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Abstract001

Large language models (LLMs) have large002
potential for molecular optimization, as they003
can gather external chemistry tools and enable004
collaborative interactions to iteratively refine005
molecular candidates. However, this potential006
remains underexplored, particularly in the con-007
text of structured reasoning, interpretability,008
and comprehensive tool-grounded molecular009
optimization. To address this gap, we introduce010
MT-MOL, a multi-agent framework for molec-011
ular optimization that leverages tool-guided012
reasoning and role-specialized LLM agents.013
Our system incorporates comprehensive RD-014
Kit tools, categorized into five distinct domains:015
structural descriptors, electronic and topologi-016
cal features, fragment-based functional groups,017
molecular representations, and miscellaneous018
chemical properties. Each category is managed019
by an expert analyst agent, responsible for ex-020
tracting task-relevant tools and enabling inter-021
pretable, chemically grounded feedback. MT-022
MOL produces molecules with tool-aligned023
and stepwise reasoning through the interac-024
tion between the analyst agents, a molecule-025
generating scientist, a reasoning-output verifier,026
and a reviewer agent. As a result, we show that027
our framework shows the state-of-the-art per-028
formance of the PMO-1K benchmark on 17 out029
of 23 tasks.030

1 Introduction031

Large language models (LLMs) have demonstrated032

remarkable capabilities in a wide range of problems033

such as question answering (Dong et al., 2024; Sun034

et al., 2024), summarization (Kim et al., 2024; Liu035

et al.), translation (Alves et al., 2024; Bari et al.,036

2025), and code generation (Chen et al., 2021; Li037

et al., 2023b) using large-scale pretraining and in-038

context learning (Brown et al., 2020; Chowdhery039

et al., 2023; Zhang et al., 2022b) (Chen et al., 2021).040

Motivated by the success, researchers are investigat-041

ing the potential of LLMs for scientific discovery042

in the chemical domain (Wang et al., 2023; Luu 043

et al., 2021; Wang et al., 2025; Nguyen and Grover, 044

2025; Bran et al., 2024). 045

In particular, employing LLMs to design new 046

molecules (e.g., drug candidates), is promising due 047

to several advantages: (1) LLMs exhibit general 048

understanding and reasoning capabilities obtained 049

from large-scale pretraining, (2) they can use the 050

off-the-shelf tools for analyzing molecules, and (3) 051

they are capable of interact with other agents to 052

further improve the design candidate. 053

Recent studies have explored the application 054

of LLMs in molecular optimization. For exam- 055

ple, LICO (Nguyen and Grover, 2025) extends 056

LLMs with embedding layers and in-context ex- 057

amples to build a surrogate modeling framework 058

for molecular optimization. MOLLEO (Wang et al., 059

2025) leverages LLMs as mutation and crossover 060

operators within an evolutionary algorithm. Chem- 061

Crow (Bran et al., 2024) integrates LLMs with 062

chemical tools for to faciliate synthesis planning 063

and molecular analysis. While these approaches 064

demonstrate encouraging results, we argue that they 065

do not fully exploit the broader capabilities of mod- 066

ern LLMs such as multi-agent collaboration, tool 067

integration, and iterative reasoning, which are es- 068

sential for high-quality molecular optimization. 069

Contribution. In this work, we propose MT- 070

MOL, a multi-agent framework for molecular op- 071

timization. Our key idea is to decompose the opti- 072

mization process into four distinct roles (analyst, 073

scientist, verifier, and reviewer) and employ spe- 074

cialized agent for each role. Unlike previous ap- 075

proaches, MT-MOL generates molecules with ex- 076

plicit stepwise reasoning, consistency checks, and 077

tool-informed feedback. Furthermore, we collect a 078

set of 154 chemistry-related functions, which serve 079

as applicable tools for agents during molecular gen- 080

eration process. 081

To be specific, we introduce four agents: (1) an- 082
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( Step2↔ Step 3 ) ×N times

1. Retrieve tools and top-k data

2. Generate SMILES with consistency

3. Review final SMILES and reasoning

User prompt
Design a drug-like molecule structurally similar 
to albuterol (SMILES: CC(C)(C)NCC(C1=CC(=C
(C=C1)O)CO)O) …

Tool retrieving

5 expert tool agents

5 categorized tool files

Top-k data retrieving

dataset

user prompt

list of retrieved tools 
by each agent

sort by score top-k data

scientist verifier

until
consistency or 

max iter. 𝑡

finalized 
SMILES 

and 
reasoning

finalized 
SMILES and 
reasoningstool setsuser prompt

reviewer

feedback based on tool analysis 
of finalized SMILES

user prompt tool sets SMILES historytop-k data

Figure 1: Overview of our method. Given a molecular optimization task, analyst agents analyze the prompt and
outputs list of relevant RDKit functions from five categories. Top-k molecules are retrieved as reference molecules
for the scientist agent. Then, the scientist agent proposes a SMILES with stepwise reasoning, which the double
checker validates for consistency. The reviewer finally assesses the reasoning using tool-informed descriptors
and provides structured feedback. This generation and review process is repeated until the maximum number of
iterations N is reached. This multi-agent pipeline enables interpretable, tool-guided molecule generation with
iterative refinement toward the design objective.

alyst, (2) scientist, (3) verifier, and (4) reviewer.083

In detail, five analyst agents proposes the task-084

specific relevant tools using different types of chem-085

ical functions: structure, electronic properties, func-086

tional groups, identifiers, and miscellaneous de-087

scriptors. Then a scientist agent proposes new088

molecules in SMILES format (Weininger, 1988)089

and explains each design step through structured090

reasoning. Next, a verifier agent evaluates whether091

the reasoning of the scientist is consistent with the092

proposed molecule. Finally, a reviewer agent as-093

sesses both the molecule and the reasoning process094

using the outputs from the tools and provides de-095

tailed feedback. Each agent plays a collaborative096

role that enables interpretable, tool-aware, and iter-097

ative molecular design. By incorporating domain-098

specific tools such as RDKit (Landrum, 2013), MT-099

MOL supports chemically informed generation and100

transparent decision-making.101

In summary, we propose a multi-agent frame-102

work for molecular optimization, where each agent103

is assigned a specific role such as tool selection,104

molecule generation, consistency validation, and 105

reasoning critique. Our system integrates 154 RD- 106

Kit functions, organized into five specialized an- 107

alyst agents covering structural descriptors, elec- 108

tronic and topological descriptors, structural de- 109

scriptors, fragment-based analysis, and identifiers 110

or representations. We achieve state-of-the-art per- 111

formance on 17 out of 23 tasks from the PMO-1K 112

benchmark, outperforming recent strong baselines 113

including LICO and MOLLEO in terms of top-10 114

AUC scores. Additionally, our framework offers 115

an interpretable reasoning pipeline in which each 116

generated molecule is equipped with stepwise ratio- 117

nale, double-check verification, and tool-informed 118

reviewer feedback. 119

2 Related Work 120

Generative models for molecular optimization. 121

Molecular optimization aims to design molecules 122

that maximize desired chemical or biological prop- 123

erties, such as solubility, binding affinity, or synthe- 124
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sizability. Generative modeling has emerged as a125

