## Safety by Design: High-Probability Constrained Contextual Bandits

## **Anonymous Author(s)**

Affiliation Address email

#### **Abstract**

Multi-Armed Bandit algorithms have emerged as a fundamental framework for numerous recent applications, including reinforcement learning from human feedback (RLHF), optimal dosage determination, experimental design, advertising, recommendation systems, and fairness. Safety constraints are commonly incorporated to address real-world requirements such as preventing private information leakage in large language models, avoiding overdosing scenarios, and protecting vulnerable societal or client groups under optimistically deployed policies. One approach to modeling constrained optimization problems involves introducing two parametric unknown signals: a reward signal and a cost signal. The objective remains maximizing the expected reward while the stage-wise constrained formulation requires a specified statistic of the cost signal to remain within a predefined safety interval. Previous research has developed algorithms ensuring that the expected value of the cost signal remains below a desired threshold, with constraints satisfied with high probability. In this work, we extend these concepts to control the actual realization of the cost signal, ensuring it lies within the safety region with high probability. This advancement opens new directions for applications where hard safety constraints must be satisfied not merely in expectation but with near-certainty. We present an algorithm with accompanying regret bounds, initially for linear reward and cost signals, then generalize to broader function classes by parameterizing our results using the eluder dimension.

### 1 Introduction

2

5

6

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

36

37

Bandit algorithms [24, 4, 15] have been employed across a wide range of domains, including reinforcement learning with human feedback (RLHF) [11, 28] Clinical Trials [17, 16, 5], [26, 7], Recommendation Systems [27], Dynamic Pricing [19], LLMs [8], and Fair Allocation [22] as well as others; see [9] for additional references. In these domains, a learner engages in a sequence of interactions with an unknown environment, striving to both learn about the environment and maximize cumulative reward through its actions. The field has witnessed an increased focus on contextual bandits [12], wherein the learner first observes the present context, that is usually a multidimensional vector, prior to selecting from a potentially unlimited range of actions.

Within this broader framework, constrained bandit algorithms become essential when applications involve resource limitations or safety considerations. In bandit literature, these constraints are based either on past reward data, such as in knapsack bandits [6] and fairness constraints [14], or they involve simultaneous signals of reward and cost, focusing on cost constraints, as discussed in [2, 21, 20]. This approach is beneficial for uses like advertising and drug administration, aligning with the reward/cost model mentioned in [21]. In drug dosage scenarios, there is an efficacy signal (reward) and a toxicity signal (cost). This situation is common in Phase II clinical trials, where clinicians adjust dosages to maximize efficacy while keeping toxicity under a certain threshold  $\tau$ . Another strategy, introduced by [3], uses a binary reward/cost model aimed at maintaining the average cost signals beneath a set limit.

While cumulative or averaged cost control is useful in some applications, a plethora of applications, particularly in medicine, demand stage-wise constraints—that is, controlling the cost at each time step separately. To address this demand, researchers have studied the well-established "safe linear bandit" problem [13, 20, 18], where at each round t, every chosen action generates both a reward signal  $r_t \in \mathbb{R}$  and a cost signal  $c_t \in \mathbb{R}$ . The objective is to maximize the expected cumulative reward while ensuring that the expected value of the cost signal remains below a known safety threshold  $\tau$  at every round. This constraint satisfaction is guaranteed with high probability across all sources of randomness in the system. However, in applications such as autonomous driving or drug treatments, satisfying a constraint in expectation does not exclude the possibility of catastrophic outcomes at specific rounds. This raises the necessity of developing algorithms that control the actual value of the cost signal within a safe range at each time step, rather than merely controlling its expected value. With this goal in mind, we attempt to answer the following question.

Is it possible to design constrained low-regret algorithms such that the constraints are never violated with high probability?

In this work, we give a positive answer to the previous question by controlling the actual realization of the cost signal, requiring it to remain below the same threshold with probability  $\mathbb{P}(c_t \leq \tau) \geq 1 - \delta$ , where  $\delta > 0$  represents a confidence level provided as input to the algorithm. As in previous works, this constraint is satisfied with high probability with respect to all randomness involved in the process.

To accomplish this goal, we propose a *UCB-like* algorithm named *High Probability Constrained UCB* to meet this demand. Our approach is built upon the *Optimism in the Face of Uncertainty* (OFU) principle [4] and eliminates the need for prior knowledge of an initial safe action, offering a notable advantage over current techniques. It functions effectively in both adversarial and stochastic scenarios, depending solely on the standard assumption of sub-Gaussian noise distributions. Utilizing this assumption, we design a constraint event that, with high probability, ensures the cost signal does not exceed the desired threshold in any round.

We establish that our algorithm attains a T-round regret bound of the order  $\tilde{\mathcal{O}}(d\sqrt{T})$ . Furthermore, we showcase the practical success of our method through computational experiments. We also broaden our findings to scenarios with non-linear reward and cost functions by framing our analysis using the *eluder dimension*, a complexity metric for function classes.

### 2 Problem Formulation

**Notation.** We adopt the following notation throughout the paper. We denote by  $\langle x,y\rangle=x^\top y$  and  $\langle x,y\rangle_{\mathbf{A}}=x^\top \mathbf{A}y$ , for a positive definite matrix  $\mathbf{A}\in\mathbb{R}^{d\times d}$ , the inner-product and weighted inner-product of vectors  $x,y\in\mathbb{R}^d$ . Similarly, we denote by  $\|x\|=\sqrt{x^\top x}$  and  $\|x\|_{\mathbf{A}}=\sqrt{x^\top \mathbf{A}x}$ , the  $\ell_2$  and weighted  $\ell_2$  norms of vector  $x\in\mathbb{R}^d$ . We denote the indicator function as  $\mathbf{1}\{\cdot\}$ . We use upper-case letters for random variables (e.g., X), and their corresponding lower-case letters for a particular instantiation of that random variable (e.g., X=x). The set  $\{1,\ldots,T\}$  is denoted by [T]. Finally, we use  $\widetilde{\mathcal{O}}$  for the big- $\mathcal{O}$  notation up to logarithmic factors.

Inspired by bandit algorithms designed for RLHF and the adaptive dosage allocation problem, we adopt the following formulation for the action set and the reward and cost signals. At each iteration  $t \in [T]$ , the learner observes a d-dimensional context vector  $X_t \in \mathbb{R}^d$ , which may represent medical test results or a language model (LM) embedding of a prompt-answer pair. We impose no distributional assumptions on the context  $X_t$ ; it may be stochastically generated or adversarial. The learner then selects a scalar action  $\alpha_t \in [0,1]$ , and the environment generates the reward and cost signals as follows: the reward signal is  $R_t := \alpha_t \cdot (r(X_t) + \xi_t^r)$  and the cost signal is  $C_t := \alpha_t \cdot (c(X_t) + \xi_t^c)$ , where  $\xi_t^r, \xi_t^c$  denote subgaussian noise terms, and  $r(X_t), c(X_t)$  measure the importance or significance of the context to the reward and cost mechanisms, respectively. Initially, we model  $r(X_t)$ ,  $c(X_t)$  as linear functions parameterized by unknown vectors  $\theta^*$  and  $\mu^*$ , respectively. We subsequently generalize our results by requiring only that  $r(X_t)$ ,  $c(X_t)$  be bounded. 

We now provide motivation for our choice of protocol and the reward and cost function formulation. Drawing inspiration from optimal dosage applications, the context  $X_t$  describes the medical condition of a patient, the reward function  $r(X_t)$  measures the therapeutic effect of a drug on the patient's current state, and  $c(X_t)$  measures the drug's side effects. In this setting, the action  $\alpha_t$  denotes the dosage assigned to the patient. If  $r(X_t) >> 0$ , then the drug is beneficial to the patient, and we should assign the maximum possible dosage without overdosing the patient. In advertising applications, each

#### Safe Bandit protocol

**Input:** Horizon T

93

94

95

97

98

99

For rounds  $t = 1, 2, \ldots, n$ :

- 1.  $\triangle \stackrel{X_t \in \mathbb{R}^d}{\longleftrightarrow}$  % context
- 2.  $\triangle \xrightarrow{\alpha_t \in [0,1]}$  % action selection
- 3.  $\triangle \stackrel{R_t, C_t \in \mathbb{R}}{\longleftarrow} \triangle \%$  reward, cost signals

advertisement has both positive and negative impacts on an audience, and  $\alpha_t$  denotes the duration for which we display the advertisement. Finally, in RLHF, the contexts can represent the embedding of prompt-candidate answer pairs. The reward function can measure the satisfaction a user derives from a given answer to their prompt, while the cost function can be implemented as an LLM fine-tuned on safety parameters that evaluates how acceptable or safe the provided answer is. The actions  $\alpha_t$  determine the level of reasoning effort devoted to each prompt, allowing the system to limit computational investment in potentially malicious or adversarial queries.

