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ABSTRACT

Orthogonal projection has been shown highly effective at overcoming catastrophic
forgetting (CF) in continual learning (CL). Existing orthogonal projection methods
are all based on orthogonal gradients (OG) between tasks. However, this paper
shows theoretically that OG cannot guarantee CF elimination, which is a major limi-
tation of the existing OG-based CL methods. Our theory further shows that only the
weight/parameter-level orthogonality between tasks can guarantee CF elimination
as the final classification is computed based on the network weights/parameters
only. Existing OG-based methods also have two other inherent limitations, i.e.,
over-consumption of network capacity and limiting knowledge transfer (KT) across
tasks. KT is also a core objective of CL. This paper then proposes a novel weight-
level orthogonal projection method (called STIL), which ensures that each task
occupies a weight subspace that is orthogonal to those of the other tasks. The
method also addresses the two other limitations of the OG-based methods. Exten-
sive evaluations show that the proposed STIL1 not only overcomes CF better than
baselines, but also, perhaps more importantly, performs KT much better than them.

1 INTRODUCTION

Continual learning (CL) using deep neural networks (DNNs) to learn a sequence of tasks is a
challenging problem. Two key issues are overcoming Catastrophic Forgetting (CF) (McCloskey &
Cohen, 1989; Ratcliff, 1990), and transferring the previously learned knowledge to the new task,
namely Knowledge Transfer (KT). Most existing CL methods focuses on mitigating CF, which can be
generally divided into network expansion methods and non-expansion methods. For example, LwF
Li & Hoiem (2018), CGN (Rusu et al., 2016), DEN (Yoon et al., 2018), APD (Yoon et al., 2020), and
BNS (Qin et al., 2021) are representative expansion methods. They expand the network for each task
to overcome CF, but they suffer from memory explosion with more tasks learned. While the basic
idea of non-expansion methods is to constrain the gradient update of the network weights towards less
harmful directions to protect the previously learned knowledge. Among the non-expansion methods,
orthogonal projection methods that ensure weights modification of orthogonal gradients between
tasks have been shown effective in overcoming CF. Our work is closely related to these methods.

However, orthogonal gradients (OG) methods have three major limitations. (1) Unable to eliminate
CF. This paper theoretically shows (for the first time) that orthogonal gradients cannot guarantee
CF elimination. Only orthogonal-weight/parameter (OW) between tasks can eliminate CF as the
final classification is computed based on the network weights or parameters only. Clearly, gradient-
level orthogonality between tasks does not guarantee weight-level orthogonality (see Theorem 1
and Sec.5). Note that we will use weight and parameter interchangeably from here onward. (2)
Over-consumption of network capacity. Since each task is learned in an OG space, only a small
number of tasks can be learned in a network (see Theorem 2). (3) Limited KT. As each task is in a
separate orthogonal space, there is little sharing of knowledge across tasks, leading to little KT.

This paper proposes a novel Self-adaptive Task Incremental Learning (STIL in short) to solve these
three problems. Task-incremental learning (TIL) is one of the important settings of CL (van de Ven &
Tolias, 2019). The other one is class-incremental learning (CIL). The two settings, i.e., TIL and CIL,
are suitable for different types of applications.

1The code of the proposed method STIL can be found at https://github.com/STILalg/STIL
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To solve problem (1) above, we introduce the concept of Orthogonal Important Weight Subspace
(OIWS). It enables each new task to occupy its own important weight subspace, and all the weight
subspaces between tasks are orthogonal to each other. The paper then proposes a novel OIWS-based
TIL strategy, which ensures that the weight updates for each task are performed in its own OIWS
so as to ensure the orthogonal weights between tasks maximally eliminate CF. Instead of using the
full weight sub-space for each task, STIL uses the subspace of important weights (see Sec. 4.1 for
details), which allows STIL to learn a large number of tasks, which solves problem (2) above.

In the TIL setting, transferring knowledge across tasks is a major goal (Ke et al., 2020). When
learning a new task t, naturally some previously learned tasks may be similar to t, then the knowledge
from them should be leveraged to learn t better (i.e., forward knowledge transfer, FKT). Conversely,
the learning of t may also improve those similar previous tasks (i.e., backward knowledge transfer,
BKT). This work wants to achieve FKT and BKT across similar tasks to address the problem (3).

Although some existing TIL methods perform KT, e.g., CAT (Ke et al., 2020) using an additional
sub-model, and TRGP (Lin et al., 2022a) and CUBER (Lin et al., 2022b) using layer-wise scaling
matrices, they still have some major shortcomings, e.g., only having limited FKT or no BKT, e.g.,
TRGP. To maximumly enable KT, this paper proposes a new task similarity detection method based
on only direct reuse of the knowledge already learned in the current network and a new cross-entropy
loss with constraints. Equipped with the proposed OIWS and the above two techniques, the proposed
STIL can effectively overcome CF and perform KT.

Extensive experiments show that the proposed STIL method not only overcomes CF better than
existing state-of-the-art baselines on dissimilar, similar and mixed tasks sequences, but also, perhaps
more importantly, performs KT dramatically better than them when similar tasks are learned.

