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ABSTRACT

We tackle the issue of generalized category discovery (GCD). GCD considers the
open-world problem of automatically clustering a partially labelled dataset, in
which the unlabelled data contain instances from novel categories and also the
labelled classes. In this paper, we address the GCD problem without a known
category number in the unlabelled data. We propose a framework, named CiP,
to bootstrap the representation by exploiting Cross-instance Positive relations for
contrastive learning in the partially labelled data which are neglected in existing
methods. First, to obtain reliable cross-instance relations to facilitate the represen-
tation learning, we introduce a semi-supervised hierarchical clustering algorithm,
named selective neighbor clustering (SNC), which can produce a clustering hierar-
chy directly from the connected components in the graph constructed by selective
neighbors. We also extend SNC to be capable of label assignment for the unlabelled
instances with the given class number. Moreover, we present a method to estimate
the unknown class number using SNC with a joint reference score considering
clustering indexes of both labelled and unlabelled data. Finally, we thoroughly
evaluate our CiP framework on public generic image recognition datasets (CIFAR-
10, CIFAR-100, and ImageNet-100) and challenging fine-grained datasets (CUB,
Stanford Cars, and Herbarium19), all establishing the new state-of-the-art.

1 INTRODUCTION

After training on large-scale datasets with human annotations, existing machine learning models
can achieve superb performance (e.g., (Krizhevsky et al., 2012)). However, the success of these
models heavily relies on the fact that they are only tasked to recognize images from the same set of
classes with large-scale human annotations on which they are trained. This limits their application in
the real open world where we will encounter data without annotations and from unseen categories.
Indeed, more and more efforts have been devoted to dealing with more realistic settings. For example,
semi-supervised learning (SSL) (Chapelle et al., 2006) aims at training a robust model using both
labelled and unlabelled data from the same set of classes; few-shot learning (Snell et al., 2017) tries
to learn models that can generalize to new classes with few annotated samples; open-set recognition
(OSR) (Scheirer et al., 2012) learns to tell whether or not an unlabelled image belongs to one of
the classes on which the model is trained. More recently, the problem of novel category discovery
(NCD) (Han et al., 2019; 2020; Fini et al., 2021) has been introduced, which learns models to
automatically partition unlabelled data from unseen categories by transferring knowledge from seen
categories. One assumption in early NCD methods is that unlabelled images are all from unseen
categories only. NCD has been recently extended to a more generalized setting, called generalized
category discovery (GCD) (Vaze et al., 2022b), by relaxing the assumption to reflect the real world
better, i.e., unlabelled images are from both seen and unseen categories.

In this paper, we tackle the problem of GCD by drawing inspiration from the baseline method (Vaze
et al., 2022b). In (Vaze et al., 2022b), a vision transformer model was first trained for representation
learning using supervised contrastive learning on labelled data and self-supervised contrastive learning
on both labelled and unlabelled data. With the learned representation, semi-supervised k-means (Han
et al., 2019) was then adopted for label assignment across all instances. In addition, based on
semi-supervised k-means, (Vaze et al., 2022b) also introduced an algorithm to estimate the unknown
category number for the unlabelled data by examining possible category numbers in a given range.
However, this approach has several limitations. First, during representation learning, the method
considers labelled and unlabelled data independently, and uses a stronger training signal for the
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labelled data which might compromise the representation of the unlabelled data. Second, the method
requires a known category number for performing label assignment. Third, the category number
estimation method is slow as it needs to run the clustering algorithm multiple times to test different
category numbers.

To overcome the above limitations, we propose a new approach for GCD which does not require a
known unseen category number and considers Cross-instance Positive relations in unlabelled data
for better representation learning (CiP). At the core of our approach is our novel semi-supervised
hierarchical clustering algorithm with selective neighbor, named as selective neighbor clustering
(SNC), that takes inspiration from the parameter-free hierarchical clustering method FINCH (Sarfraz
et al., 2019). SNC can not only generate reliable pseudo labels for cross-instance positive relations,
but also estimate unseen category numbers without the need for repeated runs of the clustering
algorithm. SNC builds a graph indicating all subtly selected neighbor relations constrained by
the labelled instances, and produces clusters directly from the connected components in the graph.
SNC iteratively constructs a hierarchy of partitions with different granularity, while satisfying the
constraints imposed by the labelled instances. With a one-by-one merging strategy, SNC can quickly
estimate a reliable class number without repeated runs of the algorithm, which makes it significantly
faster than (Vaze et al., 2022b).

The main contributions of this paper can be summarized as follows: (1) we propose a new GCD
framework, named CiP, exploiting more cross-instance positive relations in the partially labelled set
to strengthen the connections among all instances, fostering the representation learning for better
category discovery; (2) we introduce a semi-supervised hierarchical clustering algorithm, named
SNC, that can be adopted for reliable pseudo label generation during training and label assignment
during testing; (3) we further leverage SNC for class number estimation by exploring intrinsic and
extrinsic clustering quality based on a joint reference score considering both labelled and unlabelled
data; (4) we comprehensively evaluate our CiP framework on both generic image recognition datasets
and challenging fine-grained datasets, and demonstrate state-of-the-art performance across the board.

2 RELATED WORK

Our work is related to novel/generalized category discovery, semi-supervised learning, and open-set
recognition.

Novel category discovery (NCD) aims at discovering new classes in unlabelled data by leveraging
knowledge learned from labelled data. It was pioneered by (Han et al., 2019) with a transfer clustering
approach. Some earlier works on cross-domain/task transfer learning (Hsu et al., 2018a;b) can also
be adopted to tackle this problem. (Han et al., 2020) proposed an efficient method called AutoNovel
(aka RankStats) using ranking statistics. They first learned a good embedding using low-level self-
supervised learning on all data followed by supervised learning on labelled data for higher level
features. They introduced a robust ranking statistics to determine whether two unlabelled instances
are from the same class for NCD. Several successive works based on RankStats were proposed. For
example, (Jia et al., 2021) proposed to use WTA hashing (Yagnik et al., 2011) for NCD in single- and
multi-modal data; Zhao and Han (Zhao & Han, 2021) extended NCD with dual ranking statistics
and knowledge distillation. (Fini et al., 2021) proposed UNO which uses a unified cross entropy loss
to train labelled and unlabelled data. (Chi et al., 2022) proposed meta discovery which links NCD
to meta learning with limited labelled data. (Vaze et al., 2022b) introduced generalized category
discovery (GCD) which extends NCD by allowing unlabelled data from both old and new classes.
They first finetuned a pretrained DINO ViT (Caron et al., 2021) with both supervised contrastive loss
and self-supervised contrastive loss. Semi-supervised k-means was then adopted for label assignment.
A concurrent work called ORCA by (Cao et al., 2022) addressed a similar problem by formulating it
as open-world semi-supervised learning. We draw inspiration from (Vaze et al., 2022b) and develop a
novel method to tackle GCD by exploring cross-instance correlations on labelled and unlabelled data
which have been neglected in (Vaze et al., 2022b).