Before proceeding with our analysis and results, we first outline the standard assumptions for the model. These assumptions are well-established in the literature on contextual bandits with constraints.

Assumption 2.1 (Sub-Gaussian noise). For all  $t \in [T]$ , the reward and cost noise random variables  $\xi^r_t$  and  $\xi^c_t$  are conditionally Sub-Gaussian, i.e., for all  $\alpha \in \mathbb{R}$ , and the Sub-Gaussianity constants  $\gamma_r, \gamma_c > 0$ ;

$$\mathbb{E}[\xi_t^r \mid \mathcal{H}_{t-1}] = 0, \quad \mathbb{E}[\exp(\alpha \xi_t^r) \mid \mathcal{H}_{t-1}] \le \exp(\alpha^2 \gamma_r^2 / 2),$$

$$\mathbb{E}[\xi_t^c \mid \mathcal{H}_{t-1}] = 0, \quad \mathbb{E}[\exp(\alpha \xi_t^c) \mid \mathcal{H}_{t-1}] \le \exp(\alpha^2 \gamma_c^2 / 2),$$

where  $\mathcal{H}_t$  is the filtration that includes all the events  $(X_{1:t+1}R_{1:t}, C_{1:t}, \xi_{1:t}^r, \xi_{1:t}^c)$  until the end of round t.

Assumption 2.2 (bounded parameters). There is a known constant S > 0, such that  $\|\theta_*\| \le S$  and  $\|\mu_*\| \le S$ .

**Assumption 2.3** (bounded contexts). The  $\ell_2$ -norm of all contexts are bounded by L>0, i.e.,

$$\max_{t \in [T]} \|X_t\| \le L.$$

Assumption 2.4 (Positive toxicity threshold). The toxicity constraint in order to be meaningful must satisfy that  $\tau > 0$ .

113 We observe that our analysis does not require knowledge of an initial safe action, unlike in [20] or any assumption about the initial decision set like in [18]. However, we believe that in their analysis, this assumption can be relaxed as the vector  $\mu^*$  is bounded, and any  $X_t$  from their decision set satisfying  $\|X_t\| \le \frac{\tau}{S}$  can serve as an initial safe action. They mention this possibility in their related works. This follows from the inequality  $\langle X_t, \mu^* \rangle \le \|X_t\| \|\mu^*\| \le \frac{\tau}{S} \cdot S = \tau$ .

In each round t, the agent is constrained to select an action  $\alpha_t$  such that  $\alpha_t \left( \langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) \leq \tau$ . We demonstrate in Section 3 that when this constraint is satisfied, it ensures  $\mathbb{P}_{\mathcal{E}_s^c} \left( C_t \leq \tau \mid \mathcal{H}_t \right) \geq 1 - \delta$ . We define the set of feasible dosages as

$$\mathcal{A}_t^f = \left\{ \alpha \in [0, 1] : \alpha \left( \langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log \left(\frac{1}{\delta}\right)} \right) \le \tau \right\}.$$

Because  $\mu^*$  is not known, this set is originally unknown, which requires us to estimate it.

Maximizing the expected reward over T rounds is equivalent to minimizing the expected T-round constrained pseudo-regret, defined as

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} (\alpha_t^* - \alpha_t) \langle X_t, \theta^* \rangle, \tag{1}$$

<sup>&</sup>lt;sup>1</sup>The choice of the same upper-bound S for both  $\theta_*$  and  $\mu_*$  is just for simplicity and convenience.

where  $\alpha_t^*$  represents the optimal feasible action for round t, i.e.,  $\alpha_t^* \in \arg\max_{\alpha \in \mathcal{A}_t^f} \alpha \langle X_t, \theta^* \rangle$ . On its side,  $\alpha_t$  is the action selected by the learner in round t, which is chosen from the set of feasible actions available in that round, i.e.,  $\alpha_t \in \mathcal{A}_t^f$ , with high probability subject to  $\xi_{t-t-1}^c$ ,  $C_{1:t-1}$ .

## 3 Constraint formulation

The learner's goal is to maximize the cumulative reward over T rounds, i.e.,  $\sum_{t=1}^{T} \alpha_t \langle X_t, \theta^* \rangle$ , while ensuring that the realized toxicity remains below a known threshold with high probability. In clinical trials terminology, this problem is referred to as a Phase II trial, as the toxicity threshold  $\tau$  is considered known in advance. Our algorithm takes as input a confidence level  $\delta$  to control the realization of the noise. To model the requirement of controlling the cost realization with high probability, we impose a nonlinear constraint involving  $\delta$ . It should be noted that if we know the exact distribution of the noise (i.e. Normal), this problem can be solved exactly without introducing this constraint by using a similar algorithm.

136 We formulate the following constraint:

137 **Lemma 1.** When the selected dosage  $\alpha_t$  satisfies  $\alpha_t \left( \langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) \leq \tau$  then it holds 138 that  $\Pr(C_t \leq \tau \mid \mathcal{H}_t) \geq 1 - \delta$ .

The proof is provided in Appendix A.1 and it is a direct application of a concentration bound for Sub-Gaussian random variables (see [15], chapter 5, or [25] chapter 2).

We note that, given the distribution of the noise at round t,  $\xi_t^c$ , it holds that  $\Pr(C_t \leq \tau \mid \mathcal{H}_t) \geq 1 - \delta$ .

142 The constraint

127

$$\alpha_t \left( \langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) \le \tau.$$

is thus satisfied with high probability with respect to  $\mathcal{H}_{t-1}$ .

Since  $\tau > 0$ , we show that an initial safe interval for choosing  $\alpha_1$  is

$$\left[0, \min\left(1, \frac{\tau}{\gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)} + LS}\right)\right].$$

145 To begin with, if

$$\langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log \left(\frac{1}{\delta}\right)} \le 0,$$

then  $\mathcal{A}_0^f = [0, 1]$ . Otherwise,  $\alpha_0$  can range from 0 up to

$$\min\left(1, \frac{\tau}{\gamma_c\sqrt{2\log\left(\frac{1}{\delta}\right)} + LS}\right),$$

since  $\langle X_t, \mu^* \rangle \leq L \cdot S$  by the Cauchy–Schwarz inequality.

#### 148 4 Algorithm

We aim for our algorithm to leverage the fundamental principle of Optimism in the Face of Uncertainty (OFU). Additionally, we need to make robust choices to ensure that the constraint is satisfied with high probability. To achieve this, we intend to be optimistic in our estimates for the reward signal and pessimistic for the cost.

