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Abstract

Multi-Armed Bandit algorithms have emerged as a fundamental framework for nu-
merous recent applications, including reinforcement learning from human feedback
(RLHF), optimal dosage determination, experimental design, advertising, recom-
mendation systems, and fairness. Safety constraints are commonly incorporated to
address real-world requirements such as preventing private information leakage in
large language models, avoiding overdosing scenarios, and protecting vulnerable
societal or client groups under optimistically deployed policies. One approach to
modeling constrained optimization problems involves introducing two parametric
unknown signals: a reward signal and a cost signal. The objective remains maxi-
mizing the expected reward while the stage-wise constrained formulation requires
a specified statistic of the cost signal to remain within a predefined safety interval.
Previous research has developed algorithms ensuring that the expected value of the
cost signal remains below a desired threshold, with constraints satisfied with high
probability. In this work, we extend these concepts to control the actual realization
of the cost signal, ensuring it lies within the safety region with high probability.
This advancement opens new directions for applications where hard safety con-
straints must be satisfied not merely in expectation but with near-certainty. We
present an algorithm with accompanying regret bounds, initially for linear reward
and cost signals, then generalize to broader function classes by parameterizing our
results using the eluder dimension.

1 Introduction

Bandit algorithms [24, 4, 15] have been employed across a wide range of domains, including
reinforcement learning with human feedback (RLHF) [11, 28] Clinical Trials [17, 16, 5], [26, 7],
Recommendation Systems [27], Dynamic Pricing [19], LLMs [8], and Fair Allocation [22] as well
as others; see [9] for additional references. In these domains, a learner engages in a sequence of
interactions with an unknown environment, striving to both learn about the environment and maximize
cumulative reward through its actions. The field has witnessed an increased focus on contextual
bandits [12], wherein the learner first observes the present context, that is usually a multidimensional
vector, prior to selecting from a potentially unlimited range of actions.

Within this broader framework, constrained bandit algorithms become essential when applications
involve resource limitations or safety considerations. In bandit literature, these constraints are based
either on past reward data, such as in knapsack bandits [6] and fairness constraints [ 14], or they involve
simultaneous signals of reward and cost, focusing on cost constraints, as discussed in [2, 21, 20]. This
approach is beneficial for uses like advertising and drug administration, aligning with the reward/cost
model mentioned in [21]. In drug dosage scenarios, there is an efficacy signal (reward) and a toxicity
signal (cost). This situation is common in Phase II clinical trials, where clinicians adjust dosages to
maximize efficacy while keeping toxicity under a certain threshold 7. Another strategy, introduced by
[3], uses a binary reward/cost model aimed at maintaining the average cost signals beneath a set limit.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



39
40
41
42
43
44
45
46
47
48
49
50

51
52

53
54
55
56

57
58
59
60
61
62
63

64
65
66
67

68

69
70
71
72
73
74

75

76
77
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92

While cumulative or averaged cost control is useful in some applications, a plethora of applications,
particularly in medicine, demand stage-wise constraints—that is, controlling the cost at each time
step separately. To address this demand, researchers have studied the well-established "safe linear
bandit" problem [13, 20, 18], where at each round ¢, every chosen action generates both a reward
signal ; € R and a cost signal ¢; € R. The objective is to maximize the expected cumulative reward
while ensuring that the expected value of the cost signal remains below a known safety threshold 7 at
every round. This constraint satisfaction is guaranteed with high probability across all sources of
randomness in the system. However, in applications such as autonomous driving or drug treatments,
satisfying a constraint in expectation does not exclude the possibility of catastrophic outcomes at
specific rounds. This raises the necessity of developing algorithms that control the actual value of the
cost signal within a safe range at each time step, rather than merely controlling its expected value.
With this goal in mind, we attempt to answer the following question.

Is it possible to design constrained low-regret algorithms
such that the constraints are never violated with high probability?

In this work, we give a positive answer to the previous question by controlling the actual realization
of the cost signal, requiring it to remain below the same threshold with probability P(c; < 7) > 1—9,
where 0 > 0 represents a confidence level provided as input to the algorithm. As in previous works,
this constraint is satisfied with high probability with respect to all randomness involved in the process.

To accomplish this goal, we propose a UCB-like algorithm named High Probability Constrained
UCB to meet this demand. Our approach is built upon the Optimism in the Face of Uncertainty
(OFU) principle [4] and eliminates the need for prior knowledge of an initial safe action, offering a
notable advantage over current techniques. It functions effectively in both adversarial and stochastic
scenarios, depending solely on the standard assumption of sub-Gaussian noise distributions. Utilizing
this assumption, we design a constraint event that, with high probability, ensures the cost signal does
not exceed the desired threshold in any round.