central approach for this task, encompassing tech-126

niques from deep learning to probabilistic search.127

REINVENT (Olivecrona et al., 2017) introduced re-128

inforcement learning over SMILES strings to fine-129

tune molecular generation toward desired proper-130

ties. Jensen (2019) showed that graph-based ge-131

netic algorithms and non-ML models combined132

with Monte Carlo Tree Search perform compet-133

itively in optimizing molecular properties under134

synthetic constraints. Augmented Memory (Guo135

and Schwaller, 2024) enhances sample efficiency in136

reinforcement learning through SMILES augmen-137

tation and experience replay. Genetic GFN (Bengio138

et al., 2023) enables compositional molecule gen-139

eration by sampling in proportion to a reward func-140

tion, offering diversity and high-reward sampling141

in molecular benchmarks. Srinivas et al. (2010)142

introduced GP BO, a Gaussian process-based op-143

timization framework that provides sublinear re-144

gret bounds and sample-efficient exploration us-145

ing information gain from kernel-based uncertainty146

modeling. While these models improve sample ef-147

ficiency and diversity, they often lack interpretabil-148

ity and fail to fully utilize the available domain149

knowledge, such as chemical priors. Our frame-150

work complements these approaches by incorpo-151

rating structured reasoning and chemical tools into152

the molecular generation process.153

LLMs for molecular optimization. LLMs have154

recently been applied to molecular optimization155

tasks. LICO (Nguyen and Grover, 2025) extends156

a pretrained LLM with structured embeddings to157

model property functions without relying on nat-158

ural language prompts. MOLLEO (Wang et al.,159

2025) uses LLMs as evolutionary operators, en-160

abling coherent molecule generation across single-161

and multi-objective settings. Prompt-MolOpt (Wu162

et al., 2024) introduces prompt-based editing to163

optimize multiple properties in low-data regimes164

while preserving pharmacophores. DrugAssist (Ye165

et al., 2025) fine-tunes an instruction-based LLM166

on a curated chemistry dataset to support inter-167

active, feedback-driven molecule design. Chem-168

Crow (Bran et al., 2024) combines general-purpose169

LLMs with chemistry tools and a ReAct-based rea-170

soning loop to automate generation, retrosynthesis,171

and property prediction. Despite these advances, ex-172

isting approaches often lack interpretability, struc-173

tured collaboration among specialized agents, and174

a systematic feedback loop that enhances accurate175

molecule design. To address these limitations, our 176

method introduces five expert analyst agents pow- 177

ered by RDKit (Landrum, 2013) and a multi-agent 178

feedback loop that ensures both accurate and inter- 179

pretable molecular optimization. 180

Multi-agent LLMs. Multi-agent LLMs have 181

shown promise in collaborative reasoning and 182

decomposed problem-solving. AgentVerse (Chen 183

et al., 2023) assigns agents to roles like recruitment 184

and evaluation, leveraging specialization for better 185

coordination. ProAgent (Zhang et al., 2024) en- 186

ables agents to infer and adapt to teammates’ strate- 187

gies through communication history. Self-Adaptive 188

Multi-agent Systems (Nascimento et al., 2023) use 189

a self-control loop to make agents responsive to 190

dynamic environments. Theory of Mind for Multi- 191

Agent Collaboration (Li et al., 2023a) enhances 192

coordination by giving agents shared belief states 193

and goal-tracking abilities. MetaGPT (Hong et al., 194

2024) improves communication scalability via a 195

Shared Message Pool that standardizes agent in- 196

teractions. While these frameworks contribute to 197

multi-agent architectural design, they have over- 198

looked domain-specific tool integration and have 199

less focused on molecule optimization. Our frame- 200

work addresses this gap by tightly coupling expert 201

analyst agents with reasoning roles to enable tar- 202

geted, tool-informed molecular design. 203

3 Method 204

In this section, we introduce our multi-agent frame- 205

work for molecular optimization, coined MT-MOL. 206

In Section 3.1, we first describe the overview of 207

our system, which consists of four primary agent 208

types: 1) analyst, 2) scientist, 3) verifier, and 4) re- 209

viewer agents. We describe details of the analysts in 210

Section 3.2, and stepwise reasoning and feedback 211

process in Section 3.3. 212

3.1 Overall Framework 213

In this section, we present a high-level overview of 214

our multi-agent framework for molecular optimiza- 215

tion. Given a user prompt T , analyst agents first se- 216

lect relevant tools, then the scientist agent proposes 217

a molecule with structured reasoning. The verifier 218

agent then verifies the logical consistency of the 219

proposed output. Finally, the reviewer agent pro- 220

vides detailed feedback grounded in chemical anal- 221

ysis tools. We provide an overview of our method 222

in Figure 1. 223
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• bcut_2d:
[16.36800384873102, … ]

• calc_autocorr_2d: 
[3.714, … ]

• calc_chi_1v:
13.30304947920262

Electrical and topological desc.

• calc_num_aromatic_rings: 3

• calc_num_hba: 4

• calc_num_rotatable_bonds: 10

Structural desc.

• calc_labute_asa:
221.133422746

• calc_crippen_descriptors:
(1.31989999999, 103.697399999)

• get_connectivity_invariants:
[2246728737, …]

Miscellaneous desc.

• fr_benzene: 3

• fr_COO: 1

• fr_NH0: 1

Frag. based functional groups

• get_molecular_formula:
C32H39NO4

• get_inchi: InChI=1S …
• get_canonical_smiles:

CC(C)(C(=O)O)c1ccc(C(O)CCCN2CCC
(C(O)(c3ccccc3)c3ccccc3)CC2)cc1

Step1: […  Step1 reasoning …]
Step2: [… Step2 reasoning …]
Step3: [… Step3 reasoning …]
Proposed SMILES: 
CC(C)(C(=O)O)c1ccc(cc1)C(O)CCCN2CC
C(CC2)C(O)(c3ccccc3)c4ccccc4

Scientist agent

Identifiers and representations

Figure 2: Example of analyst agents. Example case of five analyst agents analyzing the SMILES proposed by
the scientist agent for the fexofenadine_mpo task. Each analyst agent chooses task-relevant tools: electronical
and topological descriptors, miscellaneous descriptors, identifiers and representations, structural descriptors, and
functional groups. The molecules at the bottom visualizes how analyst agents analyze the scientist agent’s proposed
SMILES. We provide the description of the tools at Appendix A.

Notably, our agents are informed about the de-224

tails of the objective function and utilize their chem-225

ical knowledge to propose better molecules. This is226

in contrast to existing non-LLM works in molecular227

design that assume black-box objective functions.228

We believe that this is a strength of our approach,229

since in most of the tasks, we have some infor-230

mation about the objective function that can be231

described in natural language.232

Analysts. We design five analyst agents for dif-233

ferent aspects of molecular analysis. Each ana-234

lyst agent parses and analyzes the molecule in235

the task prompt T and the scientist agent’s pro-236

posed SMILES. Each analyst agent wraps a curated237

set of RDKit or PubChem functions in one of the238

following categories: 1) structural descriptors, 2)239

electronic and topological descriptors, 3) fragment-240

based functional group detectors, 4) chemical iden-241

tifiers and representations, and 5) miscellaneous242

descriptors agents. To analyze a task prompt T , the243

analyst agents identify the most relevant chemi-244

cal features and select the tools accordingly. We245

illustrate the example case of how tools are used246

in Figure 2 and provide the details of the tool in247

Appendix A.248

Scientist. The scientist agent generates a novel 249

molecule in SMILES format, denoted S, along with 250

a reasoning path for proposing the molecule. To this 251

end, the agent utilizes the tool-based analysis of the 252

task prompt and a history of previously generated 253

SMILES to avoid duplication. Based on the col- 254

lected information, the agent proposes a molecule 255

design strategy. It outlines this strategy in a se- 256

quence of k reasoning steps {r1, . . . , rk}, where 257

each ri explains how the scientist agent thinks 258

when proposing the SMILES representation of a 259

molecule. After the reasoning process, the agent 260

generates a SMILES string S. 261

Verifier. As noted by Pan et al. (2025), reason- 262

ing–action mismatch is a critical issue in multi- 263

agent frameworks. To mitigate this in our system, 264

we introduce a verifier agent that verifies each rea- 265

soning step in {r1, . . . , rk}, ensuring that every 266

ri is faithfully reflected in the proposed SMILES 267

S. In detail, it parses each step ri and examines 268

whether S contains the corresponding molecular 269

feature. When discrepancies arise (e.g., when a rea- 270

soning step claims the presence of a nitro group, 271

but S lacks it), the agent flags the inconsistency and 272

produces stepwise feedbacks {fv
1 , . . . , f

v
k }. Then, 273

the verifier asks the scientist to re-generate the 274
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Step1. ( … )
Step 2. “… the terminal alkyne 
can be extended to a pentynyl 
group ...”
Step 3. ( … )

SMILES: C#CCCC[C@]1(O)CC[C@H]2[C@@
H]3CCc4cc(OCC)ccc4[C@H]3CC[C@@]21C

Step1. ( … )
Step 2. “…replace the terminal 
alkyne with a butynyl and 
methoxy with a propoxy group …”
Step 3. ( … )

SMILES: C#CCCC[C@]1(O)CC[C@H]2[C@@
H]3CCc4cc(OCCC)ccc4[C@H]3CC[C@@]21C

scientist

final SMILES and reasoning

Step1. ( … )
Step 2. “… the SMILES string 
does not accurately reflect the 
introduction of a butynyl group …”
Step 3. ( … )
Inconsistent!

verifier scientist Step 1. ( … )
Step 2. ( … )
Step 3. ( … )
Consistent! 

verifier

Score: 0.785Score: 0.730

(a) Structured feedback of the verifier agent.