2 RELATED WORK

This paper focuses on task-incremental learning (TIL) without network expansion. Existing non-
expansion TIL methods can be divided into the following categories: Regularization based methods,
e.g., EWC (Kirkpatrick et al., 2017) and UCL (Ahn et al., 2019), penalize modifications to important
weights of old tasks through regularizations. Experience-replay based methods, e.g., iCaRL (Rebuffi
et al., 2017) and GEM (Lopez-Paz & Ranzato, 2017), overcome CF by replaying the data (either a
sample of the real data or generated data) of old tasks in learning the new task. Orthogonal-projection
based methods, e.g., OWM (Zeng et al., 2019), OGD (Farajtabar et al., 2020), GPM (Saha et al.,
2021), TRGP (Lin et al., 2022a), and CUBER (Lin et al., 2022b), update the weights with gradients in
the orthogonal directions of old tasks, without using any old task data. Parameter isolation methods
like HAT (Serrà et al., 2018) and SupSup (Wortsman et al., 2020) isolate a sub-network for each task.
There are also reinforcement learning based (Kaplanis et al., 2019; Qin et al., 2021), soft mask based
(Konishi et al., 2023) and meta-learning based methods (Rajasegaran et al., 2020).

Orthogonal Projection Methods. These methods are closely related to our work. The approach was
first proposed in OWM for overcoming CF, which ensures orthogonal gradients (OG) in its weight
modification in the span space of the input data. After OWM, ORTHOG-SUBSPACE (Chaudhry
et al., 2020), OGD, GPM, TRGP and CUBER were proposed. OGD restricts the direction of gradient
updates to be orthogonal to the gradients of old tasks. GPM makes OWM more efficient, which is
inherited by TRGP and CUBER. They all learn each task by taking the OG direction to the gradient
subspaces for the old tasks. These OG-based methods have been shown effective in mitigating CF
but not eliminating CF as we will see in Theorem 1 (Sec. 3.1). Since we have discussed this and two
other weaknesses of these methods in Sec. 1, we don’t repeat them here.

Knowledge Transfer (KT). Several early non-neural network based methods have done KT among
similar tasks using KNN (Thrun, 1998), regression (Ruvolo & Eaton, 2013), and naive Bayes
(Mitchell et al., 2018; Riemer et al., 2019), but they do not deal with CF. A few DNN based methods
like CAT, TRGP and CUBER simultaneously deal with both CF and KT. CAT uses binary masks of
neurons in HAT to achieve CF prevention, and employs a separate model to perform task similarity
detection for KT. TRGP first selects the most related old tasks within the ‘trust region’ for the new
task, and then reuses the frozen weights in layer-wise scaling matrices to jointly optimize the matrices
and the model to achieve FKT. On the basis of TRGP, CUBER first analyzes the conditions under
which updating the learned model of old tasks could be beneficial for CL and lead to BKT. It then
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proposes a new method with FKT and BKT. The main weaknesses of CAT, TRGP and CUBER are
their limited FKT or negative BKT leading to CF again in their BKT (see the experiments in Sec.5).

Contrary to the existing KT-based methods, STIL stores only the most basic information to efficiently
deal with both CF and KT. Based only on reusing the knowledge/weights of the learned tasks in the
current model and the Wasserstein’ distances (Panaretos & Zemel, 2019) of the model losses between
a new task and old tasks, STIL easily detects task similarity. The proposed cross-entropy loss with
constraints and its solution enables STIL to efficiently transfer knowledge forward and backward.

3 THEORETICAL ANALYSIS OF THE CF AND KT PROBLEMS

Task Incremental Learning (TIL). Let T tasks be T = {t}Tt=1, which are learned sequentially. Each
task has a training dataset with its task descriptor t, Dt = {((xt,i, t),yt,i)}Nt

i=1, where xt,i ∈ X is
the input data and yt,i ∈ Yt ∈ Y is its class label. The goal of TIL is to construct a predictor f :
X × T→ Y to predict the class label y ∈ Yt for (x, t) (a given test instance x from task t).

Knowledge Transfer (KT). Let Tsim / Tdis be a set of similar/dissimilar tasks of the current task t
(Tsim,Tdis ⊆ T, Tdis = T− Tsim). The learner should transfer the knowledge learned in the past
forward and leverages it to learn t better, and additionally, the learning of t should also improve the
tasks in Tsim (backward KT). (Ke et al., 2020) suggested that a TIL model/method should satisfy
the basic requirements: (1) overcoming CF and (2) performing FKT and/or BKT to improve the
performance of the TIL model across similar tasks.

3.1 THEORETICAL ANALYSIS OF THE CF PROBLEM

Given a fixed capacity DNN model with L layers, its weight matrix is denoted by W = {Wl}Ll=1,
where Wl is the layer-wise weight matrix for layer l. Let L(Wt) be the loss function, e.g., cross-
entropy loss, where Wt is the weight matrix of the model after learning task t ∈ [1, T ].

Input, Gradient, and Weight Spaces. Given a DNN model, we define the space of the input data as
the Input Space denoted by Sin, and the space of the gradient span as the Gradient Space Sg . We
call the space/domain of the weight matrix of a model as its Weight Space denoted by Sw.

When learning a new task t, the weight matrix can be updated by SGD (Amari, 1993) as follows:

Wt = Wt−1 − λ∇Wt,Wt−1,Wt ∈ Sw,∇Wt ∈ Sg (1)

where λ is the learning rate and ∇Wt is the gradient with respect to Wt in task t learning. Eq.(1)
implies the followings: (1) the weight matrix Wt (Wt−1) records the knowledge learned from task t
(t − 1), (2) with the quantity of λ∇Wt, the new task t learning may interfere with the knowledge
(stored in Wt−1) learned from previous tasks ≤ t − 1, which can cause CF. And with further
theoretical analysis, we present and prove Theorem 1 below, which has not been reported in the
existing literature. Please see the proof of Theorem 1 in Appendix A.