We establish that our algorithm attains a T-round regret bound of the order O(d+/T'). Furthermore,
we showcase the practical success of our method through computational experiments. We also
broaden our findings to scenarios with non-linear reward and cost functions by framing our analysis
using the eluder dimension, a complexity metric for function classes.

2 Problem Formulation

Notation. We adopt the following notation throughout the paper. We denote by (z,y) = z'y
and (v,y)a = x' Ay, for a positive definite matrix A € R%*%, the inner-product and weighted
inner-product of vectors z,y € R%. Similarly, we denote by ||z|| = vz x and ||z||a = Va T Az,
the /5 and weighted ¢ norms of vector x € R?. We denote the indicator function as 1{-}. We use
upper-case letters for random variables (e.g., X), and their corresponding lower-case letters for a
particular instantiation of that random variable (e.g., X = ). The set {1,...,T} is denoted by [T].

Finally, we use O for the big-O notation up to logarithmic factors.

Inspired by bandit algorithms designed for RLHF and the adaptive dosage allocation problem,
we adopt the following formulation for the action set and the reward and cost signals. At each
iteration ¢ € [T, the learner observes a d-dimensional context vector X; € R, which may represent
medical test results or a language model (LM) embedding of a prompt-answer pair. We impose
no distributional assumptions on the context X;; it may be stochastically generated or adversarial.
The learner then selects a scalar action o € [0, 1], and the environment generates the reward
and cost signals as follows: the reward signal is R; := oy - (r(X;) + &) and the cost signal is
Cy := ap - (c(Xt) + &), where £, & denote subgaussian noise terms, and r(X;), ¢(X;) measure the
importance or significance of the context to the reward and cost mechanisms, respectively. Initially,
we model r(X;), ¢(X;) as linear functions parameterized by unknown vectors 8* and p*, respectively.
We subsequently generalize our results by requiring only that r(X;), ¢(X}) be bounded.

We now provide motivation for our choice of protocol and the reward and cost function formulation.
Drawing inspiration from optimal dosage applications, the context X; describes the medical condition
of a patient, the reward function r(X;) measures the therapeutic effect of a drug on the patient’s
current state, and ¢(X;) measures the drug’s side effects. In this setting, the action «; denotes the
dosage assigned to the patient. If (X;) >> 0, then the drug is beneficial to the patient, and we should
assign the maximum possible dosage without overdosing the patient. In advertising applications, each
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Safe Bandit protocol

Input: Horizon T’

Forroundst =1,2,...,n:

X, eR?
1. & & @ % context

+€[0,1 . .
2. & m—”) @ % action selection
3.

Ry, CreR .
- U & % reward, cost signals

advertisement has both positive and negative impacts on an audience, and «; denotes the duration for
which we display the advertisement. Finally, in RLHF, the contexts can represent the embedding of
prompt-candidate answer pairs. The reward function can measure the satisfaction a user derives from
a given answer to their prompt, while the cost function can be implemented as an LLM fine-tuned
on safety parameters that evaluates how acceptable or safe the provided answer is. The actions
o determine the level of reasoning effort devoted to each prompt, allowing the system to limit
computational investment in potentially malicious or adversarial queries.

Before proceeding with our analysis and results, we first outline the standard assumptions for the
model. These assumptions are well-established in the literature on contextual bandits with constraints.

Assumption 2.1 (Sub-Gaussian noise). For all t € [T, the reward and cost noise random variables
& and & are conditionally Sub-Gaussian, i.e., for all o € R, and the Sub-Gaussianity constants
Vm 7(} > 0;

E[¢) | Hi-1] =0, Elexp(ag]) | Hi-1] < exp(a’7/2),

E[¢f | He-1] =0, Elexp(agf) | Hi-1] < exp(a’yZ/2),
where H; is the filtration that includes all the events (X1.t41R1.4, C1.4, &4, &5.,) until the end of
round t.
Assumption 2.2 (bounded parameters). There is a known constant S > 0, such that ||0.|| < S and
([ < 8.
Assumption 2.3 (bounded contexts). The {5-norm of all contexts are bounded by L > 0, i.e.,

max || X¢|| < L.
te[T]

Assumption 2.4 (Positive toxicity threshold). The toxicity constraint in order to be meaningful must
satisfy that T > 0.

We observe that our analysis does not require knowledge of an initial safe action, unlike in [20] or any
assumption about the initial decision set like in [18]. However, we believe that in their analysis, this
assumption can be relaxed as the vector p* is bounded, and any X from their decision set satisfying
| X¢|]] < % can serve as an initial safe action. They mention this possibility in their related works.
This follows from the inequality (X, u*) < || X¢|| [|[p*]| < 5 -5 = 7.