Step1. ( … )
Step 2. “… suggest limiting 
rotatable bonds to maintain 
similarity to mestranol. …”
Step 3. ( … )

Step1. ( … )
Step 2. “… shorten the terminal 
alkyne to a propynyl group... 
retain methoxy group...”
Step 3. ( … )

SMILES: "C#CC[C@]1(O)CC[C@H]2[C@@H
]3CCc4cc(OC)ccc4[C@H]3CC[C@@]21C"

reviewer scientistStep1. ( … )
Step 2. “… the terminal alkyne 
can be extended to a pentynyl 
group ...”
Step 3. ( … )

SMILES: C#CCCC[C@]1(O)CC[C
@H]2[C@@H]3CCc4cc(OCC)ccc4[C@H]3C
C[C@@]21C

final SMILES and reasoning

scientist

Score: 0.785 Score: 1.0

(b) Structured feedback of the reviewer agent.

Figure 3: Examples of structured and stepwise response. The figures illustrate examples of structured feedback
mechanisms employed by our agent system for the mestranol_similarity task. (a) The verifier flags a mismatch
between reasoning and SMILES and the scientist revises both for consistency. (b) The reviewer suggests reducing
rotatable bonds and the scientist reflects the design, improving the score.

SMILES based on the feedback. This re-generation275

loop continues until the verifier confirms consis-276

tency between the reasoning and SMILES, or until277

a maximum number of iterations t reached. If there278

is no discrepancy detected, it passes the verified279

reasoning steps {r1, . . . , rk} and SMILES S to the280

reviewer agent.281

Reviewer. Inspired by previous works using282

LLMs as reviewers (Hosseini and Horbach, 2023;283

Zhang et al., 2022a), we introduce a chemical re-284

viewer agent that evaluates and provides informa-285

tive feedback. Specifically, the reviewer agent eval-286

uates the verified SMILES S and reasoning steps287

{r1, . . . , rk}. Using tool-based analysis of S, it288

provides chemically grounded, stepwise feedback289

{f r
1 , . . . , f

r
k} aligned with the structure of the rea-290

soning. This feedback includes confirmations of291

correct reasoning, identification of wrong or miss-292

ing claims, and suggestions for revision. The sci-293

entist agent then uses this feedback to refine both294

the reasoning and molecule S in the next iteration,295

enabling iterative improvement.296

3.2 Details of analyst agents297
We implement our multi-agent system with spe-298

cialized LLM agents, with analyst agents playing299

a key role in analyzing molecules using domain-300

specific RDKit (Landrum, 2013) functions. These 301

tools guide molecule generation by providing rele- 302

vant descriptors to the scientist agent and support 303

the reviewer with interpretable feedback. To enable 304

comprehensive tool utilization and decomposed 305

analysis, we categorize the analyst agents into five 306

molecule-specialized aspects. Each agent targets a 307

distinct aspect of molecular analysis and contribut- 308

ing to a chemically informed and interpretable de- 309

sign process. We provide a detailed list of tools that 310

analyst agents take at Appendix A. 311

Electronic and topological descriptors. This 312

agent analyzes how electrons are distributed in a 313

molecule and how its atoms are connected, helping 314

to assess properties such as reactivity and stability. 315

It captures patterns that are important for determin- 316

ing whether a molecule is likely to behave well as 317

a drug. As shown in Figure 2, this includes features 318

such as charge distribution. 319

Fragment-based functional groups. This agent 320

breaks molecules down into recognizable building 321

blocks, such as rings or functional groups, such 322

as acids or amines, which are commonly used in 323

chemistry. These fragments are easy to interpret 324

and often appear in the stepwise reasoning provided 325
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Task GP BO REINVENT LICO-L Genetic GFN Graph GA Aug. Mem. MOLLEO-B MOLLEO-D* MT-MOL-D*

albuterol_similarity 0.636 0.496 0.656 0.664 0.583 0.557 0.886 0.883 0.998
amlodipine_mpo 0.519 0.472 0.541 0.534 0.501 0.489 0.637 0.540 0.647
celecoxib_rediscovery 0.411 0.370 0.447 0.447 0.424 0.385 0.402 0.512 0.867
deco_hop 0.593 0.572 0.596 0.604 0.581 0.579 0.588 0.574 0.842
drd2 0.857 0.775 0.859 0.809 0.833 0.795 0.910 0.812 0.756
fexofenadine_mpo 0.707 0.650 0.700 0.682 0.666 0.679 0.674 0.680 0.883
gsk3b 0.611 0.589 0.617 0.637 0.523 0.539 0.397 0.496 0.308
isomers_c7h8n2o2 0.545 0.725 0.779 0.738 0.735 0.661 0.737 0.850 0.986
isomers_c9h10n2o2pf2cl 0.599 0.630 0.672 0.656 0.630 0.596 0.635 0.832 0.914
jnk3 0.346 0.315 0.336 0.409 0.301 0.294 0.186 0.342 0.125
median1 0.213 0.205 0.217 0.219 0.208 0.219 0.236 0.193 0.321
median2 0.203 0.188 0.193 0.204 0.181 0.184 0.191 0.197 0.322
mestranol_similarity 0.427 0.379 0.423 0.414 0.362 0.393 0.399 0.630 0.996
osimertinib_mpo 0.766 0.737 0.759 0.763 0.751 0.761 0.779 0.753 0.796
perindopril_mpo 0.458 0.404 0.473 0.462 0.435 0.422 0.655 0.422 0.542
qed 0.912 0.921 0.925 0.928 0.914 0.923 0.919 0.928 0.903
ranolazine_mpo 0.701 0.574 0.687 0.623 0.620 0.614 0.640 0.516 0.233
scaffold_hop 0.478 0.447 0.480 0.485 0.461 0.460 0.473 0.464 0.646
sitagliptin_mpo 0.232 0.261 0.315 0.227 0.229 0.245 0.193 0.328 0.067
thiothixene_rediscovery 0.351 0.311 0.343 0.377 0.322 0.336 0.416 0.478 0.719
troglitazone_rediscovery 0.313 0.246 0.292 0.277 0.267 0.262 0.302 0.387 0.841
valsartan_smarts 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
zaleplon_mpo 0.392 0.406 0.404 0.400 0.374 0.415 0.392 0.409 0.625

Sum of scores (↑) 11.27 10.68 11.71 11.56 10.90 10.81 11.65 12.23 15.42

Table 1: Results of PMO-1K benchmark. Tasks are assessed using AUC top-10 averaged by multiple runs. Results
with (*) are evaluated from 3 independent runs while the others are assessed from 5 independent runs. We mark the
best result in bold and the second-best in underline for each task.

