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Abstract

Wasserstein distributionally robust estimators have emerged as powerful models
for prediction and decision-making under uncertainty. These estimators provide
attractive generalization guarantees: the robust objective obtained from the train-
ing distribution is an exact upper bound on the true risk with high probability.
However, existing guarantees either suffer from the curse of dimensionality, are re-
stricted to specific settings, or lead to spurious error terms. In this paper, we show
that these generalization guarantees actually hold on general classes of models, do
not suffer from the curse of dimensionality, and can even cover distribution shifts
at testing. We also prove that these results carry over to the newly-introduced
regularized versions of Wasserstein distributionally robust problems.

1 Introduction

1.1 Generalization and (Wasserstein) Distributionally Robust Models

We consider the fundamental question of generalization of machine learning models. Let us denote
by fθ the loss induced by a model parametrized by θ for some uncertain variable ξ (typically a data
point). When ξ follows some distribution P, seeking the best parameter θ writes as minimizing the
expected loss

min
θ∈Θ

Eξ∼P[fθ(ξ)] .

We usually do not have a direct knowledge of P but rather we have access to samples (ξi)
n
i=1

independently drawn from P. The empirical risk minimization approach then consists in minimizing
the expected loss over the associated empirical distribution P̂n = 1

n

∑n
i=1δξi (as a proxy for the

expected loss over P), i.e.,

min
θ∈Θ

Eξ∼P̂n
[fθ(ξ)]

(
=

1

n

n∑

i=1

fθ(ξi)

)
.

Classical statistical learning theory ensures that, with high probability, EP[fθ] is close to EP̂n
[fθ] up

to O(1/
√
n) error terms, see e.g., the monographs Boucheron et al. (2013); Wainwright (2019).

A practical drawback of empirical risk minimization is that it can lead to over-confident decisions
(when EP̂n

[fθ] < EP[fθ], the real loss can be higher that the empirical one (Esfahani and Kuhn,
2018)). In addition, this approach is also sensitive to distribution shifts between training and ap-
plication. To overcome these drawbacks, an approach gaining momentum in machine learning is
distributionally robust optimization, which consists in minimizing the worst expectation of the loss
when the distribution lives in a neighborhood of P̂n:

min
θ∈Θ

sup
Q∈U(P̂n)

Eξ∼Q[fθ(ξ)] , (1)
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where the inner sup is thus taken over Q in the neighborhood U(P̂n) of P̂n in the space of probability
distributions. Popular choices of distribution neighborhoods are based on the Kullback-Leibler (KL)
divergence (Laguel et al., 2020; Levy et al., 2020), kernel tools (Zhu et al., 2021a; Staib and Jegelka,
2019; Zhu et al., 2021b), moments (Delage and Ye, 2010; Goh and Sim, 2010), or Wasserstein dis-
tance (Shafieezadeh Abadeh et al., 2015; Esfahani and Kuhn, 2018). If P ∈ U(P̂n), distributionally
robust models can benefit from direct generalization guarantees as,

sup
Q∈U(P̂n)

Eξ∼Q[fθ(ξ)] ≥ Eξ∼P[fθ(ξ)]. (2)

Thus, for well-chosen neighborhoods U(P̂n), distributionally robust objectives are able to provide
exact upper-bounds on the expected loss over distribution P, i.e., the true risk.

Wasserstein distributionally robust optimization (WDRO) problems correspond to (1) with

U(P̂n) =
{

Q ∈ P(Ξ) : W(P̂n,Q) ≤ ρ
}
,

where W(P̂n,Q) denotes the Wasserstein distance between P̂n and Q and ρ > 0 controls the re-
quired level of robustness around P̂n. As a natural metric to compare discrete and absolutely contin-
uous probability distributions, the Wasserstein distance has attracted a lot of interest in both machine
learning (Shafieezadeh Abadeh et al., 2015; Sinha et al., 2018; Shafieezadeh-Abadeh et al., 2019; Li
et al., 2020; Kwon et al., 2020) and operation research (Zhao and Guan, 2018; Arrigo et al., 2022)
communities; see e.g., the review articles Blanchet et al. (2021); Kuhn et al. (2019).

WDRO benefits from out-of-the-box generalization guarantees in the form of (2) since it inherits the
concentration properties of the Wasserstein distance (Esfahani and Kuhn, 2018). More precisely,
under mild assumptions on P, (Fournier and Guillin, 2015) establishes that W(P̂n,P) ≤ ρ with
high probability as soon as ρ ∼ 1/n1/d where d denotes the dimension of the samples space. Thus,
a major issue is the prescribed radius ρ suffers from the curse of the dimensionality: when d is
large, ρ decreases slowly as the number of samples n increases. This constrasts with other distri-
butionally robust optimization ambiguity sets, such as Maximum Mean Discrepancy (MMD) (Staib
and Jegelka, 2019; Zeng and Lam, 2022), where the radius scales as 1/

√
n. Moreover, the existing

scaling for WDRO is overly conservative for WDRO objectives since recent works (Blanchet et al.,
2022a; Blanchet and Shapiro, 2023) prove that a radius behaving as 1/

√
n is asymptotically optimal.

The main difference with (Esfahani and Kuhn, 2018) is that they — and us — consider the WDRO
objective as a whole, instead of proceeding in two steps: first considering the Wasserstein distance
independently and invoking concentration results on the Wasserstein distance and then plugging this
result in the WDRO problem.

1.2 Contributions and related works

In this paper, we show that WDRO provides exact upper-bounds on the true risk with high proba-
bility. More precisely, we prove non-asymptotic generalization bounds of the form of (2), that hold
for general classes of functions, and that only require ρ to scale as 1/

√
n and not 1/n1/d. To do

so, we construct an interval for the radius ρ for which it is both sufficiently large so that we can go
from the empirical to the true estimator (i.e., at least of the order of 1/

√
n) and sufficiently small so

that the robust problem does not become degenerate (i.e., smaller than some critical radius, that we
introduce as an explicit constant). Our results imply proving concentration results on Wasserstein
Distributionally Robust objectives that are of independent interest.