In each round ¢, the agent is constrained to select an action «; such that
on ((Xt, 1) 4+ ver/21og (%)) < 7. We demonstrate in Section 3 that when this constraint
is satisfied, it ensures Pee (Cy < 7 | Hy) > 1 — 6. We define the set of feasible dosages as

Al = {a €0,1]: o ((Xt,u*> + e 210g((1;)) < T}.

Because p* is not known, this set is originally unknown, which requires us to estimate it.

Maximizing the expected reward over 1" rounds is equivalent to minimizing the expected 7'-round
constrained pseudo-regret, defined as

T
Re(T) =Y (af — ar)(X,,67), 0

t=1

'The choice of the same upper-bound S for both 6. and . is just for simplicity and convenience.
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where o represents the optimal feasible action for round ¢, i.e., o € argmax, . ,r a(X;,0*). On
t

its side, ay is the action selected by the learner in round ¢, which is chosen from the set of feasible

actions available in that round, i.e., oy € A{ , with high probability subject to £§., 1, C1.¢4—1.

3 Constraint formulation

The learner’s goal is to maximize the cumulative reward over T’ rounds, i.e., 3.1, . (X;, 0%),
while ensuring that the realized toxicity remains below a known threshold with high probability. In
clinical trials terminology, this problem is referred to as a Phase II trial, as the toxicity threshold
7 is considered known in advance. Our algorithm takes as input a confidence level § to control
the realization of the noise. To model the requirement of controlling the cost realization with high
probability, we impose a nonlinear constraint involving §. It should be noted that if we know the
exact distribution of the noise (i.e. Normal), this problem can be solved exactly without introducing
this constraint by using a similar algorithm.

We formulate the following constraint:
Lemma 1. When the selected dosage o satisfies oy ((Xt, 1) + ver/21og (%)) < 7 then it holds
that Pr(Cy < 7| H;) > 1 — 0.

The proof is provided in Appendix A.l and it is a direct application of a concentration bound for
Sub-Gaussian random variables (see [15], chapter 5, or [25] chapter 2).

We note that, given the distribution of the noise at round ¢, £, it holds that Pr(Cy < 7| H;) > 1 — 4.
The constraint

o <<Xt, 1)+ ver/2log ((15)) <.
is thus satisfied with high probability with respect to H;_.

Since 7 > 0, we show that an initial safe interval for choosing «; is

T

Yey/2log (5) + LS
(X, 1*) + ey /210g (5) <0,

then A{ = [0, 1]. Otherwise, ao can range from 0 up to

0,min | 1,

To begin with, if

T

Yer/2log (5) + LS

since (X, p*) < L - S by the Cauchy—Schwarz inequality.

min | 1,

4 Algorithm

We aim for our algorithm to leverage the fundamental principle of Optimism in the Face of Uncertainty
(OFU). Additionally, we need to make robust choices to ensure that the constraint is satisfied with
high probability. To achieve this, we intend to be optimistic in our estimates for the reward signal and
pessimistic for the cost.

In each non-zero dose round, we construct two least squares estimators: one for #* and one for p*.

For a given regularization parameter A > 0, the regularized covariance matrix at round ¢ is defined as:
t—1

Si= A+ XX ©)

s=1

Using Equation (2), we define the regularized least squares estimators 6, and e

ét = Ef_l Z ozsflRSXs ,[Lt = Zt_l Z O[silchS (3)
s:as#0 s:as#0
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Algorithm 1 High Probability Constrained UCB

Require: Constraint threshold 7 > 0, confidence parameter §, sub-Gaussianity constants 7., v,

’ycq/Zlog(%)JrL-S }

2: fort=1,2,...,T do

3 Compute /i according to (3)

4 Use (1 to compute the estimated feasible set /l{ using (7)
5: Compute 0, using (5)
6

7
8:

I: ap —min< 1,

Compute action a; = arg max, ¢ if (X4, 0)

Take action «; and if a;; # O store the reward and cost signals (R;, C})
end for

We note that we use only the contexts X; and the corresponding realizations of the reward and cost
signals R; and C; for the rounds in which we assigned a non-zero action. In rounds where we selected
an action equal to zero, we did not receive feedback about the dosage effect; that is, R; = C; = 0,
given the way our model is constructed.

To design a UCB-like algorithm, we need to define high-probability confidence sets centered at our

estimators 0; and [i;. These confidence sets will enable us to derive upper bounds on the distances
between our estimators and the unknown vectors §* and p*. To construct the desired confidence
intervals, we will use the following fundamental theorem.

