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Abstract
Automatic music generation with artificial intelligence typi-
cally requires a large amount of data which is hard to obtain
for many less common genres and musical instruments. To
tackle this issue, we present ongoing work and preliminary
findings on the possibility for deep models to transfer knowl-
edge from language to music, by finetuning large language
models pre-trained on a massive text corpus on only hundreds
of MIDI files of drum performances. We show that by do-
ing so, one of the largest, state-of-the-art models (GPT3) is
capable of generating reasonable drum grooves, while mod-
els that are not pre-trained (Transformer) shows no such abil-
ity beyond naive repetition. Evaluating generated music is a
challenging task, more so is evaluating drum grooves with
little precedence in literature. Hence, we propose a tailored
structural evaluation method and analyze drum grooves pro-
duced by GPT3 compared to those played by human profes-
sionals, exposing the strengths and weaknesses of such gen-
eration by language-to-music transfer. Our findings suggest
that language-to-music transfer learning with large language
models is viable and promising.1

Introduction
Music understanding and generation using artificial intelli-
gence has a long history (Roads 1985) and has gained steady
interests in recent years (Kaliakatsos-Papakostas, Floros,
and Vrahatis 2020). One strand of work focuses on sym-
bolic music rather than audio, where music is represented as
sequential data such as MIDI. While the analogy between
music and language has long been studied (McMullen and
Saffran 2004), the symbolic representation of music exhibits
an even clearer similarity to language in their surface form.
For example, music has notes, measures, and sections, while
language has tokens, sentences, and paragraphs. It is thus
intuitive that some work has applied natural language pro-
cessing (NLP) techniques to music. Specifically, most have
attempted to learn an embedding space of music (Liang et al.
2020) similar to that of texts.

Recent work has leveraged Transformers (Vaswani et al.
2017) for symbolic music processing (Huang et al. 2018; Yu
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1Data and code can be found at https://github.com/zharry29/
drums-with-llm. The title is a parody of the viral trend of titling
papers as “Language Models are ...” in NLP venues.

Figure 1: The sheet music of an example of our generated
drum track, demonstrating our model’s ability to somewhat
musically follow the motif and make variations. The first
two measures are provided while the rest are generated.

et al. 2022). Transformers, when pre-trained on a massive
text corpus, are known as large language models (LLMs),
the current state-of-the-art approach to many NLP tasks (De-
vlin et al. 2019; Brown et al. 2020). Notably, Zeng et al.
(2021) is one of the first and only work to pre-train a
Transformer on a large symbolic music corpus containing
more than 1 million songs, using a similar approach of pre-
training on a text corpus, achieving state-of-the-art perfor-
mance in various music understanding tasks. However, one
of the most significant limitations of this and most other
work in data-driven music processing is the large amount
of symbolic music data required for training, which is ex-
tremely challenging to obtain for less-mainstream genres,
particular styles, less-prevalent instruments, or out-of-the-
ordinary specifications, severely limiting the versatility of
such a method. Hence, low-resource symbolic music pro-
cessing remains highly challenging. For texts, on the other
hand, few-shot learning has been greatly empowered by
LLMs due to the extremely large size of their pre-training
textual data, magnitudes more than music data.

In this work, we take the first step to explore such text-
to-music transfer learning potential in LLMs. In other
words, we pose the hypothesis that present-day state-of-the-



Figure 2: The anatomy of a basic drum set, and how each
drum may appear on a sheet music.

art LLMs, pre-trained with a massive amount of textual data,
is capable of generating symbolic music with little mu-
sic data to some nontrivial extent. We specifically focus on
one instrument, the drum set, for multiple reasons. First, the
drum set is one of the most common and important instru-
ments in many genres of music such as jazz, funk, blues,
gospel, latin, pop, rock, metal, etc. Second, the symbolic
representation of the drum set is simpler than most pitched
instruments, as each note does not have a pitch but corre-
sponds to a hit on one drum. As the number of drums is usu-
ally greatly smaller than that of possible pitches, the result-
ing sequence is much shorter, and thus easier to be processed
by models. Third, the performance of a drum set typically is
endowed with more degree of freedom with regard to the
audience’s aesthetics than many other instruments, making
it an appropriate entry point for studying music generation
with LLMs, which is presumed to be highly challenging.

