
Under review as a conference paper at ICLR 2023

STABILIZED TRAINING OF JOINT ENERGY-BASED
MODELS AND ITS PRACTICAL APPLICATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The recently proposed Joint Energy-based Model (JEM) interprets discrimina-
tively trained classifier p(y|x) as an energy model, which is also trained as a gen-
erative model describing the distribution of the input observations p(x). The JEM
training relies on ”positive examples” (i.e. examples from the training data set) as
well as on ”negative examples”, which are samples from the modeled distribution
p(x) generated by means of Stochastic Gradient Langevin Dynamics (SGLD).
Unfortunately, SGLD often fails to deliver negative samples of sufficient quality
during the standard JEM training, which causes a very unbalanced contribution
from the positive and negative examples when calculating gradients for JEM up-
dates. As a consequence, the standard JEM training is quite unstable requiring
careful tuning of hyper-parameters and frequent restarts when the training starts
diverging. This makes it difficult to apply JEM to different neural network archi-
tectures, modalities, and tasks. In this work, we propose a training procedure that
stabilizes SGLD-based JEM training (ST-JEM) by balancing the contribution from
the positive and negative examples. We also propose to add an additional ”regu-
larization” term to the training objective – MI between the input observations x
and output labels y – which encourages the JEM classifier to make more certain
decisions about output labels. We demonstrate the effectiveness of our approach
on the CIFAR10 and CIFAR100 tasks. We also consider the task of classifying
phonemes in a speech signal, for which we were not able to train JEM without the
proposed stabilization. We show that a convincing speech can be generated from
the trained model. Alternatively, corrupted speech can be de-noised by bringing
it closer to the modeled speech distribution using a few SGLD iterations. We also
propose and discuss additional applications of the trained model.

1 INTRODUCTION

One of the most common Machine Learning tasks is to classify input data points into chosen cate-
gories which typically is accomplished by a discriminatively trained classifier. Having an enormous
amount of data and a powerful machine learning model of suitable architecture with a huge number
of learnable parameters is usually enough to get close to state-of-the-art performance. The alter-
native approach of training a generative model and then inferring the posterior probability over the
possible categories can outperform discriminative models only in the low-resource settings and usu-
ally fails to be competitive due to its restricted modeling power otherwise. The utility of explicit
generative models then lies in the access to the likelihood of the input data useful for e.g. detecting
outliers while implicit generative models are evaluated based on the capability to generate realistic
and diverse input, especially when applied to images. The promise of generative models to avoid
expensive labeling of unlabeled data (for which a discriminative classifier has no use) is shadowed
by the recent success of self-supervised techniques that take advantage of self-contained information
in the time sequence or leverage known input data manipulations (e.g. shift and resize of images)
to introduce labels used to train a discriminative model. Self-supervised models are usually used as
pre-trained models to extract embeddings that work well in the downstream task.

Recently, Grathwohl et al. (2019) showed that every discriminatively trained classifier can be seen
as an energy-based model modeling the joint distribution between the input data x and the label y. In
fact, when the discriminator is trained in a standard way, we are only training the model to provide
us with a good estimate of p(y|x) while p(x) is not being optimized at all. In order to optimize
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p(x), authors used Stochastic Gradient Langevin Dynamics (SGLD) as it was described in Welling
& Teh (2011) to sample1 from the modeled distribution and called the resulting model Joint Energy-
based Model (JEM). Authors demonstrated that the longer training time and slight performance
degradation (compared to its strictly discriminative counterpart) is compensated by the possibility
to generate either category-conditional or unconditional samples, robustness against adversarial at-
tacks, improved calibration, and out-of-distribution detection. Unfortunately, it is difficult to take
these models and easily apply them to new tasks as the training often diverges, and restarting the
training from the last saved epoch seems to be the only reliable solution to reach a stable optimum.
This prevents the community from conducting a deeper exploration of these models. As a response,
VERA (Duvenaud et al. (2021)) introduced a stable way of training JEMs. In this work, the authors
demonstrate that they are able to speed up the training by introducing an auxiliary model (generator)
and they are capable of producing high-quality images based on that generator.

2 OUR CONTRIBUTION

In this work, we propose a method to train JEM without the use of any auxiliary model whose train-
ing does not diverge even though we use SGLD samples. We propose to add a term that maximizes
mutual information (MI) between the inputs x and labels y into the previously defined objective
function and approximate it for necessary simplification. This reveals an alternative way of training
and allows us to reach superior accuracy compared to results reported by Grathwohl et al. (2019)
using JEMs on the CIFAR-10 and CIFAR-100 dataset while being able to generate images of similar
quality.

Our method allows for training even in the case of not using any SGLD samples. In fact, this can
be interpreted as optimizing JEM with the domain defined only over the training data points. We
cannot sample from the model as we assume that outside of the domain of train data, p(x) is strictly
0 and the model output is ignored.. Over this restricted domain, we don’t need to approximate MI
but we can optimize it directly. This results in a boost in performance, explaining why our JEM
model outperforms the baseline which was not the the case for the original training of JEM.

Maximizing approximate mutual information term added to the loss function helped us realize the
stabilization trick, but we show that the same trick can also be directly applied to the joint distribution
p(x, y) (Excluding MI) reaching very similar performance.

Grathwohl et al. (2019) demonstrated that JEM can provide better calibration in the low-resource
setting. They used only a portion of the original labeled data and treated the rest of the data as
unlabeled. Unfortunately, they reported that adding unlabeled data had no effect on the accuracy.
We show that low-resource or more difficult problems are the ones where we see the largest boost
in accuracy and calibration compared to a simple discriminative model. Moreover, we extended our
approach to be able to handle unlabeled data and we actually do report a boost in accuracy.