Theorem 1. The learning of the new task t ≤ T will not interfere with the knowledge (weights
Wt−1) of the previous learned t − 1 tasks (i.e., there is no CF) if and only if 1) task t occupies
its own independent weight subspace Wt. that is orthogonal to all other weight subspaces of the
previous tasks in the whole weight space Sw of the model, and 2) the modified weights spanned by
the orthogonal gradient to the previous learned tasks are imposed in its weight subspace Wt of task t.

Theorem 1 shows that when learning task t, the weight modification should happen in its own
weight subspace Wt to ensure the weight-level orthogonality between tasks rather than only the
gradient-level orthogonality. The weight space and gradient space, although dependent, are two
different spaces. Thus existing OG-based methods cannot guarantee zero CF as they don’t satisfy
the second condition in Theorem 1. Moreover, an orthogonal weight subspace based (OW-based for
short) TIL method following Theorem 1 also yields the benefit stated in Lemma 1 below.

Lemma 1. The total number of continually learnable tasks of the OG-based methods is determined by
the rank value of its weight matrix in a fixed-size network (Zeng et al., 2019). With the rank value as
the metric, the upper bound of the minimum number of learnable tasks of the OW-based TIL method
is far greater than that of the OG-based methods (see Theorems 2-3 and its proof in Appendix A).
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3.2 THEORETICAL ANALYSIS OF THE KT PROBLEM

We first introduce some definitions and then explore what factors cause positive or negative KT.

Forward Negative Knowledge Transfer Margin (FNM). Given two similar tasks i and t (i < t)
in the TIL setting, let ϵt be the test error of task t. f ′(i, t) denotes that task t performs its learning
with the help of the knowledge of the previous task i, and f ′(∅, t) otherwise. Then, negative forward
knowledge transfer (FKT) happens when ϵt(f

′(i, t)) > ϵt(f
′(∅, t)).

Backward Negative Knowledge Transfer Margin (BNM). Given two similar tasks i and t (i < t)
in the TIL setting, let ϵi(f ′(i)) be the test error of task i before task t learning, and ϵ′i(f

′(i, t)) be the
test error of task i after task t has been learned, then negative backward knowledge transfer (BKT)
happens when ϵ′i(f

′(i, t)) > ϵi(f
′(i)). Thus, the negative FKT and BKT margins can be defined as:

FNM = ϵt(f
′(i, t))− ϵt(f

′(∅, t));BNM = ϵ′i(f
′(i, t))− ϵi(f

′(i)), i < t, t ∈ [2, T ] (2)

Proposed FNM/BNM-based KT Metrics. From Eq. (2) , it is clear that the degree of forward
negative KT/backward negative KT can be evaluated by the FNM/BNM, and that the negative KT
occurs if the FNM/BNM is positive. As ϵt is inversely proportional to the test accuracy of task t
(denoted by At) and FNM/BNM may not always be computable, the degree of FWT and BWT across
similar tasks i and t in CL can be evaluated by the following Eq.(3)

FWT = At(f
′(i, t))−At(f

′(∅, t));BWT = A′
i(f

′(i, t))−Ai(f
′(i)), i < t, t ∈ [2, T ] (3)

where A′
i is the test accuracy of task i after task t learning. The greater the positive/negative value of

FWT/BWT, the greater the quantity of positive/negative FWT/BWT.

Theoretical Bound for KT. Given two similar tasks i and t (i, t ∈ [1, T ]) in CL, we now analyze the
theoretical bound for KT between similar tasks i and t in their TIL so as to investigate the factors that
lead to forward or backward positive/negative KT between them.

Let a hypothesis be a mapping function of a neural network for classification of TIL h : X ×T→ Y .
According to the test data distribution D′

t of task t, the test error showing that the hypothesis h
disagrees with its labeling function lt (which can also be a hypothesis) is defined as:

ϵt(h, lt) = Ex∼D′
t
[|h(x, t)− lt(x)|] (4)

For simplicity, we also denote the risk or error of hypothesis h on task t by ϵt(h) (= ϵt(h, lt)). With
the assumption that the training and the test data are i.i.d (independently identically distributed), we
can get its empirical error ϵ̂t(h) from the training data. Let the divergence of the test data distributions
of D′

i and D′
t be d(D′

i,D′
t) of tasks i and t, where d(.) can be calculated by a similarity/distance

metric. Then we can derive and prove the following Theorem 4.

Theorem 4. The theoretical bounds for FWT and BWT of tasks i and t are respectively as follows:

ϵt(h) ≤ ϵi(h)+d(D′
i,D′

t)+min{ED′
i
(S),ED′

t
(S)}; ϵi(h) ≤ ϵt(h)+d(D′

i,D′
t)+min{ED′

i
(S),ED′

t
(S)} (5)

where S = |li(x)− lt(x)| represents the absolute difference of the test results on text data x of tasks
i and t. The proof is given in Appendix A.

From Theorem 1, we observe the followings: (1) In the forward/backward KT process, two additional
losses are introduced, (i) the loss due to the divergence of the test data distributions of tasks i and t
(the second term on the right side of Eq.(5), and (ii) the loss due to the difference of data classification
results of the tasks (the third term). (2) It is clear that the necessary and sufficient conditions for
elimination of negative forward/backward KT is that the errors introduced by the above two terms are
zero. (3) The less the two additional losses above are, the greater the gain of FWT or BWT will be. In
practice, however, Eq.(5) may not always be computable as it is impossible to get the test data during
model training. Thus, with the assumption that the training and test data are i.i.d, we can employ the
empirical errors ϵ̂t(h) and ϵ̂i(h) to approximate ϵt(h) and ϵi(h) using training data.