This work is part of a rich and recent line of research about theoretical guarantees on WDRO for
machine learning. One of this first results, Lee and Raginsky (2018), provides generalization guar-
antees, for a general class of models and a fixed ρ, that, however, become degenerate as the radius
goes to zero. In the particular case of linear models, WDRO models admit an explicit form that
allows Shafieezadeh-Abadeh et al. (2019); Chen and Paschalidis (2018) to provide generalization
guarantees (2) with the radius scaling as 1/

√
n. The case of general classes of models, possibly

non-linear, is more intricate. Sinha et al. (2018) showed that a modified version of (2) holds at the
price of non-negligible error terms. Gao (2022); An and Gao (2021) made another step towards
broad generalization guarantees for WDRO but with error terms that vanish only when ρ goes to
zero.
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In contrast, our analysis provides exact generalization guarantees in the form (2) without additional
error terms, that hold for general classes of functions and allow for a non-vanishing uncertainty
radius to cover for distribution shifts at testing. Moreover, our guarantees also carry over to the
recently introduced regularized versions of WDRO (Wang et al., 2023; Azizian et al., 2023), whose
statistical properties have not been studied yet.

This paper is organized as follows. In Section 2, we introduce notations and our blanket assumptions.
In Section 3, we present our main results, an idea of proof, and discussions. The complete proofs
are deferred to the appendix.

2 Setup and Assumptions

In this section, we formalize our setting and introduce Wasserstein Distributionally Robust risks.

2.1 Wasserstein Distributionally Robust risk functions

In this paper, we consider as a samples space Ξ a subset of Rd equipped with the Euclidean norm
‖·‖. We rely on Wasserstein distances of order 2, in line with the seminal work Blanchet et al.
(2022a) on generalization of WDRO. This distance is defined for two distributions Q,Q′ in the set
of probability distributions on Ξ, denoted by P(Ξ), as

W2(Q,Q′) :=

(
inf

π∈P(Ξ×Ξ),π1=Q,π2=Q′
E(ξ,ζ)∼π

[
1

2
‖ξ − ζ‖2

])1/2

,

where P(Ξ×Ξ) is the set of probability distributions in the product space Ξ×Ξ, and π1 (resp. π2)
denotes the first (resp. second) marginal of π.

We denote by f : Ξ → R the loss function of some model over the sample space. The model may
depend on some parameter θ, that we drop for now to lighten the notations; instead, we consider
a class of functions F encompassing our various models and losses of interest (we come back to
classes of parametric models of the form F = {fθ : θ ∈ Θ} in Section 4).

We define the empirical Wasserstein Distributionally Robust risk R̂ρ2(f) centered on P̂n and simi-
larly the true robust riskRρ2(f) centered on P as

R̂ρ2(f) := sup
Q∈P(Ξ)

W 2
2 (P̂n,Q)≤ρ2

Eξ∼Q [f(ξ)] and Rρ2(f) := sup
Q∈P(Ξ)

W 2
2 (P,Q)≤ρ2

Eξ∼Q [f(ξ)] . (3)

Note that R̂ρ2(f), which is based on the empirical distribution P̂n, is a computable proxy for the
true robust risk Rρ2(f). Note also that the true robust risk Rρ2(f) immediately upper-bounds the
true (non-robust) risk Eξ∼P [f(ξ)] and also upper-bounds Eξ∼Q [f(ξ)] for neighboring distributions
Q that correspond to distributions shifts of magnitude smaller than ρ in Wasserstein distance.

2.2 Regularized versions

Entropic regularization of WDRO problems was recently studied in Wang et al. (2023); Blanchet
and Kang (2020); Piat et al. (2022); Azizian et al. (2023) and used in Dapogny et al. (2023); Song
et al. (2023); Wang and Xie (2022); Wang et al. (2022). Inspired by the entropic regularization in
optimal transport (OT) (Peyré and Cuturi, 2019, Chap. 4), the idea is to regularize the objective by
adding a KL divergence, that is defined, for any transport plan π ∈ P(Ξ× Ξ) and a fixed reference
π ∈ P(Ξ× Ξ), by

KL(π |π) =

{∫
log dπ

dπ dπ whenπ � π

+∞ otherwise.

Unlike in OT though, the choice of the reference measure in WDRO is not neutral and introduces
a bias in the robust objective (Azizian et al., 2023). For their theoretical convenience, we take
reference measures that have Gaussian conditional distributions

πσ(dζ|ξ) ∝ 1ζ∈Ξ e
− ‖ξ−ζ‖

2

2σ2 dζ, for all ξ ∈ Ξ , (4)
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where σ > 0 controls the spread of the second marginals, following Wang et al. (2023); Azizian
et al. (2023). Then, the regularized version of R̂ρ2(f) (WDRO empirical risk) is given by

R̂ερ2(f) := sup
π∈P(Ξ×Ξ),π1=P̂n

E(ξ,ζ)∼π[ 1
2‖ξ−ζ‖2]≤ρ2

Eξ∼π2
[f(ξ)]− εKL (π |πnσ ) with πnσ = P̂n(dξ)πσ(dζ|ξ) (5)

and similarly, the regularized version ofRρ2(f) is given by

Rερ2(f) := sup
π∈P(Ξ×Ξ),π1=P

E(ξ,ζ)∼π[ 1
2‖ξ−ζ‖2]≤ρ2

Eξ∼π2
[f(ξ)]− εKL (π |πσ ) with πσ = P(dξ)πσ(dζ|ξ). (6)

These regularized risks have been studied in terms of computational or approximation properties,
but their statistical properties have not been investigated yet. The analysis we develop for WDRO
estimators is general enough to carry over to these settings.