The updated version of SGLD has fixed hyperparameters. By carefully monitoring the SGLD pro-
cess during the training, we noticed that the optimal hyper-parameters change during the training.
Using the same hyper-parameters can eventually lead to the state when the updated version of SGLD
does not provide any reasonable samples. In our approach, SGLD samples that are not competitive,
do not influence the stability of the training. It opens the possibility to do a simple exploration of
the different hyper-parameters, resulting in competitive samples again. This is a promising way
to improve the speed and the quality of generated samples and more sophisticated ways should be
explored in the future. We also found out that the quality and the speed of generated samples can
be greatly affected by these and for conditional sampling, each class might have different optimal
hyper-parameters.

Our main motivation to stabilize JEM training is to be able to apply it to a different modality
(speech). We train JEM to model p(x, y) of the input frame and its context2 x and the phoneme
label of the central frame. We discuss the potential future use of JEM as a single model capable of
being ASR, TTS, denoiser, speaker recognizer, voice conversion, the source separator or inpainting
(also inpainting conditional on the category). The generative part of JEM can further be leveraged

1These samples are sometimes called negative samples as opposed to train data being called positive sam-
ples.

2We used 80 log Mel-filter banks as a frame representation.
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when estimating uncertainty [ignore the uncertain part of the input for ASR, SPK-ID] or when
combining the output of different models. Furthermore, we demonstrate that we are able to gen-
erate interesting conditional and unconditional speech, and show promising preliminary results on
denoising and model combination.

Our approach allows us to include any number of samples from SGLD and we typically use 8
samples per each batch of 643 training examples. Increasing the number of samples increases the
quality of generated images but at the same time slightly degrades the performance of a classifier. We
have also observed an increase in the quality of generated images (CIFAR-10, CIFAR-100) during
the training usually corresponds to a decrease in accuracy, this suggests that the model might not
be large enough as we haven’t noticed the same behavior when training on the speech datasets. An
alternative way of speeding up the training is generating more SGLD samples but doing so only once
per few batches. We have observed that increasing the number of SGLD steps can results in a much
better quality of generated images in both training and inference but it significantly slows down the
training. [When finished, add references from this section to the parts in the body/appendix where
it is described with more details]

3 BACKGROUND

In this section, we provide an overview and explanation of previously introduced techniques that
helps to follow our reasoning. More detailed explanations of these techniques can be found in
referenced literature.

3.1 ENERGY-BASED MODELS

Energy-based models can represent a complex probability distribution. This is a special case of
distributions because there is no simple way to sample from such a distribution - we can only evaluate
probability distribution up to an unknown normalizer. Probability distribution over a continuous
variable x is then defined as

pθ(x) =
e−Eθ(x)

Zθ
=

ef
x
θ (x)

Zθ
, (1)

where Eθ(x) is the energy function that assigns a score to each continuous input x ∈ X,X = RDx .
To make sure that pθ(x) is a properly normalized distribution, we define a partition function as
Zθ =

∫
x
ef

x
θ (x)dx. We can further modify Equation 1 to define the joint distribution pθ(x, y) of

both continuous input x and a discrete label y ∈ Y,Y = N+, y ≤ Dy as

pθ(x, y = i) =
e−Eθ(x,y=i)

Zθ
=

efθ(x,y=i)

Zθ
=

efθ(x)i

Zθ
=

eqi

Zθ
(2)

A typical way of obtaining the value of negative energy −Eθ(x, y) is via a function
fθ(x, y) : x, y 7→ −Eθ(x, y), but we focus on an alternative way by using a vector-valued func-
tion fθ(x) : x 7→ q, q ∈ RDy , where the i-th element of the vector q (denoted as qi) represents
−Eθ(x, y = i). In both cases, the partition function is given by Zθ =

∑
y

∫
x
e−Eθ(x,y)dx. Notice

that EBMs do not provide an access to likelihood values because Zθ is intractable. Maximizing the
log-likelihood of one data point x with respect to the parameters θ is not straightforward either. In
order to compute the gradient, we need to evaluate the intractable expectation over x as shown in
Equation 3.

∇θ log pθ(x) = ∇θf
x
θ (x)−∇θ logZθ = ∇θf

x
θ (x)− E(x̃)∼pθ(x) [∇θf

x
θ (x̃)] (3)

Likewise, expressing ∇θ log pθ(x, y) leads to the same conclusion (Equation 4).

∇θ log pθ(x, y) = ∇θfθ(x)y −∇θ logZθ = ∇θfθ(x)y − E(x̃,j)∼pθ(x,y) [∇θfθ(x̃)j ] (4)

One popular strategy to approximate these expectations is to generate samples from the modeled
distribution, the ones based on Markov chain Monte Carlo (MCMC) are of particular interest to
us, specifically, Stochastic Gradient Langevin Dynamics (SGLD) Welling & Teh (2011)4. SGLD is

3100 for speech experiments
4An overview of alternative approaches to train EBMs is presented in Song & Kingma (2021).
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capable of generating samples from pθ(x) induced by a neural network fx
θ (x) through an iterative

procedure

xt+1 = xt +
αt

2
∇xf

x
θ (x

t) + ut, ut
i ∼ N (0, αt), 1 ≤ i ≤ Dx, (5)

starting from a random input x0. In theory, when
∑

t α
t = ∞ and

∑
t(α

t)2 < ∞, it is guaranteed
that xt becomes a sample from pθ(x) as t → ∞. In practice, we must resort to an updated (sped
up) version of SGLD by significantly limiting the number of steps. The number of steps needed to
generate a reasonable sample can be even smaller when the initial sample x0 is chosen carefully –
one of the common techniques is called Persistent Contrastive Divergence (PCD), where the buffer
of previously generated samples is maintained and initial samples are drawn from the buffer most
of the time as described in Du & Mordatch (2019). Another trick is to reduce the amount of noise
ut added at each step. Notice, that in order to obtain a sample from pθ(x) when modeling the joint
distribution pθ(x, y), we need to replace fx

θ (x) by log
∑

i e
fθ(x)i in Equation 5. If we desire to get

a sample having a particular label y = i5, fx
θ (x) is replaced by fθ(x)i.