Moreover, related KT researches (Zhang et al., 2022; Prado & Riddle, 2022; Wang et al., 2021;
Riemer et al., 2019; Lin et al., 2022a;b) have proven the following Theorem 5.

Theorem 5. Low similarity or negatively correlated tasks will result in negative KT. Only high
similarity tasks or positively correlated tasks can achieve positive KT.
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(a) (b)

Figure 1: (a) The architecture and pipeline of the proposed STIL, where the proposed new techniques
are embedded in the pink components. (b) The space transform (ST) diagram of Input Space
Sin, Gradient Space Sg and Weight Space Sw. Note that Sin, Sg and Sw are three related but
distinct spaces. With matrix SVD and approximation, the orthogonal common bases Bt and Bt−1 of
significant representations of task t and previous t− 1 tasks are obtained, by which the orthogonal
important gradients St

KG (St−1
KG) and weights Wt (Wt−1) of task t (t− 1) can be obtained by ST.

4 PROPOSED METHOD STIL

The architecture and pipeline of the proposed STIL method are shown in Figure 1(a) and Algo-
rithm 3 STIL is given in Appendix C. STIL’s core techniques (pink components) consist of the
proposed OIWS-based TIL strategy for maximally CF prevention, the tasks similarity detector, and
dissimilar/similar tasks processor (components 4.1 and 4.2) which enable STIL to adaptively switch
the focus onto performing KT when the new task is found to be similar to some old tasks or onto
overcoming CF when the new task is dissimilar to all old tasks. We discuss the details below.

4.1 PROPOSED OIWS OF TASK t AND OIWS-BASED TIL STRATEGY FOR OVERCOMING CF

Motivated by the theoretical study and by the fact that the learned knowledge of task t is determined
by its significant/important weights, we first propose the Orthogonal Important Weight Subspace
(OIWS) concept for overcoming CF along with fast knowledge indexing and transferring. The basic
ideas are: (1) we let the important weights of each new task occupy an independent subspace in the
network weight space Sw, called the important weight subspace (IWS). As all the IWSs among tasks
are orthogonal to each other, the IWS of a task is known as an OIWS of the task, and (2) we give the
exact mapping or indexing relationships between task input space Sin, gradient space Sg and weight
space Sw so as to lay the foundation for reusing the learned knowledge stored in the weight matrix
W (see Figure 1(b)). Specifically, The proposed OWIS-based TIL method consists of two steps:

Step 1: Using GPM (Saha et al., 2021) method and dataset Dt of task t, we calculate all the important
gradients with large values for task t, which is orthogonal to the important gradients of all t − 1
previous tasks, where {blt}Ll=1 is the calculated layer-wise bases of the orthogonal gradients of
task t at layer l from input data. As {blt}Ll=1 is an important piece of knowledge of task t, it is stored
in the Knowledge Base (KB) of STIL (see Figure 1(a)). Then the layer-wise common bases Bl

t of
task t and previously t− 1 tasks are calculated, where Bl

1 = bl1 (see Algorithm 2 in Appendix C).

Step 2: It has two substeps: learning the new task t and preparing for learning the next task t+ 1.

Step 2.1: In learning a new task t (t ∈ [2, T ]), we restrict the weight updating of task t in its own
OIWS to maximally eliminate CF. Note that the OIWS of task t consists of those weights that the
important gradients span and update the weights of the model in task t learning, and the OIWS
of task t is orthogonal to the other OIWSs of all previous learnt t − 1 tasks. Thus, by the Space
Transformation (ST) method in (Deisenroth et al., 2020), we first obtain the layer-wise OIWS of task
t as follows (see Figure 1(b)):

W l
t = W l

t−1 −W l
t−1B

l
t−1(B

l
t−1)

⊺, t ∈ [2, T ], l ∈ [1, L] (6)
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where W l
t is the orthogonal projection of W l

t−1 onto Bl
t−1, where Bl

t−1 is the calculated layer-wise
common bases of task t− 1 after learning task t− 1. Then we restrict weight updates of task t to its
OIWS W l

t , and take its gradients in the directions orthogonal to that of the previous (t− 1) tasks.

W l
t = W l

t − λ∇W l
t
L, ∇W l

t
L = ∇W l

t
L − (∇W l

t
L)Bl

t−1(B
l
t−1)

⊺, t ∈ [2, T ], l ∈ [1, L] (7)

where L is the model loss that can take Ldis/Lsim for dissimilar/similar tasks designed specifically
to resist CF and/or to achieve KT respectively, and ∇W l

t
L is the gradient of the loss with respect to

W l
t . Note that the cross entropy loss is employed as the loss function Ldis for dissimilar tasks.

Step 2.2: Computing the base blt of the OIWS of task t after learning task t and the common base Bl
t

of both Bl
t−1 and blt to prepare for the next task (t+ 1) learning (see Algorithm 2 basesComputing

Appendix C). And then iterating Steps 1 and 2 until all learning tasks are completed.

4.2 Lsim LOSS WITH CONSTRAINTS AND DATA RELAY TO FACILITATE KT
If there are similar tasks (i.e., Tsim ̸= ∅) for a new task t, we want to learn t better by encouraging
forward and backward KT from the top-k (we use the empirical value of k = 2 to be conservative)
previously learned similar tasks in Tsim. Note that similar tasks are different tasks with some
commonality (i.e., shared knowledge) and also individuality.