Theorem 1 (Theorem 2 in 1). Fora fixed 6 € (0,1) and V't € [T);

ﬁ:(&d):’ﬁ\/dlog (H@_(;)LQ//\)-F\/XS,

ﬁtc(é?d):’yc\/dlog (1-1-(15—51)[/2/)\>+ﬁs’

it holds with probability at least 1 — 0 that
16: = Oxls. < Bi (6, d), e = pralls, < B (0, d).

We will make use of Theorem 1 to define the following confidence sets (ellipsoids):
Cl ={0 R+ 00z, <5 (5.d)},
Ci={n e R [lu—fulls, <B7(5,d)},

Theorem 1 suggests that 0* € C} and pu* € C¢(«.), each with probability at least 1 — 26. We will
use these confidence intervals to create our estimators for 8* and p*.

“

We aim to be optimistic in our estimate of 8* by selecting

0, = arg max(Xy, 0), (5
0eCy

and pessimistic about p* by choosing fi; that minimizes the volume of the estimated feasible set.
In our case, the feasible set is a continuous sub-interval of [0, 1], so its measure is simply its length.
Before describing the algorithm, we will first define the confidence ellipsoids and the Least Squares
Estimators for 6* and p*.

The computation of the estimated feasible set /l{ is performed in two steps. First, we estimate the
unknown cost vector p* using a least squares estimator. This procedure yields a confidence ellipsoid
that contains p* with high probability. Among all ; within this ellipsoid, we select the one that
minimizes the length of the interval of feasible values for a;.
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4.1 Choice of [

As previously discussed, we aim to choose our estimate pessimistically to minimize the length of fl{ .
By definition, Af is given by

Al = {a€ 0,1 : ((Xt,ﬂ>+*yc 210g(g)> ST}.

Since 7 > 0, we first need to check the sign of (X, fi) + v.4/2log (%) If this expression is negative

forall 4 € CZ, then we set A = [0, 1]. However, if there exists a j1 € CZ such that this expression is

positive, we select the p that minimizes the maximum feasible c;. This approach can be summarized
in the following convex program, where /i is the least squares estimate of p.

max (Xt, 1)
w

subject to || — filly, < 8%,

(6)
(Xt, 1) + 7eq [ 21og (;) >0

Let K,(t) = {p € R : || — ills, < B2 (X, 1) + Yey/21o0g (%) > 0} the be set of feasible
solutions of the convex program 6. If K, (t) # 0, then let /i € arg max;, ¢, ;) {(X¢. 1) }-

(N

[ EK(f) =
A/ - 0 T , f]CL :
f 0, <Xt7ﬂ>+7u\/2log(%)] if I, (t) #

0
0
5 Regret Analysis

The objective of the agent is to minimize the expected T-round (constrained) (pseudo)-regret, i.e.,

T
Re(T) =D r*(Xe) — r(Xy),

where

r*(Xt) = max a(Xy, 6%),
aeA{

r(Xy) = max a(Xy,0%).
aEA{

We see that the choice of o depends on the sign of (X, 6*). If this inner product is positive we
choose the largest feasible value and otherwise the lowest feasible one.

Il
M=

Re(T) max (a(Xy, 0%)) — o (X, 0%)
i 1(16.4{

®)
() — ) (Xt,607).

Il
M=

o~
Il
—

We will use a decomposition of the regret similar to standard ones in the Linear Bandits under
constraints literature, ([2],[21],[20]). We define as

Qy = arg max{a(Xt,HAQ}‘ 9)
ozE.Aic
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Using the above definition we decompose the regret as follows.

M=

Re(T) = ) (g — o) (X, 07)

o~
Il
-

I
M=

(af — @) (Xy,07) (10)

t—1 Term 1: Cost for approximating 6™

+
Sl

~ *
(G — ) (X4, 0%)
t—1 Term 2: Cost for approximating 4™

5.1 Analysis of the Regret

Lemma 2. The first term in the regret decomposition can be bounded as follows:

(o — @) (X, 0%) < @ (X, 0 —60%).

The proof is in Appendix A.2. We note that this is the standard bound in the Linear Bandits literature
as first proved in the classical work of [1]. It remains to bound the second term.
Lemma 3. The second term in the regret decomposition can be bounded as follows:
X o *
(G — o) (X0, 0°) < L-S- M

T

The proof is in Appendix A.3.

By using the lemmas 2, 3 combining with the regret decomposition (equation 10) we can bound the
regret as following. The bound is conditioned on the following event that holds with probability at
least 1 — 20”.

& = {18, ~ Billm, < 506" d) A e — Bils, < B8 )} b

It is important to mention that ¢’ is not necessary equal to §. The first one is the probability that the
regret bounds holds and the second one the probability that the realization of the noise of the cost
stays below the threshold.

