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Abstract

Multi-Armed Bandit algorithms have emerged as a fundamental framework for nu-1

merous recent applications, including reinforcement learning from human feedback2

(RLHF), optimal dosage determination, experimental design, advertising, recom-3

mendation systems, and fairness. Safety constraints are commonly incorporated to4

address real-world requirements such as preventing private information leakage in5

large language models, avoiding overdosing scenarios, and protecting vulnerable6

societal or client groups under optimistically deployed policies. One approach to7

modeling constrained optimization problems involves introducing two parametric8

unknown signals: a reward signal and a cost signal. The objective remains maxi-9

mizing the expected reward while the stage-wise constrained formulation requires10

a specified statistic of the cost signal to remain within a predefined safety interval.11

Previous research has developed algorithms ensuring that the expected value of the12

cost signal remains below a desired threshold, with constraints satisfied with high13

probability. In this work, we extend these concepts to control the actual realization14

of the cost signal, ensuring it lies within the safety region with high probability.15

This advancement opens new directions for applications where hard safety con-16

straints must be satisfied not merely in expectation but with near-certainty. We17

present an algorithm with accompanying regret bounds, initially for linear reward18

and cost signals, then generalize to broader function classes by parameterizing our19

results using the eluder dimension.20

1 Introduction21

Bandit algorithms [24, 4, 15] have been employed across a wide range of domains, including22

reinforcement learning with human feedback (RLHF) [11, 28] Clinical Trials [17, 16, 5], [26, 7],23

Recommendation Systems [27], Dynamic Pricing [19], LLMs [8], and Fair Allocation [22] as well24

as others; see [9] for additional references. In these domains, a learner engages in a sequence of25

interactions with an unknown environment, striving to both learn about the environment and maximize26

cumulative reward through its actions. The field has witnessed an increased focus on contextual27

bandits [12], wherein the learner first observes the present context, that is usually a multidimensional28

vector, prior to selecting from a potentially unlimited range of actions.29

Within this broader framework, constrained bandit algorithms become essential when applications30

involve resource limitations or safety considerations. In bandit literature, these constraints are based31

either on past reward data, such as in knapsack bandits [6] and fairness constraints [14], or they involve32

simultaneous signals of reward and cost, focusing on cost constraints, as discussed in [2, 21, 20]. This33

approach is beneficial for uses like advertising and drug administration, aligning with the reward/cost34

model mentioned in [21]. In drug dosage scenarios, there is an efficacy signal (reward) and a toxicity35

signal (cost). This situation is common in Phase II clinical trials, where clinicians adjust dosages to36

maximize efficacy while keeping toxicity under a certain threshold τ . Another strategy, introduced by37

[3], uses a binary reward/cost model aimed at maintaining the average cost signals beneath a set limit.38
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While cumulative or averaged cost control is useful in some applications, a plethora of applications,39

particularly in medicine, demand stage-wise constraints—that is, controlling the cost at each time40

step separately. To address this demand, researchers have studied the well-established "safe linear41

bandit" problem [13, 20, 18], where at each round t, every chosen action generates both a reward42

signal rt ∈ R and a cost signal ct ∈ R. The objective is to maximize the expected cumulative reward43

while ensuring that the expected value of the cost signal remains below a known safety threshold τ at44

every round. This constraint satisfaction is guaranteed with high probability across all sources of45

randomness in the system. However, in applications such as autonomous driving or drug treatments,46

satisfying a constraint in expectation does not exclude the possibility of catastrophic outcomes at47

specific rounds. This raises the necessity of developing algorithms that control the actual value of the48

cost signal within a safe range at each time step, rather than merely controlling its expected value.49

With this goal in mind, we attempt to answer the following question.50

Is it possible to design constrained low-regret algorithms51

such that the constraints are never violated with high probability?52

In this work, we give a positive answer to the previous question by controlling the actual realization53

of the cost signal, requiring it to remain below the same threshold with probability P(ct ≤ τ) ≥ 1−δ,54

where δ > 0 represents a confidence level provided as input to the algorithm. As in previous works,55

this constraint is satisfied with high probability with respect to all randomness involved in the process.56

To accomplish this goal, we propose a UCB-like algorithm named High Probability Constrained57

UCB to meet this demand. Our approach is built upon the Optimism in the Face of Uncertainty58