In each non-zero dose round, we construct two least squares estimators: one for  $\theta^*$  and one for  $\mu^*$ . For a given regularization parameter  $\lambda > 0$ , the regularized covariance matrix at round t is defined as:

$$\Sigma_t = \lambda I + \sum_{s=1}^{t-1} X_s X_s^{\top}. \tag{2}$$

Using Equation (2), we define the regularized least squares estimators  $\hat{\theta}_t$  and  $\hat{\mu}_t$ .

$$\hat{\theta}_t = \Sigma_t^{-1} \sum_{s: \alpha_s \neq 0} \alpha_s^{-1} R_s X_s \quad \hat{\mu}_t = \Sigma_t^{-1} \sum_{s: \alpha_s \neq 0} \alpha_s^{-1} C_s X_s$$
(3)

## Algorithm 1 High Probability Constrained UCB

**Require:** Constraint threshold  $\tau \geq 0$ , confidence parameter  $\delta$ , sub-Gaussianity constants  $\gamma_c, \gamma_r$ 

1: 
$$\alpha_0 \leftarrow \min \left\{ 1, \frac{\tau}{\gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)} + L \cdot S} \right\}$$

- Compute  $\hat{\mu}$  according to (3)
- Use  $\hat{\mu}$  to compute the estimated feasible set  $\hat{\mathcal{A}}_t^f$  using (7) 4:
- Compute  $\hat{\theta}_t$  using (5) 5:
- Compute action  $\alpha_t = \arg \max_{\alpha \in \hat{\mathcal{A}}_t^f} \alpha \langle X_t, \tilde{\theta}_t \rangle$ 6:
- Take action  $\alpha_t$  and if  $\alpha_t \neq 0$  store the reward and cost signals  $(R_t, C_t)$
- 8: end for

We note that we use only the contexts  $X_t$  and the corresponding realizations of the reward and cost 156 signals  $R_t$  and  $C_t$  for the rounds in which we assigned a non-zero action. In rounds where we selected 157

an action equal to zero, we did not receive feedback about the dosage effect; that is,  $R_t = C_t = 0$ , 158

given the way our model is constructed. 159

To design a UCB-like algorithm, we need to define high-probability confidence sets centered at our 160

estimators  $\hat{\theta}_t$  and  $\hat{\mu}_t$ . These confidence sets will enable us to derive upper bounds on the distances 161

between our estimators and the unknown vectors  $\theta^*$  and  $\mu^*$ . To construct the desired confidence 162

intervals, we will use the following fundamental theorem. 163

**Theorem 1** (Theorem 2 in 1). For a fixed  $\delta \in (0,1)$  and  $\forall t \in [T]$ ; 164

$$\beta_t^r(\delta, d) = \gamma_r \sqrt{d \log \left(\frac{1 + (t - 1)L^2/\lambda}{\delta}\right)} + \sqrt{\lambda}S,$$

165

$$\beta_t^c(\delta, d) = \gamma_c \sqrt{d \log \left(\frac{1 + (t - 1)L^2/\lambda}{\delta}\right)} + \sqrt{\lambda} S,$$

it holds with probability at least  $1 - \delta$  that

$$\|\widehat{\theta}_t - \theta_*\|_{\Sigma_t} \le \beta_t^r(\delta, d), \qquad \|\widehat{\mu}_t - \mu_*\|_{\Sigma_t} \le \beta_t^c(\delta, d).$$

We will make use of Theorem 1 to define the following confidence sets (ellipsoids):

$$\mathcal{C}_t^r = \{ \theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}_t\|_{\Sigma_t} \le \beta_t^r(\delta, d) \}, 
\mathcal{C}_t^c = \{ \mu \in \mathbb{R}^d : \|\mu - \widehat{\mu}_t\|_{\Sigma_t} \le \beta_t^c(\delta, d) \},$$
(4)

Theorem 1 suggests that  $\theta^* \in \mathcal{C}^r_t$  and  $\mu^* \in \mathcal{C}^c_t(\alpha_c)$ , each with probability at least  $1 - 2\delta$ . We will 168 use these confidence intervals to create our estimators for  $\theta^*$  and  $\mu^*$ . 169

We aim to be optimistic in our estimate of  $\theta^*$  by selecting 170

$$\tilde{\theta}_t = \underset{\theta \in \mathcal{C}_t^r}{\operatorname{max}} \langle X_t, \theta \rangle, \tag{5}$$

and pessimistic about  $\mu^*$  by choosing  $\tilde{\mu}_t$  that minimizes the volume of the estimated feasible set. 171

In our case, the feasible set is a continuous sub-interval of [0, 1], so its measure is simply its length.

Before describing the algorithm, we will first define the confidence ellipsoids and the Least Squares 173

Estimators for  $\theta^*$  and  $\mu^*$ . 174

The computation of the estimated feasible set  $\hat{A}_t^f$  is performed in two steps. First, we estimate the 175

unknown cost vector  $\mu^*$  using a least squares estimator. This procedure yields a confidence ellipsoid 176

that contains  $\mu^*$  with high probability. Among all  $\mu$  within this ellipsoid, we select the one that

minimizes the length of the interval of feasible values for  $\alpha_t$ .

#### 179 **4.1 Choice of** $\hat{\mu}$

As previously discussed, we aim to choose our estimate pessimistically to minimize the length of  $\hat{\mathcal{A}}_t^f$ .

By definition,  $\hat{\mathcal{A}}_t^f$  is given by

$$\hat{\mathcal{A}}_{t}^{f} = \left\{ \alpha \in [0, 1] : \alpha \left( \langle X_{t}, \tilde{\mu} \rangle + \gamma_{c} \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) \leq \tau \right\}.$$

Since  $\tau > 0$ , we first need to check the sign of  $\langle X_t, \tilde{\mu} \rangle + \gamma_c \sqrt{2 \log \left(\frac{1}{\delta}\right)}$ . If this expression is negative for all  $\mu \in \mathcal{C}_c^t$ , then we set  $\hat{\mathcal{A}}_t^f = [0, 1]$ . However, if there exists a  $\mu \in \mathcal{C}_c^t$  such that this expression is

for all  $\mu \in \mathcal{C}^t_{\mu}$ , then we set  $\hat{\mathcal{A}}^f_t = [0,1]$ . However, if there exists a  $\mu \in \mathcal{C}^t_{\mu}$  such that this expression is positive, we select the  $\mu$  that minimizes the maximum feasible  $\alpha_t$ . This approach can be summarized in the following convex program, where  $\hat{\mu}$  is the least squares estimate of  $\mu$ .

$$\max_{\mu} \qquad \langle X_t, \mu \rangle$$
subject to 
$$\|\mu - \hat{\mu}\|_{\Sigma_t} \leqslant \beta_t^{r2},$$

$$\langle X_t, \mu \rangle + \gamma_c \sqrt{2 \log \left(\frac{1}{\delta}\right)} \geqslant 0$$
(6)

Let  $\mathcal{K}_{\mu}(t) = \{\mu \in \mathbb{R}^d : \|\mu - \hat{\mu}\|_{\Sigma_t} \leqslant \beta_t^{r2}, \langle X_t, \mu \rangle + \gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)} \geqslant 0\}$  the be set of feasible solutions of the convex program 6. If  $\mathcal{K}_{\mu}(t) \neq \emptyset$ , then let  $\tilde{\mu} \in \arg\max_{\mu \in \mathcal{K}_{\mu}(t)} \{\langle X_t, \mu \rangle\}$ .

$$\hat{\mathcal{A}}_{t}^{f} = \begin{cases} [0,1] & , \text{ if } \mathcal{K}_{\mu}(t) = \emptyset \\ [0,\frac{\tau}{\langle X_{t},\tilde{\mu}\rangle + \gamma_{c}\sqrt{2\log\left(\frac{1}{\delta}\right)}}] & , \text{ if } \mathcal{K}_{\mu}(t) \neq \emptyset \end{cases}$$
 (7)

## 188 5 Regret Analysis

The objective of the agent is to minimize the expected T-round (constrained) (pseudo)-regret, i.e.,

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} r^*(X_t) - r(X_t),$$

where

$$r^*(X_t) = \max_{\alpha \in \mathcal{A}_t^f} \alpha \langle X_t, \theta^* \rangle,$$

$$r(X_t) = \max_{\alpha \in \widehat{\mathcal{A}}_t^f} \alpha \langle X_t, \theta^* \rangle.$$

We see that the choice of  $\alpha$  depends on the sign of  $\langle X_t, \theta^* \rangle$ . If this inner product is positive we choose the largest feasible value and otherwise the lowest feasible one.