We focus on the task of drum generation or composi-
tion, which has a small body of published work in literature.
While most if not all all of the existing work has treated
drums as an accompaniment, we instead focus on drum solo
generation, with a convenient analogy to story generation at
which LLMs are known to excel.

We finetune a state-of-the-art LLM, GPT3 model (Brown
et al. 2020) on the Groove dataset (Gillick et al. 2019) of
about 400 drum groove performances recorded as MIDI. To
leverage the textual pre-training of GPT3, we propose a tex-
tual representation of a drum performance. We present the
following core findings:

1. The largest and smallest GPT3 models both can generate
nontrivial drum grooves after being finetuned.

2. A similar-sized model that is not pre-trained on language
data, however, cannot.

We claim that the existing automatic evaluation of music
generation is insufficient for our task. Hence, we propose
an evaluation methodology specifically for drum grooves to
both qualitatively and quantitatively evaluate the strengths
and weaknesses of machine-generated drum grooves com-
pared to those performed by humans. Finally, we provide
some preliminary listening test results, with a plan to con-
duct scaled and rigorous tests in future work.

train dev test

Total num. MIDI 373 47 35
- rock 169 16 15
- jazz 41 6 4
- latin 37 10 3
- funk 31 6 4
- hiphop 26 1 3
- others 69 8 6

Table 1: The number of MIDI files in each style in the fil-
tered Groove dataset used in this work.

The Drum Set
The drum set, also known as the drum kit, or colloquially
the drums, is a compound musical instrument consisting of
many sub-instruments, including drums and cymbals, both
generally referred to as drums in this paper. Here, we as-
sume a simple, stereotypical drum set with a hi-hat, a crash
cymbal, a ride cymbal, a bass drum, a snare drum, and a tom
(see Figure 2, but without the hi-tom and the floor-tom2).

The performance on a drum set can be notated as sheet
music, a human-readable symbolic representation, or as
MIDI, which records the when each drum is hit at what ve-
locity, a computer-readable symbolic representation.

Dataset
Among just a few datasets of drum performances, Google’s
Groove MIDI Dataset3 is the largest and the most high-
quality to date, containing 1,150 MIDI files and over 22,000
measures of drumming by 10 professional drummers. In
this dataset, the drum performances are either grooves, long
sequences of rhythmic ideas, or fills, short bursts of free-
flowing expressions. As we focus on drum generation or
composition throughout a long sequence, we only consider
the grooves in the dataset. Each MIDI is marked with the
style (e.g., rock, funk, gospel, etc.), the tempo (in beats per
minute, BPM), and the time signature. For simplicity, we
only consider those in the time signature of 4/4. We follow
the train-development-test splits in the dataset. The statistics
of the filtered Groove dataset are shown in Figure 1.

The Groove dataset was originally proposed to study mi-
crotiming and expressive performance, and therefore the
drum MIDI files encapsulate human imperfection. How-
ever, we re-purpose the dataset to study drum composition,
leading to the following choice of simplification. First, we
quantize all notes to a 16-th note grid. In other words, all
note events in the MIDI are re-timed to the closest of the
16 equidistant timestamps in a measure. An implication of
such quantization is that deliberate off-grid playing such as
triplets or swing feels is lost. Second, we discard the velocity
information (i.e., how hard a drum is hit), which can usually
be inferred post-hoc to a coarse-grained extent. Third, while
the drum set can be played with many expressions and artic-
ulations (e.g., hitting different part of a drum using different

2https://i.redd.it/cen72phsihb81.png
3https://magenta.tensorflow.org/datasets/groove



Figure 3: The drumroll representation of an example drum
sheet music. Each measure corresponds to 16 lines in texts,
where each line corresponds to a 16-th note. Each line con-
tains 6 characters corresponding to 6 drums, where ‘o’ and
‘-’ denotes whether each drum is hit.

part of different tools), we reduce them to simply the basic
articulation (head hit) of the hi-hat, crash cymbal, ride cym-
bal, bass drum, snare drum, and floor tom. In other words,
each note only has 6 possible values. Fourth, we truncate
each MIDI file to only the first 16 measures; at 128 BPM,
for example, this equates to 30 seconds. Finally, we remove
empty leading measures whose first quarter note is a rest,
and ignore grooves with less than 8 measures.