Semi-supervised learning (SSL) has long been studied in the machine learning community (Chapelle
et al., 2006). It aims at learning a good model by leveraging unlabelled data from the same set
of classes as the labelled data. Various methods have been proposed for SSL. For example, Π-
model (Laine & Aila, 2017) uses self-ensembling to leverage label predictions on different epochs
and under different conditions; Mean Teacher (Tarvainen & Valpola, 2017) utilizes averaging model
weights instead of label predictions; FixMatch (Sohn et al., 2020) and FlexMatch (Zhang et al., 2021)
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employ pseudo-labels generated from model predictions to guide the training. The assumption that
labelled and unlabelled data are from the same closed set of classes is often not valid in practice. In
contrast, GCD relaxes this assumption and considers a more challenging scenario where unlabelled
data can also come from unseen classes.

Open-set recognition (OSR) aims at training a model using data from a known closed set of classes,
and at test time determining whether or not a sample is from one of these known classes. It was
first introduced in (Scheirer et al., 2012). Since then many methods have been proposed for this
task. For example, OpenMax (Bendale & Boult, 2016) is the first deep learning work to address the
OSR problem based on Extreme Value Theory and fitting per-class Weibull distributions. RPL (Chen
et al., 2020a) and its extension ARPL (Chen et al., 2021) exploit reciprocal points for constructing
extra-class space to reduce the risk of unknown. Recently, (Vaze et al., 2022a) found the correlation
between closed and open-set performance, and boosted the performance of OSR by improving
closed-set accuracy. They also proposed Semantic Shift Benchmark (SSB) with a clear definition of
semantic novelty for better OSR evaluation.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Generalized category discovery (GCD) aims at automatically categorizing unlabelled images in a
collection of data in which part of the data is labelled and the rest is unlabelled. The unlabelled
images may come from the labelled classes or new ones. This is a much more realistic open-world
setting than the common closed-set classification where the labelled and unlabelled data are from the
same set of classes. Let the data collection be D = DL ∪DU , where DL = {(xℓ

i , y
ℓ
i )}Mi=1 ∈ X × YL

denotes the labelled subset and DU = {(xu
i , y

u
i )}Ni=1 ∈ X × YU denotes the unlabelled subset with

unknown yui ∈ YU . Only a subset of classes contains labelled instances, i.e., YL ⊂ YU . The number
of labelled classes NL can be directly deduced from the labelled data, while the number of unlabelled
classes NU is not known a priori.

To tackle this challenge, we propose a novel framework CiP to jointly learn representations using
contrastive learning by considering all possible interactions between labelled and unlabelled instances.
Contrastive learning has been applied to learn representation in GCD, but without considering the
connections between labelled and unlabelled instances (Vaze et al., 2022b) due to the lack of reliable
pseudo labels. This limits the learned representation. In this paper, we propose an efficient semi-
supervised hierarchical clustering algorithm, named selective neighbor clustering (SNC), to generate
reliable pseudo labels to bridge labelled and unlabelled instances during training and bootstrap
representation learning. With the generated pseudo labels, we can then train the model on both
labelled and unlabelled data in a supervised manner considering all possible pairwise connections.
We further extend SNC with a simple one-by-one merging process to allow cluster number estimation
and label assignment on all unlabelled instances. An overview of our CiP is shown in Fig. 1.

3.2 JOINT CONTRASTIVE REPRESENTATION LEARNING

Contrastive learning has been widely used for self-supervised representation learning (Chen et al.,
2020b; He et al., 2020) and supervised representation learning (Khosla et al., 2020). For GCD, since
the data contains both labelled and unlabelled instances, the mix of self-supervised and supervised
contrastive learning appears to be a natural fit and good performance has been reported in (Vaze et al.,
2022b). However, cross-instance correlations are only considered for pairs of labelled instances,
but not for pairs of unlabelled instances and pairs of labelled and unlabelled instances. The learned
representation is likely to be biased towards the labelled data due to the stronger learning signal
provided by them. Meanwhile, the embedding spaces learned from cross-instance correlations of
labelled data and self correlations of unlabelled data might not be necessarily well aligned. These
might explain why a much stronger performance on labelled data was reported in (Vaze et al.,
2022b) compared with the unlabelled data. To mediate such a bias, we propose to introduce cross-
instance relations for pairs of unlabelled instances and pairs of labelled and unlabelled instances in
contrastive learning to bootstrap the representation learning. To this end, we propose an efficient
semi-supervised hierarchical clustering algorithm to generate reliable pseudo labels relating pairs of
unlabelled instances and pairs of labelled and unlabelled instances, as will be detailed in Sec. 3.3.
Next, we briefly review supervised contrastive learning (Khosla et al., 2020), which accommodates
cross-instance relations, and describe how to extend it to unlabelled data.
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Figure 1: Overview of our CiP framework. We first initialize ViT with pretrained DINO (Caron
et al., 2021) to obtain a good representation space. We then finetune ViT by conducting joint
contrastive learning with both true and pseudo positive relations in a supervised manner. True positive
relations come from labelled data while pseudo positive relations of all data are generated by our
proposed SNC algorithm. Specifically, SNC generates a hierarchical clustering structure. Pseudo
positive relations are granted to all instances in the same cluster at one level of partition, further
exploited in joint contrastive learning. With representations well learned, we estimate class number
and assign labels to all unlabelled data using SNC with a one-by-one merging strategy.