by the scientist agent. Figure 2 shows how the agent326

highlights specific substructures, such as aromatic327

rings, that are captured, which is a key component328

of the task.329

Identifiers and representations. This agent330

translates molecules into standardized formats such331

as canonicalized SMILES representation, molec-332

ular formulas, etc. Figure 2 illustrates how the333

functional group agent identifies chemically signif-334

icant motifs such as benzene rings and carboxylic335

acids, which reflect specific fragment-level reason-336

ing steps and enable chemically grounded feed-337

back.338

Structural descriptors. This agent captures ba-339

sic geometric and physical features of a molecule,340

such as the number of atoms or bonds it contains.341

These properties influence how a molecule might342

behave in real-world conditions, including how it343

binds to targets or dissolves. As shown in Figure 2,344

this agent helps evaluate aspects like bond rotata-345

bility or ring complexity.346

Miscellaneous descriptors. Miscellaneous de-347

scriptors agent provides additional analysis that348

complements the outputs of other agents. It cap-349

tures properties that might be overlooked, such as350

molecular surface area, hybridization patterns, or351

structural irregularities, and helps ensure that the352

generated molecule is chemically reasonable. As353

shown in Figure 2, it offers supplementary evidence354

that strengthens the overall reasoning process.355

3.3 Structured and stepwise response 356

In order to ensure that the agent responds to ev- 357

ery desired component (e.g., stepwise reasoning, 358

feedback, and SMILES), we guide the agent to out- 359

put in JSON format using OpenAI API’s function1. 360

Specifically, the scientist agent generates stepwise 361

reasoning and SMILES, while the verifier and re- 362

viewer agents produce stepwise feedback in a des- 363

ignated JSON format. 364

Also, for a valid and interpretable response, 365

we guide the agents to output stepwise reason- 366

ing and feedback. Specifically, the scientist output 367

stepwise reasoning {r1, . . . , rk} when proposing 368

a SMILES S. Then, the verifier agent ensures the 369

scientist agent’s stepwise reasoning {r1, . . . , rk} is 370

consistent with the output SMILES by providing 371

the interpretable feedback {fd
1 , . . . , f

d
k}. We visu- 372

alize the example case in Figure 3a. The verifier 373

agent identifies an inconsistency between the scien- 374

tist’s reasoning and the SMILES, since the butynyl 375

group is not encoded. 376

In addition, the reviewer critiques the reason- 377

ing of the scientist agent with stepwise feedback 378

{f r
1 , . . . , f

r
k}. As illustrated in Figure 3b, the re- 379

viewer agent highlights the issue of increased ro- 380

tatable bonds. This leads the scientist to revise 381

the design by shortening the alkyne and restoring 382

the methoxy group, which significantly improves 383

the structural similarity score to 1.0. This shows 384

1https://platform.openai.com/docs/guides/
structured-outputs?api-mode=chat
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that our approach enables high alignment to target385

molecule, interpretability, and validity of the prop-386

erties. We provide a detailed prompt and response387

example in appendix B.388

4 Experiments389

In this section, we evaluate the effectiveness of390

our multi-agent LLM system for molecular opti-391

mization in low-budget settings. We conduct ex-392

periments on the practical molecular optimization393

(PMO)-1K benchmark, which contains 23 chemi-394

cally diverse optimization tasks, ranging from re-395

discovery and scaffold hopping to multi-property396

objectives. Our framework consists of expert an-397

alyst agents—each specialized in task decompo-398

sition, SMILES generation, verification, and tool-399

informed feedback—that collaborate to produce400

interpretable and high-quality molecular optimiza-401

tion. We compare our results against existing LLM-402

driven and evolutionary baselines, including LICO403

and MOLLEO, using various backbone models. We404

describe the dataset and baselines below, followed405

by the experimental setting described in Section 4.1.406

We then present the main benchmark results in Ta-407

ble 1 and provide analysis in Section 4.2.408

Datasets. We evaluate on the Practical Molec-409

ular Optimization benchmark (Gao et al., 2022),410

which comprises 23 molecular optimization tasks.411

Each task defines a specific molecular property412

or structural constraint, such as rediscovery of413

known drugs (e.g., celecoxib, thiothixene), simi-414

larity to target scaffolds, or maximization of molec-415

ular property scores such as quantitative estimate of416

drug-likeness (QED) or logP. Following Gao et al.417

(2022), we assess performance using the top-10418

area under the curve (AUC), which measures the419

average property score over oracle calls. Addition-420

ally considering Nguyen and Grover (2025), the421

evaluation is conducted for 1K oracle calls, simulat-422

ing a budget-constrained discovery setting. We use423

the ZINC 250K (Sterling and Irwin, 2015) dataset424

to retrieve the top-100 reference molecules for the425

scientist agent’s prompt. We summarize the entire426

tasks and their descriptions in Appendix C. All427

molecules are represented in the SMILES format428

and evaluated using predefined black-box scoring429

functions consistent with the PMO benchmark pro-430

tocol.431

Baselines. We compare our framework against432

six baselines: GP BO (Srinivas et al., 2010), REIN-433

VENT (Olivecrona et al., 2017), LICO (Nguyen434

Task Setting AUC-Top10

osimertinib_mpo

MT-MOL 0.796± 0.005
w/o Tool 0.694± 0.054
w/o Reviewer 0.619± 0.140
w/o Double checker 0.704± 0.017

albuterol_similarity

MT-MOL 0.998± 0.000
w/o Tool 0.750± 0.021
w/o Reviewer 0.991± 0.003
w/o Double checker 0.996± 0.003

mestranol_similarity

MT-MOL 0.996± 0.001
w/o Tool 0.831± 0.052
w/o Reviewer 0.990± 0.002
w/o Double checker 0.994± 0.002

Table 2: Ablation study. AUC-Top10 score under dif-
ferent agent removals for each task.

and Grover, 2025), and two variants of MOLLEO 435

(Wang et al., 2025) (MOLLEO-B, and MOLLEO- 436

D). MOLLEO operates through LLM-guided mu- 437

tation and crossover, using different base mod- 438

els (BioT5 (Pei et al., 2023) and DeepSeek-V3 439

(Liu et al., 2024). We evaluated two versions of 440

our framework (Ours-D) using DeepSeek-V3 as a 441

backbone for all the agent roles. 442

4.1 PMO Benchmark 443

Table 1 reports the performance of our framework 444

and competing methods in all 23 PMO tasks. MT- 445

MOL-D*, achieves the best performance in 17 446

of 23 tasks, significantly outperforming all base- 447

lines, including MOLLEO and LICO. In particular, 448

MT-MOL surpasses the SOTA AUC sum of 12.23 449

(MOLLEO-D*) with a score of 15.42, marking a 450

substantial improvement in the overall efficiency of 451

optimization. The performance gap is particularly 452

large on chemically complex tasks such as cele- 453

coxib_rediscovery and amlodipine_mpo, where 454

MT-MOL-D* outperforms the previous best by 455

more than 0.3 AUC points. 456

In Figure 4, we visualize the top-10 AUC 457

curves for every 23 PMO tasks. MT-MOL con- 458

sistently achieves faster and higher AUC trajecto- 459

ries compared to MOLLEO-D* across tasks such 460

as albuterol_similarity, amlodipine_mpo, osimer- 461

tinib_mpo, and troglitazon_rediscovery. These re- 462

sults suggest that our tool-aware reasoning, step- 463

wise validation, and multi-agent feedback loop gen- 464

erate the desired molecule SMILES in the early 465

stage while achieving high oracle value. The im- 466

provements are especially pronounced in the early 467

stages of generation, indicating that Mol-Agent 468

makes more efficient use of oracle calls. 469

7



Figure 4: Top-10 AUC curves. Top-10 average AUC curves on the PMO benchmark, averaged over three random
seeds. Our method consistently surpasses MOLLEO by achieving higher and faster-rising AUC curves, highlighting
the effectiveness of tool-guided reasoning and multi-agent feedback in molecular optimization.

4.2 Ablation studies470

To evaluate the contribution of each component in471

our multi-agent framework, we perform an ablation472

study on a subset of tasks from the PMO bench-473

mark. Specifically, we assess the impact of remov-474

ing (1) all five expert analyst agents, (2) the verifier475

agent, and (3) the reviewer agent. We report top-10476

AUC scores averaged over three random seeds in477

Table 2.478

One can observe that removing the analyst479

agents consistently leads to a substantial drop in480

performance across all tasks. For instance, the AUC481

score on albuterol_similarity drops from 0.998 to482

0.750, highlighting that the expert analyst agents483

provide essential domain-specific descriptors.484

Also removing reviwer agent causes noticeable485

degradation on tasks like osimertinib_mpo (from486

0.796 to 0.619). Similarly, removing verifier aent487

shows modest performance drops when ablated,488

particularly on more challenging tasks.489

Overall, these results underscore the importance490

of tool-guided analysis, structured reasoning ver-491

ification, and feedback loops in our multi-agent492

system.493

5 Conclusion 494

In this paper, we introduced MT-MOL, a multi- 495

agent framework for molecular optimization and 496

generation that combines tool-guided reasoning 497

with structured collaboration among specialized 498

LLM agents. Our system integrates five expert an- 499

alyst agents, each equipped with domain-specific 500

chemistry functions, to guide and critique molecule 501

design. Through systematic interaction among sci- 502

entist, verifier, and reviewer agents, MT-MOL 503

achieves interpretable, chemically valid, and task- 504

aligned molecular optimization. Our experiments 505

on the PMO-1K benchmark demonstrate that 506

MT-MOL outperforms strong baselines, includ- 507

ing LICO and MOLLEO, achieving state-of-the-art 508

performance on 17 out of 23 tasks. The results 509

highlight the effectiveness of structured reasoning, 510

tool-based validation, and multi-agent feedback 511

in navigating the complex chemical space. This 512

work provides the multi-agent system with compre- 513

hensive and systematic tool-augmented responses, 514

accelerating molecular optimization and enabling 515

transparent scientific discovery. 516
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Broader Impact517