Experiments

Representation

As discussed before, LLMs have demonstrated extremely
strong few-shot transfer learning ability from one textual
task to other. To possibly exploit this in music, it is nec-
essary to come up with a textual representation of the drum
grooves. We propose a pianoroll-like representation (Brun-
ner et al. 2018), referred to as a drumroll, that is essentially
a multi-line string where each row corresponds to a 16-th
note in the time sequence, and each character in a line cor-
responds to whether a drum is hit. Specifically, each char-
acter is ‘o’ if the particular drum is hit at the particular 16-
th note, and ‘-’ otherwise. See Figure 3 for an example. To
help LLMs identify the boundary between measures, we add
a newline of “SEP” between every 16 lines (a measure) and
a newline of “END” after the final line.

Task

We focus on an instance of drum generation referred to as
drum completion, where the model is given the first 2 mea-
sures and must complete the rest of the 14 measures of the
groove. The model may terminate at any point. This is anal-
ogous to conditioned story generation in NLP.

Model
First, we consider two naive baselines, randomly choos-
ing whether to play a note and repeating the second given
measure. We then finetune a state-of-the-art LLM, OpenAI’s
GPT3 Davinci with 175 billion parameters, on the training
set. In each file of a drum groove, the input (prompt) is the
first 2 measures and the output (completion) is the remain-
ing 14 measures. The temperature is set to 0.85 to encour-
age creativity. Finetuning the model on the training set costs
$38.33 and takes around 30 minutes using OpenAI’s API.

To ascertain the role model size plays in drum generation,
we further consider a smaller GPT3 Ada model with 350
million parameters, which has been pre-trained on the same
corpus and we use the identical settings as the larger Davinci
model. Finetuning the model on the training set costs $0.51
and takes around 5 minutes using OpenAI’s API. Both GPT3
models are later found to be able to generate nontrivial drum
grooves.

The ascertain the role language pre-training plays in drum
generation, we set the control to be an un-pre-trained GPT3
model, namely a Transformer (Vaswani et al. 2017) with
the same size as GPT3. Because our computing resources
cannot accommodate a model as big as Davinci, and also
because merely 373 text files each with 256 lines in the
training set are likely insufficient to converge the training
loss, we finetune a smaller, un-pre-trained Transformer with
85 million parameters, the same magnitude as GPT3 Ada.
While the training loss does converge, the model predicts
the same certain sequence regardless of what 2 measures
are provided, performing no better than the random base-
line. This suggests that language pre-training is a necessary
condition for effective drum generation.

Evaluation
How good are the drum grooves generated by GPT3? We
follow the convention of music generation and consider
both objective/automatic and subjective/human evaluation.
We report our findings based on the test set.

Objective Evaluation
We deem the established methods of automatic evaluation
of symbolic music generation unsuitable for our task. To
name a few: perplexity, for example, has long been shown
to exhibit low correlation with human perception in NLP
(Kuribayashi et al. 2021); structural similarity, while a rea-
sonable metric, is often approximated with some simple sim-
ilarity measures (Yu et al. 2022) and discourages creativity
that stray from the reference, which by no means should be
treated as the ground-truth.

In contrast, we consider what constitutes a good drum
groove and propose a structural evaluation called the pat-
tern and fill analysis. We assume that often a good drum
groove minimally satisfies the following criteria:

1. There exists one or more consistent patterns of some
rhythmic idea and occasional change-ups known as fills.

2. The measures in a pattern are sufficiently similar, but ide-
ally not identical.



Figure 4: The variation (y-axis) of each measure (x-axis) in 8 randomly sampled drum grooves from each style.

human random repeat Davinci Ada

avg. variation 5.1 40.4 0 3.0 3.4
avg. intra-
centroids 10.1 5.7 0 6.9 7.2

avg. inter-
centroids 1.4 1.2 0 0.6 0.8

Table 2: Qualitative statistics of drum grooves produced with
different means. The distance between cluster centroids sug-
gests how dissimilar the patterns and the fills are. The dis-
tance between a cluster centroid and a measure suggests the
amount that the measures in one class vary by.

3. The measures in a fill are sufficiently different from those
in adjacent patterns.

Later, we verify that the human-performed grooves
mostly satisfy these criteria.

In a drum performance represented as a drumroll, each
measure is represented by a string of 16 lines (Figure 3). To
classify each measure as either a pattern or a fill, we take a
sliding window of size 3 centered at some measure mi and
calculate the edit distances between this measure and its two
neighbors. The minimum of these two distances is referred
to as the variation of the central measure:

variation(mi) = min(dist(mi,mi−1), dist(mi,mi+1))

Intuitively, the variation of a measure in a pattern would
be small, while that in a fill would be large. Therefore, in a
good drum groove, the variation of all measures (except the
first and the last) can be expected to be clearly separated.