(OFU) principle [4] and eliminates the need for prior knowledge of an initial safe action, offering a59

notable advantage over current techniques. It functions effectively in both adversarial and stochastic60

scenarios, depending solely on the standard assumption of sub-Gaussian noise distributions. Utilizing61

this assumption, we design a constraint event that, with high probability, ensures the cost signal does62

not exceed the desired threshold in any round.63

We establish that our algorithm attains a T-round regret bound of the order Õ(d
√
T ). Furthermore,64

we showcase the practical success of our method through computational experiments. We also65

broaden our findings to scenarios with non-linear reward and cost functions by framing our analysis66

using the eluder dimension, a complexity metric for function classes.67

2 Problem Formulation68

Notation. We adopt the following notation throughout the paper. We denote by ⟨x, y⟩ = x⊤y69

and ⟨x, y⟩A = x⊤Ay, for a positive definite matrix A ∈ Rd×d, the inner-product and weighted70

inner-product of vectors x, y ∈ Rd. Similarly, we denote by ∥x∥ =
√
x⊤x and ∥x∥A =

√
x⊤Ax,71

the ℓ2 and weighted ℓ2 norms of vector x ∈ Rd. We denote the indicator function as 1{·}. We use72

upper-case letters for random variables (e.g., X), and their corresponding lower-case letters for a73

particular instantiation of that random variable (e.g., X = x). The set {1, . . . , T} is denoted by [T ].74

Finally, we use Õ for the big-O notation up to logarithmic factors.75

Inspired by bandit algorithms designed for RLHF and the adaptive dosage allocation problem,76

we adopt the following formulation for the action set and the reward and cost signals. At each77

iteration t ∈ [T ], the learner observes a d-dimensional context vector Xt ∈ Rd, which may represent78

medical test results or a language model (LM) embedding of a prompt-answer pair. We impose79

no distributional assumptions on the context Xt; it may be stochastically generated or adversarial.80

The learner then selects a scalar action αt ∈ [0, 1], and the environment generates the reward81

and cost signals as follows: the reward signal is Rt := αt · (r(Xt) + ξrt ) and the cost signal is82

Ct := αt · (c(Xt)+ ξct ), where ξrt , ξ
c
t denote subgaussian noise terms, and r(Xt), c(Xt) measure the83

importance or significance of the context to the reward and cost mechanisms, respectively. Initially,84

we model r(Xt), c(Xt) as linear functions parameterized by unknown vectors θ⋆ and µ⋆, respectively.85

We subsequently generalize our results by requiring only that r(Xt), c(Xt) be bounded.86

We now provide motivation for our choice of protocol and the reward and cost function formulation.87

Drawing inspiration from optimal dosage applications, the context Xt describes the medical condition88

of a patient, the reward function r(Xt) measures the therapeutic effect of a drug on the patient’s89

current state, and c(Xt) measures the drug’s side effects. In this setting, the action αt denotes the90

dosage assigned to the patient. If r(Xt) >> 0, then the drug is beneficial to the patient, and we should91

assign the maximum possible dosage without overdosing the patient. In advertising applications, each92
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Safe Bandit protocol

Input: Horizon T

For rounds t = 1, 2, . . . , n:

1.   Xt∈Rd

←−−−−� % context

2.  
αt∈[0,1]−−−−−→� % action selection

3.  
Rt,Ct∈R←−−−−−  % reward, cost signals

advertisement has both positive and negative impacts on an audience, and αt denotes the duration for93

which we display the advertisement. Finally, in RLHF, the contexts can represent the embedding of94

prompt-candidate answer pairs. The reward function can measure the satisfaction a user derives from95

a given answer to their prompt, while the cost function can be implemented as an LLM fine-tuned96

on safety parameters that evaluates how acceptable or safe the provided answer is. The actions97

αt determine the level of reasoning effort devoted to each prompt, allowing the system to limit98

computational investment in potentially malicious or adversarial queries.99

Before proceeding with our analysis and results, we first outline the standard assumptions for the100

model. These assumptions are well-established in the literature on contextual bandits with constraints.101

102

Assumption 2.1 (Sub-Gaussian noise). For all t ∈ [T ], the reward and cost noise random variables103

ξrt and ξct are conditionally Sub-Gaussian, i.e., for all α ∈ R, and the Sub-Gaussianity constants104

γr, γc > 0;105

E[ξrt | Ht−1] = 0, E[exp(αξrt ) | Ht−1] ≤ exp(α2γ2
r/2),

E[ξct | Ht−1] = 0, E[exp(αξct ) | Ht−1] ≤ exp(α2γ2
c/2),

where Ht is the filtration that includes all the events (X1:t+1R1:t, C1:t, ξ
r
1:t, ξ

c
1:t) until the end of106

round t.107

Assumption 2.2 (bounded parameters). There is a known constant S > 0, such that ∥θ∗∥ ≤ S and108

∥µ∗∥ ≤ S.1109

Assumption 2.3 (bounded contexts). The ℓ2-norm of all contexts are bounded by L > 0, i.e.,110

max
t∈[T ]

∥Xt∥ ≤ L.