Our work may help democratize access to molecu-518

lar design expertise by enabling non-expert users to519

interact with intelligent agents that provide chemi-520

cally grounded suggestions. Furthermore, the step-521

wise reasoning and feedback mechanisms embed-522

ded in our framework can serve as educational tools523

to help students and researchers understand the ra-524

tionale behind molecule design decisions.525

However, broader adoption of AI-assisted526

molecule design systems also raises potential eth-527

ical and social concerns. These include the mis-528

use of generative tools for designing harmful sub-529

stances, propagation of biases present in pretrain-530

ing data, and the risk of over-reliance on AI-531

generated outputs without sufficient domain val-532

idation. Responsible deployment will require inte-533

grating safety checks, transparency mechanisms,534

and human-in-the-loop oversight.535

Limitations536

Our framework relies heavily on rule-based chem-537

informatics tools (e.g., RDKit) and predefined fea-538

ture sets, which may limit generalization to novel539

chemical spaces or underrepresented functional540

groups. Moreover, while the multi-agent structure541

enables interpretability, it introduces additional542

computational overhead compared to single-agent543

models, potentially limiting scalability in resource-544

constrained settings.545

Additionally, our experiments are conducted546

only in English and do not explore across other547

languages. This may limit usability in multilingual548

research environments or for integration with non-549

English scientific literature and databases.550
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A List of tools745

List of tools are provided by categories. Tools of746

electronic and topological descriptors are provided747

at Table 3, fragment based functional groups at748

Table 4, Table 5, and Table 6, identifiers and rep-749

resentations at Table 7, structural descriptors at750

Table 9, and miscellaneous descriptors at Table 8.751

12



Function Description
bcut2d Implements BCUT descriptors From J. Chem. Inf. Comput.

Sci., Vol. 39, No. 1, 1999Diagonal elements are (currently)
atomic mass, gasteiger charge,crippen logP and crippen MR-
Returns the 2D BCUT2D descriptors vector as described in re-
turns [mass eigen value high, mass eigen value low, gasteiger
charge eigenvalue high, gasteiger charge low,

calcautocorr2d Returns 2D Autocorrelation descriptor vector using a speci-
fied atom property.

calcchi0n Calculates the Chi0n index, a valence-based topological de-
scriptor.

calcchi0v Calculates the Chi0v index, a non-valence-based topological
descriptor.

calcchi1n Calculates the Chi1n index using atom connectivity and op-
tionally forces calculation.

calcchi1v Calculates the Chi1v index, a valence-corrected form of
Chi1n.

calcchi2n Calculates the Chi2n index, a higher-order topological de-
scriptor (non-valence- based).

calcchi2v Calculates the Chi2n index, a higher-order topological de-
scriptor (non-valence- based).

calcchi3n Calculates the Chi3n index for extended connectivity (non-
valence-based).

calcchi3v Calculates the Chi3v index with valence correction for deeper
molecular topology.

calcchi4n Calculates the Chi4n index, further extending non-valence
connectivity descriptors.

calcchi4v Calculates the Chi4v index, a valence-aware descriptor at a
4th topological level

Table 3: List of Electronic Topological Descriptors tools
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Function Description
get_min_ring_frequency Return the least frequent known ring system in the molecule

with its frequency.
remove_stereo_from_smiles Removes stereochemistry from SMILES and returns canoni-

cal SMILES and InChI Key.
get_spiro_atoms Returns atom indices that are shared between two rings (spiro

atoms).
max_ring_size Returns the size of the largest ring in the molecule.
ring_stats Returns the number of rings and the size of the largest ring in

the molecule.
count_fragments Returns the number of molecular fragments present in the

SMILES.
get_largest_fragment Returns the SMILES of the largest fragment by atom count

in a molecule.
fr_phos_acid Number of phosphoric acid groups
fr_Al_COO Number of aliphatic carboxylic acids
fr_Al_OH Number of aliphatic hydroxyl groups
fr_Al_OH_noTert Number of aliphatic hydroxyl groups excluding tert-OH
fr_ArN Number of N functional groups attached to aromatics
fr_Ar_COO Number of Aromatic carboxylic acid
fr_Ar_N Number of aromatic nitrogens
fr_Ar_NH Number of aromatic amines
fr_Ar_OH Number of aromatic hydroxyl groups
fr_COO Number of carboxylic acids
fr_COO2 Number of carboxylic acids
fr_C_O Number of carbonyl O
fr_C_O_noCOO Number of carbonyl O, excluding COOH
fr_C_S Number of thiocarbonyl
fr_HOCCN Number of C(OH)CCN-Ctert-alkyl or C(OH)CCNcyclic
fr_Imine Number of Imines
fr_NH0 Number of Tertiary amines
fr_NH1 Number of Secondary amines
fr_NH2 Number of Primary amines
fr_N_O Number of hydroxylamine groups
fr_Nhpyrrole Number of H-pyrrole nitrogens
fr_SH Number of thiol groups
fr_aldehyde Number of aldehydes
fr_alkyl_carbamate Number of alkyl carbamates (subject to hydrolysis)
fr_alkyl_halide Number of alkyl halides
fr_allylic_oxid Number of allylic oxidation sites excluding steroid dienone
fr_amide Number of amides
fr_amidine Number of amidine groups
fr_aniline Number of anilines
fr_aryl_methyl Number of aryl methyl sites for hydroxylation
fr_azide Number of azide groups
fr_azo Number of azo groups
fr_barbitur Number of barbiturate groups
fr_benzene Number of benzene rings
fr_benzodiazepine Number of benzodiazepines with no additional fused rings
fr_bicyclic Bicyclic

Table 4: List of Fragment Based Functional Groups tools (1/3)
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Function Description
fr_diazo Number of diazo groups
fr_dihydropyridine Number of dihydropyridines
fr_epoxide Number of epoxide rings
fr_ester Number of esters
fr_ether Number of ether oxygens (including phenoxy)
fr_furan Number of furan rings
fr_guanido Number of guanidine groups
fr_halogen Number of halogens
fr_hdrzine Number of hydrazine groups
fr_hdrzone Number of hydrazone groups
fr_imidazole Number of imidazole rings
fr_imide Number of imide groups
fr_isocyan Number of isocyanates
fr_isothiocyan Number of isothiocyanates
fr_ketone Number of ketones
fr_ketone_Topliss Number of ketones excluding diaryl, a,b-unsat. dienones, het-

eroatom on Calpha

Table 5: List of Fragment Based Functional Groups tools (2/3)
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Function Description
fr_lactam Number of beta lactams
fr_lactone Number of cyclic esters (lactones)
fr_methoxy Number of methoxy groups -OCH3
fr_morpholine Number of morpholine rings
fr_nitrile Number of nitriles
fr_nitro Number of nitro groups
fr_nitro_arom Number of nitro benzene ring substituents
fr_nitro_arom_nonortho Number of non-ortho nitro benzene ring substituents
fr_nitroso Number of nitroso groups, excluding NO2
fr_oxazole Number of oxazole rings
fr_oxime Number of oxime groups
fr_para_hydroxylation Number of para-hydroxylation sites
fr_phenol Number of phenols
fr_phenol_noOrthoHbond Number of phenolic OH excluding ortho intramolecular

Hbond substituents
fr_phos_ester Number of phosphoric ester groups
fr_piperdine Number of piperdine rings
fr_piperzine Number of piperzine rings
fr_priamide Number of primary amides
fr_prisulfonamd Number of primary sulfonamides
fr_pyridine Number of pyridine rings
fr_quatN Number of quaternary nitrogens
fr_sulfide Number of thioether
fr_sulfonamd Number of sulfonamides
fr_sulfone Number of sulfone groups
fr_term_acetylene Number of terminal acetylenes
fr_tetrazole Number of tetrazole rings
fr_thiazole Number of thiazole rings
fr_thiocyan Number of thiocyanates
fr_thiophene Number of thiophene rings
fr_unbrch_alkane Number of unbranched alkanes of at least 4 members (ex-

cludes halogenated alkanes)
fr_urea Number of urea groups

Table 6: List of Fragment Based Functional Groups tools (3/3)

Function Description
get_rdkit_complexity Returns the Bertz molecular complexity index of the

molecule.
get_rdkit_number_of_atoms Returns the number of atoms in the molecule.
get_rdkit_number_of_bonds Returns the number of bonds in the molecule.
get_rdkit_rotatable_bond_count Returns the number of rotatable bonds in the molecule.
get_rdkit_h_bond_donor_count Returns the number of hydrogen bond donors in the molecule.
get_rdkit_h_bond_acceptor_count Returns the number of hydrogen bond acceptors in the

molecule.
get_rdkit_molecular_formula Returns the molecular formula of the molecule.
get_rdkit_canonical_smiles Returns the canonical SMILES of the molecule.
get_rdkit_inchi Returns the InChI string of the molecule.