Next, we plot the variation of each measure sequentially
for each drum groove in the development set and observe
consistent patterns. Eight randomly chosen grooves of dif-
ferent styles are shown in Figure 4. Intuitively, for human
performances, the variation of a measure in a pattern should

human random repeat Davinci Ada

Repetitive 0 0 35 3 7
Consistent 32 0 0 29 15
Chaotic 3 35 0 3 13
Has fill 30 0 0 13 10
Avg. length 13.3 16 16 13.7 12.5

Table 3: The number of drum grooves judged to satisfy each
criteria produced by each model in the test set.

be small, while that in a fill should be large. This is indeed
the case for most examples, where human-played patterns
are consistent but with some variations (plateaus), while fills
are largely different (spikes). As expected, the random base-
line results in high variation across all measures, while the
repeat baseline no variation at all – both are undesirable.

Upon qualitative examination, the two GPT3 models of
different sizes can clearly generate nontrivial drum grooves,
with many plateaus and occasional spikes, though less
spikes than those performed by human. Quantitatively, we
calculate the average variation of all measures in all grooves.
As shown in Table 2, drum grooves generated by GPT3
models tend to vary less than human. To see if the generated
patterns have less variation while the fills have much more
variation, we perform K-means to separate the measures in
a drum groove into two clusters by their variation. We then
calculate the average intra-distance between the two cen-
troids, and the average inter-distance between each measure
and the centroid it is assigned to. As shown in Table 2, the
intra-centroid distance shows that the grooves performed by
human have a much clearer-cut pattern-versus-fill separation
than GPT3, than the random baseline. The inter-centroid dis-
tance shows that the spread of variations within the class
of pattern or fill is more pronounced in human-performed
grooves than in GPT3-generated ones.



Figure 5: The sheet music of a satisfactory drum groove generated by GPT3 (above), juxtaposed with the groove with the same
first 2 measures played by human from the dataset (below). We annotate each measure as either a pattern or a fill. For example,
patternx.a and patternx.b are adjacent, have the same accented back-beats, but are not identical.

Subjective Evaluation

Our objective evaluation is clearly informative but insuffi-
cient. Hence, we conduct a listening test and perform an er-
ror analysis based on the following criteria:
• Is the groove repetitive, meaning there is little or no vari-

ation among measures?
• Is the groove consistent, meaning there is some variation

among measures but a steady rhythmic idea (specifically,
the back-beat placement) can be followed?

• Is the groove chaotic, meaning there is either too much
variation, or a lack of a clear rhythmic idea?

• Does the groove contain any reasonable drum fill?
While scaling up this analysis rigorously with carefully

chosen subjects is left for future work, our own judgements
are shown in Table 2 as preliminary findings. Concretely, all
drum grooves produced via different means are shuffled and
randomly present to one of the authors who has had years
of training in drumming. Naturally, all randomly generated
grooves are judged as chaotic without any consistent mo-
tif, while all repeated ones are by nature repetitive. For the
grooves performed by human, most are judged as consis-
tent and most include at least one fill which is sufficiently
different from the rest of the rhythmic patterns. In compar-
ison, grooves generated by GPT3 Davinci is only slightly
less consistent with desirable variations among measures,
but significantly less of them contain any fills, rendering the
grooves less interesting and more predictable overall. For the
smaller GPT3 Ada model, the observation holds to a larger
extent, with more inconsistent grooves and less fills.

Case Study and Takeaways
We claim that the LLMs demonstrate an impressive ability
to write good drum grooves given only hundreds of training
examples without any knowledge of what features to pay
attention to. From our objective and subjective evaluation
above, we have observed that both LLMs and human are
able to compose drum grooves with a structure and some
variations. Why, however, are models’ drum composition
still worse than human’s? We postulate several factors.

We observe that a common source of the lack of musical-
ity in machine-generated drum grooves stems from the mis-
placement of back-beats, which are steadily accented beats
in a measure, usually the 2nd and the 4th in 4/4 in many gen-
res of music. Human drummers, when playing variations,
tend to respect the back-beat placements, while models tend
to disregard such concept. Another source of the lack of mu-
sicality is the lack of drum fills. While human drummers
often inherently think about the cycle between patterns and
fills to give a captivating performance, models are yet to re-
alize the importance of those occasional deviations.