In (5) and (6), note finally that the regularization is added as a penalization in the supremum, rather
than in the constraint. As in Wang et al. (2023), penalizing in the constraint leads to an ambiguity
set defined by the regularized Wasserstein distance, that we introduce in Section 3.2. We refer to
Azizian et al. (2023) for a unified presentation of the two penalizations.

2.3 Blanket assumptions

Our analysis is carried under the following set of assumptions that will be in place throughout the
paper. First, we assume that the sample space Ξ ⊂ Rd is convex and compact, which is in line with
previous work, e.g., (Lee and Raginsky, 2018; An and Gao, 2021).

Assumption 1 (On the set Ξ). The sample space Ξ is a compact convex subset of Rd.

Second, we require the class of loss functions F to be sufficiently regular. In particular, we assume
that they have Lipschitz continuous gradients.

Assumption 2 (On the function class). The functions of F are twice differentiable, uniformly
bounded, and their derivatives are uniformly bounded and uniformly Lipschitz.

Finally, we assume that P̂n is made of independent and identically distributed (i.i.d.) samples of P
and that P is supported on the interior of Ξ (which can be done without loss of generality by slightly
enlarging Ξ if needed).

Assumption 3 (On the distributions). P̂n = 1
n

∑n
i=1 δξi where ξ1, . . . , ξn are i.i.d. samples of P.

We further assume that there is some R > 0 such that P satisfies supp P +B(0, R) ⊂ Ξ.

3 Main results and discussions

The main results of our paper establish that the empirical robust risk provide high probability bounds,
of the form of (2), on the true risk. Since the results and assumptions slightly differ between the
WDRO models and their regularized counterparts, we present them separately in Section 3.1 and
Section 3.2. In Section 3.3, we provide the common outline for the proofs of these results, the
proofs themselves being provided in the appendix. Finally, in Section 4, we detail some examples.

3.1 Exact generalization guarantees for WDRO models

In this section, we require the two following additional assumptions on the function class. The first
assumption is common in the WDRO litterature, see e.g., Blanchet et al. (2022a); Blanchet and
Shapiro (2023); Gao (2022); An and Gao (2021).
Assumption 4. The quantity inff∈F EP

[
‖∇ f‖2

]
is positive.

The second assumption we consider in this section makes use of the notation d(ξ, A), for a set
A ⊂ Ξ and a point ξ ∈ Ξ, to denote the distance between ξ and A, i.e., d(ξ, A) = infζ∈A‖ξ − ζ‖.
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Assumption 5.

1. For any R > 0, there exists ∆ > 0 such that,

∀f ∈ F , ∀ζ ∈ Ξ, d(ζ, arg max f) ≥ R =⇒ f(ζ)−max f ≤ −∆ .

2. The following growth condition holds: there exist µ > 0 and L > 0 such that, for all
f ∈ F , ξ ∈ Ξ and ξ∗ a projection of ξ on arg max f , i.e., ξ∗ ∈ arg minarg max f‖ξ − ·‖,

f(ξ∗) ≥ f(ξ) +
µ

2
‖ξ − ξ∗‖2 − L

6
‖ξ − ξ∗‖3 .

The first item of this assumption has a natural interpretation: we show in Lemma A.7, that it is
equivalent to the relative compactness of the function space F w.r.t. to the distance

D(f, g) := ‖f − g‖∞ +DH(arg max f, arg max g) ,

where DH denotes the (Hausdorff) distance between sets and ‖f‖∞ := supξ∈Ξ|f(ξ)| is the in-
finity norm. The last one is a structural assumption on the functions F that is new in our context
but is actually very close the so-called parametric Morse-Bott condition, introduced in of bilevel
optimization (Arbel and Mairal, 2022), see Section A.5.

We now state our main generalization result for WDRO risks.

Theorem 3.1. Under Assumptions 4 and 5, there is an explicit constant ρc depending only on F
and P such that for any δ ∈ (0, 1) and n ≥ 1, if

O
(√

1 + log 1/δ

n

)
≤ ρ ≤ ρc

2
−O

(√
1 + log 1/δ

n

)
(7)

then, there is ρn = O
(√

1+log 1/δ
n

)
such that, with probability 1− δ,

∀f ∈ F , R̂ρ2(f) ≥ Eξ∼Q [f(ξ)] for all Q such that W 2
2 (P,Q) ≤ ρ(ρ− ρn) . (8)

In particular, with probability 1− δ, we have

∀f ∈ F , R̂ρ2(f) ≥ Eξ∼P [f(ξ)] . (9)

The second part of the result, (9), is an exact generalization bound: it is an actual upper-bound on
the true risk Eξ∼P[f(ξ)], that we cannot access in general, through a quantity that we can actually
compute with P̂n. The first part of the result, (8) gives us insight into the robustness guarantees
offered by the WDRO risk. Indeed, it tells us that, when ρ is greater than the minimal radius
ρn ∝ 1/

√
n by some margin, the empirical robust risk R̂ρ2(f) is an upper-bound on the loss even

with some perturbations of the true distribution. Hence, as long as ρ is large enough, the WDRO
objective enables us to guarantee the performance of our model even in the event of a distribution
shift at testing time. In other words, the empirical robust risk is an exact upper-bound on the true
robust riskRρ(ρ−ρn)(f) with a reduced radius.

The range of admissible radiuses is described by (7). The lower-bound, roughly proportional to
1/
√
n, is optimal, following the results of Blanchet et al. (2022a). The upper-bound, almost in-

dependent of n, depends on a constant ρc, that we call critical radius and that has an interesting
interpretation, that we formalize in the following remark. Note, finally, that, the big-O notation in
this theorem has a slightly stronger meaning1 than the usual one, being non-asymptotic in n and δ.