Let f and ϕ be a feature extractor and a MLP projection head. The supervised contrastive loss on
labelled data can be formulated as

Ls
i = −

1

|GB(i)|
∑

q∈GB(i)

log
exp(zℓ

i · zℓ
q/τs)∑

n∈BL,n̸=i exp(z
ℓ
i · zℓ

n/τs)
(1)

where zℓ = ϕ(f(xℓ)), τs is the temperature, and GB(i) denotes other instances sharing the same label
with the i-th labelled instance in BL, which is the labelled subset in the mini-batch B. Supervised
contrastive loss leverages the true cross-instance positive relations between labelled instance pairs.
To take into account the cross-instance positive relations for pairs of unlabelled instances and pairs of
labelled and unlabelled instances, we extend the supervised contrastive loss on all data as

La
i = − 1

|PB(i)|
∑

q∈PB(i)

log
exp(zi · zq/τa)∑

n∈B,n̸=i exp(zi · zn/τa)
(2)

where τa is the temperature, PB(i) is the set of pseudo positive instances for the i-th instance in the
mini-batch B. The overall loss considering cross-instance relations for pairs of labelled instances,
unlabelled instances, as well as labelled and unlabelled instances can then be written as

L =
∑
i∈B
La
i +

∑
i∈BL

Ls
i (3)

With the learned representation, we can discover classes with existing algorithms like semi-supervised
k-means (Han et al., 2019; Vaze et al., 2022b). We further propose a new method in Sec. 3.4 based
on our pseudo label generation approach as will be introduced next.

3.3 SELECTIVE NEIGHBOR CLUSTERING

To generate pseudo labels for Eq. (2), an intuitive approach would be to apply an off-the-shelf
clustering method like k-means or semi-supervised k-means to construct clusters and then obtain
cross-instance relations based on the resulting cluster assignment. However, we empirically found that
such a simple approach will produce many false positive pairs which severely hurt the representation
learning. One way to tackle this problem is to overcluster the data to lower the false positive
rate. FINCH (Sarfraz et al., 2019) has shown superior performance on unsupervised hierarchical
overclustering, but it is non-trivial to extend it to cover both labelled and unlabelled data. Experiments
show that FINCH will fail drastically if we simply include all the labelled data. Inspired by FINCH,
we propose an efficient semi-supervised hierarchical clustering algorithm, named SNC, with selective
neighbor, which subtly makes use of the labelled instances during clustering.
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FINCH constructs an adjacency matrix A for all possible pairs of instances (i, j), given by

A(i, j) =

{
1 if j = κi or κj = i or κi = κj

0 else
, (4)

where κi is the first neighbor of the i-th instance and is defined as
κi = argmax

j
{f(xi) · f(xj) | xj ∈ D}, (5)

where f(·) outputs an ℓ2-normalized feature vector. A data partition can then be obtained by extracting
connected components from A. Each connected component in A corresponds to one cluster. By
treating each cluster as a super instance and building the first neighbor adjacency matrix iteratively,
the algorithm can produce hierarchical partitions.

Algorithm 1 Selective Neighbor Clustering (SNC)

1: Preparation:
2: Given labelled set DL and unlabelled set DU , treat each instance in
DL ∪ DU as a cluster c0i with the cluster centroid µ(c0i ) being each
instance itself, forming the first partition Γ0 = Γ0

L ∪ Γ0
U , where

Γ0 = {c0i }
|Γ0

L|+|Γ0
U |

i=1 .
3: Main loop:
4: p← 0
5: while there are more than NL clusters in Γp do
6: Initialize Γ⋆

L = Γp
L.

7: while there exists κi of cpi ∈ Γp
L ∪ Γp

U not specified do
8: if cpi ∈ Γp

L then
9: Initialize Q = {cpi }, Γ⋆

L = Γ⋆
L \ {c

p
i }.

10: while |Q| < λ do
11: κi ← argmaxj {µ(c

p
i )·µ(c

p
j ) | c

p
j ∈ Γ⋆

L, y
p
j = ypi }

12: Γ⋆
L ← Γ⋆

L \ {cpκi
}

13: Q ← Q∪ {cpκi
}

14: cpi ← cpκi

15: end while
16: else
17: κi ← argmaxj {µ(c

p
i ) · µ(c

p
j ) | c

p
j ∈ Γp

L ∪ Γp
U}

18: end if
19: end while
20: Construct A following Eq. (4) with selective neighbors, forming

a new partition Γp+1 = Γp+1
L ∪ Γp+1

U .
21: p← p+ 1
22: end while

First neighbor is designed for purely
unlabelled data. To make use of
the labels in partially labelled data,
a straightforward idea is to connect
all labelled data from the same class
by setting A(i, j) to 1 for all pairs of
instances (i, j) from the same class.
However, after filling A(i, j) for pairs
of unlabelled instances using Eq. (4),
very often all instances become con-
nected to a single cluster, making it
impossible to properly partition the
data. This problem is caused by hav-
ing too many links among the labelled
instances. To solve this problem, we
would like to reduce the links between
labelled instances while keeping la-
belled instances from the same class
in the same connected component. A
simple idea is to connect same la-
belled instances one by one to form
a chain, which can significantly re-
duce the number of links. However,
we found this still produces many in-
correct links, resulting in low purity
of the connected components. To this
end, we introduce our selective neighbor to improve the purity of clusters while properly incorpo-
rating the labelled instances. The key ideas are as follows. First, we limit the chain length to at
most λ. Second, each labelled instance in a chain can only be the selective neighbor of another
labelled instance once. Third, the selective neighbor of an unlabelled instance can be a labelled or an
unlabelled instance, depending on its actual distances to other instances. Similar to FINCH, we can
apply selective neighbor iteratively to produce hierarchical clustering results. We name our method
SNC which is summarized in Algo. 1 (lines 7-19 correspond to selective neighbor computation).

For the chain length λ, we simply set it to the smallest integer great than or equal to the square root of
the number of labelled instances nℓ in each class, i.e., λ = ⌈√nℓ ⌉. This is applied to all classes with
labelled instances, and at each hierarchy level. A proper chain length can therefore be dynamically
determined based on the actual size of the labelled cluster and also the hierarchy level. We analyze
different formulations of chain length in Appx. A.1.

SNC produces a hierarchy of data partitions with different granularity. Except the bottom level,
where each individual instance is treated as one cluster, every non-bottom level can be used to capture
cross-instance relations for the level below, because each instance in the current level represents a
cluster of instances in the level below. In principle, we can pick any non-bottom level to generate
pseudo labels. To have a higher purity for each cluster, it is beneficial to choose a relatively low level
which overclusters the data. Hence, we choose a level that has a cluster number notably larger than
the labelled class number (e.g., 2× more). Meanwhile, the level should not be too low as this will
provide much fewer useful pair-wise correlations. In our experiment, we simply pick the third level
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from the bottom of hierarchy, which consistently shows good performance on all datasets. We discuss
on the impact of the picked level in Appx. A.1.
3.4 LABEL ASSIGNMENT WITH AN UNKNOWN CLASS NUMBER

Algorithm 2 One-by-one merging

1: Preparation:
2: Get initial partitions S = {Γp}p=0 by SNC and a cluster number

range [Ne, No]. Note that the merging is from No to Ne and No >
Ne.