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} \max_{\alpha \in \mathcal{A}_{t}^{f}} (\alpha \langle X_{t}, \theta^{*} \rangle) - \alpha_{t} \langle X_{t}, \theta^{*} \rangle$$

$$= \sum_{t=1}^{T} (\alpha_{t}^{*} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle.$$
(8)

We will use a decomposition of the regret similar to standard ones in the *Linear Bandits under constraints* literature, ([2],[21],[20]). We define as

$$\tilde{\alpha}_t = \underset{\alpha \in \mathcal{A}_t^f}{\arg\max} \{ \alpha \langle X_t, \hat{\theta}_t \rangle \}. \tag{9}$$

193 Using the above definition we decompose the regret as follows.

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} (\alpha_{t}^{*} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$= \sum_{t=1}^{T} (\alpha_{t}^{*} - \tilde{\alpha}_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$+ \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

#### 4 5.1 Analysis of the Regret

**Lemma 2.** The first term in the regret decomposition can be bounded as follows:

$$(\alpha_t^* - \tilde{\alpha}_t)\langle X_t, \theta^* \rangle \leq \tilde{\alpha}_t \langle X_t, \tilde{\theta} - \theta^* \rangle.$$

The proof is in Appendix A.2. We note that this is the standard bound in the Linear Bandits literature as first proved in the classical work of [1]. It remains to bound the second term.

**Lemma 3.** The second term in the regret decomposition can be bounded as follows:

$$(\tilde{\alpha}_t - \alpha_t)\langle X_t, \theta^* \rangle \le L \cdot S \cdot \frac{\langle X_t, \tilde{\mu} - \mu^* \rangle}{\tau}.$$

197 The proof is in Appendix A.3.

By using the lemmas 2, 3 combining with the regret decomposition (equation 10) we can bound the regret as following. The bound is conditioned on the following event that holds with probability at least  $1-2\delta'$ .

$$\mathcal{E} := \left\{ \|\tilde{\theta}_t - \hat{\theta}_t\|_{\Sigma_t} \le \beta_t(\delta', d) \wedge \|\tilde{\mu}_t - \hat{\mu}_t\|_{\Sigma_t} \le \beta_t(\delta', d) \right\}. \tag{11}$$

It is important to mention that  $\delta'$  is not necessary equal to  $\delta$ . The first one is the probability that the regret bounds holds and the second one the probability that the realization of the noise of the cost stays below the threshold.

Theorem 2. With probability at least one  $1 - \delta'$  the regret of the High Probability Constrained UCB algorithm can be bounded by  $\mathcal{O}\left(\frac{L \cdot S}{\tau} \cdot \beta_T(\delta', d) \sqrt{2Td\log\left(1 + \frac{TL^2}{\lambda}\right)}\right)$ .

206 The proof is in A.4.

207

## 6 Non-linear rewards and costs

Instead of modeling the reward and the cost signal as linear functions in term of the unknown parameters  $\theta$  and  $\mu$  we can use more general functions and express our results in terms of the *Eluder dimension* as defined in [23].

We denote the set of feasible actions in round t as  $\mathcal{A}_t(X_t) = \{\alpha \in [0,1] \mid \alpha\left(\mu_*(X_t) + \gamma_c\sqrt{2\log(\frac{1}{\delta})}\right) \leq \tau\}$ . The agent selects and action  $\alpha_t \in \mathcal{A}_t(X_t)$ . Now the reward and the cost signal take the following form.

$$R_t = \alpha_t \theta_*(X_t) + \alpha_t \xi_t^r, \quad C_t = \alpha_t \mu_*(X_t) + \alpha_t \xi_t^c,$$

where  $\theta_*(\cdot) \in \mathcal{G}_r$  and  $\mu_*(\cdot) \in \mathcal{G}_c$  are the mean reward and cost function respectively that belong to the known function classes  $\mathcal{G}_r, \mathcal{G}_c$ . We will assume that  $\theta_*(\cdot), \mu_*(\cdot)$  take values in [-1,1], relaxing the standard assumption made that the non-linear functions take values in [0,1]. We show that the important property is that the non-linear functions remain bounded. We also assume that the reward and the cost signals are bounded, i.e. lie in [-1,1]. For the noise signals  $\xi_t^r, \xi_t^c$  we assume that they are conditionally sub-Gaussian. Moreover, we use the definition of the width of a subset  $\tilde{\mathcal{F}} \subset \mathcal{F}$  at a context  $X \in \mathcal{A}$  by

$$w_{\tilde{\mathcal{F}}}(X) = \sup_{f, \overline{f} \in \tilde{\mathcal{F}}} \left( \overline{f}(X) - \underline{f}(X) \right). \tag{12}$$

In the new terminology, the T period regret is written as

$$\mathcal{R}(T, \pi) = \sum_{t=1}^{T} \left[ \alpha_t^* \theta_*(X_t) - \alpha_t \theta_*(X_t) \right].$$

- First we define the dataset  $\mathcal{D}_t = \{(X_s, R_s, C_s)\}_{s=1}^{t-1}$  for s such that  $A_s \neq 0$ , that is the dataset 219
- of observed information up to the beginning of round t, and  $\|f\|_{\mathcal{D}_t} = \sqrt{\sum_{x \in \mathcal{D}_t} f^2(x)}$  the norm 220
- induced by the dataset for any function  $f: A_t \to \mathbb{R}$ . 221
- In every round we define the confidence ellipsoids as follows

$$C_t^r(\delta) = \{ \theta \in \mathcal{G}_r : \left\| \theta - \hat{\theta} \right\|_{\mathcal{D}_t} \le \rho_r(t, \delta/2) \}$$
$$C_t^c(\delta) = \{ \theta \in \mathcal{G}_c : \left\| \theta - \hat{\theta} \right\|_{\mathcal{D}_t} \le \rho_c(t, \delta/2) \}$$

Using these confidence intervals we compute the actions of the algorithm as follows. To compute the feasible dosages, first we solve the following Non-Linear program.

$$\max_{\mu} \qquad \mu(X_t)$$
subject to 
$$\|\mu(X_t) - \hat{\mu}(X_t)\|_{\mathcal{D}_t} \leqslant \beta_t^2,$$

$$\mu(X_t) + \gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)} \geqslant 0$$
(13)

- Then if there is no feasible solution in the above optimization problem we select  $\hat{A}_t = [0, 1]$  otherwise,
- let say  $\mathcal{K}(\hat{\mu}_t)$  its solution, then  $\hat{\mathcal{A}}_t^f = [0, \frac{\tau}{\mathcal{K}(\hat{\mu}_t) + \gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)}}]$  as before.
- Our estimate for  $\theta$  is  $\tilde{\theta}(X_t) = \max_{\theta \in \mathcal{C}_T^r(\delta')} \theta(X_t)$ .

#### Algorithm 2 Non-Linear High Probability Constrained UCB

- 1: **Input:** Constraint threshold  $\tau \geq 0$ ; Confidence parameter  $\delta$ ; Sub-Gaussianity constant  $\gamma_c$  2:  $\alpha_0 \leftarrow \min\{1, \frac{\tau}{\gamma_c\sqrt{2\log(\frac{1}{\delta})} + \max_X \mu_*(X)}\}$
- 3: **for**  $t = 1, 2, \dots, T$  **do**
- Compute  $\hat{\mu}, \hat{\theta}$  by using Least Squares Estimators
- 5: Construct the  $\hat{\mathcal{A}}_t^f$ ,  $\hat{\theta}(X_t)$
- Compute action  $\alpha_t = \arg \max_{\alpha \in \hat{\mathcal{A}}^f} \alpha \tilde{\theta}(X_t)$ 6:
- Take action  $\alpha_t$  and if  $\alpha_t \neq 0$  store the reward and the cost signals  $(R_t, C_t)$
- 8: end for

We want to apply the same regret decomposition as before. First, we define analogously  $\hat{A}_t(X_t) =$ 

$$\{\alpha \in [0,1] \mid \alpha \left( \mu_*(X_t) + \gamma_c \sqrt{2 \log(\frac{1}{\delta})} \right) \leq \tau \}. \text{ We also define }$$
 
$$\alpha_t^* \in \operatorname*{arg\,max}_{\alpha \in \mathcal{A}_t} \theta_*(\alpha).$$
 
$$\alpha_t \in \operatorname*{arg\,max}_{\alpha \in \hat{\mathcal{A}}_t} \sup_{\theta \in \mathcal{G}_r} \theta(\alpha).$$
 
$$\tilde{\alpha}_t \in \operatorname*{arg\,max}_{\alpha \in \hat{\mathcal{A}}_t} \sup_{\theta \in \mathcal{G}_r} \theta(\alpha).$$

As in **Proposition 1** in [23] our goal is to bound the regret using  $w_{\tilde{\mathcal{F}}}(X_t)$ . First we apply the same decomposition to express the regret in terms of the cost due to the lack of knowledge of  $\theta_*$  and  $\mu_*$ .

$$\mathcal{R}(T, \pi) = \sum_{t=1}^{T} \left[ \alpha^* \theta_*(X_t) - \tilde{\alpha}_t \theta_*(X_t) \right] + \sum_{t=1}^{T} \left[ \tilde{\alpha}_t \theta_*(X_t) - \alpha_t \theta_*(X_t) \right].$$

The first sum can be bounded in a similar way to **proof A** in the appendix of [23]. The second sum measures the regret the algorithm suffers from the lack of knowledge of  $\mu$ . Then we can bound in terms of  $w_{\tilde{\mathcal{F}}_{\mu}}$  the same way as before.