3.2 CLASSIFICATION

Training a classifier parameterized by θ is achieved by minimizing the cross-entropy H between the
true posterior distribution p and modelled posterior distribution pθ over the possible values of the
label y. For a given single input data point x, we calculate

H(p, pθ) = −
∑
y∈Y

p(y | x) log pθ(y | x). (6)

We can directly access the true posterior distribution p(y | x) but p(x) is inaccessible, for that reason
we approximate the expectation over the true data distribution Ep(x) [H(p, pθ)] by an empirical dis-
tribution pdata that is provided in form of tuples (xi, yi) ∈ DS, where pdata(y = yi | x = xi) = 1,
therefore

Epx [H(p, pθ)] ≈ Ex∼pdata(x)Ey∼p(y|x)︸ ︷︷ ︸
E(x,y)∼pdata(x,y)

[− log pθ(y | x)] = 1

|DS|

|DS|∑
i=0

− log pθ(y
i | xi) (7)

In order to model pθ(y | x), it is common to use Softmax function SM(z) : RDy → (0, 1)Dy

(Equation 8 that transforms logits z = gθ(x) into the vector of posterior probabilities, where gθ(x)
is usually a neural network.

pθ(y = i | x) = SM(z)i =
ezi∑Dy

j=1 e
zj

(8)

Softmax has one extra degree of freedom, meaning that for each x, we can add any value c(x) to
logits z and it has no effect on the posterior distribution. Notice that for chosen x, this value must
be the same for all y, therefore we can obtain this value by any function c(x) : RDx → R:

SMi(z+ c(x)) =
ezi+c(x)∑Dy

j=1 e
zj+c(x)

=
ec(x)ezi

ec(x)
∑Dy

j=1 e
zj

= SMi(z) (9)

From Equations 8 and 9 (replacing ec(x) by k(x) for brevity), we can see:

pθ(y = i | x) = ec(x)ezi

ec(x)
∑Dy

j=1 e
zj

=
k(x)ezi

k(x)
∑Dy

j=1 e
zj

=

ezi

k(x)∑Dy

j=1
ezj

k(x)

(10)

3.3 ENERGY-BASED CLASSIFIER

Expressing the posterior distribution pθ(y | x) of EBM by using product rule, applying sum rule
and plugging into Equation 2, we have:

pθ(y = i | x) = pθ(x, y = i)

pθ(x)
=

pθ(x, y = i)∑
y pθ(x, y = i)

=
eqi

Zθ∑Dy

j=1
eqj

Zθ

(11)

5This is a sample from both pθ(x, y = i) and pθ(x | y = i). log pθ(y) is a constant, so ∇x log pθ(y) = 0.
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Comparing Equation 10 and Equation 11, we can observe that z = q if we force logits obtained by
discriminative model not to have k(x) dependent on x as Zθ is just a constant which is the same
for every x and y. This was observed by Grathwohl et al. (2019) and the model introduced in Equa-
tion 2 is called the Joint Energy-based Model (JEM). They decided to model the joint distribution
log pθ(x, y) via the decomposition log pθ(x) + log pθ(y | x). This factorization is motivated by the
fact that the updated (practical) version of SGLD (Equation 5) cannot generate proper samples and
this results in a biased gradient estimator of pθ(x) or pθ(x, y). This factorization enables training
of an unbiased classifier, because pθ(y | x) is not affected by generated samples and is trained in
the standard way (Equation 8). Generative part of this model is trained by maximizing pθ(x) as∑

y pθ(x, y).

The drawback of this approach is that producing samples by SGLD (Equation 5) is time-consuming
even if we resort to its updated version. Moreover, speeding up the sampling process by reducing
the number of steps t required to produce a sample causes their training to diverge Grathwohl et al.
(2019). In fact, the authors declared that the training instability was the most significant flaw of the
proposed model. To resolve these instability issues, multiple approaches have been proposed, such
as bypassing SGLD during the training Grathwohl et al. (2020); Duvenaud et al. (2021), applying
SGLD only to fine-tune samples produced by a different generator Xie et al. (2018), applying SGLD
in lower-dimensional hidden space Che et al. (2020) or restricting the model by adding spectral
normalization to each layer and regularizing the energy of both generated and real samples Du &
Mordatch (2019).

4 STABILIZED JEM

We noticed that the energy of generated images by SGLD is not always comparable to the energy of
the training data. Our idea to stabilize the training is guided by the observation that maximization
of log p(y | x) using Softmax function (Equation 8) does not diverge during the training while
EBM training using Equation 3 or Equation 4 frequently does when improper samples from the
distribution are used. Notice that the output of the Softmax is always between 0 and 1 which is
not necessarily true for Equation 1 and Equation 2 whose value can be arbitrarily large because its
input x is continuous. This is even more likely to happen when SGLD is not providing competitive
samples as their energy becomes very small. We hypothesize that this might be the source of the
instability and we propose to find a different way to optimize JEM.