3: Partition initialization:
4: Find Γt ∈ S satisfying |Γt| > No and |Γt+1| ≤ No.
5: Merging:
6: while |Γt| > Ne do
7: (i, j)← argmini,j {µ(cti) · µ(ctj) | cti, ctj ∈ Γt}
8: Merge cti and ctj , forming a new partition Γ⋆.
9: Update current partition Γt ← Γ⋆.

10: end while
11: Output:
12: Obtain a specific partition Γt of Ne clusters, i.e., |Γt| = Ne.

Once a good representation is learned,
we could then determine the class la-
bel assignment for all unlabelled in-
stances. When the class number is
known, we can obtain the label assign-
ment by adopting semi-supervised k-
means like (Han et al., 2019; Vaze
et al., 2022b) or directly using our
proposed SNC. Since SNC is an hier-
archical clustering algorithm and the
cluster number in each hierarchy level
is determined automatically by the in-
trinsic correlations of the instances, it
might not produce a level of partition
with the exact same cluster number as
the known class number. We therefore introduce a simple one-by-one merging strategy to SNC
allowing it to reach a given class number. Specifically, we first identify a level of partition that has
the closest cluster number larger than the given class number, and then merge the clusters one by
one until the given class number is reached. At each merging step, we simply merge the two closest
clusters. The merging process is summarized in Algo. 2. The label assignment can then be retrieved
from the final partition.

When the class number is unknown, exiting methods based on semi-supervised k-means need to first
estimate the unknown cluster number before they can produce the label assignment. To estimate
the unknown cluster number, (Han et al., 2019) proposed to run semi-supervised k-means on all the
data while dropping part of the labels for clustering performance validation. Though effective, this
algorithm is computational expensive as it needs to run semi-supervised k-means on all possible
cluster numbers. (Vaze et al., 2022b) proposed an improved method with Brent’s optimization (Brent,
1971), which increases the efficiency. With the estimated cluster number, semi-supervised k-means is
run again on all labelled and unlabelled instances to produce the final label assignment.

In contrast, SNC can directly produce hierarchical cluster assignments without a known class number.
For practical use, one can pick any level of assignments based on the required granularity. To obtain
more reliable class number estimation, we propose to use a joint reference score considering both
labelled and unlabelled data. In particular, we further split the labelled dataDL into two partsDl

L and
Dv

L. We then run SNC on the full dataset D treating Dl
L as labelled and DU ∪ Dv

L as unlabelled. We
then jointly measure the unsupervised intrinsic clustering index (such as silhouette score (Rousseeuw,
1987)) on DU and the extrinsic clustering accuracy on Dv

L. We obtain a joint reference score sc
by simply multiplying them after min-max scaling to achieve the best overall measurement on the
labelled and unlabelled subsets. We then choose the level in SNC hierarchy with the maximum sc.

The cluster number in the chosen level can be regarded as the estimated class number. To achieve
more accurate class number estimation, we further leverage the one-by-one merging strategy. Namely,
with the chosen level, we apply the one-by-one merging strategy starting from the level below the
chosen one to the level above the chosen one. We then identify the merge that gives the best reference
score sc and consider its cluster number as our estimated class number.

Our proposed SNC with the one-by-one merging strategy can carry out class number estimation with
one single run of hierarchical clustering, which is significantly more efficient than the methods based
on semi-supervised k-means (Han et al., 2019; Vaze et al., 2022a).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Data and evaluation metric. We evaluate our mothod on three generic image classification datasets,
namely CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-
100 (Deng et al., 2009). ImageNet-100 refers to randomly subsampling 100 classes from the ImageNet
dataset. We further evaluate on two more challenging fine-grained image classification datasets,
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namely Semantic Shift Benchmark (Vaze et al., 2022a) (SSB includes CUB-200 (Wah et al., 2011) and
Stanford Cars (Krause et al., 2013)) and long-tailed Herbarium19 (Tan et al., 2019). We follow (Vaze
et al., 2022b) to split the original training set of each dataset into labelled and unlabelled parts. We
sample a subset of half the classes as seen categories. 50% of instances of each labelled class are
drawn to form the labelled set, and all the rest data constitute the unlabeled set. The model takes
all images as input and predicts a label assignment for each unlabelled instance. For evaluation, we
measure the clustering accuracy by comparing the predicted label assignment with the ground truth,
following the protocol of (Vaze et al., 2022b).
Implementation details. We follow (Vaze et al., 2022b) to use the ViT-B-16 initialized with
pretrained DINO (Caron et al., 2021) as our backbone. The output [CLS] token is used as the feature
representation. Following the standard practice, we project the representations with a non-linear
projection head and use the projected embeddings for contrastive learning. We set the dimension of
projected embeddings to 65,536 following (Caron et al., 2021). At training time, we feed two views
with random augmentations to the model. We only fine-tune the last block of the vision transformer
with an initial learning rate of 0.01 and the head is trained with an initial learning rate of 0.1. All
methods are trained for 200 epochs with cosine annealing schedule. For our method, the temperatures
of two supervised contrastive losses τs and τa are set to 0.07 and 0.1 respectively. For class number
estimation, we set |Dl

L|:|Dv
L| = 8:2. Our experiments are conducted on RTX 3090 GPUs.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

We compare our CiP with four strong GCD baselines: RankStats+ and UNO+, which are adapted
from RankStats (Han et al., 2021) and UNO (Fini et al., 2021) that are originally developed for
NCD, the state-of-the-art GCD method of (Vaze et al., 2022b), and ORCA (Cao et al., 2022) which
addresses GCD from a semi-supervised learning perspective. As ORCA uses a different backbone
model and data splits, for fair comparison, we retrain ORCA with ViT model using the official code
on the same splits here.

In Tab. 1, we compare CiP with others on the generic image recognition datasets. CiP consistently
outperforms all others by a significant margin. For example, CiP outperforms the state-of-the-art
GCD method of (Vaze et al., 2022b) by 6.2% on CIFAR-10, 10.7% on CIFAR-100, and 6.4% on
ImageNet-100 for ‘All’ classes, and by 9.5% on CIFAR-10, 22.7% on CIFAR-100, and 12.0% on
ImageNet-100 for ‘Unseen’ classes. This demonstrates cross-instance positive relations obtained
by SNC are effective to learn better representations for unlabelled data. Due to the fact that a linear
classifier is trained on ‘Seen’ classes, UNO+ shows a strong performance on ‘Seen’ classes, but its
performance on ‘Unseen’ ones is significantly worse. In contrast, CiP achieves comparably good
performance on both ‘Seen’ and ‘Unseen’ classes, without biasing to the labelled data.

