	45k	50k	30k	15k
	28.69	125k	150k	90k	40k





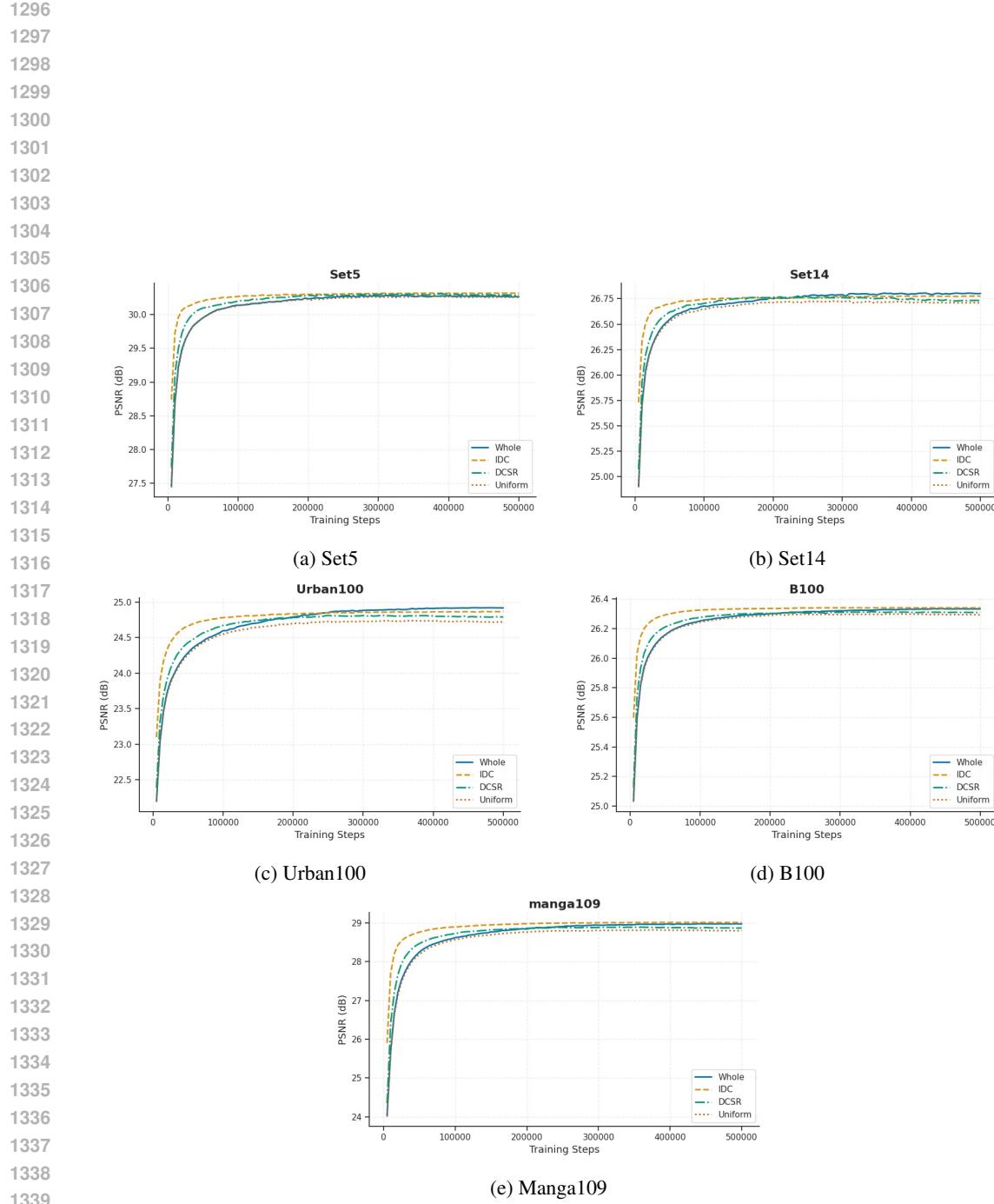


Figure 12: Validation trajectory for different methods (training datasets) across five datasets.