235 **Lemma 4.**  $\alpha_t^* \theta_*(X_t) - \tilde{\alpha}_t \theta_*(X_t) \le w_{\mathcal{G}_r}(X_t) + 2\mathbf{1}\{(\theta_* \notin \mathcal{G}_r)\}.$ 

236 The proof is in B.1.

For the remaining part, we need to bound  $|\tilde{\alpha}_t - \alpha_t|$  in terms of  $\mu_*$ . We will follow a similar proof as

in the case of the inner product function.

Lemma 5.  $|\tilde{\alpha}_t - \alpha_t| \leq w_{\mathcal{G}_c}(X_t)/\tau$ .

The proof is similar to the linear case and it is provided in B.2.

Now that we have bound the regret in terms of the width of the set that the non-linear functions

belong we can translate our results to bound for the regret. First, as in the linear model case, we

define the reward and the cost set confidence radii as in [20].

$$\rho_r(t, \delta') = 512 \log \left( \frac{24|\mathcal{G}_r| \log(2t)}{\delta} \right),$$
$$\rho_c(t, \delta') = 512 \log \left( \frac{24|\mathcal{G}_c| \log(2t)}{\delta} \right).$$

We also use the following notation  $d_{eluder}^r = d_{eluder}(\mathcal{G}_r, 1/T)$  and  $d_{eluder}^c = d_{eluder}(\mathcal{G}_c, 1/T)$ . The algorithm is similar to that one in the linear case. For the regret bound, like [20], we use the Lemma 3 in [10], by setting P = 1.

Theorem 3. With probability at least  $1-\delta'$ , the regret of the Non-Linear High Probability Constrained UCB satisfies

$$\begin{split} \mathcal{R}(T) &= \mathcal{O}(\sqrt{Td_{eluder}^{r}\rho_{r}(T,\delta'/2)} + \\ &1/\tau\sqrt{Td_{eluder}^{c}\rho_{c}(T,\delta'/2)} + \\ &d_{eluder}^{r} + \frac{d_{eluder}^{c}}{\tau}). \end{split}$$

## 249 References

- [1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.
   Advances in neural information processing systems, 24, 2011. 5 and 7
- [2] S. Amani, M. Alizadeh, and C. Thrampoulidis. Linear stochastic bandits under safety constraints.
   Advances in Neural Information Processing Systems, 32, 2019. 1 and 6
- [3] S. Amani, C. Thrampoulidis, and L. Yang. Safe reinforcement learning with linear function approximation. In <u>International Conference on Machine Learning</u>, pages 243–253. PMLR, 2021. 1
- <sup>257</sup> [4] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. <u>Journal of Machine</u> Learning Research, 3(Nov):397–422, 2002. 1 and 2
- [5] M. Aziz, E. Kaufmann, and M.-K. Riviere. On multi-armed bandit designs for dose-finding trials. Journal of Machine Learning Research, 22(14):1–38, 2021.

- [6] A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Bandits with knapsacks. <u>Journal of the ACM</u> (JACM), 65(3):1–55, 2018. 1
- [7] H. Bastani and M. Bayati. Online decision making with high-dimensional covariates. Operations Research, 68(1):276–294, 2020. 1
- [8] D. Bouneffouf and R. Féraud. A tutorial on multi-armed bandit applications for large language
   models. In <u>Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining</u>, pages 6412–6413, 2024. 1
- [9] D. Bouneffouf and I. Rish. A survey on practical applications of multi-armed and contextual
   bandits. arXiv preprint arXiv:1904.10040, 2019. 1
- [10] J. Chan, A. Pacchiano, N. Tripuraneni, Y. S. Song, P. Bartlett, and M. I. Jordan. Parallelizing contextual bandits. arXiv preprint arXiv:2105.10590, 2021. 9
- 272 [11] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
  273 learning from human preferences. Advances in neural information processing systems, 30,
  274 2017. 1
- 275 [12] D. J. Foster and A. Rakhlin. Foundations of reinforcement learning and interactive decision making. arXiv preprint arXiv:2312.16730, 2023. 1
- 277 [13] S. Hutchinson, B. Turan, and M. Alizadeh. Directional optimism for safe linear bandits. In
  278 International Conference on Artificial Intelligence and Statistics, pages 658–666. PMLR, 2024.
  279 2
- 280 [14] M. Joseph, M. Kearns, J. H. Morgenstern, and A. Roth. Fairness in learning: Classic and contextual bandits. Advances in neural information processing systems, 29, 2016. 1
- <sup>282</sup> [15] T. Lattimore and C. Szepesvári. <u>Bandit algorithms</u>. Cambridge University Press, 2020. 1, 4, and 11
- [16] H.-S. Lee, C. Shen, J. Jordon, and M. Schaar. Contextual constrained learning for dose-finding
   clinical trials. In <u>International Conference on Artificial Intelligence and Statistics</u>, pages 2645–2654. PMLR, 2020. 1
- [17] K. Matsuura, J. Honda, I. El Hanafi, T. Sozu, and K. Sakamaki. Optimal adaptive allocation using deep reinforcement learning in a dose-response study. <a href="Statistics in Medicine">Statistics in Medicine</a>, 41(7):1157–1171, 2022.
- 290 [18] A. Moradipari, S. Amani, M. Alizadeh, and C. Thrampoulidis. Safe linear thompson sampling.
  291 arXiv preprint arXiv:1911.02156, 2019. 2 and 3
- 292 [19] J. W. Mueller, V. Syrgkanis, and M. Taddy. Low-rank bandit methods for high-dimensional dynamic pricing. Advances in Neural Information Processing Systems, 32, 2019. 1
- [20] A. Pacchiano, M. Ghavamzadeh, and P. Bartlett. Contextual bandits with stage-wise constraints. arXiv preprint arXiv:2401.08016, 2024. 1, 2, 3, 6, and 9
- 296 [21] A. Pacchiano, M. Ghavamzadeh, P. Bartlett, and H. Jiang. Stochastic bandits with linear constraints. In <u>International conference on artificial intelligence and statistics</u>, pages 2827–2835. PMLR, 2021. 1 and 6
- 299 [22] A. D. Procaccia, B. Schiffer, and S. Zhang. Honor among bandits: No-regret learning for online fair division. arXiv preprint arXiv:2407.01795, 2024. 1
- [23] D. Russo and B. Van Roy. Eluder dimension and the sample complexity of optimistic exploration.
   Advances in Neural Information Processing Systems, 26, 2013. 7, 9, and 14
- W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. <u>Biometrika</u>, 25(3-4):285–294, 1933. 1
- R. Vershynin. <u>High-dimensional probability: An introduction with applications in data science</u>, volume 47. Cambridge university press, 2018. 4

- [26] S. S. Villar, J. Bowden, and J. Wason. Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges. Statistical science: a review journal of the Institute of Mathematical Statistics, 30(2):199, 2015.
- 310 [27] H. Wang, Y. Ma, H. Ding, and Y. Wang. Context uncertainty in contextual bandits with applications to recommender systems. In <u>Proceedings of the AAAI Conference on Artificial</u> Intelligence, volume 36, pages 8539–8547, 2022. 1
- T. Xie, D. J. Foster, A. Krishnamurthy, C. Rosset, A. Awadallah, and A. Rakhlin. Exploratory preference optimization: Harnessing implicit q\*-approximation for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024. 1

## 316 A Appendix

#### 317 A.1 Constraint formulation

We assume that the cost noise is conditionally sub-Gaussian with a known constant  $\gamma_c$ . Under this assumption, the random variable  $\frac{C_t - \alpha_t \langle X_t, \mu \rangle}{\alpha_t}$  is  $\gamma_c$  sub-Gaussian. We will define a constraint event such that, when satisfied, the cost signal remains below the threshold with high probability. Now, we can analyze the cost using the following theorem.