To qualitatively examine these claims, we showcase two
sets drum grooves composed by GPT3, one showcasing its
strengths and one its weaknesses, along with the human per-
formed grooves with the same first 2 measures.

A positive example is shown in Figure 5. Clearly, both
grooves produced by human and GPT3 alike contain consis-
tent patterns interspersed with fills, a prototypical structure
that is expected and desired by most audience. Closely ex-
amining the pattern groupings, both grooves vary the place-



Figure 6: The sheet music of two problematic drum grooves generated by GPT3 (the 1st and 3rd), juxtaposed with those
performed by human (the 2nd and 4th). In the first case, GPT3 generates an extra note at the beginning of the fourth measure,
displacing all grooves afterwards. In the second case, GPT3 generates strictly repeated measures; the rest are omitted.

ment of the bass drum and the snare drum, known as syn-
copation, while keeping the back-beats at the 2nd and 4th
quarter note in tact. As a typical drum groove, patterns in
both grooves consistently place a snare drum hit in all pat-
terns (with two exceptions in human’s pattern 3.1 and 3.2).
Such composition is highly desirable, as the steady back-
beat placement guides the listener with a solid rhythmic
foundation, while the variations keep the groove interest-
ing and natural. Besides the ability to conforming to human
drummers’ standard practice, this example also showcases
LLMs’ ability to be creative. While the human-performed
groove closely adheres to the template of 3 measures of
patterns followed by 1 measure of fill, the GPT3-generated
groove does not. Instead, it employs multi-measure fills, and
more interestingly, grouping of an odd number of patterns
followed by fills, which is uncommon in the genre.

Two negative examples are shown in Figure 6, repre-
senting two common problems of GPT3-generated drum
grooves. This first case is referred to as displaced mea-
sures. When human drummers play a pattern, they often
fit each measure with some rhythmic idea. In other words,
the boundaries between two measures are often clear. In
our drumroll representation, each measure, 16 lines of texts,
is followed by a newline of ‘SEP’ to denote such bound-
ary. However, GPT3 Ada sometimes fail to respect these
boundaries and displaces the measures, thus having more
“chaotic” patterns as reported in Table 3. In comparison,
GPT3 Davinci makes a lot less such mistakes. The second

case demonstrates LLMs’ known drawback of the proclivity
to repeat generations. In the given example, GPT3 Davinci
generates 14 identical measures, while a human drummer
would “sneak in” minor variations while maintaining the
motif. It is worth noting that the repetition of drum grooves
is accepted in some music genres such as pop, dance, or
rock, but frowned upon in most others as they are often
thought to be mechanical. For drum grooves generated by
LLMs, repetition is logically a trait to be avoided.

As of now, we have taken a model-free approach where
the LLMs are only trained on some drum groove data with-
out any additional information or priors. To reinforce the
strengths and alleviate the weaknesses discussed before, we
suggest future work to take a modular approach instead of
tackling the task in an end-to-end fashion. For example, the
patterns and fills can be generated from different distribu-
tions or by different models; repetition can be explicitly
discouraged by over-generating each measure and perform
some voting or selection. Furthermore, it is possible to con-
trol the variation within a drum groove by injecting addi-
tional labels in the training data to condition the LLM on.

Improvisation or Recitation?
By far, we have hinted at LLMs’ ability to be creative with
regard to drum composition. Here, we pose one additional
question: are the LLMs really creating some drum grooves
that they have never seen during finetuning, or are they sim-
ply regurgitating what they have already seen?



Figure 7: The count (y-axis) of occurrences (x-axis) of each
generated measure appearing in the training set.

We answer this question by calculating the frequency of
each generated measure in the test set appearing in the the
training set. As shown in Figure 7, only a small portion of
generated measures are duplicates of any seen measures dur-
ing finetuning, suggesting LLMs’ ability to compose novel
and unseen drum grooves.