Remark 3.2 (Interpretation of critical radius). The critical radius ρc, appearing in (7), is defined by

ρ2
c := inf

f∈F
Eξ∼P

[
1

2
d2(ξ, arg max f)

]
.

1Eg., ρn=O
(√

1+log 1/δ
n

)
means that ∃C > 0 such that ρn ≤ C

√
1+log 1/δ

n
for all δ ∈ (0, 1) and n ≥ 1.
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It can be interpreted as the threshold at which the WDRO problem w.r.t. P starts becoming degen-
erate. Indeed, when ρ2 ≥ Eξ∼P

[
1
2d

2(ξ, arg max f)
]

for some f ∈ F that we fix, the distribution Q
given by the second marginal of the transport plan π defined by,

π(dξ,dζ) := P(dξ)δζ?(ξ)(dζ) where ζ?(ξ) ∈ arg min
ζ∈arg max f

d2(ξ, ζ) ,

satisfies

W 2
2 (P,Q) ≤ E(ξ,ζ)∼π

[
1

2
‖ξ − ζ‖2

]
= Eξ∼P

[
1

2
d2(ξ, arg max f)

]
≤ ρ2 .

As a consequence, the robust problem is equal to

Rρ2(f) = sup
Q∈P(Ξ)

W 2
2 (P,Q)≤ρ2

Eξ∼Q [f(ξ)] = max
ξ∈Ξ

f(ξ) .

Thus, when the radius exceeds ρc, there is some f such that the robust problem becomes degenerate
as it does not depend on P nor ρ anymore.

Finally, note that we can obtain the same generalization guarantee as Theorem 3.1 without Assump-
tion 5 at the expense of losing the above interpration on the condition on the radius. More precisely,
we have the following result.
Theorem 3.3. Let Assumption 4 hold. For any δ ∈ (0, 1) and n ≥ 1, if ρ satisfies (7), and if,
in addition, it is smaller than a positive constant which depends only on P, F and Ξ, then both
conclusions of Theorem 3.1 hold.

This theorem can be compared to existing results, and in particular with Gao (2022); An and Gao
(2021). These two papers provide generalization bounds for WDRO under a similar assumption
on F and a weakened version of Assumption 3. However, these generalization bounds involve
extra error terms, that require ρ to be vanishing. In comparison, with a similar set of assumptions,
Theorem 3.3 improves on these two issues, by allowing ρ not to vanish as n→∞ and by providing
the exact upper-bound (9). Allowing non-vanishing radiuses is an attractive feature of our results
that enables us to cover distribution shifts.

3.2 Regularized WDRO models

The analysis that we develop for the standard WDRO estimators is general enough to also cover the
regularized versions presented in Section 2.2. We thus obtain the following Theorem 3.4 which is the
first generalization guarantee for regularized WDRO. This theorem is very similar to Theorem 3.1
with still a couple of differences. First, the regularization leads to ambiguity sets defined in terms
of W2,τ (P, ·), the regularized Wasserstein distance to the true distribution P, defined, for some
regularization parameter τ > 0, as

W 2
2,τ (P,Q) := inf

{
Eπ
[

1

2
‖ξ − ζ‖2

]
+ τ KL(π |πσ) : π ∈ P(Ξ× Ξ), π1 = P, π2 = Q

}
,

where πσ appears in the definition of the regularized robust risk (6). Besides, the regularization
allows us to avoid Assumptions 4 and 5 to show our generalization result.
Theorem 3.4. For σ = σ0ρ with σ0 > 0, ε = ε0ρ with ε0 > 0 such that ε0/σ

2
0 is small enough

depending on F , P, Ξ, there is an explicit constant ρc depending only on F , P and Ξ such that for
all δ ∈ (0, 1) and n ≥ 1, if

O
(√

1 + log 1/δ

n

)
≤ ρ ≤ ρc

2
−O

(
1√
n

)
, and ρc ≥ O

(
1

n1/6
+

(
1 + log 1/δ

n

)1/4
)
,

then, there are τ = O(ερ) and ρn = O
(√

1+log 1/δ
n

)
such that, with probability at least 1− δ,

∀f ∈ F , R̂ερ2(f) ≥ Eξ∼Q [f(ξ)] for all Q such that W 2
2,τ (P,Q) ≤ ρ(ρ− ρn) . (10)

Furthermore, when σ0 and σ are small enough depending on P and Ξ, with probability 1− δ,

∀f ∈ F , R̂ερ2(f) ≥ Eξ∼PEζ∼πσ(·|ξ) [f(ζ)] .
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The first part of the theorem, (10), guarantees that the empirical robust risk is an upper-bound on
the loss even with some perturbations of the true distribution. As in OT, the regularization added to
the Wasserstein metric induces a bias that may prevent W 2

2,τ (P,P) from being null. As a result, the
second part of the theorem involves a smoothed version of the true risk: the empirical robust risk
provides an exact upper-bound the true expectation of a convolution of the loss with πσ .

A few additional comments are in order:

• Our result prescribes the scaling of the regularization parameters: ε and σ should be taken
proportional to ρ.

• The critical radius ρc has a slighlty more intricate definition, yet the same interpretation as
in the standard WDRO case inRemark 3.2; see Section D.2.

• The regularized OT distances do not suffer from the curse of dimensionality (Genevay et al.,
2019). However this property does not directly carry over to regularized WDRO. Indeed,
we cannot choose the same reference measure as in OT and we have to fix the measure
πσ , introducing a bias. As a consequence, we have to extend the analysis of the previous
section to obtain the claimed guarantees that avoid the curse of dimensionality.