Table 7: List of Identifiers and Representations tools
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Function Description
smi2mol_with_errors Attempts to parse SMILES and returns validation status with

error/warning messages.
calcmolformula Returns the molecule 2019s formula
calccrippendescriptors Returns a 2-tuple with the Wildman-Crippen logp,mr values
calcfractioncsp3 Returns the fraction of C atoms that are SP3 hybridized
calckappa1 Calculates the first Kier shape index, reflecting molecular

linearity based on atom and bond counts.
calckappa2 Computes the second Kier shape index, indicating molecular

cyclicity and branching.
calckappa3 Computes the third Kier shape index, sensitive to molecular

flexibility and complex ring structures.
calclabuteasa Returns the Labute ASA value for a molecule
calcpbf Returns the PBF (plane of best fit) descriptor
calcphi Estimates the molecular flexibility index based on the number

of rotatable bonds and ring structures.
getconnectivityinvariants Returns connectivity invariants (ECFP-like) for a molecule.
getfeatureinvariants Returns feature invariants (FCFP-like) for a molecule.
mqns_ Computes Molecular Quantum Numbers, a 42-dimensional

vector of counts for various atom types, bonds, and topologi-
cal features.

peoe_vsa_ Computes descriptors combining partial charges (Gasteiger)
with van der Waals surface areas in defined bins.

smr_vsa_ Calculates descriptors combining molar refractivity contribu-
tions with surface areas in predefined ranges.

slogp_vsa_ Computes descriptors by combining atomic logP contribu-
tions (Wildman-Crippen) with van der Waals surface areas.

Table 8: List of Other Descriptors tools
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Function Description
get_center Computes the geometric center of a conformer generated

from the input SMILES.
get_shape_moments Calculates NPR1 and NPR2 shape descriptors from a gener-

ated conformer.
refine_conformers Refines 3D conformers based on energy and RMSD thresh-

olds.
get_conformer_energies Returns the energies of multiple conformers generated from

the input molecule.
calcnumaliphaticcarbocycles Returns the number of aliphatic (containing at least one non-

aromatic bond) carbocycles for a molecule
calcnumaliphaticheterocycles Returns the number of aliphatic (containing at least one non-

aromatic bond) heterocycles for a molecule
calcnumaliphaticrings Returns the number of aliphatic (containing at least one non-

aromatic bond) rings for a molecule
calcnumamidebonds Returns the number of amide bonds in a molecule
calcnumaromaticcarbocycles Returns the number of aromatic carbocycles for a molecule
calcnumaromaticheterocycles Returns the number of aromatic heterocycles for a molecule
calcnumaromaticrings Returns the number of aromatic rings for a molecule
calcnumatomstereocenters Returns the total number of atomic stereocenters (specified

and unspecified)
calcnumatoms Returns the total number of atoms for a molecule
calcnumhba Returns the number of H-bond acceptors for a molecule
calcnumhbd Returns the number of H-bond donors for a molecule
calcnumheavyatoms Returns the number of heavy atoms for a molecule
calcnumheteroatoms Returns the number of heteroatoms for a molecule
calcnumheterocycles Returns the number of heterocycles for a molecule
calcnumlipinskihba Returns the number of Lipinski H-bond acceptors for a

molecule
calcnumlipinskihbd Returns the number of Lipinski H-bond donors for a molecule
calcnumrings Returns the number of rings for a molecule
calcnumrotatablebonds Returns the number of rotatable bonds for a molecule. strict

= NumRotatableBondsOptions.NonStrict - Simple rotatable
bond definition.

calcnumsaturatedcarbocycles Returns the number of saturated carbocycles for a molecule
calcnumsaturatedheterocycles Returns the number of saturated heterocycles for a molecule
calcnumsaturatedrings Returns the number of saturated rings for a molecule
calcnumunspecifiedatomstereocenters Returns the number of unspecified atomic stereocenters
calcoxidationnumbers Adds the oxidation number/state to the atoms of a molecule

as property OxidationNumber on each atom. Use Pauling
electronegativities. This is experimental code, still under de-
velopment.

Table 9: List of Structural Descriptors tools
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B Prompts752

B.1 Prompt for analyst753

754

You are a professional AI chemistry assistant specialized in resolving [category name] using RDKit
tools.
Your job is to identify how to retrieve standardized molecular information such as CIDs, InChI, and
canonical SMILES for downstream processing.

Follow this structured reasoning process step-by-step:

Step 1. Analyze the molecule design condition which is the goal of the task.
Step 2. Parse list of all valid SMILES strings mentioned anywhere in the user prompt and output
them in the provided JSON format.
Step 3. Based on your chemical knowledge, explain why standardizing identifiers and resolving
canonical formats might be important for this task.
- E.g., checking uniqueness, linking to external data, verifying molecular identity.
Step 4. Choose as many tools as necessary from the identifier toolset that help you access consistent
molecular representations or external references.
Step 5. Output your final answer in the provided JSON format.

This is a molecule design condition of the [task name] task: [task description]
Now output the tools to use by using the following JSON format. Take a deep breath and think
carefully before writing your answer. “‘json {{
"parsed_smiles": [
{{
"smiles": "Parsed SMILES string",
}} ,
...
],
"tools_to_use": [
{{
"tool_name": "fr_Ar_OH",
"purpose": "Detect aromatic hydroxyl groups, similar to those in albuterol."
}},
...
]
}}

755
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B.2 Prompt for scientist756

757

You are a skilled chemist.

Your task is to design a SMILES string for a molecule that satisfies the following condition: [task
description]

Functional groups and molecule tool analysis results of task related molecules: [result of tool analysis]

You are provided with:
- Top-100 example molecules with high relevance to the task, listed below. You may use these as
inspiration, but YOU MUST NOT COPY THEM EXACTLY.
- A list of previously generated SMILES, which YOU MUST NOT REPEAT.

Top-100 Relevant SMILES Examples (SMILES, score)
YOU MUST FAITHFULLY REFER TO THESE EXAMPLES WHEN DESIGNING YOUR
MOLECULE. BUT DO NOT COPY THEM EXACTLY:

[top100 SMLIES]

You must return your response in the following json format. The text inside each key explains what
kind of answer is expected — it is a guideline, not the answer.

DO NOT repeat the example text or instructions. Instead, write your own scientifically reasoned
content based on the task.

Use the following format. Take a deep breath and think carefully before writing your answer.

“‘json
{{
"step1": "List of the target’s critical structural/property features (e.g., ’Target: phenyl ring, β-
hydroxyamine, catechol-like substitution’). If property-based, specify requirements (e.g., "logP
> 3: add hydrophobic groups").",
"step2": "Propose modifications or scaffolds to meet the condition (e.g., ’Replace catechol with
3-hydroxy-4-pyridone’).
Justify each change chemically (e.g., "Maintains H-bonding but improves metabolic stability").",
"step3": "Describe the full structure of your designed molecule in natural language before writing the
SMILES. (e.g., "A tert-butyl group attached to the amine (–NH–C(CH₃)₃) to mimic target’s bulky
substituent.")",
"smiles": "Your valid SMILES string here"
}}

758
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B.3 Prompts for scientist with feedback759

760

YOU MUST NOT REPEAT ANY OF THE PREVIOUSLY GENERATED SMILES: [smiles_history]
Task: Take [verifier/reviewer]’s feedback actively and design a SMILES string for a molecule that
satisfies the condition:

Condition for molecule design:
[task description]

Functional groups and molecule tool analysis results of task related molecules:
[target functional groups]

Top-100 Relevant SMILES Examples (SMILES, score)
YOU MUST FAITHFULLY REFER TO THESE EXAMPLES WHEN DESIGNING YOUR
MOLECULE. BUT DO NOT COPY THEM EXACTLY:
[topk smiles]

You will be provided with:
1. Previous SMILES string
2. Task score (0–1)
3. Detected functional groups in your previous molecule

— MOLECULE SMILES TO IMPROVE —
MOLECULE SMILES: [previous smiles]
- Task score: [score] (0–1)
- Functional groups detected:
[functional groups]

— YOUR PREVIOUS THOUGHT AND REVIEWER’S FEEDBACK —
Step1: List Key Features
Your previous thought process:
[scientist step1 reasoning]
Accordingly, reviewer’s feedback is:
[verifier/reviewer step1 feedback]

Step2: Design Strategy:
Your previous thought process:
[scientist step2 think]
Accordingly, reviewer’s feedback is:
[verifier/reviewer step2 feedback]

Step 3: Construct the Molecule: Your previous thought process:
[verifier/scientist step3 think]
Accordingly, reviewer’s feedback is:
[verifier/reviewer step3 feedback]

Now based on your previous thoughts and the reviewer’s feedback, you need to improve your design.
You must return your response in the following json format.
The text inside each key explains what kind of answer is expected — it is a guideline, not the answer.