Related Work
Automatic music generation has a long history, and
recent work has focused on using artificial intelligence
(Kaliakatsos-Papakostas, Floros, and Vrahatis 2020) and
specifically deep neural networks. Such efforts are driven
by not only the prospect of having AI aid or replace human
composers and arrangers for a variety of music, but also the
pursuit of probing the artistic creativity of the state-of-the-art
data-driven models. Most modern work in automatic music
generation leverages model architectures that have shown to
be effective in computer vision or NLP, such as LSTM (Lyu
et al. 2015), Transformers (Huang et al. 2018; Zeng et al.
2021; Yu et al. 2022), or custom architectures to learn an em-
bedding space (Liang et al. 2020). However, the majority of
the work on music generation with AI has happened in a su-
pervised setting, which greatly limits its application to lesser
known genres or specific instruments, such as drum genera-
tion. While there is yet to be a pre-trained music generation
model as versatile as its counterpart in NLP such as GPT3,
we believe the exploration of language-to-music transfer is
necessary but uncharted.

Automatic drum generation has a small body of exist-
ing work. Similar to music generation in general, the drum
generation task can happen in various settings. In the sim-
plest setting, only one measure of drum pattern (also known
as a “beat”) is generated that is supposed to repeat through-
out a song (Vogl and Knees 2017; Bruford, McDonald, and
Sandler 2020; Tikhonov. and Yamshchikov. 2021), while
we focus on a more involved setting of non-repetitive drum
composition. Alternatively, some work simply considers the
general rhythm (Lattner and Grachten 2019), but not the
orchestration of different drums that we emphasize on. In
more practical settings, a long sequence of drum composi-
tion is generated conditioned on musical signals such as the
basslines (Makris et al. 2017, 2019). While this line of work
is most similar to ours which by far only deal with drum
solo performance, all the work above has used drum compo-
sition data with limited size and variations as well as models
(such as LSTM) that are relatively outdated in the AI com-

munity. Nevertheless, a direct comparison would be benefi-
cial in future work. Less related is another line of work fo-
cuses on the microtiming and humanization of drum perfor-
mance (Gillick et al. 2019; Burloiu and Unatc 2020; Burloiu
2020), striving to mimic human’s expressive imperfections.

A small body of work has focused on rhythm games
(Donahue, Lipton, and McAuley 2017; Liang, Li, and Ikeda
2019). While rhythm games and drumming have certain
similarities such as the focus on note placement with regard
to the rhythm, their core difference lies in that the choreog-
raphy of rhythm games is optimized for difficulty and playa-
bility, while the composition of drums is optimized for mu-
sicality. Due to this fundamental difference of motivation,
we consider this line of work to be mostly irrelevant to ours.

Large language models (LLMs) are deep neural mod-
els, such as Transformers, pre-trained on a massive text cor-
pus. For example, GPT3 is pre-trained on the compilation
of Common Crawl, containing most texts in the world wide
net, publicly available books, Wikipedia, and so on. From
BERT (Devlin et al. 2019) to GPT3 (Brown et al. 2020),
LLMs have been dominant is most tasks and applications in
NLP. While much about how LLMs work is unknown, and
thus LLMs are notoriously known as black-boxes, there is
a generally consensus that LLMs’ power can be attribute to
the large size of both the pre-training data and the model,
which give rise to LLMs’ ability to effectively adapt to low-
resource domains via transfer learning by being finetuned
on a small amount of data. Interestingly, a few recent work
has found that some of these abilities include transfer from
pre-trained language to non-language tasks, such as chess
(Stöckl 2021). While non-language textual representations
such as chess moves or music charts are similar to natural
language superficially, each manifests vastly different struc-
tures, and so we claim that transfer learning between them
is well worth studying.

Conclusion and Future Work
Our preliminary findings show that pre-trained large lan-
guage models (LLMs) finetuned with merely hundreds of
symbolic music files, such as drum grooves, can learn to
generate music non-trivially. We also provide evidence that
such ability can be attributed both the model size and the
presence of language pre-training. We hope this observation
inspires research efforts in not only low-resource music gen-
eration, but also exploration of extraordinary potentials of
LLMs. We also attempt to pioneer the automatic evaluation
of drum grooves which we hope to facilitate future work in
drum generation with AI.

We also briefly discuss our plans for future work. While
drum generation is scarce in literature and challenging to
reproduce, we will still strive compare some existing spe-
cialized models. While our current drumroll representation
ignores velocity, such information can easily be encoded by
replacing the marker ‘o’ with the velocity value. However,
the effects of doing so remains to be explored. Our method-
ology might be ported to other instruments such as piano,
which we plan to explore, whereas it would be more in-
volved to tackle multi-instrument conditioned generation.
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