Theorem 4. [Sub Gaussian concentration bounds - Theorem 5.3 [15]] If X is  $\gamma_c$ -subgaussian, then for any  $\epsilon > 0$ ,

$$\Pr(X \ge \epsilon) \le \exp(-\frac{\epsilon^2}{2\gamma_o^2})$$

Using the above property of the cost noise and the theorem we derive that

$$\Pr(C_t \ge \tau \mid \mathcal{H}_t) = \Pr\left(\frac{C_t - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t} \ge \frac{\tau - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t} \middle| \mathcal{H}_t\right)$$
(14)

$$\leq \exp\left(-\frac{\left(\frac{\tau - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t}\right)^2}{2\gamma_c^2}\right)$$
(15)

By requiring the right-hand side to be less than or equal to  $\delta$ , we derive:

$$\exp\left(-\frac{\left(\frac{\tau - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t}\right)^2}{2\gamma_c^2}\right) \le \delta$$

$$\frac{\left(\frac{\tau - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t}\right)^2}{2\gamma_c^2} \ge \log\left(\frac{1}{\delta}\right)$$

$$\frac{\tau - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t} \ge \gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)}$$

$$\tau \ge \alpha_t \left(\langle X_t, \mu^* \rangle + \gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)}\right)$$
(16)

## 326 A.2 Analyzing the cost for approximating $\theta$

The first term need to be bounded is  $\sum_{t=1}^{T} (\alpha_t^* - \tilde{\alpha}_t) \langle X_t, \theta^* \rangle$ . In order to bound this term we will follow a standard procedure in Linear Bandits. Initially, we will bound the term  $\alpha_t^* \langle X_t, \theta^* \rangle$ . With

probability at least  $1 - \delta$  it holds  $\theta^* \in \mathcal{C}_t^{\theta}$ ,  $\forall t \in [T]$ .

$$\alpha_t^* \langle X_t, \theta^* \rangle \leq \max_{\theta \in \mathcal{C}_t^{\theta}} \{ \alpha_t^* \langle X_t, \theta \rangle \}$$

$$\leq \max_{\alpha \in \mathcal{A}_t^f} \max_{\theta \in \mathcal{C}_t^{\theta}} \{ \alpha \langle X_t, \theta \rangle \}$$

$$= \max_{\alpha \in \mathcal{A}_t^f} \{ \alpha \langle X_t, \tilde{\theta} \rangle \}$$

$$= \tilde{\alpha}_t \langle X_t, \tilde{\theta} \rangle$$

Using the above it holds that

$$(\alpha_t^* - \tilde{\alpha}_t)\langle X_t, \theta^* \rangle < \tilde{\alpha}_t \langle X_t, \tilde{\theta} - \theta^* \rangle$$

## 30 A.3 Analyzing the cost for approximating $\mu^*$

We can bound the second term using the Cauchy-Schwarz inequality as follows:

$$(\tilde{\alpha}_t - \alpha_t)\langle X_t, \theta^* \rangle \le |\tilde{\alpha}_t - \alpha_t| \cdot LS.$$

It remains to bound  $|\tilde{\alpha}_t - \alpha_t|$ . First, we remind the definitions of  $\tilde{\alpha}_t$  and  $\alpha_t$ :

$$\tilde{\alpha}_t = \arg\max_{\alpha \in \mathcal{A}_t^f} \{ \alpha \langle X_t, \hat{\theta}_t \rangle \},$$

$$\alpha_t = \arg\max_{\alpha \in \hat{\mathcal{A}}_t^f} \{\alpha \langle X_t, \hat{\theta}_t \rangle\}.$$

We observe that both the choice of  $\tilde{\alpha}_t$  and the choice of  $\alpha_t$  depend on the sign of the inner product  $\langle X_t, \hat{\theta}_t \rangle$ . If  $\langle X_t, \hat{\theta}_t \rangle \geq 0$ , then  $\tilde{\alpha}_t$  equals the maximum element of the set  $\mathcal{A}_t^f$ . Similarly,  $\alpha_t$  equals the maximum of the set  $\hat{\mathcal{A}}_t^f$  when  $\langle X_t, \hat{\theta}_t \rangle \geq 0$ . On the other side, when  $\langle X_t, \hat{\theta}_t \rangle < 0$ , both  $\tilde{\alpha}_t$  and  $\alpha_t$  are zero.

We will write down again the sets  $\mathcal{A}_t^f$  and  $\hat{\mathcal{A}}_t^f$  to see the possible values for  $(\tilde{\alpha}_t, \alpha_t)$ :

$$\mathcal{A}_t^f = \left\{ \alpha \in [0, 1] : \left( \langle X_t, \mu^* \rangle + \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) \right) \alpha \le \tau \right\},$$
$$\hat{\mathcal{A}}_t^f = \left\{ \alpha \in [0, 1] : \left( \langle X_t, \tilde{\mu} \rangle + \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) \right) \alpha \le \tau \right\}.$$

Our estimator  $\tilde{\mu}$  for  $\mu^*$  is a pessimistic one. Among all possible choices for  $\tilde{\mu}$ , in order to be robust, we will choose  $\tilde{\mu}$  such that  $\hat{\mathcal{A}}_t^f$  has the smallest possible length.

Having that in mind, we have the four following scenarios for  $(\tilde{\alpha}_t, \alpha_t)$ :

339 2. 
$$\left(1, \min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu}\rangle}\right)\right)$$

340 3. 
$$\left(\min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \mu^* \rangle}\right), 1\right)$$

341 4. 
$$\left(\min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \mu^* \rangle}\right), \min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right)\right)$$

For all the above cases we can show that

$$\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f \le \frac{\langle X_t, \tilde{\mu} - \mu^* \rangle}{\tau}.$$

Let's prove this one by one.

344 A.3.1 1st case

In this case, it is true that  $\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f = 1 - 1 = 0$ 

346 A.3.2 2nd case

The non-trivial pair in this case is 
$$\left(1, \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right)$$
.

When the above relation for  $\max \mathcal{A}_t^f$  and  $\max \hat{\mathcal{A}}_t^f$  holds, then it is true that:

1. 
$$\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \mu^* \rangle \leq 0,$$

350 
$$2. \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle} \leq 1.$$

Using the above, we can bound  $1-\frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right)+\langle X_t,\tilde{\mu}\rangle}$  as follows:

$$1 - \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle} = \frac{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) - \tau + \langle X_t, \tilde{\mu} \rangle}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}$$
$$\leq \frac{-\langle X_t, \mu^* \rangle + \langle X_t, \tilde{\mu} \rangle}{\tau}$$
$$= \frac{\langle X_t, \tilde{\mu} - \mu^* \rangle}{\tau}.$$

352 A.3.3 3rd case

We choose  $\tilde{\mu}$  pessimistically, so in this case the only valid pair is (1,1) and  $|\tilde{\alpha}_t - \alpha_t| = 0$ .

354 A.3.4 4th case

355 This case can be divided into four different subcases:

356 1. 
$$(1,1)$$
 then  $|\tilde{\alpha}_t - \alpha_t| = 0$ .

2. 
$$\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right).$$
 We saw that the above case can be bounded by 
$$\frac{\langle X_t, \tilde{\mu} - \mu^* \rangle}{\sqrt{2\log\left(\frac{1}{\delta}\right)}}.$$

3. 
$$\left(\frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right)+\langle X_t,\mu^*\rangle},1\right); \text{ this case cannot exist due to the way we choose }\tilde{\mu}.$$

360 4. 
$$\left(\frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \mu^* \rangle}, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right).$$

In this case, it holds that 
$$0 < \tau < \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \langle X_t, \mu^* \rangle$$
 and  $0 < \tau < \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \langle X_t, \mu^* \rangle$  and  $0 < \tau < \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \langle X_t, \mu^* \rangle$ .