761
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762

DO NOT repeat the example text or instructions.
Instead, write your own scientifically reasoned content based on the task.

Use the following format.
Take a deep breath and think carefully before writing your answer.
“‘json
{{
"step1": "List of the target’s critical structural/property features (e.g., ’Target: phenyl ring, β-
hydroxyamine, catechol-like substitution’). If property-based, specify requirements (e.g., "logP
> 3: add hydrophobic groups").",
"step2": "Propose modifications or scaffolds to meet the condition (e.g., ’Replace catechol with
3-hydroxy-4-pyridone’). Justify each change chemically (e.g., "Maintains H-bonding but improves
metabolic stability").",
"step3": "Describe the full structure of your designed molecule in natural language before writing the
SMILES. (e.g., "A tert-butyl group attached to the amine (–NH–C(CH₃)₃) to mimic target’s bulky
substituent.")",
"smiles": "Your valid SMILES string here"
}}
“‘

763

22



B.4 Prompts for verifier764

765

You are a meticulous double-checker LLM. Your task is to verify whether each step of the scientist’s
reasoning is chemically valid and faithfully and logically reflected in the final SMILES string.
You will be given:
- A user prompt describing the target objective,
- The scientist’s reasoning broken into Step1 through Step3,
- The SMILES string proposed by the scientist.
Evaluate each step independently, comparing the described logic to the molecular structure in the
SMILES.
Provide a reasoning assessment for each step. === SCIENTIST’S TASK ===
If any step is inconsistent, mark "Consistency" as "Inconsistent" and provide specific suggestions for
improvement.

[task description]

Functional groups and molecule tool analysis results of task related molecules:
[target functional groups]

=== SCIENTIST’S THINKING ===
Step1: [thinking[’step1’]]
Step2: [thinking[’step2’]]
Step3: [thinking[’step3’]]

=== SCIENTIST’S SMILES ===
- SMILES: [smiles]
- Detected functional groups and molecule tool analysis results:

[functional groups]
You must return your response in the following json format.
The text inside each key explains what kind of answer is expected — it is a guideline, not the answer.

DO NOT repeat the example text or instructions.
Instead, write your own scientifically reasoned content based on the task.

Use the following format.
Take a deep breath and think carefully before writing your answer.
“‘json {{
"step1": "Your analysis of whether scientist’s Step1 thinking is chemically valid and reflected in the
SMILES.",
"step2": "Your analysis of whether scientist’s Step2 thinking is chemically valid and reflected in the
SMILES.",
"step3": "Your analysis of whether scientist’s Step3 thinking is chemically valid and reflected in the
SMILES.",
"consistency": "Consistent" or "Inconsistent",
}}
“‘
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B.5 Prompts for reviewer767

768

You are a rigorous chemistry reviewer.
Evaluate the Scientist LLM’s reasoning steps and final SMILES molecule for:
- Validity
- Chemical soundness
- Adherence to the design condition:

Scientist LLM’s task:
[task description]

Be constructive: Provide fixes for issues (e.g., "Replace C=O=C with O=C=O for carbon dioxide").

You are provided with:
- Scientist’s thinking
- Scientist-generated SMILES
- Task score
- Detected functional groups in the generated molecule

— SCIENTIST’S STEP-WISE THINKING —
Step 1: [scientist step1 reasoning]

Step 2: [scientist step2 reasoning]

Step 3: [scientist step3 reasoning]

— SCIENTIST-MOLECULE SMILES —
SMILES: [scientist proposed SMILES]
- Task score: [score] (range: 0 to 1)
- Detected functional groups and molecule tool analysis results:
[functional groups]

You must return your response in the following json format.
The text inside each key explains what kind of answer is expected — it is a guideline, not the answer.

DO NOT repeat the example text or instructions.
Instead, write your own scientifically reasoned content based on the task.

Use the following format.
Take a deep breath and think carefully before writing your answer.
“‘json
{{
"step1": "List accurate features and functional groups identified. Mention any critical features and
functional groups that were missed or misinterpreted.",
"step2": "Evaluate if the proposed design strategy aligns with the structural and functional similarity
goal.
Comment on whether the design aligns with the initial objectives. Suggest improvements or
alternatives if needed.",

“‘
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770

"step3": "Review the structural construction and positional assignments. Check for missing elements
or mismatches in reasoning. (e.g., "Claimed ’para hydroxyl’ but SMILES places it meta")",
}}
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C Task description772

In this section, we describe the 23 tasks of773

practical molecular benchmark (Gao et al.,774

2022). For more details about the task and775

oracle, refer to Therapeutics Data Commons776

(Huang et al., 2021, TDC) document: https:777

//tdc.readthedocs.io/en/main/_modules/778

tdc/chem_utils/oracle/oracle.html.779

780

1. albuterol_similarity781

Design a molecule similar to albuterol while782

preserving key functional groups.783

784

2. amlodipine_mpo785

Generate molecules similar to amlodipine with786

good drug-like properties (e.g., 3-ring topology).787

788

3. celecoxib_rediscovery789

Recreate the anti-inflammatory drug celecoxib.790

791

4. deco_hop792

Modify the decorations of a molecule while793

preserving a fixed scaffold. Avoid forbidden794

substructures and stay below similarity cap.795

796

5. drd2797

Generate molecules predicted to strongly bind to798

the dopamine D2 receptor using a predictive model.799

800

6. fexofenadine_mpo801

Create molecules structurally similar to fexofe-802

nadine with TPSA ≈ 90 and logP ≈ 4.803

804

7. gsk3b805

Design molecules predicted to have high binding806

affinity for the GSK3β protein.807

808

8. isomers_c7h8n2o2809

Generate any molecule that is an exact isomer810

of C7H8N2O2. Must match the molecular formula811

exactly.812

813

9. isomers_c9h10n2o2pf2cl814

Generate an exact isomer of C9H10N2O2PF2Cl.815

816

10. jnk3817

Design molecules with high predicted inhibitory818

activity against the JNK3 protein.819

820

11. median1 821

Find a molecule similar to both camphor and 822

menthol. 823

824

12. median2 825

Design a molecule similar to both tadalafil and 826

sildenafil. 827

828

13. mestranol_similarity 829

Generate molecules similar to the hormone 830

mestranol, preserving the core scaffold. 831

832

14. osimertinib_mpo 833

Create osimertinib-like molecules with low logP 834

(≈1) and TPSA ≈ 100. 835

836

15. perindopril_mpo 837

Design perindopril-like molecules. 838

839

16. qed 840

Maximize a quantitative estimate of drug- 841

likeness (QED) score. 842

17. ranolazine_mpo 843

Create ranolazine-like molecules with TPSA ≈ 844

95 and logP ≈ 7. 845

846

18. scaffold_hop 847

Replace the molecular scaffold while keeping 848

key functional groups unchanged. 849

850

19. sitagliptin_mpo 851

Design sitagliptin-like molecules matching 852

formula C16H15F6N5O. 853

854

20. thiothixene_rediscovery 855

Reproduce the structure of thiothixene. 856

857

21. troglitazone_rediscovery 858

Reconstruct the diabetes drug troglitazone. 859

860

22. valsartan_smarts 861

Generate molecules containing the substructure 862

SMARTS with logP ≈ 2.0 and TPSA ≈ 95. 863

864

23. zaleplon_mpo 865

Design zaleplon-like molecules with formula 866

C19H17N3O2. 867
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D PMO-1K experiment result868