Given two similar tasks i and t (i < t), we want to achieve positive FKT, i.e., the knowledge learned
from i can help learn t better, and to achieve positive BKT, i.e., the learning of task t could improve
the accuracy of task i. How to achieve the two objectives is a challenge because for the OG-based
methods (including the proposed OIWS-based method), each learning task occupies a separate
gradient or weight subspace orthogonal to that of the other tasks. Then these methods are inherently
incapable of KT unless additional mechanisms are added. To tackle the challenge, inspired by the
optimization with constraints, we propose a new entropy-cross loss with constraints Lsim.

Lsim = − 1

N

N∑
i=1

yilogŷi, s.t. cos(W
l
t ⊗W l

Tsim
) = 1, cos(W l

t ⊗W l
Tdis

) = 0 (8)

where W l
Tsim

/W l
Tdis

is the layer-wise weight matrix of the top-k tasks from Tsim/Tdis. ⊗ is the dot
product of vectors by entries. The two constraints of Lsim try to pull weights of task t to be closer
to the top-k similar previous tasks for KT and far away from the top-k dissimilar tasks in Tdis to
avoid CF. For W l

t and W l
Tsim

/W l
Tdis

in Eq.(8), unlike all existing KT-based methods, STIL requires
no additional mechanism or storage and can quickly calculate them using W l

t = Wlblt(b
l
t)

⊺(W l
t ∈

Wl ∈W, l ∈ [1, L]) via retrieving the base blt of task t from its KB. And the similar/dissimilar tasks
in Tsim/ Tdis can be calculated by following Eq. (11).

Further, to avoid extensive computation in constrained optimization and to accelerate calculation
convergence, considering the orthogonality of these two constraints and the contrastive loss, we
convert the constraints in Eq. (8) to another objective leading to Lsim becoming the following
bi-objective loss.

Lsim = − 1

N

N∑
i=1

yilogŷi − log
1

N

N∑
i=1

exp
(∑

j∈Tsim
cos(W l

t ,W
l
j )
)

exp
(∑

k∈Tsim∪Tdis
cos(W l

t ,W
l
k)
) (9)

More about knowledge transfer: The above OIWM-based TIL method may still limit KT as each
task occupies its own independent weight subspace. To address the issue, we propose two strategies:
(1) using the OWIM’ bases of previous learned similar/ dissimilar tasks stored in the KB to quickly
index and calculated the knowledge of these tasks in W l

t and W l
Tsim

/W l
Tdis

(see Eq. (8) for reuse
or share of the knowledge, and (2) using replay data2 D′ in KB (see the next subsection) to transfer
the shared knowledge among similar tasks to further encourage forward KT. That is, when learning a
new task t, we add the replay data of the previous tasks that are most similar to task t to the training
set of t for joint training. With the two strategies, STIL performs its positive FKT. By selecting those
of the similar tasks that would not cause negative BKT calculated by Eqs. (5) and (3), STIL achieves
its positive BKT. Refer to Algorithm 3 STIL given in Appendix C.

2The replay data D′ are extracted and accumulated online, i.e., when a new task t comes, STIL extracts a
subset D′

t from the training dataset Dt of t with a random sampling rate of 5% for each class, and then adds D′
t

to the replay data D′.
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4.3 SIMILARITY/DISSIMILARITY DETECTION METHOD

Theorems 4 and 5 indicate that (1) an accurate measure of task similarity is essential for positive
KT, and (2) to ensure positive KT, the divergence of data distributions and the difference of the data
classification results must be considered together. We note that after the model has learned t−1 tasks,
all the knowledge learned is recorded in the weight matrix Wt−1 of the model. We also observed in
experiments that for a new task t learning, if t gains improved performance on Wt−1 compared with
on W with randomly initialized weights and no training, it indicates there is shared knowledge in
Wt−1 for task t, i.e., there must be similar previous tasks to task t; Otherwise, there is no similar task.

Based on the above observations, we now propose a method to detect task similarity based only on
the current model. Given a model denoted by modelori (with the same architecture as the STIL
model, which is denoted by modelCL) with randomly initialized weights and no training, and the
replay data D′ = {D′

1, ..., D′
t−1, D′

t}. STIL does task similarity detection as follows:

Step 1: Feeding D′ into modelori sequentially to obtain their corresponding original loss distributions
L′ = {L′

1, ..., L′
t−1, L′

t}. Step 2: Before starting to learn a new task t, feeding D′
1, ..., D′

t into modelCL

sequentially to get its loss distributions L = {L1, ..., Lt−1, Lt} from modelCL. Step 3: Calculating
the distances between tasks i and t with respect to the distributions L′ and L.

dis′ = dis(Li
′, Lt

′)/

t−1∑
i=1

dis(Li
′, Lt

′) , dis = dis(Li, Lt)/

t−1∑
i=1

dis(Li, Lt), i ∈ [1, t− 1] (10)

where dis′ represents the original/true Loss Distribution Distance (LDD) of the two tasks as there
is no knowledge of any task in modelori, and dis denotes the LDD of the two tasks based on some
learned knowledge in modelCL.

Based on the above observations and Eq. (10), we can infer that if dis < dis′, it indicates that task i
and task t have some shared knowledge in modelCL, i.e., they are some similar tasks, so their LDD
is going to be closer than their initial LDD value dis′, and vice versa. Thus, we propose a simple
Similarity or Dissimilarity Metric (SDM) to measure the similarity/dissimilarity of tasks i and t.

SDM =

{
dis > dis′ , |dis− dis′| < θ i, t ∈ Tdis

dis < dis′ , |dis− dis′| ≥ θ i, t ∈ Tsim
, i < t, t ∈ [2, T ] (11)

where θ is a distance threshold. Based on the theoretical research for KT (Eq. (5) and Theorems 4
and 5), in this paper, θ takes an empirical value greater than or equal to 0.5 to ensure positive KT.