3.3 Idea of the proofs

In this section, we present the main ideas of the proofs of Theorem 3.1, Theorem 3.3, and Theo-
rem 3.4. The full proofs are detailed in appendix; we point to relevant sections along the discussion.
First, we recall the duality results for WDRO that play a crucial role in our analysis. Second, we
present a rough sketch of proofs that is common to both the standard and the regularized cases.
Finally, we provide a refinement of our results that is a by-product of our analysis.

Duality in WDRO. Duality has been a central tool in both the theoretical analyses and compu-
tational schemes of WDRO from the onset (Shafieezadeh Abadeh et al., 2015; Esfahani and Kuhn,
2018). The expressions of the dual of WDRO problems for both the standard case (Gao and Kley-
wegt, 2016; Blanchet and Murthy, 2019) and the regularized case (Wang et al., 2023; Azizian et al.,
2023) can be written with the following dual generator function φ defined as

φ(f, ξ, λ, ε, σ) :=

{
supζ∈Ξ

{
f(ζ)− λ

2 ‖ξ − ζ‖2
}

if ε = 0

ε log
(
Eζ∼πσ(·|ξ) exp

(
f(ζ)−λ‖ξ−ζ‖2/2

ε

))
if ε > 0 ,

(11)

where λ is the dual variable associated to the Wasserstein constraint in (3), (5) and (6). The effect
of regularization appears here clearly as a smoothing of the supremum. Note also that this function
depends on the conditional reference measures πσ(·|ξ) but not on other probability distributions.
Then, under some general assumptions (specified in Section 2.3 in appendix), the existing strong
duality results yield that the (regularized) empirical robust risk writes

R̂ερ2(f) = inf
λ≥0

λρ2 + Eξ∼P̂n
[φ(f, ξ, λ, ε, σ)] , (12)

and, similarly, the (regularized) true robust risk writes

Rερ2(f) = inf
λ≥0

λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)] . (13)

These expressions for the risks are the bedrock of our analysis.

Sketch of proof. In both the standard case and the regularized case, our proof is built on two main
parts: the first part is to obtain a concentration bound on the dual problems that crucially relies on a
lower bound of the dual multiplier; the second part then consists in establishing such a lower bound.
All the bounds are valid with high probability, and we drop the dependency on the confidence level
δ of the theorems for simplicity.

For the first part of the proof (Section B), we assume that there is a deterministic lower-bound λ > 0
on the optimal dual multiplier in (12) that holds with high-probability. As a consequence, we can
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restrict the range of λ in (12) to obtain:

R̂ερ2(f) = inf
λ≥λ

{
λρ2 + Eξ∼P̂n

[φ(f, ξ, λ, ε, σ)]
}

= inf
λ≥λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)]− λ

Eξ∼P[φ(f, ξ, λ, ε, σ)]− Eξ∼P̂n
[φ(f, ξ, λ, ε, σ)]

λ

}

≥ inf
λ≥λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)]− λ sup

λ′≥λ

Eξ∼P[φ(f, ξ, λ′, ε, σ)]− Eξ∼P̂n
[φ(f, ξ, λ′, ε, σ)]

λ′

}

≥ inf
λ≥λ

{
λρ2 + Eξ∼P [φ(f, ξ, λ, ε, σ)]− λρ2

n

}

≥ Rερ2−ρ2n(f) . (14)

In the above, we used that the inner supremum, which is random, can be bounded by a deterministic
and explicit quantity that we call ρ2

n, i.e.,

ρ2
n ≥ sup

λ′≥λ

Eξ∼P[φ(f, ξ, λ′, ε, σ)]− Eξ∼P̂n
[φ(f, ξ, λ′, ε, σ)]

λ′
with high probability.

Hence, we obtain an upper-bound on the robust risk w.r.t. the true distribution with radius ρ2 − ρ2
n.

Moreover, we show that ρ2
n = O(1/(λ

√
n)) which highlights the need for a precise lower bound λ

to control the decrease in radius.

The second part of the proof thus consists in showing that the dual variable is indeed bounded away
from 0, which means that the Wasserstein constraint is sufficiently active. We have to handle two
cases differently:

• when ρ is small, i.e., close to ρn (Section C),
• when ρ is large, i.e., close to the critical radius ρc (Section D). Note that the additional

Assumption 5 is required here: where we need to control the behaviors of f ∈ F close to
their maxima (see (11) for ε = 0 and small λ).

In both cases we obtain that λ scales as 1/ρ for the respective ranges of admissible radiuses. As a
consequence ρ2

n is bounded by ρρn with ρn = O(1/
√
n) and (14) becomes

R̂ερ2(f) ≥ Rερ(ρ−ρn)(f) , (15)

which leads to our main results.

Extension: upper and lower bounds on the empirical robust risk. The proof that we sketched
above actually shows thatRερ(ρ−ρn)(f) is a lower bound of R̂ερ2(f). This proof technique also yields

an upper bound by exchanging the roles of P and P̂n.
Theorem 3.5. In the setting of either Theorem 3.1, Theorem 3.3 or Theorem 3.4 (with ε = 0 or
ε > 0), with probability at least 1− δ, it holds that

∀f ∈ F , Rερ(ρ−ρn)(f) ≤ R̂ερ2(f) ≤ Rερ(ρ+ρn)(f) ,

with ρn = O
(√

1+log 1/δ
n

)
.

This result shows how two robust objectives w.r.t. P provide upper and lower bounds on the empiri-
cal robust risk, with only slight variations in the radius. Furthermore, when the number of data points
n grows, both sides of the bound converge to the same quantity Rερ2(f). Hence our generalization
bounds of the form (15) are asymptotically tight.