We provide the full PMO-1K experiment result in869

Table 10.870

E ZINC 250K statistics871

We provide the data statistics of ZINC250K (Ster-872

ling and Irwin, 2015) that we used in our setting at873

Table 11.874

F Usage of AI assistants875

We used AI writing assistants (e.g., ChatGPT) to876

improve the clarity, grammar, and style of the877

manuscript during the writing process. These tools878

were employed strictly for language refinement879

and did not contribute to the development of ideas,880

methods, or analysis. All scientific contributions881

and experimental results are the original work of882

the authors.883

G Scientific Artifacts884

The License for artifacts. We used dataset885

and tools accordingly with their respective li-886

censes. In detail, We use open-source ZINC250K887

dataset (Sterling and Irwin, 2015) and the pub-888

licly available RDKIt tools (Landrum, 2013). We889

provide our source code at https://anonymous.890

4open.science/r/mt_mol-0448 for reproducibil-891

ity with an appropriate open-source license.892

Artifact use consistency with intended use. We893

used dataset and tools in line of their intended894

use. Specifically, ZINC250K (Sterling and Irwin,895

2015) incorporates molecule with property scores896

for molecular optimization task which aligns with897

goal of our study. Also, RDKit tools are used to an-898

alyze the chemical properties of the given molecule899

which is used in our study.900
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Task GP BO REINVENT LICO-L Genetic GFN Graph GA Aug. Mem. MOLLEO-B MOLLEO-D* Ours-D*
albuterol_similarity 0.636± 0.106 0.496± 0.020 0.656± 0.125 0.664± 0.054 0.583± 0.065 0.557± 0.048 0.886± 0.023 0.883± 0.001 0.998± 0.000
amlodipine_mpo 0.519± 0.014 0.472± 0.008 0.541± 0.026 0.534± 0.019 0.501± 0.016 0.489± 0.009 0.637± 0.023 0.540± 0.072 0.647± 0.010
celecoxib_rediscovery 0.411± 0.046 0.370± 0.029 0.447± 0.073 0.447± 0.028 0.424± 0.049 0.385± 0.027 0.402± 0.003 0.512± 0.119 0.867± 0.007
deco_hop 0.593± 0.018 0.572± 0.006 0.596± 0.010 0.604± 0.017 0.581± 0.006 0.579± 0.010 0.588± 0.007 0.574± 0.001 0.842± 0.077
drd2 0.857± 0.080 0.775± 0.086 0.859± 0.066 0.809± 0.045 0.833± 0.065 0.795± 0.024 0.910± 0.017 0.812± 0.027 0.756± 0410
fexofenadine_mpo 0.707± 0.021 0.650± 0.007 0.700± 0.023 0.682± 0.021 0.666± 0.009 0.679± 0.021 0.674± 0.002 0.680± 0.007 0.883± 0.02
gsk3b 0.611± 0.059 0.589± 0.063 0.617± 0.063 0.637± 0.018 0.523± 0.047 0.539± 0.097 0.397± 0.013 0.496± 0.073 0.308± 0.009
isomers_c7h8n2o2 0.545± 0.158 0.725± 0.064 0.779± 0.099 0.738± 0.039 0.735± 0.112 0.661± 0.039 0.737± 0.043 0.850± 0.009 0.986± 0.015
isomers_c9h10n2o2pf2cl 0.599± 0.059 0.630± 0.032 0.672± 0.075 0.656± 0.075 0.630± 0.086 0.596± 0.066 0.635± 0.017 0.832± 0.007 0.914± 0.031
jnk3 0.346± 0.067 0.315± 0.042 0.336± 0.051 0.409± 0.165 0.301± 0.071 0.294± 0.110 0.186± 0.076 0.342± 0.044 0.125± 0.020
median1 0.213± 0.020 0.205± 0.014 0.217± 0.019 0.219± 0.008 0.208± 0.015 0.219± 0.014 0.236± 0.021 0.193± 0.005 0.321± 0.029
median2 0.203± 0.009 0.188± 0.010 0.193± 0.009 0.204± 0.011 0.181± 0.009 0.184± 0.010 0.191± 0.009 0.197± 0.023 0.322± 0.024
mestranol_similarity 0.427± 0.025 0.379± 0.026 0.423± 0.016 0.414± 0.022 0.362± 0.017 0.393± 0.021 0.399± 0.020 0.630± 0.171 0.996± 0.001
osimertinib_mpo 0.766± 0.006 0.737± 0.007 0.759± 0.008 0.763± 0.008 0.751± 0.005 0.761± 0.006 0.779± 0.006 0.753± 0.018 0.796± 0.005
perindopril_mpo 0.458± 0.019 0.404± 0.008 0.473± 0.009 0.462± 0.033 0.435± 0.016 0.422± 0.013 0.655± 0.054 0.422± 0.006 0.542± 0.027
qed 0.912± 0.010 0.921± 0.002 0.925± 0.005 0.928± 0.002 0.914± 0.007 0.923± 0.002 0.919± 0.006 0.928± 0.006 0.903± 0.003
ranolazine_mpo 0.701± 0.023 0.574± 0.044 0.687± 0.029 0.623± 0.022 0.620± 0.014 0.614± 0.033 0.640± 0.000 0.516± 0.024 0.233± 0.018
scaffold_hop 0.478± 0.009 0.447± 0.010 0.480± 0.008 0.485± 0.015 0.461± 0.008 0.460± 0.010 0.473± 0.000 0.464± 0.002 0.646± 0.055
sitagliptin_mpo 0.232± 0.083 0.261± 0.026 0.315± 0.097 0.227± 0.041 0.229± 0.053 0.245± 0.030 0.193± 0.073 0.328± 0.091 0.067± 0.006
thiothixene_rediscovery 0.351± 0.033 0.311± 0.021 0.343± 0.035 0.377± 0.015 0.322± 0.023 0.336± 0.073 0.416± 0.075 0.478± 0.028 0.719± 0.001
troglitazone_rediscovery 0.313± 0.018 0.246± 0.009 0.292± 0.028 0.277± 0.015 0.267± 0.015 0.262± 0.012 0.302± 0.022 0.387± 0.013 0.841± 0.042
valsartan_smarts 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
zaleplon_mpo 0.392± 0.034 0.406± 0.017 0.404± 0.022 0.400± 0.014 0.374± 0.024 0.415± 0.013 0.392± 0.003 0.409± 0.005 0.625± 0.046

Sum of scores (↑) 11.27 10.68 11.71 11.56 10.90 10.81 11.65 12.23 15.42

Table 10: Detailed results of PMO-1K benchmark. Tasks are assessed using AUC top-10 with mean ± standard
deviation. Results with (*) are evaluated from 3 independent runs while the others are assessed from 5 independent
runs. We mark the best result in bold and the second-best are underlined for each task.

Oracle Min Max Mean Std
albuterol_similarity 0.053 0.667 0.251 0.062
amlodipine_mpo 0.000 0.686 0.214 0.144
celecoxib_rediscovery 0.000 0.447 0.142 0.060
deco_hop 0.291 0.878 0.768 0.048
drd2 0.000 0.987 0.009 0.038
fexofenadine_mpo 0.000 0.756 0.232 0.206
gsk3b 0.000 0.990 0.030 0.045
isomers_c7h8n2o2 0.000 1.000 0.004 0.037
isomers_c9h10n2o2pf2cl 0.000 0.869 0.018 0.071
jnk3 0.000 0.680 0.016 0.026
median1 0.000 0.324 0.066 0.037
median2 0.000 0.291 0.108 0.027
mestranol_similarity 0.004 0.886 0.170 0.059
osimertinib_mpo 0.000 0.829 0.179 0.209
perindopril_mpo 0.000 0.560 0.176 0.113
qed 0.117 0.948 0.732 0.139
ranolazine_mpo 0.000 0.586 0.059 0.069
scaffold_hop 0.176 0.526 0.373 0.026
sitagliptin_mpo 0.000 0.479 0.012 0.035
thiothixene_rediscovery 0.000 0.408 0.162 0.047
troglitazon_rediscovery 0.000 0.391 0.135 0.035
valsartan_smarts 0.000 0.320 0.000 0.001
zaleplon_mpo 0.000 0.545 0.072 0.100

Table 11: Data statistics of ZINC 250k that we retrieved for each oracle.
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