Table 1: Results on generic image recognition datasets.
CIFAR-10 CIFAR-100 ImageNet-100

Classes All Seen Unseen All Seen Unseen All Seen Unseen

RankStats+ (Han et al., 2021) 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
UNO+ (Fini et al., 2021) 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
ORCA (Cao et al., 2022) 97.3 97.3 97.4 66.4 70.2 58.7 38.2 67.6 23.4
Vaze et al. (Vaze et al., 2022b) 91.5 97.9 88.2 70.8 77.6 57.0 74.1 89.8 66.3

Ours (CiP) 97.7±0.1 97.5±0.3 97.7±0.2 81.5±1.4 82.4±1.2 79.7±3.2 80.5±1.4 84.9±1.1 78.3±2.4

In Tab. 2, we further compare our method with others on fine-grained image recognition datasets,
in which the difference between different classes are subtle, making it more challenging for GCD.
Again, CiP consistently outperforms all other methods for ‘All’ and ‘Unseen’ classes. On CUB-200
and SCars, CiP achieves 5.8% and 8.0% improvement over the state-of-the-art for ‘All’ classes. For
the challenging Herbarium19 dataset, which contains many more classes than other datasets and has
the extra challenge of long-tailed distribution, CiP still achieves an improvement of 1.4% and 5.6%
for ‘All’ and ‘Unseen’ classes. Both RankStats+ and UNO+ show a strong bias to the ‘Seen’ classes.

In Fig. 2, we visualize the t-SNE projection on features generated by DINO (Caron et al., 2021),
GCD method of (Vaze et al., 2022b), and our method CiP, performed on CIFAR-10. Both (Vaze et al.,
2022b) and our features are more discriminative than DINO features. The method of (Vaze et al.,
2022b) captures better representations with more separable clusters, but some seen categories are
confounded with unseen categories, e.g., cat with dog and automobile with truck, while CiP features
show better cluster boundaries for seen and unseen categories, further validating the quality of our
learned representation.
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Table 2: Results on fine-grained image recognition datasets.
CUB-200 SCars Herbarium19

Classes All Seen Unseen All Seen Unseen All Seen Unseen

RankStats+ (Han et al., 2021) 33.3 51.6 24.2 28.3 61.8 12.1 27.9 55.8 12.8
UNO+ (Fini et al., 2021) 35.1 49.0 28.1 35.5 70.5 18.6 28.3 53.7 14.7
ORCA (Cao et al., 2022) 35.0 35.6 34.8 32.6 47.0 25.7 24.6 26.5 23.7
Vaze et al. (Vaze et al., 2022b) 51.3 56.6 48.7 39.0 57.6 29.9 35.4 51.0 27.0

Ours (CiP) 57.1±0.4 58.7±1.8 55.6±0.9 47.0±2.3 61.5±3.5 40.1±1.9 36.8±0.6 45.4±1.9 32.6±0.3

DINO Vaze et al. CiP
airplane
automobile
bird
cat
deer
dog*
frog*
horse*
ship*
truck*

Figure 2: Visualization on CIFAR-10. We conduct t-SNE projection on features extracted by raw
DINO, GCD method of (Vaze et al., 2022b) and our CiP. We randomly sample 1000 images of each
class from CIFAR-10 to visualize. Unseen categories are marked with *.

4.3 ESTIMATING THE UNKNOWN CLASS NUMBER

In Tab. 3, we report our estimated class numbers on both generic and fine-grained datasets using the
joint reference score sc as described in Sec. 3.4. Overall, CiP achieves comparable results with the
method of (Vaze et al., 2022b) costing slightly more memory, but it is far more efficient (40-150 times
faster) and also does not require a list of predefined possible numbers. Even for the most difficult
Herbarium19 dataset, CiP only takes a few minutes to finish, while it takes more than an hour for
a single run of k-means due to large class number, let alone multiple runs from a predefined list of
possible class numbers.

Table 3: Estimation of class number in unlabelled data.
Method CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 SCars Herbarium19

Ground truth — 10 100 100 200 196 683

Estimate (error) Vaze et al. (Vaze et al., 2022b) 9 (10%) 100 (0%) 109 (9%) 231 (16%) 230 (17%) 520 (24%)
Ours (CiP) 12 (20%) 103 (3%) 100 (0%) 155 (23%) 182 (7%) 490 (28%)

Runtime Vaze et al. (Vaze et al., 2022b) 15394s 27755s 64524s 7197s 8863s 63901s
Ours (CiP) 102s 528s 444s 126s 168s 1654s

Memory Vaze et al. (Vaze et al., 2022b) 2206MB 2207MB 3760MB 1354MB 1394MB 1902MB
Ours (CiP) 2535MB 2932MB 5848MB 1392MB 1451MB 2205MB

4.4 ABLATION STUDY

Approaches to generate positive relations. In Tab. 4, we compare our SNC with multiple different
approaches to generate positive relations for joint contrastive learning, including directly using nearest
neighbor (Zhong et al., 2021) in every mini-batch and conducting various clustering algorithms to
obtain pseudo labels, e.g., FINCH (Sarfraz et al., 2019), k-means (MacQueen et al., 1967), and
semi-supervised k-means (Han et al., 2019; Vaze et al., 2022b). Non-hierarchical clustering methods
(k-means and semi-supervised k-means) require a given cluster number. For k-means, we use the
ground-truth class number. For semi-supervised k-means, we use both the ground truth and the
overclustering number (twice the ground truth). We evaluate performance using both proposed SNC
and semi-supervised k-means for comparison. It is clear that SNC reaches higher accuracy than
semi-supervised k-means at test time. For generating pseudo positive relations, our method achieves
best performance among all approaches. FINCH performs great on CIFAR-100 but degrades on
CUB-200. We hypothesize that because FINCH is purely unsupervised without leveraging labelled
data, it fails to generate reliable pseudo labels of more semantically similar instances on fine-grained
CUB-200. Overclustering semi-supervised k-means achieves comparable performance on CUB-200
but performs bad on CIFAR-100. This might be caused by intrinsic poorer performance of semi-
supervised k-means compared to proposed SNC, which results in worse pseudo labels. We further
report the mean purity curve of pseudo labels generated by all clustering methods throughout training
process in Fig. 3. We can observe that pseudo labels produced by SNC remain the highest purity on
both datasets throughout the entire training process.
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Table 4: Results using different approaches to generate positive relations. Semi-k-means⋆ denotes
using semi-supervised k-means with an overclustering class number (2 × ground truth). The results
evaluated with SNC are reported of normal size (left), and those evaluated with semi-supervised
k-means are reported of smaller size (right).