As a final remark, we underline that the proofs of this theorem and of the previous ones rely on the
cost being the squared Euclidean norm and the extension to more general cost functions is left as
future work. In particular, the Laplace approximation of Section A.3 in the regularized case and the
analysis of Section D.1 in the standard WDRO case would need further work to accomodate general
cost functions.
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4 Examples: parametric models

Our main theorems Theorems 3.1, 3.3 and 3.4 involve a general class F of loss functions. We
explain in this section how to instantiate our results in the important class of parametric models. We
then illustrate this setting with logistic regression and linear regression in Examples 4.1 and 4.2.

Let us consider the class of functions of the form

F = {ξ 7→ f(θ, ξ) : θ ∈ Θ} with f : Θ× Ξ −→ R (16)

where Θ, the parameter space, is a subset of Rp and Ξ, the sample space, is a subset of Rd.

For instance, this covers the case of linear models of the form f(θ, ξ) = `(〈ξ, θ〉) with ` a convex
loss. This class of models is studied by Shafieezadeh-Abadeh et al. (2019); Chen and Paschalidis
(2018) in a slightly different setting, where they obtain a closed form for the robust objective and
then establish a generalization bound similar to (9).

Let us show how to instantiate our theorems in the case of (16).

• If f is twice continuously differentiable on a neighborhood of Θ × Ξ with Θ and Ξ both
compact, then Assumption 2 is immediately satisfied. Therefore, Theorem 3.4 can be read-
ily applied and its generalization guarantee hold.

• As for Assumption 4, it is equivalent to, for all θ ∈ Θ, P(∇ξ f(θ, ξ) 6= 0) > 0. Thus
disregarding the degenerate case of ∇ξ f(θ, ξ) being null for P-almost every ξ (e.g., when
the loss does not depend on ξ), we are in the setting of Theorem 3.3.

• Satisfying Assumption 5, needed for Theorem 3.1, requires some problem-dependent de-
velopments, see the examples below. Note though that the second item of Assumption 5 is
implied by the parametric Morse-Bott property (Arbel and Mairal, 2022); see Section A.5.

We discuss linear and non-linear examples of this framework. In light of the above, we focus our
discussion on Assumption 5. We first present the examples of linear models, Examples 4.1 and 4.2,
where the latter assumption is satisfied. We then consider several examples of nonlinear models:
kernel regression (Example 4.3), smooth neural networks (Example 4.4) and families of invertible
mappings (Example 4.5). In Section H, we also provide numerical illustrations for linear models.
Example 4.1 (Logistic Regression). For a training sample (x, y) ∈ Rp × {−1,+1}, the logistic
loss for a parameter θ ∈ Rp is given by log

(
1 + e−y〈x,θ〉

)
. It fits into our framework by defining

f(θ, ξ) = log
(
1 + e〈ξ,θ〉

)
with ξ playing the role of −y×x. We assume that Θ is a compact set that

does not include the origin, and, for the sake of simplicity, we take Ξ as a closed Euclidean ball,
i.e., Ξ = B(0, r). We are going to show that Assumption 5 is satisfied, and, for this, we need the
following elements. For any θ, the maximizer of f(θ, ·) over Ξ = B(0, r) is reached at ξ∗ := rθ

‖θ‖ .
Besides, for any ξ ∈ Ξ, it holds that

r2 ≥ ‖ξ‖2 = ‖ξ∗‖2 + 2〈ξ∗, ξ − ξ∗〉+ ‖ξ − ξ∗‖2 ,
so that, since ‖ξ∗‖ = r, we have

〈ξ∗, ξ∗ − ξ〉 ≥ 1

2
‖ξ − ξ∗‖2 . (17)

We can now turn to the verification of Assumption 5.

1. Take some R > 0 and some ξ ∈ Ξ such that ‖ξ − ξ∗‖ ≥ R. Then, (17) yields

〈θ, ξ〉 − 〈θ, ξ∗〉 =
‖θ‖
r
〈ξ∗, ξ − ξ∗〉 ≤ −‖θ‖

2r
‖ξ − ξ∗‖2 ≤ −d(0,Θ)R2

2r
. (18)

Since u 7→ log(1 + eu) is increasing, this yields that f(θ, ξ) − f(θ, ξ∗) is bounded away
from 0 by a negative constant uniformly in θ . The first item of Assumption 5 is thus satisfied.

2. Fix θ ∈ Θ; by Taylor expanding u 7→ log(1 + eu) around 〈θ, ξ∗〉 we get

f(θ, ξ) = f(θ, ξ∗) +
1

1 + e−〈θ,ξ∗〉
〈θ, ξ − ξ∗〉+O(〈θ, ξ − ξ∗〉)2

,
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where the big-O remainder is uniform over θ ∈ Θ. Using the first inequality in (18), we get
for ξ close enough to ξ∗

f(θ, ξ) ≤ f(θ, ξ∗)− 1

2(1 + e−〈θ,ξ∗〉)
〈θ, ξ − ξ∗〉 ≤ f(θ, ξ∗)− ‖θ‖

4r
‖ξ − ξ∗‖2 .

This shows that the second item of Assumption 5 is satisfied locally around ξ∗. It can be
made global by using the uniform Lipschitz-continuity of f , which introduces a term of the
form L

6 ‖ξ − ξ∗‖3.