Assumption 2.4 (Positive toxicity threshold). The toxicity constraint in order to be meaningful must111

satisfy that τ > 0.112

We observe that our analysis does not require knowledge of an initial safe action, unlike in [20] or any113

assumption about the initial decision set like in [18]. However, we believe that in their analysis, this114

assumption can be relaxed as the vector µ∗ is bounded, and any Xt from their decision set satisfying115

∥Xt∥ ≤ τ
S can serve as an initial safe action. They mention this possibility in their related works.116

This follows from the inequality ⟨Xt, µ
∗⟩ ≤ ∥Xt∥ ∥µ∗∥ ≤ τ

S · S = τ .117

In each round t, the agent is constrained to select an action αt such that118

αt

(
⟨Xt, µ

∗⟩+ γc

√
2 log

(
1
δ

))
≤ τ . We demonstrate in Section 3 that when this constraint119

is satisfied, it ensures Pξct
(Ct ≤ τ | Ht) ≥ 1− δ. We define the set of feasible dosages as120

Af
t =

{
α ∈ [0, 1] : α

(
⟨Xt, µ

∗⟩+ γc

√
2 log

(
1
δ

))
≤ τ

}
.

Because µ∗ is not known, this set is originally unknown, which requires us to estimate it.121

Maximizing the expected reward over T rounds is equivalent to minimizing the expected T -round122

constrained pseudo-regret, defined as123

RC(T ) =

T∑
t=1

(α∗
t − αt)⟨Xt, θ

∗⟩, (1)

1The choice of the same upper-bound S for both θ∗ and µ∗ is just for simplicity and convenience.
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where α∗
t represents the optimal feasible action for round t, i.e., α∗

t ∈ argmaxα∈Af
t
α⟨Xt, θ

∗⟩. On124

its side, αt is the action selected by the learner in round t, which is chosen from the set of feasible125

actions available in that round, i.e., αt ∈ Af
t , with high probability subject to ξc1:t−1, C1:t−1.126

3 Constraint formulation127

The learner’s goal is to maximize the cumulative reward over T rounds, i.e.,
∑T

t=1 αt⟨Xt, θ
∗⟩,128

while ensuring that the realized toxicity remains below a known threshold with high probability. In129

clinical trials terminology, this problem is referred to as a Phase II trial, as the toxicity threshold130

τ is considered known in advance. Our algorithm takes as input a confidence level δ to control131

the realization of the noise. To model the requirement of controlling the cost realization with high132

probability, we impose a nonlinear constraint involving δ. It should be noted that if we know the133

exact distribution of the noise (i.e. Normal), this problem can be solved exactly without introducing134

this constraint by using a similar algorithm.135

We formulate the following constraint:136

Lemma 1. When the selected dosage αt satisfies αt

(
⟨Xt, µ

∗⟩+ γc

√
2 log

(
1
δ

))
≤ τ then it holds137

that Pr(Ct ≤ τ | Ht) ≥ 1− δ.138

The proof is provided in Appendix A.1 and it is a direct application of a concentration bound for139

Sub-Gaussian random variables (see [15], chapter 5, or [25] chapter 2).140

We note that, given the distribution of the noise at round t, ξct , it holds that Pr(Ct ≤ τ | Ht) ≥ 1− δ.141

The constraint142

αt

(
⟨Xt, µ

∗⟩+ γc

√
2 log

(
1
δ

))
≤ τ.

is thus satisfied with high probability with respect toHt−1.143

Since τ > 0, we show that an initial safe interval for choosing α1 is144 0,min

1,
τ

γc

√
2 log

(
1
δ

)
+ LS

 .