4.1 ADDING MUTUAL INFORMATION TO THE LOSS FUNCTION

We propose to add mutual information (MI) of inputs X and labels Y distributed according to pθ
defined as

I(X;Y) = DKL(pθ(x, y)∥pθ(x)pθ(y)) = E(x,y)∼pθ(x,y)

[
log

(
pθ(x, y)

pθ(x)pθ(y)

)]
(12)

to the original objective function log pθ(x, y), therefore minimizing the loss function L:

−L = −E(x,y)∼pdata(x,y) [log pθ(x, y)] + E(x,y)∼pθ(x,y)

[
log

(
pθ(x, y)

pθ(x)pθ(y)

)]
(13)

Maximization of MI can also be interpreted as having a sharp posterior distribution pθ(y | x) of
each sample x while maximizing the entropy of marginal distribution p(y) (Equation 14). In other
words, the global optimum is reached when each sample belongs only to a single class while all
samples together are distributed uniformly with respect to class y.

I(X;Y) = E(x,y)∼pθ(x,y)

[
log

(
pθ(y | x)
pθ(y)

)]
= E(x,y)∼pθ(x,y) [log pθ(y | x)] + H(pθ(y)) (14)

Approximating the expectation over the model distribution pθ by the expectation over pdata leading
to a new loss function La (Equation 15).

−La = Epdata

[
log pθ(x, y) + log

(
pθ(x, y)

pθ(x)pθ(y)

)]
= Epdata

[log pθ(y | x) + log pθ(x | y)]

(15)
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The rationale behind the approximation of Equation 13 by Equation 15 is that the the optimum of the
first RHS term of Equation 13 is reached when pdata = pθ and the term Epdata

[
log

(
pθ(x,y)

pθ(x)pθ(y)

)]
share the same optimum when the dataset is balanced but does not motivate pθ(y) to become an
uniform distribution. Moreover, even before reaching the optimum, we want samples from pdata to
be the subset of samples from pθ(y | x) and therefore we are performing almost correct updates for
train data in order to maximize Equation 13. We show how to get even closer to optimizing the true
objective function (Equation 13) in Section A.3.

4.2 MAXIMIZING pθ(x | y)

Maximizing pθ(y | x) can be simply achieved with a softmax function as described in Section 3.2.
We are able to evaluate the exact posterior distribution pθ(y | x) which is not influenced by Zθ. As
mentioned before, the training is stable and we suggest that it is a consequence of the fact that the
train data example is present both in the numerator and denominator and also the fact that we can
evaluate the denominator for all values of y. We would like to have the same effect when maximizing
pθ(x | y). Expressing pθ(x | y) in Equation 16 to resemble Equation 8.

pθ(x | y) = pθ(x, y)∫
x
pθ(x, y)dx

=
efθ(x)y∫

x
efθ(x)ydx

(16)

We could use the gradient6 of log pθ(x | y) to maximize pθ(x | y):

∇θ log pθ(x | y) = ∇θfθ(x)y − Ex∼pθ(x|y) [∇θfθ(x)y] ≈ ∇θfθ(x)y −
1

N

∑
i

∇θfθ(x
i)y (17)

Although this resembles Equation 17, using this equation to compute gradients will unfortunately
lead to the same instability issues. We suggest an alternative way, by first realizing that in order to
calculate the intractable part of Equation 17, we can alternatively use a different distribution q(x)
and eventually approximate it using importance sampling. In a special case when the distribution
q(x) is (continuous) uniform qu(x), there is a constant k such that

Ex∼pθ(x|y) [∇θfθ(x)y] = Ex∼q(x)

[
pθ(x | y)
q(x)

∇θfθ(x)y

]
= k Ex∼qu(x) [pθ(x | y)∇θfθ(x)y]

(18)
We hypothesize that in the worst case (complete failure), SGLD draws samples from qu(x) instead
of the desired distribution (in this case pθ(x | y), alternatively pθ(x) or pθ(x, y)). If that happens,
we should weight samples by pθ(x | y). Approximating expectation of qu(x) by samples for
which we cannot evaluate the exact likelihood of pθ(x | y) in our model, we are forced to use self-
normalized variant of importance sampling Bishop & Nasrabadi (2006). Expressing Equation 18
using self-normalized importance sampling, we get

kEx∼qu(x)

[
pθ(x, y)

pθ(y)
∇θfθ(x)y

]
≈

N∑
i

k pθ(x
i,y)

pθ(y)

k
∑N

j
pθ(xj,y)
pθ(y)

∇θfθ(x
i)y =

N∑
i

efθ(x
i)y∑N

j efθ(x
j)y

∇θfθ(x
i)y

(19)
Following this strategy when SGLD fails for all samples, it can still be problematic as the denom-
inator of Equation 16 might be much smaller than its numerator. Since the correct denominator of
Equation 17 should be much larger than estimated by our (incorrect) samples, we are scaling this
gradient compared to the situation when at least one of the samples has comparable energy to train
data (this is the consequence of using a self-normalized variant of importance sampling). We can
overcome this issue of not estimating the denominator correctly by including the real (training) data
point for which we are computing the gradient as one of the negative samples which works as an
anchor7. The trick of including a positive sample into negative ones cannot be used when using an
approximation from Equation 17 because we would ignore the gradient of training data by simply
subtracting exactly the same gradient. This gives us a stable way to maximize Equation 17 in a case
when SGLD produces improper samples. Since the negative energy of generated samples will be

6Detailed derivation of Equation 17 can be found in Appendix (Equation 28).
7Or as a wall in the analogy introduced in Section 2
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much smaller than the real ones, we effectively ignore these samples because the computation of the
gradient from Equation 17 becomes almost ∇θfθ(x)y −∇θfθ(x)y , i.e. zero.

Notice that if EBM tries to reach a likelihood close to 0 for most of the input points x and we assume
that they are effectively exactly 0, we don’t need to estimate the gradient based on these. More than
that, if we assume that the rest of the input points lie on a low-dimensional manifold either having the
same likelihood or the same probability of being sampled by SGLD, the suggested update follows
the gradient. We do not think that these assumptions hold and it leads us to an investigation of what
we will optimize following suggested updates shall the SGLD provide proper samples.