CIFAR-100 CUB-200

Classes All Seen Unseen All Seen Unseen

w/ nearest neighbor 80.4 74.9 82.9 77.5 75.5 69.7 51.9 45.8 56.7 48.2 49.5 44.6
w/ FINCH 81.4 76.6 81.7 75.7 80.7 78.6 51.4 47.9 51.8 45.1 51.3 49.3
w/ k-means 76.7 72.2 77.1 70.4 75.7 75.8 52.8 48.6 53.1 45.5 52.7 50.2
w/ semi-k-means 78.1 73.8 81.5 73.3 71.3 74.8 54.5 48.7 54.1 43.9 54.7 51.2
w/ semi-k-means⋆ 76.8 71.9 76.9 71.8 76.4 72.1 56.6 48.1 57.1 50.2 56.4 47.1

w/ SNC (ours) 81.5 76.5 82.4 75.1 79.7 79.3 57.1 50.2 58.7 48.8 55.6 51.0
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Figure 3: Purity curve.

Effectiveness of cross-instance positive relations. In this paper, we use SNC to generate pair-wise
relations of unlabelled data, as well as relations between unlabelled and labelled data in supervised
contrastive learning. In Tab. 5, we evaluate different settings to verify the effectiveness of both of
these two relation types. We report evaluation results of SNC and semi-supervised k-means, showing
higher accuracy achieved by SNC. Row (0) represents performance of the state-of-the-art GCD
method of (Vaze et al., 2022b) without using any pseudo relations. Rows (1)-(3) show the effect of
using different clustering methods to introduce relations of unlabelled and unlabelled pairs (u-u). All
methods show improvements over (Vaze et al., 2022b). Among all relation generating methods, SNC
brings the largest improvement, outperforming k-means and FINCH. Row (4) shows only adding
pair-wise relations of labelled and unlabelled data (u-ℓ) is not sufficient to boost baseline performance.
Row (5) is our full method, which achieves the best performance. From (3)-(5), we clearly find fully
using relations u-u and u-ℓ generated from SNC benefits our method to the greatest extent, which
also substantially improves performance on unseen categories.

Table 5: Results using different relations. u-u denotes pair-wise relations between unlabelled and
unlabelled data, and u-ℓ denotes pair-wise relations between unlabelled and labelled data. Rows
(3)-(4) mean applying SNC on all data but only using u-u or u-ℓ for pseudo positive relations.

k-means FINCH SNC u-u u-ℓ CIFAR-100 CUB-200

All Seen Unseen All Seen Unseen

(0) ✗ ✗ ✗ ✗ ✗ 73.6 70.8 80.4 77.6 60.0 57.0 53.1 51.3 57.6 56.6 50.8 48.7
(1) ✓ ✗ ✗ ✓ ✗ 77.2 73.1 78.3 74.4 74.9 70.7 56.0 51.0 53.8 42.8 57.1 55.2
(2) ✗ ✓ ✗ ✓ ✗ 80.3 78.2 79.5 76.9 81.7 80.9 51.3 46.1 45.7 40.0 54.0 49.1
(3) ✗ ✗ ✓ ✓ ✗ 80.5 76.5 80.6 76.3 80.3 76.9 56.6 52.7 57.2 51.5 56.3 53.3
(4) ✗ ✗ ✓ ✗ ✓ 72.9 70.0 82.0 79.1 54.8 51.6 51.0 45.5 52.9 44.4 50.1 46.0
(5) ✗ ✗ ✓ ✓ ✓ 81.5 76.5 82.4 75.1 79.7 79.3 57.1 50.2 58.7 48.8 55.6 51.0

5 CONCLUSION

We have presented a framework CiP for the challenging problem of GCD. Our framework leverages
the cross-instance positive relations that are obtained with SNC, an efficient parameter-free hierar-
chical clustering algorithm we develop for the GCD setting. With the positive relations obtained by
SNC, we can learn better representation for GCD, and the label assignment on the unlabelled data can
be obtained from a single run of SNC, which is far more efficient than the semi-supervised k-means
used in the state-of-the-art method. We also show that SNC can be used to estimate the unknown
class number in the unlabelled data with higher efficiency.
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ETHICS STATEMENT

The potential negative impacts lie in two aspects. On the one hand, although the performance
achieves the state-of-the-art, it still lags behind fully supervised models, making it risky to apply to
scenarios with strict safety and accuracy requirements, e.g., autonomous driving and medical image
classification. On the other hand, due to unseen labels, manually checking the results is necessary in
real applications, drawing attention to sensitive contexts (e.g., private data) and inappropriate contents
(e.g., violent images).
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Figure 4: A more detailed illustration of SNC. SNC iteratively clusters instances from the bottom to
the top, producing multiple levels of different partitions. At each level, the auto-adaptive chain length
λ is dynamically determined by the number of labelled ‘instances’ nℓ in each class. The connected
components are extracted with selective neighbors (SNs), forming the clusters at each level.

A.1 MORE ANALYSIS ON SNC

We present a more detailed illustration of our proposed SNC in Fig. 4. SNC is inspired by the idea
from FINCH, but they are significantly different in two key aspects: (1) FINCH treats all instances
the same and simply uses nearest neighbors to construct graphs; SNC uses a novel selective neighbor
strategy tailored for the GCD setting to construct graphs, treating labelled and unlabelled instances
differently. (2) SNC is able to cluster a mixed set of labelled and unlabelled data fully exploiting
label supervision, but FINCH is not.

Effectivenss of SNC on different learned features. In Tab. 6, we evaluate SNC1 on features
extracted from DINO (Caron et al., 2021), GCD method of (Vaze et al., 2022b), and our method
CiP. We also compare SNC with semi-supervised k-means (Han et al., 2019; Vaze et al., 2022b). We
can observe that SNC surpasses semi-supervised k-means with a significant margin on all features,
except those extracted by (Vaze et al., 2022b) on ImageNet-100. Moreover, semi-supervised k-means
with our features performs better than with other features. Overall, SNC with our learned features
gives the best performance.