Example 4.2 (Linear Regression). With samples of the form ξ = (x, y) ∈ Rp × R and parameters
θ ∈ Rp, the loss is given by f(θ, ξ) = 1

2 (〈θ, x〉 − y)2. Similarly to the previous example, we take Θ

as a compact set of Rd that does not include the origin and Ξ of the form B(0, r) × [−r′, r′]. The
maximizers of f(θ, ·) on Ξ are ξ∗1 = (rθ/‖θ‖,−r′) and ξ∗2 = (−rθ/‖θ‖, r′). By symmetry, one can
restrict to the case of ξ∗1 and 〈θ, x〉 − y ≥ 0; the same rationale as above can then be applied.
Example 4.3 (Kernel Ridge Regression). Using a kernel k : X × X → R with X compact and k
smooth, for instance Gaussian or polynomial, we consider the following class of loss functions:

f(θ, ξ) =
1

2

(
m∑

i=1

αik(x, xi)− y
)2

+
µ

2
‖α‖22 .

where ξ = (x, y), Ξ is some compact subset of X × R, θ = (α1, . . . , αm, x1, . . . , xm), Θ =
Am × Xm, m is a fixed integer, A is a compact subset of Rm, Xm can be any closed subset of Xm
and µ ≥ 0 is the regularization parameter. A typical choice for Xm would be the datapoints of the
training set. This class then fits into our framework of parametric models above. Finally, further
information on the kernel would be needed to ensure that Assumption 5 is satisfied.
Example 4.4 (Smooth Neural Networks). Denote by NN (x, θ, σ) a multi-linear perceptron that
takes x as input, has weights θ and a smooth activation function σ, for instance the hyperbolic
tangent or the Gaussian Error Linear Units (GELU). We choose `(ŷ, y) a smooth loss function and
we consider the loss f(θ, (x, y)) = `(NN (x, θ, σ), y) with θ ∈ Θ some compact set. Provided that
the inputs (x, y) lie in a compact set Ξ, this class fits the parametric framework above. Note that we
require σ to be smooth, further work would be required for non-smooth activation functions.
Example 4.5 (Family of diffeomorphisms). Consider maps h : Ξ → Ξ and (θ, ξ) ∈ Θ × Ξ 7→
gθ(ξ) ∈ Ξ and define the parametric loss f(θ, ξ) = h(gθ(ξ)). Assume that these functions are twice
differentiable, that h satisfies the second item of Assumption 5 and that, for every θ ∈ Θ, gθ has a
inverse g−1

θ which is also continuously differentiable in a neighborhood of Θ× Ξ.

As before, this setting fits into the framework above. We now show that Assumption 5 is satisfied.

1. Since h is continuous, h satisfies the first item of Assumption 5. It is satisfied by F as well
thanks to g−1

θ being Lipschitz-continuous in ξ uniformly in θ by compactness of Θ× Ξ.

2. Take C such that both gθ and g−1
θ are C-Lipschitz in ξ uniformly in θ. Since

arg max f(θ, ·) = g−1
θ (arg maxh), it holds that minζ?∈arg maxh‖gθ(ξ) − ζ?‖ =

minξ?∈arg max f(θ,·)‖gθ(ξ)−gθ(ξ?)‖ which lies between C−1 minξ?∈arg max f(θ,·)‖ξ− ξ?‖
and C minξ?∈arg max f(θ,·)‖ξ − ξ?‖. Combined with h satisfying the second item of As-
sumption 5, this shows that f satisfies this condition as well.

5 Conclusion and perspectives

In this work, we provide generalization guarantees for WDRO models that improve over existing
literature in the following aspects: our results avoid the curse of dimensionality, provide exact upper
bounds without spurious error terms, and allow for distribution shifts during testing. We obtained
these bounds through the development of an original concentration result on the dual of WDRO.
Our framework is general enough to cover regularized versions of the WDRO problem: they enjoy
similar generalization guarantees as standard WDRO, with less restrictive assumptions.

Our work could be naturally extended in several ways. For instance, it might be possible to relax
any of the assumptions (on the sample space, the sampling process, the Wasserstein metric, and the
class of functions) at the expense of additional technical work. Moreover, the crucial role played by
the radius of the Wasserstein ball calls for a principled and efficient procedure to select it.

10



Acknowledgments and Disclosure of Funding

This work has been supported by MIAI Grenoble Alpes (ANR-19-P3IA-0003).

References
Y. An and R. Gao. Generalization bounds for (wasserstein) robust optimization. Advances in Neural

Information Processing Systems, 34:10382–10392, 2021.

M. Arbel and J. Mairal. Non-Convex Bilevel Games with Critical Point Selection Maps. Advances
in Neural Information Processing Systems, 36:1–34, 2022.

A. Arrigo, C. Ordoudis, J. Kazempour, Z. De Grève, J.-F. Toubeau, and F. Vallée. Wasserstein
distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact
and physically-bounded formulation. European Journal of Operational Research, 296(1):304–
322, 2022.

W. Azizian, F. Iutzeler, and J. Malick. Regularization for Wasserstein distributionally robust opti-
mization. ESAIM: COCV, 29:33, 2023.

J. Blanchet and Y. Kang. Semi-supervised learning based on distributionally robust optimiza-
tion. Data Analysis and Applications 3: Computational, Classification, Financial, Statistical
and Stochastic Methods, 5:1–33, 2020.

J. Blanchet and K. Murthy. Quantifying distributional model risk via optimal transport. Mathematics
of Operations Research, 44(2):565–600, 2019.

J. Blanchet and A. Shapiro. Statistical limit theorems in distributionally robust optimization. arXiv
preprint arXiv:2303.14867, 2023.

J. Blanchet, K. Murthy, and V. A. Nguyen. Statistical analysis of wasserstein distributionally robust
estimators. In Tutorials in Operations Research: Emerging Optimization Methods and Modeling
Techniques with Applications, pages 227–254. INFORMS, 2021.

J. Blanchet, K. Murthy, and N. Si. Confidence regions in wasserstein distributionally robust estima-
tion. Biometrika, 109(2):295–315, 2022a.

J. Blanchet, K. Murthy, and F. Zhang. Optimal transport-based distributionally robust optimization:
Structural properties and iterative schemes. Mathematics of Operations Research, 47(2):1500–
1529, 2022b.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory of
Independence. Oxford University Press, 2013.

N. Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

R. Chen and I. C. Paschalidis. A robust learning approach for regression models based on distribu-
tionally robust optimization. Journal of Machine Learning Research, 19(13), 2018.