We are going to bound  $|\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f|$  as follows:

$$|\max \mathcal{A}_{t}^{f} - \max \hat{\mathcal{A}}_{t}^{f}| = \left| \frac{\tau}{\gamma_{c} \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \langle X_{t}, \mu^{*} \rangle} - \frac{\tau}{\gamma_{c} \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \langle X_{t}, \tilde{\mu} \rangle} \right|$$

$$= \left| \frac{\tau \left\langle X_{t}, \tilde{\mu} - \mu^{*} \rangle \right\rangle}{\left( \gamma_{c} \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \langle X_{t}, \tilde{\mu} \rangle \right)} \right|$$

$$\leq \frac{\tau \left\langle X_{t}, \tilde{\mu} - \mu^{*} \rangle \right|}{\tau^{2}}$$

$$= \frac{\langle X_{t}, \tilde{\mu} - \mu^{*} \rangle}{\tau}.$$

## 364 A.4 Proof of theorem 2

Proof.

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} (\alpha_{t}^{*} - \tilde{\alpha}_{t}) \langle X_{t}, \theta^{*} \rangle + \sum_{t=1}^{T} (\tilde{\alpha}_{t} - \alpha_{t}) \langle X_{t}, \theta^{*} \rangle$$

$$\leq \sum_{t=1}^{T} |\tilde{\alpha}_{t}| \|x_{t}\|_{\Sigma_{t}^{-1}} \|\tilde{\theta} - \theta^{*}\|_{\Sigma_{t}} + \frac{LS}{\tau} \sum_{t=1}^{T} |\tilde{\alpha}_{t}| \|x_{t}\|_{\Sigma_{t}^{-1}} \|\tilde{\mu} - \mu^{*}\|_{\Sigma_{t}}$$

$$\leq \sum_{t=1}^{T} \beta_{t}(\delta', d) \|x_{t}\|_{\Sigma_{t}^{-1}} + \frac{LS}{\tau} \sum_{t=1}^{T} \beta_{t}(\delta', d) \|x_{t}\|_{\Sigma_{t}^{-1}}$$

$$\leq \beta_{T}(\delta', d) (1 + \frac{LS}{\tau}) \left( \sum_{t=1}^{T} \|x_{t}\|_{\Sigma_{t}^{-1}} \right)$$

$$\leq \beta_{T}(\delta', d) (1 + \frac{LS}{\tau}) \sqrt{2Td \log \left( 1 + \frac{TL^{2}}{\lambda} \right)}$$

366 B Non-Linear case

365

367 **B.1** Bound of  $\alpha_t^* \theta_*(X_t) - \tilde{\alpha}_t \theta_*(X_t)$ 

Proof. The proof of the lemma 4 is similar to [23] as the decision set is the same for both  $\alpha_t^*$  and  $\tilde{\alpha}_t$ .

We define  $U_t(\alpha) = \sup\{\alpha\theta_*(X_t): \theta_* \in \mathcal{G}_r\}$  and  $L_t(\alpha) = \inf\{\alpha\theta_*(X_t): \theta_* \in \mathcal{G}_r\}$ . When  $\theta_*$  lies in  $\mathcal{G}_r$  it holds that  $L_t(\alpha) \leq \theta_*(\alpha) \leq U_t(\alpha)$ . Using this we derive

$$\alpha_{t}^{*}\theta_{*}(X_{t}) - \tilde{\alpha}_{t}\theta_{*}(X_{t}) \leq \left(U_{t}(\alpha_{t}^{*}) - L_{t}(\tilde{\alpha}_{t})\right) \mathbf{1}\{(\}\theta_{*} \in \mathcal{G}_{r}) + 2\mathbf{1}\{(\}\theta_{*} \notin \mathcal{G}_{r})$$

$$\leq \left(U_{t}(\alpha_{t}^{*}) - L_{t}(\tilde{\alpha}_{t})\right) + 2\mathbf{1}\{(\}\theta_{*} \notin \mathcal{G}_{r})$$

$$\leq w_{\mathcal{G}_{r}}(X_{t}) + 2\mathbf{1}\{(\}\theta_{*} \notin \mathcal{G}_{r}) + \left[U_{t}(\alpha_{t}^{*}) - U_{t}(\tilde{\alpha}_{t})\right]$$

$$\leq 0 \text{ due to selection rule}$$

$$(17)$$

371

Where in the last line we also used the fact that  $\tilde{\alpha} \in [0, 1]$ .

B.2 Analyzing the cost for approximating  $\mu_*(X_t)$ 

We need to bound  $|\tilde{\alpha}_t - \alpha_t|$ . First, we remind the definitions of  $\tilde{\alpha}_t$  and  $\alpha_t$ :

$$\tilde{\alpha}_t = \arg \max_{\alpha \in \mathcal{A}_t^f} \{\alpha \hat{\theta}_*(X_t)\},$$

$$\alpha_t = \arg \max_{\alpha \in \hat{\mathcal{A}}_t^f} \{\alpha \hat{\theta}_*(X_t)\}.$$

- We observe that both the choice of  $\tilde{\alpha}_t$  and the choice of  $\alpha_t$  depend on the sign of the value of  $\hat{\theta}_*(X_t)$ .
- If  $\hat{\theta}_*(X_t) \geq 0$ , then  $\tilde{\alpha}_t$  equals the maximum element of the set  $\mathcal{A}_t^f$ . Similarly,  $\alpha_t$  equals the maximum
- of the set  $\hat{\mathcal{A}}_t^f$  when  $\hat{\theta}_*(X_t) \geq 0$ . On the other side, when  $\hat{\theta}_*(X_t) < 0$ , both  $\tilde{\alpha}_t$  and  $\alpha_t$  are zero.

We will write down again the sets  $A_t^f$  and  $\hat{A}_t^f$  to see the possible values for  $(\tilde{\alpha}_t, \alpha_t)$ :

$$\mathcal{A}_t^f = \left\{ \alpha \in [0, 1] : \left( \mu_*(X_t) + \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) \right) \alpha \le \tau \right\},\,$$

$$\hat{\mathcal{A}}_t^f = \left\{ \alpha \in [0, 1] : \left( \tilde{\mu}(X_t) + \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) \right) \alpha \le \tau \right\}.$$

- Our estimator  $\tilde{\mu}$  for  $\mu^*$  is a pessimistic one. Among all possible choices for  $\tilde{\mu}$ , in order to be robust,
- we will choose  $\tilde{\mu}$  such that  $\hat{\mathcal{A}}_t^f$  has the smallest possible length.
- Having that in mind, we have the four following scenarios for  $(\tilde{\alpha}_t, \alpha_t)$ :
- 380 1. (1,1)

381 2. 
$$\left(1, \min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}\right)\right)$$

382 3. 
$$\left(\min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \mu_*(X_t)}\right), 1\right)$$

$$4. \left( \min \left( 1, \frac{\tau}{\gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \mu_*(X_t)} \right), \min \left( 1, \frac{\tau}{\gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \tilde{\mu}(X_t)} \right) \right)$$

For all the above cases we can show that

$$\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f \le \frac{\tilde{\mu}(X_t) - \mu_*(X_t)}{\tau}.$$

- Let's prove this one by one.
- 386 B.2.1 1st case
- In this case, it is true that  $\max A_t^f \max \hat{A}_t^f = 1 1 = 0$ .
- 388 B.2.2 2nd case
- The non-trivial pair in this case is  $\left(1, \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}\right)$ .
- When the above relation for  $\max \mathcal{A}_t^f$  and  $\max \hat{\mathcal{A}}_t^f$  holds, then it is true that:

391 
$$1. \ \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \mu_*(X_t) \leq 0,$$

392 2. 
$$\frac{ au}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)} \leq 1.$$

Using the above, we can bound  $1-\frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right)+\tilde{\mu}(X_t)}$  as follows:

$$1 - \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)} = \frac{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) - \tau + \tilde{\mu}(X_t)}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}$$
$$\leq \frac{-\mu_*(X_t) + \tilde{\mu}(X_t)}{\tau}$$
$$= \frac{\tilde{\mu}(X_t) - \mu_*(X_t)}{\tau}.$$

## 394 B.2.3 3rd case

We choose  $\tilde{\mu}$  pessimistically, so in this case the only valid pair is (1,1) and  $|\tilde{\alpha}_t - \alpha_t| = 0$ .