Before we do that, let us first show what we optimize by using Equation 17 in the case when SGLD
generate improper samples distributed according to qu(x). As seen from Equation 18, we are effec-
tively scaling their gradient proportionally to 1

pθ(x|y) , which will lead to the estimator with undesir-
ably high bias and we suspect it to be the main reason of instability8.

Notice that when maximizing Equation 8, the value itself cannot be larger than 1 (numerator is
not larger than denominator). Practically, this holds because we enumerate over all possibilities of
y and the one in the numerator is always part of the denominator. When we try to approximate
intractable integral in 16, the same is not true. Therefore, we suggest including the data point from
the numerator in the denominator. Moreover, we recommend taking advantage of the fact that other
data points in the mini-batch are also samples from pdata and the goal of the training is that they are
actual samples from pθ. We have observed that including all samples from mini-batch increases the
performance9 as shown in Appendix ?? and is also faster to compute and easier to implement.

Let us now come back and explain the effect of plugging Equation 19 into 17 when SGLD behaves
as expected and provides samples from desired distribution (in our case pθ(x | y)). In this case,
each x in the denominator of efθ(x)y∫

x
efθ(x)ydx

is multiplied by pθ(x | y) leading to efθ(x)y∫
x
pθ(x|y)efθ(x)ydx

.
Original training of the JEM has the analogy that we push up (trying to increase the likelihood) on
training data (positive examples) while we push down (trying to increase the likelihood) on generated
(negative) examples10. In this analogy, we now push down on the negative examples proportionally
to their likelihood more11. Better intuition can be gained by realizing that the contribution coming
from negative samples (in the limit, when an infinite amount of them are used) will not influence
pθ(x

1) ≥ pθ(x
2) for two input data points x1 and x2. This means that if the condition holds before

the update, it will hold after the update. Our proposed update rule does not have the same property,
but in practice, when taking a limited amount of samples, this property is not guaranteed even for the
original method. Furthermore, realize that we are updating the parameters θ in an iterative manner,
meaning that compared to the update suggested by the gradient, we push down more on likely x,
which results in them becoming less likely. As a consequence, we are going to push proportionally
less on them in the next iteration if they are chosen as negative samples. Equation 20 visualizes the
resulting change in the update compared to previous technique. Notice that implementation-wise
we just first generate SGLD samples, include them in mini-batch and then use the softmax function
over the mini-batch.

∇θfθ(x)y −
1

N

∑
i

∇θfθ(x
i)y

replaced−−−−→
by

∇θfθ(x)y −
N∑
i

efθ(x
i)y∑N

j efθ(x
j)y

∇θfθ(x
i)y (20)

The goal of the training is to maximize the expectation over the training data Epdata

[
efθ(x)y∫

x
efθ(x)ydx

]
.

The global (over-trained) optimum is reached when the energy of each sample from the dataset is
exactly the same (assuming each data point is at maximum once in the dataset) and 0 everywhere
else. Assuming that the model fθ(x, y) is powerful enough to reach this optimum, this optimum is

8One of the recommended tricks to stabilize the training is to ignore samples that have very low likelihood
and try to enforce generated samples to have a comparable likelihood to training data e.g. by directly adding
the minimization of the difference to the objective function.

9We even include samples that belong to a different class according to pdata as the desired value under pθ
is anyway 0.

10Or vice versa when we talk about energy instead of likelihood.
11Notice, that originally we push on the same on all the examples, but these examples are selected based on

their likelihood.
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the same even when following updates of proposed method in Equation 19.

argmax
θ

efθ(x)y∫
x
efθ(x)ydx

= argmax
θ

efθ(x)y∫
x
pθ(x | y)efθ(x)ydx

(21)

Unfortunately, when a particular train data point occurs multiple12 times in the dataset, this will not
hold as we will push down on that specific data point more (compared to those less frequent). As
this case might not be very important for the real-case scenarios, the real goal of training is not to
reach the global over-trained optimum, we are approximating expectations by sampling and these
samples will not be exact.

5 DISCUSSION

We can intuitively see this optimization as we are playing a game of showing multiple input samples
to our model and asking it to “bet unnormalized log-likelihood”, which should be “balanced” among
that group of inputs. Afterward, “bets” that were not put on the correct class or were put on negative
samples, are lost. The model is trained to regain back an as large portion of “bets” as possible. In
this analogy, our approach forces the model to pay more attention to difficult examples. We show
later that this method indeed stabilizes the training and, in fact, increases the accuracy of the trained
model. We further investigate the reason for the increase in accuracy. To distinguish the model
trained by the proposed approach, we refer to it as Stable Training JEM (ST-JEM).

Likewise, an analogy can be made for training. Original training of JEM can be compared to two
people (positive and negative samples) lifting a large ball by pushing on it from the opposite sides
(the ball can move higher only when both are pushing). When one (negative samples) is not provid-
ing comparable force, the force balance is disturbed and the ball falls down (training diverges). We
propose that both people should push from the same side using a wall (softmax cannot be higher than
1) on the other side so when the weaker (negative samples) cannot push hard enough, the stronger
simply keeps the ball in the same position. It provides time for the weaker to regain its power (de-
tails are discussed in Appendix A.4). Moreover, our method could be extended to use any (negative)
samples for which low log-likelihood is desired, such as those from out-of-domain datasets or those
provided by VERA.

We have performed many experiments to help us better understand the system. Due to the space
limitation, we share our insight in the Appendix. As we are not required to use any amount of
SGLD samples, we investigate the effect of not having any in Appendix A.1 Experimental part of
this work is in Appendix C and Appendix B. The rest of the Appendix describes additional variants
and implementation details.