Table 6: Effectivenss of SNC on different learned features.
Clustering Features CIFAR-100 ImageNet-100 CUB-200 SCars

All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

Semi-k-means
DINO (Caron et al., 2021) 60.4 63.1 54.9 72.8 70.6 73.8 36.7 37.9 36.0 12.3 13.7 11.6
Vaze et al. (Vaze et al., 2022b) 74.5 81.9 60.0 69.2 66.6 70.5 53.5 59.9 50.3 40.8 67.6 27.8
CiP (ours) 76.5 75.1 79.3 72.8 70.6 73.8 49.8 46.1 51.7 42.6 55.2 36.5

SNC (ours)
DINO (Caron et al., 2021) 65.5 69.0 58.3 76.8 81.1 74.6 36.7 35.0 37.5 12.4 15.8 10.7
Vaze et al. (Vaze et al., 2022b) 77.8 87.4 58.6 61.4 76.7 53.8 55.9 61.6 53.0 41.3 62.9 30.8
CiP (ours) 81.5 82.4 79.7 80.5 84.9 78.3 57.1 58.7 55.6 47.0 61.5 40.1

Different choices of chain lengths λ. The choice of chain lengths should be positively correlated
to (but smaller than) the labelled instance number, while the number should not be too small. The

1When representing a clustering method here, SNC denotes selective neighbor clustering with one-by-one
merging.
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square root used in our paper is the simplest formulation we think of. In Tab. 7, we experiment on
other formulations which satisfies the above relationship, e.g., λ = ⌈ 3

√
nℓ ⌉ and λ = ⌈nℓ/2⌉, and our

formulation performs the best. We also compare our dynamic λ with a possible alternative of a fixed
λ. For the fixed chain length, we conduct multiple experiments with different length values to find
the best length giving the highest accuracy for each dataset. We observe that the best chain length
varies from dataset to dataset, and there is no single fixed λ that gives the best performance for all
datasets. In contrast, our dynamic λ consistently outperforms the fixed one, and it can automatically
adjust the chain length for different datasets and different levels, without requiring any tuning nor
validation like the fixed one.

Table 7: Comparison of different formulations of chain length λ. The best fixed length values are
8 for CIFAR-100 and 3 for CUB-200.

CIFAR-100 CUB-200

Classes All Seen Unseen All Seen Unseen

Fixed 80.2 79.7 81.3 54.3 58.8 52.1
⌈nℓ/2⌉ 81.4 84.5 75.2 45.5 45.5 45.5
⌈ 3
√
nℓ ⌉ 72.5 77.1 63.2 42.4 45.0 41.1

⌈√nℓ ⌉ (ours) 81.5 82.4 79.7 57.1 58.7 55.6

Impacts of different levels for positive relation generation. A proper level for positive relation
generation should overcluster the labelled data to some extent, such that reliable positive relations
can be generated. Level 1 is not a valid choice because no positive relations can be generated if each
instance is treated as a cluster. In Tab. 8, we present the performance using levels 2, 3, and 4 to
generate pseudo labels and also compare with the previous state-of-the-art baseline by (Vaze et al.,
2022b). We empirically find that the overclustering levels 3 and 4 are similarly good, while level 2 is
worse because less positive relations are explored in each mini-batch. Even using level 2, our method
still performs on par with (Vaze et al., 2022b).

Table 8: Comparison of different levels. Compare level 2, 3, 4 and baseline (Vaze et al., 2022b).
CIFAR-100 CUB-200

Classes All Seen Unseen All Seen Unseen

Baseline (Vaze et al., 2022b) 70.8 77.6 57.0 51.3 56.6 48.7
CiP w/ level 2 72.4 79.6 58.0 50.9 55.8 48.5
CiP w/ level 3 (ours) 81.5 82.4 79.7 57.1 58.7 55.6
CiP w/ level 4 81.6 81.9 80.8 52.9 53.1 52.8

A.2 A UNIFIED LOSS

In this paper, to leverage pseudo labels produced by SNC, we jointly train our model with two
supervised contrastive losses, one using true positive relations of labelled data and the other using
pseudo positive relations of all data. Indeed, it is possible to train the model with a unified loss by
replacing the pseudo relations in the second term of our loss, and remove the first term. Formally, let
RB(i) be the set of positive relations for instance i. The unified loss Lr

i can be written as

Lr
i = − 1

|RB(i)|
∑

q∈RB(i)

log
exp(zi · zq/τ)∑

n∈B,n̸=i exp(zi · zn/τ)
, (6)

where

RB(i) =

{
GB(i) ∪ (PB(i) ∩ IU ) if i ∈ IL
PB(i) if i ∈ IU

, (7)

IL and IU denote the instance indices of the labelled and unlabelled set respectively. In Tab. 9,
we compare our two-term loss formulation with this unified loss formulation. It turns out that our
two-term loss appears to be more effective. We hypothesize the performance degradation of Eq. (6) is
caused by unbalanced granularity of labelled data and unlabelled data, due to mixture of overclustering
pseudo labels and non-overclustering ground-truth labels.
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Table 9: Results using different loss formulations..
CIFAR-100 CUB-200

Classes All Seen Unseen All Seen Unseen

Eq. (6) 79.3 80.3 77.3 53.9 53.5 54.0
Ours (CiP) 81.5 82.4 79.7 57.1 58.7 55.6
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Figure 5: Curves throughout class number estimation. We report curves of accuracy on the
labelled subset Dv

L, silhouette score on the unlabelled data DU , and our reference score on Dv
L ∪ DU .

Note that the x-axis should be read from right to left, as the merging start from the lower level to the
upper level.

A.3 CLASS NUMBER ESTIMATION

In Fig. 5, we show how labelled accuracy, silhouette score and reference score change throughout
the whole procedure of class number estimation with one-by-one merging. The accuracy on the
labelled instances or the silhouette score alone does not well fit the actual cluster number. By jointly
considering both, we can see the actual class number aligns well with our suggested reference score.

A.4 TIME EFFICIENCY

Here, we evaluate the time efficiency of CiP, including both category discovery and class number
estimation.

Category discovery efficiency. The latency for the category discovery process mainly consist of
two parts: feature extraction and label assignment. In Tab. 10, we present the feature extraction
time. All methods consume roughly the same amount of time for feature extraction per image.
RankStats+ (Han et al., 2021), UNO+ (Fini et al., 2021), and ORCA (Cao et al., 2022) assign
labels with a linear classifier, thanks to the assumption of known category number. Hence, the label
assignment process is simply done by a fast feed-forward pass of a linear classifier, costing omitable
time (< 0.0005 second per image), though their performance lags. Our CiP and (Vaze et al., 2022b)
contain the transfer clustering process for label assignment, for which CiP is 6-30 times faster than
semi-supervised k-means used in (Vaze et al., 2022b) (see Tab. 11).