Step 4: Calculating the layer-wise similarity between tasks i (an old task) and t by Eq. (11). Please
refer to Algorithm 1 LWSimilarity in Appendix C.1 for details.

Following Theorems 4 and 5, and considering the good properties of Wasserstein distance (Vallender,
1974; van den Oord et al., 2018) (see Figure 7 in Appendix): when calculating the distance of the
data, 1) it has no assumptions on the distribution of the data and does not need to know the type of
the distribution; and 2) it takes into account not only the distance, but also the shape/geometry of the
data, we employ the Wasserstein distance in the calculation of Eq.(11).

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETUP

Datasets (dissimilar tasks). For this set of experiments, we use five benchmark image classification
datasets: (1.1) PMNIST (10 tasks), (1.2) CIFAR 100 (10 tasks), (1.3) CIFAR 100 Sup (20 tasks),
(1.4) MiniImageNet (20 tasks), and (1.5) 5-Datasets (5 tasks). We regard the tasks in each dataset
as dissimilar as each task has different/disjoint classes. Note that two datasets CIFAR 100 Sup and
5-Datasets are datasets with “difficult” tasks (Saha et al., 2021).

Datasets (similar tasks). (2.1) F-EMNIST-1 (10 tasks), (2.2) F-EMNIST-2 (35 tasks), (2.3) F-
CelebA-1 (10 tasks), and (2.4) F-CelebA-2 (20 tasks). We consider tasks in F-EMNIST and F-CelebA
are similar as each task in F-EMNIST contains one writer’s written digits/characters and each task in
F-CelebA contains images of one celebrity labeled by whether he/she is smiling or not.

Datasets (mixed tasks). (3.1) (EMNIST, F-EMNIST-1) (20 tasks) and (3.2) (CIFAR 100, F-CelebA-
1) (20 tasks). Each of them is a combination of the task sequence from F-EMNIST-1 (or F-CelebA-1)
and the dissimilar task sequence EMNIST (or CIFAR 100) with the tasks randomly mixed.
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Table 1: ACC and BWT performances with standard deviations over 5 different runs of the proposed
ETCL and 14 strong baselines of the 4 categories on five dissimilar benchmark datasets.

Datasets PMNIST (10 Tasks) CIFAR 100 (10 Tasks) CIFAR 100 Sup (20 Tasks) MiniImageNet (20 Tasks) 5-Datasets (5 Tasks) Average

Type Methods ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT

ONE 96.70 None 79.58 None 61.00 None 69.46 None 93.58 None 80.06 None

(1)
LwF 85.72 ± 0.47 -0.11 ± 0.01 67.70 ± 0.37 -0.08 ± 0.01 51.55 ± 0.49 -0.03 ± 0.01 60.51 ± 0.32 -0.03 ± 0.01 89.10 ± 0.57 -0.02 ± 0.01 70.92 -0.05

DEN 91.17 ± 0.49 -0.03 ± 0.01 68.84 ± 0.25 -0.03 ± 0.01 51.10 ± 0.41 -0.03 ± 0.01 56.58 ± 0.42 -0.04 ± 0.01 79.75 ± 0.53 -0.01 ± 0.01 69.49 -0.03

APD 92.48 ± 0.59 -0.03 ± 0.01 72.49 ± 0.43 -0.03 ± 0.01 56.81 ± 0.44 -0.02 ± 0.01 58.73 ± 0.51 -0.03 ± 0.01 83.72 ± 0.54 -0.07 ±0.01 72.86 -0.04

(2.1)

A-GEM 83.56 ± 0.16 -0.13 ± 0.01 63.98 ± 1.22 -0.15 ± 0.02 42.78 ± 0.89 -0.13 ± 0.05 57.24 ± 0.72 -0.12 ± 0.01 84.04 ± 0.33 -0.12 ± 0.01 66.33 -0.13

OWM 90.71 ± 0.11 -0.02 ± 0.01 50.94 ± 0.60 -0.03 ± 0.01 – – – – – – 70.83 -0.03

OGD 82.50 ± 0.13 -0.14 ± 0.01 47.12 ± 0.87 -0.04 ± 0.01 36.92 ± 0.57 -0.03 ± 0.04 44.89 ± 0.49 -0.04 ± 0.02 57.12 ± 0.41 -0.04 ± 0.01 53.71 -0.06

GPM 93.91 ± 0.16 -0.03 ± 0.01 72.48 ± 0.40 -0.03 ± 0.01 57.10 ± 0.38 -0.03 ± 0.01 60.41 ± 0.01 -0.03 ± 0.04 91.22 ± 0.22 -0.01 ± 0.00 75.02 -0.03

EWC 89.97 ± 0.57 -0.04 ± 0.01 68.80 ± 0.88 -0.02 ± 0.01 41.49 ± 0.79 -0.03 ± 0.02 52.01 ± 2.53 -0.12 ± 0.03 86.61 ± 0.20 -0.05 ± 0.01 64.18 -0.05

UCL 89.53 ± 0.22 -0.05 ± 0.01 64.08 ± 0.46 -0.06 ± 0.02 47.22 ± 0.53 -0.09 ± 0.02 45.85 ± 0.41 -0.10 ± 0.04 88.54 ± 0.38 -0.05 ± 0.02 67.04 -0.07

(2.2)
HAT 90.35 ± 0.32 -0.00 ± 0.00 72.06 ± 0.30 -0.00 ± 0.00 55.85 ± 0.37 -0.00 ± 0.00 59.78 ± 0.47 -0.03 ± 0.01 91.32 ± 0.18 -0.01 ± 0.00 73.87 -0.01