#### 396 B.2.4 4th case

398

This case can be divided into four different subcases:

1. 
$$(1,1)$$
 then  $|\tilde{\alpha}_t - \alpha_t| = 0$ .

2. 
$$\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}\right).$$
 We saw that the above case can be bounded by 
$$\frac{\tilde{\mu}(X_t) - \mu_*(X_t)}{2}.$$

3. 
$$\left(\frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \mu_*(X_t)}, 1\right)$$
; this case cannot exist due to the way we choose  $\tilde{\mu}$ .

402 4. 
$$\left(\frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \mu_*(X_t)}, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}\right)$$
.

In this case, it holds that 
$$0 < \tau < \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \mu_*(X_t)$$
 and  $0 < \tau < \gamma_c \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \mu_*(X_t)$ 

405 We are going to bound  $|\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f|$  as follows:

$$|\max \mathcal{A}_{t}^{f} - \max \hat{\mathcal{A}}_{t}^{f}| = \left| \frac{\tau}{\gamma_{c} \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \mu_{*}(X_{t})} - \frac{\tau}{\gamma_{c} \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \tilde{\mu}(X_{t})} \right|$$

$$= \left| \frac{\tau \left( \langle X_{t}, \tilde{\mu} \rangle - \mu_{*}(X_{t}) \right)}{\left( \gamma_{c} \left( \sqrt{2 \log \left( \frac{1}{\delta} \right)} \right) + \tilde{\mu}(X_{t}) \right)} \right|$$

$$\leq \frac{\tau \left| \tilde{\mu}(X_{t}) - \mu_{*}(X_{t}) \right|}{\tau^{2}}$$

$$= \frac{\tilde{\mu}(X_{t}) - \mu_{*}(X_{t})}{\tau}.$$

Now by following exactly the same procedure as in lemma 4 we derive that  $|\tilde{\alpha}_t - \alpha_t| \leq w_{\mathcal{G}_c}(A)/\tau$ .

## 407 C Experimental Results

As mentioned earlier, potential applications of this problem include advertising, optimal dosage determination, and reinforcement learning from human feedback (RLHF). However, obtaining

16

suitable data to evaluate the algorithm is challenging for the first two applications, while the last is left for future exploration. Consequently, in this initial version of our work, we evaluate the algorithm using synthetic data.

To produce  $\theta^*$  and  $\mu^*$ , these entities were drawn from a d-dimensional normal distribution, followed by normalization. Similarly, the contexts were derived from a multivariate normal distribution and subsequently normalized. The experiments were conducted employing vectors of 5 and 10 dimensions, utilizing various values of  $\tau$  across  $5 \times 10^4$  iterations. In practical terms, it is pertinent to explore the interrelations between  $\tau$  and  $\max \|X\|$ ,  $\|\theta^*\|$ , and  $\|\mu^*\|$ , as these are intrinsically linked to the problem's formulation, feature selection, and the choice of  $\tau$ .

Our observations indicate that for larger values of  $\tau$ , such as those exceeding 0.5, there is an increase in regret. This phenomenon is anticipated since a lower threshold constrains the algorithm more significantly, thereby facilitating a more rapid exploration of the available dosage space. Furthermore, it was observed that for larger values of  $\tau$ , including 0.6 and 0.8, the results exhibited a sub-linear progression after  $10^4$  iterations. Notably, after  $4\times10^5$  iterations, we detected a stabilization in growth, suggesting the convergence of our estimators to the true values of  $\theta^*$  and  $\mu^*$ , accompanied by reduced confidence intervals.

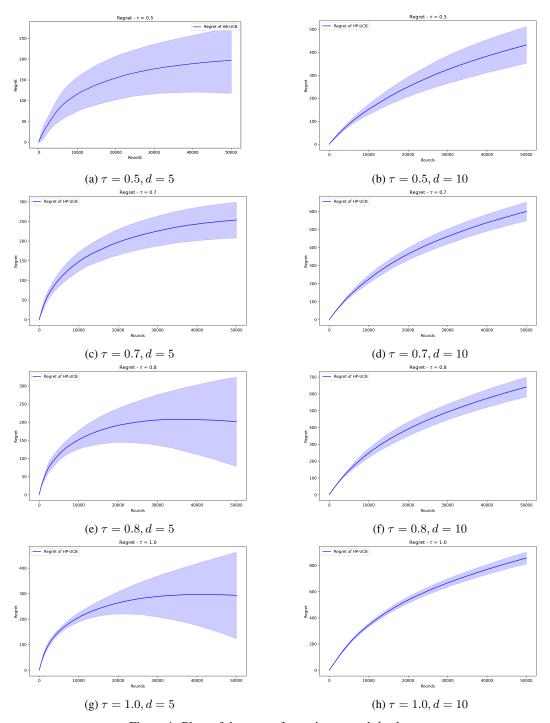


Figure 1: Plots of the regret for various  $\tau$  and d values.

## NeurIPS Paper Checklist

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We provide an no-regret algorithm that satisfy the proposed constraint for the realization of the cost signal instead of its expected value.

#### Guidelines

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
  are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our work lacks from strong experimental evaluation and applications in applied domains as we described in the experimental section. We believe that the contribution of this paper is more conceptual, to propose an easy way to apply techniques from constraint satisfaction in expectation to high-probability one.

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
  only tested on a few datasets or with a few runs. In general, empirical results often
  depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach.
   For example, a facial recognition algorithm may perform poorly when image resolution
   is low or images are taken in low lighting. Or a speech-to-text system might not be
   used reliably to provide closed captions for online lectures because it fails to handle
   technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best

judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

#### 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We describe the assumptions used in the problem formulation section, and all the proofs of our theorems are in the main text or in the appendix.

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if
  they appear in the supplemental material, the authors are encouraged to provide a short
  proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

#### 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the experimental section we provide all details about our experiments.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
  - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.

- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

## 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

521

522 523

524

525

526

528

529

530

531

532

533

534

536

537

538

539

540

541 542

543

546

547

548

549

550

551

552

553

554

555

556

557

559

560

561

562

563

564

565

566

567

Justification: We are happy to provide the code for our experiments. We aim to add more experiments, comparing with other algorithms and apply this algorithm in other fields as mentioned.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
  possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
  including code, unless this is central to the contribution (e.g., for a new open-source
  benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
  to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
  proposed method and baselines. If only a subset of experiments are reproducible, they
  should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

## 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [No]

Justification: Our experiments do not require setting the details mentioned.

#### Guidelines:

The answer NA means that the paper does not include experiments.

- The experimental setting should be presented in the core of the paper to a level of detail
  that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
  material.

#### 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

568

569

570

571

572

573

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612 613 Justification: In our experiments we have plotted the expected value of the regret and its standard deviation.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
  of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
  they were calculated and reference the corresponding figures or tables in the text.

#### 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The experiments can be run on a simple laptop without the need of a GPU.

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

### 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have studied the ethics guidelines and followed carefully.

#### Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
  deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

#### 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss further impact on potential applications in the introduction and the problem formulation section.

#### Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
  impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

#### 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We use synthetic data only.

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
  not require this, but we encourage authors to take this into account and make a best
  faith effort.

#### 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

661

662

663

664

665

666

667

668

670

671

672

673

674

675

676

678

679

680

681

682

683

684

685

686

687

688

689 690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

706

Justification: We used the appropriate citations when needed.

#### Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
  package should be provided. For popular datasets, paperswithcode.com/datasets
  has curated licenses for some datasets. Their licensing guide can help determine the
  license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We mention our contribution in the introduction and the problem formulation.

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

#### 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

707

708

709

710

711

712

713

714

715

716

718

719

720

721

722

723 724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747 748

749

750

751

752

Justification: We do not have any crowdsourcing experiment.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

#### 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We used LLMs for grammar and vocabulary suggestions.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.