Theorem 2. With probability at least one 1 — ' the regret of the High Probability Constrained UCB

algorithm can be bounded by O (LTS - Br(d,d) \/ZTd log (1 + TfQ ))

The proof is in A.4.

6 Non-linear rewards and costs

Instead of modeling the reward and the cost signal as linear functions in term of the unknown
parameters 6 and p we can use more general functions and express our results in terms of the Eluder
dimension as defined in [23].

We denote the set of feasible actions in round ¢ as A(X;) = {a € [0,1] |

1
a | e (Xt) +7er /2 log(g) < 7}. The agent selects and action o € A;(X;). Now the reward

and the cost signal take the following form.
Ry = a0, (Xe) + auf,  Cr = aqpua(Xy) + ey,

where 0,(-) € G, and u.(-) € G, are the mean reward and cost function respectively that belong to
the known function classes G,., G.. We will assume that 6, (-), 1. (-) take values in [—1, 1], relaxing
the standard assumption made that the non-linear functions take values in [0, 1]. We show that the
important property is that the non-linear functions remain bounded. We also assume that the reward
and the cost signals are bounded, i.e. lie in [—1, 1]. For the noise signals £}, £§ we assume that they

are conditionally sub-Gaussian. Moreover, we use the definition of the width of a subset FCFata
context X € A by
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wz(X) = sup (f(X)— f(X)). (12)
[ fer

In the new terminology, the 7" period regret is written as

T
R(T,m) =Y [070.(X1) — as0,(Xy)] .

t=1

First we define the dataset D; = {(Xj, Rs, C’S)}Z;l1 for s such that A, # 0, that is the dataset
of observed information up to the beginning of round ¢, and || f||lp, = {/>_,cp, f*(x) the norm

induced by the dataset for any function f : 4; — R.

In every round we define the confidence ellipsoids as follows
< pr(t,0/2)}

< pe(t,0/2)}

cro)={0¢eg - He - é‘

Dy

Co(8) = {0 €g.: He - é‘

Dy

Using these confidence intervals we compute the actions of the algorithm as follows. To compute the
feasible dosages, first we solve the following Non-Linear program.

max  p(Xy)
I
subject o [|u(X1) — fu( X1)llp, < B, (13)

1
W(X0) + ey [210g <5) >0

Then if there is no feasible solution in the above optimization problem we select A; = [0, 1] otherwise,

let say K(fi;) its solution, then A/ = [0, ———————] as before.
K (i) +7e/210g(})

Our estimate for 6 is 0(X;) = maxgecr(s) 0(Xt).

Algorithm 2 Non-Linear High Probability Constrained UCB

1: Input: Constraint threshold 7 > 0; Confidence parameter §; Sub-Gaussianity constant .
ap < min{l, z

76\/2 log(%)+maxx 2 (X)

cfort=1,2,--- T do

Compute i, 6 by using Least Squares Estimators

Construct the A/, (X;)

Compute action iy = argmax, . 4 i af(Xy)

»

Take action «; and if i # 0 store the reward and the cost signals (R;, Cy)
end for

PR DA

We want to apply the same regret decomposition as before. First, we define analogously Ay (Xy) =

{a€0,1] |« <,u*(Xt) + Ve 21og((15)> < 7}. We also define

a; € argmax 6, ().
a€ A

oy € argmax sup 6(a).
aEAt 0€Gr

&, € argmax sup 0(«).
acAr  0€G,
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As in Proposition 1 in [23] our goal is to bound the regret using w z(X;). First we apply the same
decomposition to express the regret in terms of the cost due to the lack of knowledge of 6, and ..

T
RT,7m) =S [00.(Xy) — G (X,)]

~
Il

T
+ (A0, (Xy) — b (X0)]
t=1
The first sum can be bounded in a similar way to proof A in the appendix of [23]. The second sum
measures the regret the algorithm suffers from the lack of knowledge of ;. Then we can bound in
terms of w 7. the same way as before.

Lemma 4. afﬁ*(Xt) — dtg*(Xt) < wg,. (Xt) + 21{(0* ¢ gr)}
The proof is in B.1.

For the remaining part, we need to bound |&; — o[ in terms of p,.. We will follow a similar proof as
in the case of the inner product function.
Lemma 5. |&; — o] < wg, (X¢)/T.

The proof is similar to the linear case and it is provided in B.2.