SupSup 96.03 ± 0.12 -0.00 ± 0.00 74.63 ± 0.36 -0.00 ± 0.00 61.53 ± 0.23 -0.00 ± 0.00 61.55 ± 0.20 -0.00 ± 0.00 92.30 ± 0.19 -0.00 ± 0.00 77.21 -0.00

(2.3)
CAT 93.87 ± 0.51 -0.03 ± 0.01 59.06 ± 0.49 -0.08 ± 0.01 50.23 ± 0.32 -0.02 ± 0.01 59.55 ± 0.61 -0.03 ± 0.01 86.05 ± 0.74 -0.04 ± 0.03 69.75 -0.04

TRGP 96.34 ± 0.11 -0.08 ± 0.01 73.95 ± 0.32 -0.02 ± 0.01 58.48 ± 0.01 -0.01 ± 0.00 60.73 ± 0.60 -0.02 ± 0.06 92.22 ± 0.10 -0.04 ± 0.01 76.47 -0.03

CUBER 97.04 ± 0.11 -0.02 ± 0.01 74.67 ± 0.22 0.01 ± 0.01 57.92 ± 0.01 -0.01 ± 0.00 62.67 ± 0.35 -0.01 ± 0.04 91.95 ± 0.30 0.03 ± 0.00 77.70 -0.00

STIL(Ours) 97.15 ± 0.03 -0.02 ± 0.01 75.28 ± 0.13 0.02 ± 0.00 63.78 ± 0.01 -0.01 ± 0.00 65.11 ± 0.11 -0.00± 0.01 93.46 ± 0.06 -0.01 ± 0.01 78.36 -0.00

As ONE (see footnote 3 on this page) has no knowledge transfer and no forgetting involved, its BWT and FWT are denoted by None. As CAT is bound to its specific network structure,
its experimental results are run according to its network structure and source code. Other methods use the same backbone network on each dataset shown in Appendix D. “–” indicates
that the source codes are not provided by the baselines leading to no experimental results. The blue results mean the best prior results.

Baselines. We compare STIL with 14 state-of-the-art baselines of 4 categories: (1)
Expansion-based methods: LwF, DEN and APD; (2) Non-Expansion method (2.1) Experience-
replay/OG/Regularization based methods: A-GEM, OWM, OGD, GPM, EWC and UCL; (2.2)
Parameter isolation based methods: HAT and SupSup; (2.3) KT-based methods. CAT, TRGP and
CUBER. We use the official codes for these baselines.

Refer to Appendix B for the details about these datasets, baselines, and implementations.

Performance Metrics. (1) Average accuracy (ACC) of all tasks after the last task has been learned:
ACC= 1

T

∑T
i=1 RT,i. (2) Backward transfer (BWT): BWT= 1

T−1

∑T−1
i=1 (RT,i−Ri,i) (Lopez-Paz

& Ranzato, 2017), which indicates how much the new task affect the old tasks, the greater the
positive value, the better. Here, T is the total number of tasks and RT,i is the accuracy of the
model on ith task after learning the last task T . A negative value (i.e., forgetting rate) indicates
CF and a positive value indicates positive BKT. (3) Forward transfer (FWT): Following Eq.
(3) FWT= 1

T−1

∑
i,t(At(f(i, t)) − At(f(∅, t))), where At(f(∅, t)) can be calculated by method ONE 3

(i < t, i ∈ [1, T − 1], t ∈ [2, T ]).

5.2 MAIN EXPERIMENTAL RESULTS AND ANALYSIS

Results of Dissimilar Tasks - Overcoming CF. The task sequences here consists of only dissimilar
tasks, which have little shared knowledge to transfer. We use ACC and BWT (forgetting rate) as the
metrics to evaluate CF prevention. Table 1 reports the results, which indicate that STIL outperforms
all baselines in ACC , and also has the best average BWT. Compared with the best ACC results of
the baselines, STIL achieves the average gains of 0.66% over baselines on the five datasets (or task
sequences) (see the rightmost column in Table 1). In particular, STIL can even obtain the closest
ACC performance to ONE (see footnote 3 on this page) compared to all baselines on two “difficult”
tasks datasets: CIFAR 100 Sup (20 tasks) and 5-Datasets (5 datasets used as 5 tasks), respectively.
Although CUBER has good BWT on some datasets, it is not difficult to find that its BWT oscillates
between positive and negative values. All experiments show STIL’s strong ability to overcome CF.

Results of Similar Tasks - Knowledge Transfer (KT). Similar task sequences contain more shared
knowledge to transfer. Table 2 reports the FWT and BWT performances of the proposed STIL and
3 strong baselines that were designed for knowledge transfer, i.e., CAT, TRGP and CUBER. We
also included GPM as TRGP and CUBER were based on GPM. Table 2 shows that STIL achieves
all positive knowledge transfer (FWT and BWT) in four similar tasks datasets resulting in 11.89%,
13.24%, 12.50% and 15.00% ACC gains respectively compared to ONE. As GPM has no explicit
KT mechanism and OIWS-based strategy for CF prevention compared with our STIL, its average

3ONE (one task learning) – building a model for each task independently using a separate neural network
same as the model backbone, which has no knowledge transfer and no forgetting involved.
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Table 2: FWT (%) and BWT (%) performances with standard deviations of the proposed STIL and 4
strong baselines with/without KT capacity over 5 different runs on four similar task datasets.