6 CONCLUSION

We introduced an alternative way of training JEM, called ST-JEM. Unlike the previous training
of JEM, our training does not diverge. This is done by making it robust to the effect of improper
samples that are the consequence of approximation of the SGLD procedure. Following the proposed
training, we obtained systems on two modalities – images and speech. For images, we show that
the introduced way of training not only stabilizes the training but also increases the classification
accuracy. By investigation, we localized the source of increase of the accuracy, which is not a
consequence of the generative part of JEM, but the way of training. Our method allows for any
number of SGLD samples per mini-batch and we show that the case of not using any (RES-JEM),
leads to the same or even slightly better classification performance than the one reached by ST-
JEM. We show that RES-JEM can still be interpreted as JEM that is defined only over the domain
of training data points. This assumption makes the model generative only on the theoretical level,
as we can neither sample from it, nor evaluate the likelihood outside of the defined domain. In
practice, we still use it outside of the defined domain as a classifier that reaches superior accuracy
over the discriminative model on CIFAR-10, CIFAR-100, and also when applied to speech. The
effectiveness of this approach is most evident for low-resource or more difficult problems. We also

12If each data point occurs exactly the same number of times – such as when iterating multiple times over
the same dataset – Equation 21 still holds.
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demonstrate that, unlike JEM, we are able to increase accuracy by incorporating unlabeled data.
Last but not least, we provide a discussion in Appendix C.2 and suggest possible future usage of
ST-JEM, which suggests slightly shifting the currently popular approach of training a system on the
task and then performing inference by simply forwarding the input through the model with fixed
computation time to more human-like. We suggest that many problems can be reformulated as a
search problem using trained ST-JEM and we propose to have ST-JEM that will be able to model
multiple joint distributions at the same time, which further constrain the search problem and should
lead to improved performance by introducing a bias such that the segments that are not speech should
not contribute to the process of speaker identification.
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A VARIATIONS OF ST-JEM

A.1 RES-JEM

If we don’t use any SGLD samples, we end up with a method called RES-JEM. Since we approxi-
mate negative samples by mini-batch examples, we can perform the same updates even in the case
of including 0 SGLD samples. As this approach seems vague, we explain that it is well-defined
and we demonstrate that it actually performs better than a discriminative model maximizing cross-
entropy. RES-JEM can be understood as a JEM whose domain is only a subset of X, where training
examples lie. Because of that if we use all training examples in a single batch, we directly optimize
13 as our negative samples are now other training examples. The resulting approach is similar to
Liu & Abbeel (2020), where they used stored values of other logits from the dataset to re-weight the
gradient

A.2 UNLABELED DATA / CLUSTERING / UNSUPERVISED AND SEMI-SUPERVISED LEARNING

We can try to extend Eq. 15 in the case when we are missing labels. A natural extension is to apply
an expectation over y for samples for which we do not have ground truth labels.

Ex∼pdata(x)


replaces pdata(y|x)︷ ︸︸ ︷∑

y

pθ(y | x) [log pθ(y | x) + log pθ(x | y)]

 (22)

Intuitively, this objective is maximized when the data are grouped into clusters, the number of clus-
ters corresponds to the number of classes, and when sampling from the p(x), the distribution of y
should be uniform. Notice that the same cannot be applied to Equation 7 as the naive solution is
to assign/collapse everything to a single class. Formed clusters can in general have any meaning
and we suggest combining both Equation 15 and Equation 22 in terms of semi-supervised learning
to constrain the meaning of the clusters (in speech, clustering could be based on e.g. phonemes,
speakers, frequencies, energies or just noise).

A.3 MINIMIZING CROSS-ENTROPY OF CONDITIONALLY GENERATED SAMPLES

By optimizing Eq. 15 instead of Eq. 13, we no longer enforce samples from pθ to belong to one
class. We suggest to replace pθ(y) by pdata(y) which leads to just maximizing posterior distribution
pθ(x | y) of class y that the generation was conditioned on, because H(y) becomes a constant.
Note that it can be simply interpreted as minimizing cross-entropy but also can be seen as encoder-
decoder (y → x → y). Adding the following term to the loss function causes images sampled from
pθ(x) (not conditioned on y) to more likely resemble objects of some particular class [reference to
image comparison].

−Ls = Ey∼pdata(y)Ex∼pθ(x|y)

[
log

(
pθ(x, y)

pθ(x)pθ(y)

)]
= Ey∼pdata(y)E(x)∼pθ(x|y) [log pθ(y | x)]

(23)
Adding the following objective can rarely cause the model to stop producing reasonable samples and
we suspect that it happens when SGLD doesn’t produce competitive samples yet we still minimize
cross-entropy even for them. For that reason, we decided to run the experiments without this loss
and only.

A.4 QUALITY OF SGLD SAMPLES AND ADAPTIVE CHANGE OF SGLD HYPER-PARAMETERS
DURING TRAINING

”Optimal” hyper-parameters change during the training and we can afford to slightly adapt towards
this change because we can afford some exploration (not just exploitation) because if we start pro-
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ducing bad samples, it doesn’t affect the training... for that period of training we just maximize
cross-entropy. In practice, we notice that there might be stages when we are not able to produce
reasonable samples and then it gets better again - there is one huge problem - if we focus on getting
the best log-likelihood, in the buffer are some samples that are already pretty good and some of them
are bad. The hyper-parameters for the bad ones and good ones might be dramatically different in
order to increase their negative energy.

B IMAGE EXPERIMENTS

We train our systems ST-JEM and RES-JEM on CIFAR-10 and CIFAR-100 following the same
procedure described in JEM. As we did not obtain exactly the same system and we were not able to
train the JEM model, we report the results from the paper together with our results. As reported in
Table 1, even though our baseline is worse, our ST-JEM and RES-JEM work better than the reported
baseline from JEM. We see a small drop in the performance of the ST-JEM compared to RES-JEM.
Following the setup from JEM in low-resource settings, we use only 4000 labeled examples for
CIFAR-10 and CIFAR-10 and report the largest boost in the accuracy compared to previous systems
in Table 2. We also investigate effect of other hyper-parameters in Table 3.