Now that we have bound the regret in terms of the width of the set that the non-linear functions
belong we can translate our results to bound for the regret. First, as in the linear model case, we
define the reward and the cost set confidence radii as in [20].

pr(t,8") = 512log (24|QT| log(2t)> ,

)
24|G.|log(2t
pe(t,8") = 5121log ('g |5Og( )) :
We also use the following notation d7,,, ;... = detuder(Gr, 1/T') and dS;,, 40, = detuder(Ge, 1/T). The

algorithm is similar to that one in the linear case. For the regret bound, like [20], we use the Lemma
3in [10], by setting P = 1.

Theorem 3. With probability at least 1—¢', the regret of the Non-Linear High Probability Constrained
UCB satisfies

R(T) = O(\/ngluderpr(T, 6//2)+
1/7\/Tdaude7-pc(T, 5’/2)+

(&
s =+ deluder )
T

eluder
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A Appendix

A.1 Constraint formulation

We assume that the cost noise is conditionally sub-Gaussian with a known constant .. Under this
assumption, the random variable Ct_a;iix’“) is 7. sub-Gaussian. We will define a constraint event
such that, when satisfied, the cost signal remains below the threshold with high probability. Now, we
can analyze the cost using the following theorem.

Theorem 4. [Sub Gaussian concentration bounds - Theorem 5.3 [15]] If X is ~y.-subgaussian, then
forany e > 0,

€2
33
8

(&

Pr(X >e¢) <exp(—

Using the above property of the cost noise and the theorem we derive that

Cr — a(Xo, 1) 7 — Xy, 1"
Pr(C’t27'|7-[t):Pr( ! O‘Zj ni) LT O‘t(i b i) ‘Ht> (14)
t t
<TOét<Xtaﬂ*>)2
Qg
<exp | — (15)
292

By requiring the right-hand side to be less than or equal to §, we derive:

(T - at<Xt7U*>>2
(67 < 6

exp | — 922 =
<Taf<Xf, *>)2
(677 1
g >log ) (16)
T — at Xt,

> Yer[ 2 IOg

T>Oét<Xt7 +'7€“210g((]5->>

A.2 Analyzing the cost for approximating 6

The first term need to be bounded is Zthl (af — a;)(X¢, 0*). In order to bound this term we will
follow a standard procedure in Linear Bandits. Initially, we will bound the term o (X, 0*). With
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a9 probability at least 1 — 4 it holds 6* € C? vt € [T).
o (X4, 0%) < max{a;(X;,0)}
oec?
< X, 0
S max ggﬁg{w t.0)}

= max {a(X;,0)}
OzG.A{

= dt<Xt, 9>
Using the above it holds that
(Oftk — dt)<Xt, 9*> S O~ét<Xt, é — 9*>

330 A.3 Analyzing the cost for approximating ;*
We can bound the second term using the Cauchy-Schwarz inequality as follows:

(dt — at)<Xt,9*> §| &t — Ot | LS
It remains to bound | &; — o |. First, we remind the definitions of &; and «;:

Qi = arg max {Oz(Xn ét>}a
ocE.A,{

oy = arg max {a( Xy, 0,)}.
aGA,{

331 We observe that both the choice of &; and the choice of o; depend on the sign of the inner product
sz (X4, 0). If (X4, 0;) > 0, then &; equals the maximum element of the set A{ . Similarly, a; equals

533 the maximum of the set A/ when (X, 6;) > 0. On the other side, when (X;, ;) < 0, both é; and
334  (y are zero.

We will write down again the sets A/ and A/ to see the possible values for (G, o ):

Al = {ae [0,1] : ((Xt,u*>+%( 210g(§))>0¢<7’},
Al = {ae [0,1] : (<Xt,,1>+%< 210g(§)>) agT}.

335 Our estimator f for p* is a pessimistic one. Among all possible choices for fi, in order to be robust,

ass we will choose [i such that /lf has the smallest possible length.

337 Having that in mind, we have the four following scenarios for (&, a):

338 1. (1,1)
339 2. | I,min | 1, T
7 (/2108 (3)) + (X0, i)
340 3. | min | 1, T )1
%( 210g(%))+<Xt,u*>
241 4 | min |1, T Jmin | 1, T
7e (/2108 (3)) + (X0 %) 7e (/2108 (3)) + (X0 )

342 For all the above cases we can show that

. X, 0— u*
max A/ — max Af < M
T

343 Let’s prove this one by one.
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344 A3.1 1stcase

345 In this case, it is true that max .A{ — max ft{ =1-1=0.

s46 A.3.2 2nd case

3

347 The non-trivial pair in this case is | 1,
Ye ( 2log (%)) + (X, 1)

348 When the above relation for max Atf and max fl{ holds, then it is true that:

349 L. %( 2log (%)) + (X, 1) <0,

3

350 2. <1.
7 (y/2108 (3)) + (X2 )