Table 11: Time cost in clustering.
CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 SCars Herbarium19

Semi-k-means 346s 688s 3863s 256s 356s 6053s
Ours (SNC w/ one-by-one merging) 58s 111s 118s 36s 50s 917s
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Table 10: Time cost in feature extraction per image.
Time cost

RankStats+ (Han et al., 2021) 0.015s±0.001
UNO+ (Fini et al., 2021) 0.017s±0.001
ORCA (Cao et al., 2022) 0.015s±0.001
Vaze et al. (Vaze et al., 2022b) 0.014s±0.001
Ours (CiP) 0.014s±0.001

Estimating class number. Compared to repeatedly running k-means with different class numbers
as in (Vaze et al., 2022b), CiP only requires a single run to obtain the estimated class number, thus
significantly increasing efficiency. In Tab. 12, CiP is 40-150 times faster than (Vaze et al., 2022b),
which utilizes k-means with the optimization of Brent’s algorithm (Brent, 1971).

Table 12: Time consumed in estimating class number.
CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 SCars Herbarium19

Vaze et al. (Vaze et al., 2022b) 15394s 27755s 64524s 7197s 8863s 63901s
Ours (CiP) 102s 528s 444s 126s 168s 1654s

A.5 ATTENTION MAP VISUALIZATION

ViT (Dosovitskiy et al., 2020) has a multi-head attention design, with each head focusing on different
context of the image. For the final block of ViT, the input X ∈ R(HW+1)×D, corresponding to a
feature of HW patches and a [CLS] token, is fed into multi-heads, which can be expressed as

MultiHead(X) = [head1, head2, . . . , headh]W
O (8)

where

headj = softmax(
QjK

T
j√

dk
)Vj (9)

Qj = XWQ
j (10)

Kj = XWK
j (11)

Vj = XWV
j (12)

where dk is the dimension of queries and keys. In our model, patch size is 16 × 16 pixels and
HW = 14 × 14 = 196. The number of heads h is 12. Referring to (Vaswani et al., 2017),

consider attention map of head j Aj = softmax(
QjK

T
j√

dk
) ∈ [0, 1](HW+1)×(HW+1). Aj describes

the similarity of one feature to every other feature captured in head j. The first row of Aj shows how
head j attends [CLS] token to every spatial patch of the input image. In Fig. 6, we visualize some
of the interpretable attention heads to show semantic regions that ViT attends to. We can observe that
our model CiP, as well as DINO (Caron et al., 2021) and (Vaze et al., 2022b), can attend to specific
semantic object regions. For instance, CiP attends three heads respectively to ‘license plate’, ‘light’
and ‘wheels’ for Stanford Cars (head 1 fails in row 1), and to ‘body’, ‘head’ and ‘neck’ for CUB-200.

A.6 DATA SPLITS

In Tab. 13, we show the details on data splits of CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), ImageNet-100 (Deng et al., 2009), CUB-200 (Wah et al., 2011),
Stanford Cars (Krause et al., 2013) and Herbarium19 (Tan et al., 2019) in our experiments.

A.7 SPECIAL CASES OF UNLABELLED DATA

In the real world, we may meet the scenarios where unlabelled data are all from seen or unseen
classes. We investigate into such scenarios and conduct experiments to validate effectiveness of our
method. Our experiment are under two settings: (1) applying our pretrained models in the main
paper to seen-only and unseen-only unlabelled data; (2) retraining the models with seen-only and
unseen-only unlabelled data. In Tab. 14, we can observe that our model maintains strong performance
in all cases.
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ViT w/ DINO ViT w/ Vaze et al. ViT w/ CiP
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Figure 6: Attention visualizations. We report visualization results of DINO (Caron et al., 2021)
(left), (Vaze et al., 2022b) (middle) and CiP (right) on Stanford Cars (top) and CUB-200 (bottom).
For each dataset, we show two rows of ‘Seen’ categories (solid green box) and two rows of ‘Unseen’
categories (dashed red box). Zoom in to see attention details.

Table 13: Data splits of all datasets. We present the number of classes in the labelled and unlabelled
set (|YL|, |YU |), and the number of images (|DL|, |DU |).

CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 SCars Herbarium19

|YL| 5 80 50 100 98 341
|YU | 10 100 100 200 196 683

|DL| 12.5k 20k 32.5k 1.5k 2.0k 8.5k
|DU | 37.5k 30k 97.5k 4.5k 6.1k 25.7k

Table 14: Performance on seen-only and unseen-only unlabelled data. “original setting” denotes
the performance of CiP dealing with GCD; “direct testing” denotes the performance of CiP dealing
with seen-only or unseen-only unlabelled data using pretrained GCD model; “retraining” denotes the
performance of retrained CiP dealing with seen-only or unseen-only unlabelled data.

CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 SCars Herbarium19

Seen
original setting 97.5 82.4 84.9 58.7 61.5 45.4
direct testing 98.5 84.4 83.3 79.1 72.0 55.4

retraining 98.9 87.0 87.3 81.9 75.2 66.3

Unseen
original setting 97.7 79.7 78.3 55.6 40.1 32.6
direct testing 97.6 82.7 74.3 56.5 39.3 37.9

retraining 98.4 78.9 79.3 60.4 42.5 41.3
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A.8 LIMITATIONS

We note limitations of our method. In our current experiments, we consider images from the same
curated dataset. However, in practice, we might want to transfer concepts from one dataset to another,
which may have different data distribution, introducing more challenges. For example, the unlabelled
data could follow the long-tailed distribution. Another limitation is that currently, we need to train
the model on both labelled and unlabelled data jointly. However, in real world, there are often cases
in which we do not have access to any labelled data from the seen classes when facing the unlabelled
data. We consider these as our future research directions.

A.9 LICENSE FOR EXPERIMENTAL DATASETS

All datasets used in this paper are permitted for research use. CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009) are released under MIT License, allowing for research propose. ImageNet-100 is the
subset of ImageNet (Deng et al., 2009), which allows non-commercial research use. Similarly,
CUB-200 (Wah et al., 2011), Stanford Cars (Krause et al., 2013) and Herbarium19 (Tan et al., 2019)
are also exclusive for non-commercial research purpose.
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