Table 1: Classification accuracies [%] and ECE [%] values for the CIFAR-10 and CIFAR-100 data
sets are shown. Apart from the baseline and JEM results reported in Grathwohl et al. (2019), our
results with RES-JEM and the DEFAULT ST-JEM models which uses 8 SGLD samples and 20
SGLD steps are also shown.

Data sets

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Model Accuracy % ECE %

Baseline (reported) 93.6 74.2 2.7 22.3
Baseline (ours) 93.5 72.0 5.4 22.6

JEM (reported) 92.9 72.2 2.9 4.9
RES-JEM (ours) 94.2 76.7 4.4 7.6
DEFAULT ST-JEM (ours) 93.9 75.7 4.6 11.6

Table 2: The table shows the classification accuracy [%] and ECE [%] values for the CIFAR-10 and
CIFAR-100 data sets with 4k labels.

Datasets (4k labels)
CIFAR 10 CIFAR 100 CIFAR 10 CIFAR 100

Model Accuracy % ECE %
Baseline (reported) 78.0 18.2

Baseline 77.4 33.9 18.3 51.4

JEM (reported) 74.9 13.7

RES-JEM 81.1 38.3 13.8 23.0

DEFAULT ST-JEM 79.4 35.4 14.3 19.2

Including unlabeled data
RES-JEM 82.53 15.47
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Table 3: Results from variations of the DEFAULT ST-JEM model are shown (see Section ??).
Although for the default ST-JEM configuration, the number of SGLD steps is fixed, further experi-
mentation is done with a variable number of SGLD steps, linearly adding +1 step every 1/10 epochs.
Additional experimental results with gradient penalty and incorporation of cross-entropy loss for
better image generation are also shown.

ST-JEM variations on CIFAR-100 data set Accuracy % ECE %

DEFAULT - 8 SGLD samples + fixed 20 SGLD steps 75.7 11.6

changing the number of SGLD samples

2 SGLD samples + gradually increasing SGLD steps from 20 to 40 76.0 10.9

8 SGLD samples + gradually increasing SGLD steps from 20 to 40 75.6 13.3

32 SGLD samples + gradually increasing SGLD steps from 20 to 40 74.3 14.4

changing the range of SGLD steps

8 SGLD samples + gradually increasing SGLD steps from 20 to 220 76.5 13.5

adding gradient penalty

8 SGLD samples + gradually increasing SGLD steps from 20 to 220

+ gradient penalty
76.1 13.9

adding cross entropy

DEFAULT + XENT 75.2 13.6

C SPEECH EXPERIMENTS

We trained ST-JEM to model the joint distribution of 21 consecutive 80 dimensional Mel-filterbank
x and phoneme y corresponding to the middle frame. We demonstrate the benefits of ST-JEM when
combining models trained on different datasets in Section C.1. We further demonstrate that the sys-
tem is capable of producing reasonable speech by original or modified SGLD procedure. The speech
is produced by creating a sequence of 200 frames. For each 21 consecutive frames, we are able to
predict joint distribution pθ(x, y) and we maximize likelihood of the overall sequence by pretending
that they are independent as they are already dependent through heavy overlap in x. Conditioned on
a sequence of 180 randomly extracted labels from test set. We are, somewhat surprisingly, able to
produce understandable speech by first obtaining approximate spectrogram through pseudoinverse
of the transformation from spectrogram to mel-filterbank and then reconstructing the phase of that
spectrum by using only Grififn-Lim algorithm. We are attaching samples to the submission. When
the review process is over, we will publish code together with all samples. By slight modification of
SGLD procedure to make it more greedy during the inference, we are able to denoise heavily cor-
rupted speech, samples are also attached to the submission. Preliminary evaluation on few examples
showed that while ST-JEM is able to reach about 75% of accuracy, heavily corrupting small portion
of input (such that each 21 consecutive frames are affected, results in accuracy around 1− 20%. By
performing similar procedure to SGLD, we were typically able to reach accuracy of about 35−50%.
Further and more systematic evaluation is needed to confirm that ST-JEM can work as a denoiser in
realistic setting, but our preliminary results suggest so.

C.1 MODEL COMBINATION

Traditional machines learning systems show unsatisfactory generalization to unknown data domains.
The widely prevalent solutions to this unavoidable problem are a variety of data-augmentation meth-
ods or, in other cases, just accumulation of training data over as many test conditions as possible
for model training. However, an often overlooked solution is that via model combination Polikar
(2006); Kuncheva (2014); Sadhu & Hermansky (2020); Sustek et al. (2022).
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Given two classifiers trained on different data domains, under an unknown test condition the aim
is to obtain a weighted combination of the posterior distribution from the two models that aids in
better classification accuracy. That said, the main challenge in this approach lies in finding the best
combination strategy. In the following section we describe our combination strategy with ST-JEM
based speech recognition systems.

C.1.1 COMBINATION OF AUTOMATIC SPEECH RECOGNITION (ASR) SYSTEMS

Hybrid automatic speech recognition systems require conditional likelihood values p(x|y) for ev-
ery feature vector x computed at a desired temporal sampling rate over a considerable duration of
speech for a large (≈ 3000) number of tri-phonetic states y of a Hidden Markov Model (HMM).
During inference, these likelihood values are then passed onto a decoding graph to find the best path
evaluated by likelihoods and constrained by context, lexicon and grammar to obtain text Povey et al.
(2011).