3

351 Using the above, we can bound 1 — as follows:
Ye ( 2log (%)) + (Xy, i)

B

- e (Y218 (3)) — 7+ (X

v (y2108 () + (X)) 7 (y/2108 (3)) + (X0, i)

_<Xta /'l’*> + <Xt7ﬂ>
(X, o= p*)

T

<

352 A3.3 3rd case

353 We choose fi pessimistically, so in this case the only valid pairis (1,1) and | &; — ay |= 0.

354 A.3.4 4th case

355 This case can be divided into four different subcases:

356 1. (1,1) then | & — ¢ |= 0.
357 2. |1, T . We saw that the above case can be bounded by
7e (/2108 (3)) + (Xe. 1)
<Xta /]/ - /'(‘*>
358 —_—.
T
359 3. 7 , 1 |; this case cannot exist due to the way we choose fi.

%( 2log (%)) + ( Xy, %)

B
B

360 4, ,

% (/2108 (3)) + (X w) 7 (/2108 (3)) + (X2

ss1  In this case, it holds that 0 < 7 < 7, ( 2log (%)) + (X, p*)and 0 < 7 < 7, ( 2log (%)) +
se2 (X, f1).



s63  We are going to bound | max A/ — max A/ | as follows:

364

365

366

367

368
369
370

371

372

373

T

%( 2log (%)) + ( Xy, p*) : %( 210g(%)) + (X¢, 1)

B

| max Af — max A/ | =

™ {(Xoofi— )
(e (V2108 (3)) + X)) (3 (/2108 (3)) + (X )

< T<Xta/]/_/j/*>|

_ <Xt7:&‘ B :U’*>

A.4 Proof of theorem 2
Proof.

Il
M=

T
Re(T) (o —au)(Xy, 07 +Z Gy — o) (X, 60%)
t=1

o~
Il
—

0 — 0

W

EAT A -

LS - .
o 72 ) el N — s,

~~
Il
-

MH

(0", d) [l ;- 1+*Zﬁt (0", d) [l

&~
I

1

< Br(d',d 1+* (Z (LA >

< Br(8,d)(1+ Lf)\/2leog <1 + TAL2>

B Non-Linear case

B.1 Bound of 042‘0* (Xt) — dtﬁ* (Xt)
Proof. The proof of the lemma 4 is similar to [23] as the decision set is the same for both o and ¢;.
We define Ui (a) = sup{ab.(X;) : 0. € G, } and L¢(«) = inf{af.(X:) : 0. € G, }. When 6, lies
in G, it holds that L;(a) < 6, («) < Uy(«). Using this we derive
;0. (Xy) — b (X)) < (U(of) — Le(di)) {(}0x € Gp) + 21{(}0, ¢ Gy)
< (Ui07) = Lu(d@n) + 21{(}6. ¢ G.) an
< wg, (X¢) + 21{(}0« & Gr) + [Ue(ay) — Ue(ai)]

<0 due to selection rule

Where in the last line we also used the fact that & € [0, 1].

B.2 Analyzing the cost for approximating ... (X;)
We need to bound | & — a |. First, we remind the definitions of &; and «;:

iy = arg max {040 (Xe)},
(yG.A

= arg max {OAQ (Xe)}.
aG.A
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379

380

381

382

383

384

385

386

387

388

389

390

391

392

We observe that both the choice of &, and the choice of «; depend on the sign of the value of é* (X).
If 6, (X,;) > 0, then & equals the maximum element of the set .AJ. Similarly, o; equals the maximum
of the set A/ when 6, (X,) > 0. On the other side, when 6, (X,) < 0, both é; and o are zero.

We will write down again the sets A/ and A/ to see the possible values for (i, vy ):

Al = {ae s (x4 (20 (]) ) a7}

Al = {ae [0,1] : ([L(Xt)—k'yc( 210g(§)>>a<7}.

Our estimator [ for pu* is a pessimistic one. Among all possible choices for i, in order to be robust,
we will choose i such that Af has the smallest possible length.

Having that in mind, we have the four following scenarios for (&, a):

1. (1,1)
2. [ 1,min | 1, i
7 (/2108 (3)) + (X
3. | min | 1, T , 1
7e (/2108 (3)) + e (X0)
4. | min | 1, T ,min | 1, T
e (/2108 (3)) + a(X0) 7. (/2108 (3)) + (X)

For all the above cases we can show that

max Af — max Af < P = 1e(Xe)
T

Let’s prove this one by one.