Dataset F-EMNIST-1 (10 Tasks) F-EMNIST-2 (35 Tasks) F-CelebA-1 (10 Tasks) F-CelebA-2 (20 Tasks) Average

Method ACC (%) FWT BWT ACC (%) FWT BWT ACC (%) FWT BWT ACC (%) FWT BWT ACC (%) FWT BWT

ONE 69.85 None None 71.55 None None 77.50 None None 73.75 None None 73.16 None None

GPM 75.18 ± 0.06 3.72 2.18 79.20 ± 0.40 7.82 -0.07 86.34 ± 0.36 7.41 1.04 75.05 ± 0.30 1.76 -0.46 78.94 5.18 0.67

CAT 61.90± 0.21 -10.41 2.59 63.00± 0.25 -9.64 1.64 76.90± 0.21 -1.13 -1.00 65.87± 0.12 -7.88 0.00 66.92 -7.27 0.81

TRGP 76.66± 0.46 4.69 3.01 79.54± 0.42 7.15 1.00 78.34± 0.49 0.75 0.00 70.24± 0.35 -3.51 0.00 76.20 2.27 1.00

CUBER 78.48± 0.47 7.03 2.15 76.80± 0.53 5.78 -1.26 78.35± 0.55 0.76 0.00 70.25± 0.33 -3.50 0.00 75.97 2.52 0.22

STIL(Ours) 81.74± 0.23 8.27 4.94 84.79± 0.17 8.35 3.89 90.00± 0.11 3.70 10.19 88.75± 0.12 0.44 14.48 86.32 5.19 8.53

The backbone ResNet-18 is used for the two similar tasks datasets F-EMNIST. The backbone 3-Layer FCN is used in the next two similar tasks datasets
F-CelebA for all algorithms as the two datasets have a small number of samples and ResNet performed poorly. As CAT is bound to its specific network
structure 3-Layer FCN, its experimental results are run according to its network structure and source code. The blue results mean the best prior results.

performances (ACC, FWT and BWT) are inferior to those of our STIL. CAT is weak as it only works
with 3-Layer FCN. Our STIL is strong in both forward and backward transfer. The average results in
the rightmost column show that the STIL is significantly better than the baselines.

Results for Mixed Tasks- CF Prevention and KT. Due to space limitations, we put the results for
this set of experiments in Table 11 in Appendix D.4. The table shows that STIL still achieves all
positive KT (including FKT and BKT) and outperforms all baselines in accuracy.

Capacity of OG-based methods and our OIWS-based method. Figure 7 in Appendix D.5 shows
that as the number of tasks increases, the existing representative OG-based method OWM suffers
more and more from CF as there are no new orthogonal gradient and weight subspace to learn new
tasks, which is as revealed by Theorems 2-3 and Lemma 1. STIL’s performances are quite stable.

Efficiency and Memory Performance Comparisons. The results given in Table 5, Appendix
D.1 show that STIL is the best in both time (except GPM) and memory efficiency compared with
the baselines OWM, GPM, TRGP and CUBER, and CAT. As OWM has a large number of high-
dimensional matrix operations, it not only suffers from high time and space complexity but also
cannot be applied to complex DNNs. As CAT, TRGP and CUBER also require more complex
operations and larger memory size for their KT, their time and memory requirements are much higher
than those of STIL. The running times (the space required) of these baselines are 7.95, 1.33, 2.61,
1.63 and 2.26 (6.05, 1.13, 2.24, 1.66 and 1.92) times on average higher than that of STIL, respectively.

Table 3: Ablation experiments of the proposed STIL.

Datasets STIL(-SDM) STIL(-OIWS) STIL(-KT) STIL
ACC(%) ACC(%) ACC(%) ACC(%)

(1.1) 95.13 95.15 95.15 97.15
(1.2) 74.33 71.00 73.65 75.28
(1.3) 56.14 57.10 58.58 60.78
(1.4) 64.48 60.15 60.13 65.11
(1.5) 90.96 92.35 90.10 93.46
(2.1) 75.64 80.24 71.35 81.74
(2.2) 74.93 83.25 73.07 84.79
(2.3) 85.83 88.69 79.50 90.00
(2.4) 80.82 87.30 75.25 88.75
(3.1) 76.27 76.49 76.94 78.01
(3.2) 63.25 63.96 64.46 65.46

Ablation Experiments. The ablation ex-
perimental results are given in Table 3.
“STIL(-SDM)” denotes without using SDM
task similarity metric but using Euclidean
distance, “STIL(-OIWS)” means without
deploying the OIWS-based TIL strategy in
STIL, and “STIL(-KT)” means removing
the KT function in STIL. Ablation results
show that the full STIL always gives the
best ACC and every component, i.e., SDM,
OIWS or KT, contribute to the model’s per-
formance. Particularly, on 4 similar datasets, i.e., (2.1) EMNIST-1, (2.2) EMNIST-2, (2.3) F-CelebA-
1, and (2.4) F-CelebA-2, if the SDM or KT mechanism is removed from STIL, the accuracy of STIL
will drop sharply, which shows the effectiveness of the proposed SDM and KT.

6 CONCLUSION

This research first theoretically showed that the existing OG-based methods can only mitigates CF
but cannot eliminate CF. As knowledge transfer (KT) is also a core objective of CL but limited
research has been done, we theoretically study the KT problem and give the bounds that can lead to
negative forward and backward KT. With the goal to avoid CF and perform KT, we proposed a novel
task-incremental learning (TIL) method STIL based on weight-level orthogonality between tasks and
a new KT mechanism. Extensive experimental results showed that STIL not only self-adaptively
performs similar, dissimilar or mixed tasks well in terms of forgetting prevention and knowledge
transfer, but also outperforms strong baselines. Our future work will further improve STIL’s accuracy.
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