Consider two ST-JEMs trained on two different data sets indexed by 1 and 2. For our experiments
the two data sets used are Wall Street Journal (WSJ) and REVERB which comprises of clean read
speech and simulated reverberated speech respectively. The input features x ∈ R80×9 are obtained
by concatenating 80 dimensional mel-filterbank features over 9 contiguous frames sampled at 100
Hz in time with 3376 triphoneme states i.e., y ∈ {0, 1, 2, . . . 3375}. Assigning θ1 and θ2 to be
the learnt parameters from the first and second data set respectively and θcomb to be the combined
parameter set, we propose the following combination strategy.

pθcomb
(x, y) =

pθ1(x, y) + pθ2(x, y)

2
(24)

=
efθ1 (x)y

2Z(θ1)
+

efθ2 (x)y

2Z(θ2)

To understand the rational behind combining joint distributions, observe that pθcomb
(x, y) =

pθ1
(x)pθ1

(y|x)+pθ2
(x)pθ2

(y|x)
2 . Therefore pθcomb

(x, y) automatically combines the posterior distri-
butions from each model weighted by the likelihood of a given feature vector x from each model.
For an unknown test feature vector xtest, the relative value of pθ1(xtest) vs pθ2(xtest) represents
how well the two ST-JEMs recognize xtest to match with their individual training conditions - a
higher likelihood indicating a better match.

In our experiments we observed that the partition functions from two different JEM-STs have a
very similar range of values obtained over several SGLD samples which leads us to safely assume
Z(θ1) ≈ Z(θ2). This simplification is further motivated by the fact that preserving Equation 24 as
is for the combination strategy makes no consequential change in the final ASR performance.

For some constant value C, assuming Z(θ1) = Z(θ2) = C, we get

log pθcomb
(x, y) = log(efθ1 (x)y + efθ2 (x)y )− log 2C (25)

The constant C being simply a scaling factor, and given the prior probability distribution p(y), the
conditional log likelihoods required by the decoding graph can be obtained as follows

log pθcomb
(x|y) ≡ log(efθ1 (x)y + efθ2 (x)y )− log p(y). (26)

Note that our combination strategy comes down to computing the logssumexp of the logits across
models and can be easily generalized to more than two ST-JEMs as in Equation 26.

log pθcomb
(x|y) ≡ log

∑
i

exp efθi (x)y − log p(y) (27)

Table 4 shows a comparison of Word Error Rates (WER %) of baseline and ST-JEM model com-
bination. The baseline combination follows the same principle as Equation 26 and 27 where the
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ST-JEM logits are replaced by the logits from a standard classifier with the same architecture as the
ST-JEM model.

Table 4: ASR Word Error Rate [%] results are shown for individual ST-JEM models trained on WSJ
and REVERB data sets together with the result of model combination. The ST-JEM combination
results when compared with the baseline combination performance shows the advantage of ST-JEM
model combination for robust ASR.

Test set Model
WER %

Testing Model

WSJ REVERB Combination

WSJ Baseline 9.0 29.7 10.1
ST-JEM 8.8 27.5 9.8

REVERB Baseline 32.0 8.1 8.3
ST-JEM 31.1 7.5 7.4

Except for slight improvement in WER, we can observe very well calibrated system as shown in
Figure 1.

Figure 1: Comparison of ECE between Baseline system and proposed ST-JEM evaluated on WSJ
and REVERB datasets. The last row corresponds to described combination of the systems.

.

C.2 SPEECH JEM AS MULTI-PURPOSE SYSTEM

The general view of machine learning models is to train them on the same task that they are going
to perform. We want to discuss the potential future use of JEM trained in a stable way. We suggest
that JEM can model multiple joint distributions at the same time, e.g. joint distribution of inputs
x and phonemes ph and at the same time joint distribution of x and the identity of the spk. We
noticed that, when we try to generate speech from the model, it has no notion of speaker identity
as it was never exposed to a sequence longer than 21 frames. Having the access to speaker identity,
we can condition our generation on the fact that the likelihood of the speaker for each frame needs
to be high and also the same. If the model is powerful enough to learn this complex distribution, it
might function as text-to-speech (TTS). This would further allow us to perform voice conversion.
Another interesting domain for JEM could be source separation, as we could follow some sort of
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updated version of SGLD to iteratively separate speech into two parts that sum into the original
speech, where in each iteration, separated speech would be conditioned to have the high likelihood
for that particular speaker. Next, the straightforward application is inpainting, we noticed that JEM
is capable of very interesting results when exposed to an image of e.g. airplane and we perform
SGLD conditioned on the cat class as the model is able to change the class of the image while
visually on the pixel level, the resulting image is very close to the original one. This might open the
possibility of more sophisticated changes than just speech conversion.

We found interesting parallel between the inference through SGLD in JEM and human reasoning.
Using more sophisticated inference with adaptive computation time compared to just forwarding the
input through a model is more aligned with how people think. Moreover, generative part of JEM can
work as a proxy to the ability of people being self-aware of when they do not know. This motivates
future work on these models even more.

D DERIVATIONS

Expressing gradient of log pθ(x | y) by substituting term from Equation 29:

∇θ log pθ(x | y) = ∇θfθ(x)y−∇θ log

∫
x

efθ(x)ydx = ∇θfθ(x)y−Ex∼pθ(x|y) [∇θfθ(x)y] (28)

∇θ log

∫
x

efθ(x)ydx =

∫
x
efθ(x)y∇θfθ(x)ydx∫

x
efθ(x)ydx

=

∫
x

efθ(x)y

Zθ

∇θfθ(x)y
pθ(y)

dx

=

∫
x

pθ(x, y)

pθ(y)
∇θfθ(x)y = Ex∼pθ(x|y) [∇θfθ(x)y]

(29)
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