B.2.1 1st case

In this case, it is true that max Atf — max Af =1-1=0.
B.2.2 2nd case

T

The non-trivial pair in this case is | 1,
7e (/2108 (1)) + (X

When the above relation for max Af and max /l{ holds, then it is true that:

1. 7. ( 2log (%)) + 1. (X3) <0,

3

: 7 (/2108 (3)) + (X0 =
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3

393 Using the above, we can bound 1 — as follows:

% (/2108 (1)) +A(X)

; e (42108 (3)) - T+ A(X0)

s (Y2108 (3)) +i(x) (\/ % ) )

=
s

]

1-—

IN

394 B.2.3 3rd case
35 We choose [i pessimistically, so in this case the only valid pairis (1,1) and | & — a; |= 0

396 B.2.4 4th case
397 This case can be divided into four different subcases:
398 1. (1,1) then | & —ay |= 0

399 2. |1 T . We saw that the above case can be bounded by

e (2108 (3)) + (X0
UXe) — 1 (Xe)

T

400

2

401 3. , 1 |; this case cannot exist due to the way we choose [.
Ve ( 2log (%)) + (X

B

T

% (/2108 (3)) + e (X0) e (/2108 (3)) + ix)

402 4.

403 In this case, it holds that 0 < 7 < 7, ( 2log (%)) + (X)) and 0 < 7 < v, ( 2log (%)) +
a4 i(Xy).

405 We are going to bound | max A/ — max A/ | as follows:

B

T

| max Af —max Al | = —
7o (/2108 (1)) + a(X0) e (/2108 (3)) + (X0)

T (<Xta/1> B M*(Xt))

(v (V2108 (3)) +#-(x0) (7 (/2108 (3) ) + X))

7 lX ) H*(Xt)|

A(Xt) — M*(Xt).

T

| /\

a6 Now by following exaclty the same procedure as in lemma 4 we derive that |&; — a:| < wg, (A4)/7.

w07 C Experimental Results

408 As mentioned earlier, potential applications of this problem include advertising, optimal dosage
409 determination, and reinforcement learning from human feedback (RLHF). However, obtaining
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suitable data to evaluate the algorithm is challenging for the first two applications, while the last is
left for future exploration. Consequently, in this initial version of our work, we evaluate the algorithm
using synthetic data.

To produce 60* and p*, these entities were drawn from a d-dimensional normal distribution, followed
by normalization. Similarly, the contexts were derived from a multivariate normal distribution
and subsequently normalized. The experiments were conducted employing vectors of 5 and 10
dimensions, utilizing various values of 7 across 5 x 10% iterations. In practical terms, it is pertinent to
explore the interrelations between 7 and max || X ||, ||0*||, and ||+*||, as these are intrinsically linked
to the problem’s formulation, feature selection, and the choice of 7.

Our observations indicate that for larger values of 7, such as those exceeding 0.5, there is an increase
in regret. This phenomenon is anticipated since a lower threshold constrains the algorithm more
significantly, thereby facilitating a more rapid exploration of the available dosage space. Furthermore,
it was observed that for larger values of 7, including 0.6 and 0.8, the results exhibited a sub-linear
progression after 10* iterations. Notably, after 4 x 10° iterations, we detected a stabilization in
growth, suggesting the convergence of our estimators to the true values of 6* and p*, accompanied
by reduced confidence intervals.
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Figure 1: Plots of the regret for various 7 and d values.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide an no-regret algorithm that satisfy the proposed constraint for the
realization of the cost signal instead of its expected value.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our work lacks from strong experimental evaluation and applications in applied
domains as we described in the experimental section. We believe that the contribution of
this paper is more conceptual, to propose an easy way to apply techniques from constraint
satisfaction in expectation to high-probability one.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We describe the assumptions used in the problem formulation section, and all
the proofs of our theorems are in the main text or in the appendix.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: In the experimental section we provide all details about our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We are happy to provide the code for our experiments. We aim to add more
experiments, comparing with other algorithms and apply this algorithm in other fields as
mentioned.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:
Justification: Our experiments do not require setting the details mentioned.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our experiments we have plotted the expected value of the regret and its
standard deviation.

Guidelines:
» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experiments can be run on a simple laptop without the need of a GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

22



614

615
616

617

618

619

620

621
622

623
624

625

627

628

629
630

631

632

633
634

635
636

638

639
640
641
642
643
644
645

646
647
648
649

650

651

653

654

655
656
657

658

659

660

9.

10.

11.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have studied the ethics guidelines and followed carefully.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss further impact on potential applications in the introduction and the
problem formulation section.

Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We use synthetic data only.

Guidelines:
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We used the appropriate citations when needed.
Guidelines:
» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We mention our contribution in the introduction and the problem formulation.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not have any crowdsourcing experiment.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLMs for grammar and vocabulary suggestions.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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