C. Dapogny, F. Iutzeler, A. Meda, and B. Thibert. Entropy-regularized wasserstein distributionally
robust shape and topology optimization. Structural and Multidisciplinary Optimization, 66(3):
42, 2023.

E. Delage and Y. Ye. Distributionally Robust Optimization Under Moment Uncertainty with Appli-
cation to Data-Driven Problems. Operations Research, 58:595–612, 2010.

P. M. Esfahani and D. Kuhn. Data-driven distributionally robust optimization using the wasserstein
metric: Performance guarantees and tractable reformulations. Mathematical Programming, 171
(1):115–166, 2018.

J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouvé, and G. Peyré. Interpolating between
optimal transport and MMD using Sinkhorn divergences. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 2681–2690. PMLR, 2019.

N. Fournier and A. Guillin. On the rate of convergence in wasserstein distance of the empirical
measure. Probability Theory and Related Fields, 162(3):707–738, 2015.

R. Gao. Finite-sample guarantees for wasserstein distributionally robust optimization: Breaking the
curse of dimensionality. Operations Research, 2022.

11



R. Gao and A. J. Kleywegt. Distributionally robust stochastic optimization with wasserstein dis-
tance. Mathematics of Operations Research, 2016.

A. Genevay, M. Cuturi, G. Peyré, and F. Bach. Stochastic Optimization for Large-scale Optimal
Transport. In NIPS 2016 - Thirtieth Annual Conference on Neural Information Processing System,
Proc. NIPS 2016, 2016.

A. Genevay, L. Chizat, F. Bach, M. Cuturi, and G. Peyré. Sample complexity of sinkhorn diver-
gences. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
1574–1583. PMLR, 2019.

J. Goh and M. Sim. Distributionally Robust Optimization and Its Tractable Approximations. Oper-
ations Research, 58:902–917, 2010.

D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-Abadeh. Wasserstein distributionally
robust optimization: Theory and applications in machine learning. In Operations Research &
Management Science in the Age of Analytics. INFORMS, 2019.

Y. Kwon, W. Kim, J.-H. Won, and M. C. Paik. Principled learning method for wasserstein distri-
butionally robust optimization with local perturbations. In International Conference on Machine
Learning, pages 5567–5576. PMLR, 2020.

Y. Laguel, J. Malick, and Z. Harchaoui. First-order optimization for superquantile-based supervised
learning. In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing
(MLSP), pages 1–6. IEEE, 2020.

J. Lee and M. Raginsky. Minimax statistical learning with wasserstein distances. Advances in Neural
Information Processing Systems, 31, 2018.

J. M. Lee. Introduction to Riemannian manifolds, volume 2. Springer, 2018.
D. Levy, Y. Carmon, J. C. Duchi, and A. Sidford. Large-scale methods for distributionally robust

optimization. Advances in Neural Information Processing Systems, 33, 2020.
J. Li, C. Chen, and A. M.-C. So. Fast Epigraphical Projection-based Incremental Algorithms for

Wasserstein Distributionally Robust Support Vector Machine. In Advances in Neural Information
Processing Systems, volume 33, pages 4029–4039. Curran Associates, Inc., 2020.

F.-P. Paty and M. Cuturi. Regularized Optimal Transport is Ground Cost Adversarial. In ICML,
2020.

G. Peyré and M. Cuturi. Computational optimal transport: With applications to data science. Foun-
dations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

W. Piat, J. Fadili, F. Jurie, and S. da Veiga. Regularized robust optimization with application to
robust learning. 2022.

R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Grundlehren Der Mathematischen Wis-
senschaften. Springer-Verlag, 1998.

W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987.
S. Shafieezadeh Abadeh, P. M. Mohajerin Esfahani, and D. Kuhn. Distributionally Robust Logistic

Regression. In Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015.

S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani. Regularization via Mass Transportation.
Journal of Machine Learning Research, 20:1–68, 2019.

A. Sinha, H. Namkoong, and J. Duchi. Certifying some distributional robustness with principled
adversarial training. In International Conference on Learning Representations, 2018.

J. Song, N. He, L. Ding, and C. Zhao. Provably convergent policy optimization via metric-aware
trust region methods. arXiv preprint arXiv:2306.14133, 2023.

M. Staib and S. Jegelka. Distributionally robust optimization and generalization in kernel methods.
Advances in Neural Information Processing Systems, 32, 2019.

M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
university press, 2019.

J. Wang and Y. Xie. A data-driven approach to robust hypothesis testing using sinkhorn uncertainty
sets. In 2022 IEEE International Symposium on Information Theory (ISIT), pages 3315–3320.
IEEE, 2022.

12



J. Wang, R. Moore, Y. Xie, and R. Kamaleswaran. Improving sepsis prediction model generalization
with optimal transport. In Machine Learning for Health, pages 474–488. PMLR, 2022.

J. Wang, R. Gao, and Y. Xie. Sinkhorn distributionally robust optimization. arXiv preprint
arXiv:2109.11926, 2023.

Y. Zeng and H. Lam. Generalization bounds with minimal dependency on hypothesis class via
distributionally robust optimization. Advances in Neural Information Processing Systems, 35:
27576–27590, 2022.

C. Zhao and Y. Guan. Data-driven risk-averse stochastic optimization with wasserstein metric.
Operations Research Letters, 46(2):262–267, 2018.

J.-J. Zhu, W. Jitkrittum, M. Diehl, and B. Schölkopf. Kernel distributionally robust optimization:
Generalized duality theorem and stochastic approximation. In International Conference on Arti-
ficial Intelligence and Statistics, pages 280–288. PMLR, 2021a.

J.-J. Zhu, C. Kouridi, Y. Nemmour, and B. Schölkopf. Adversarially robust kernel smoothing. arXiv
preprint arXiv:2102.08474, 2021b.

13