To begin with, if145

⟨Xt, µ
∗⟩+ γc

√
2 log

(
1
δ

)
≤ 0,

then Af
0 = [0, 1]. Otherwise, α0 can range from 0 up to146

min

1,
τ

γc

√
2 log

(
1
δ

)
+ LS

 ,

since ⟨Xt, µ
∗⟩ ≤ L · S by the Cauchy–Schwarz inequality.147

4 Algorithm148

We aim for our algorithm to leverage the fundamental principle of Optimism in the Face of Uncertainty149

(OFU). Additionally, we need to make robust choices to ensure that the constraint is satisfied with150

high probability. To achieve this, we intend to be optimistic in our estimates for the reward signal and151

pessimistic for the cost.152

In each non-zero dose round, we construct two least squares estimators: one for θ∗ and one for µ∗.153

For a given regularization parameter λ > 0, the regularized covariance matrix at round t is defined as:154

Σt = λI +

t−1∑
s=1

XsX
⊤
s . (2)

Using Equation (2), we define the regularized least squares estimators θ̂t and µ̂t.155

θ̂t = Σ−1
t

∑
s:αs ̸=0

αs
−1RsXs µ̂t = Σ−1

t

∑
s:αs ̸=0

αs
−1CsXs (3)
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Algorithm 1 High Probability Constrained UCB

Require: Constraint threshold τ ≥ 0, confidence parameter δ, sub-Gaussianity constants γc, γr

1: α0 ← min

{
1, τ

γc

√
2 log( 1

δ )+L·S

}
2: for t = 1, 2, . . . , T do
3: Compute µ̂ according to (3)
4: Use µ̂ to compute the estimated feasible set Âf

t using (7)
5: Compute θ̂t using (5)
6: Compute action αt = argmaxα∈Âf

t
α⟨Xt, θ̃t⟩

7: Take action αt and if αt ̸= 0 store the reward and cost signals (Rt, Ct)
8: end for

We note that we use only the contexts Xt and the corresponding realizations of the reward and cost156

signals Rt and Ct for the rounds in which we assigned a non-zero action. In rounds where we selected157

an action equal to zero, we did not receive feedback about the dosage effect; that is, Rt = Ct = 0,158

given the way our model is constructed.159

To design a UCB-like algorithm, we need to define high-probability confidence sets centered at our160

estimators θ̂t and µ̂t. These confidence sets will enable us to derive upper bounds on the distances161

between our estimators and the unknown vectors θ∗ and µ∗. To construct the desired confidence162

intervals, we will use the following fundamental theorem.163

Theorem 1 (Theorem 2 in 1). For a fixed δ ∈ (0, 1) and ∀t ∈ [T ];164

βr
t (δ, d) = γr

√
d log

(
1 + (t− 1)L2/λ

δ

)
+
√
λS,

165

βc
t (δ, d) = γc

√
d log

(
1 + (t− 1)L2/λ

δ

)
+
√
λS,

it holds with probability at least 1− δ that166

∥θ̂t − θ∗∥Σt ≤ βr
t (δ, d), ∥µ̂t − µ∗∥Σt ≤ βc

t (δ, d).

We will make use of Theorem 1 to define the following confidence sets (ellipsoids):167

Crt = {θ ∈ Rd : ∥θ − θ̂t∥Σt ≤ βr
t (δ, d)},

Cct = {µ ∈ Rd : ∥µ− µ̂t∥Σt
≤ βc

t (δ, d)},
(4)

Theorem 1 suggests that θ∗ ∈ Crt and µ∗ ∈ Cct (αc), each with probability at least 1− 2δ. We will168

use these confidence intervals to create our estimators for θ∗ and µ∗.169

We aim to be optimistic in our estimate of θ∗ by selecting170

θ̃t = argmax
θ∈Cr

t

⟨Xt, θ⟩, (5)

and pessimistic about µ∗ by choosing µ̃t that minimizes the volume of the estimated feasible set.171

In our case, the feasible set is a continuous sub-interval of [0, 1], so its measure is simply its length.172

Before describing the algorithm, we will first define the confidence ellipsoids and the Least Squares173

Estimators for θ∗ and µ∗.174

The computation of the estimated feasible set Âf
t is performed in two steps. First, we estimate the175

unknown cost vector µ∗ using a least squares estimator. This procedure yields a confidence ellipsoid176

that contains µ∗ with high probability. Among all µ within this ellipsoid, we select the one that177

minimizes the length of the interval of feasible values for αt.178

5



4.1 Choice of µ̂179

As previously discussed, we aim to choose our estimate pessimistically to minimize the length of Âf
t .180

By definition, Âf
t is given by181

Âf
t =

{
α ∈ [0, 1] : α

(
⟨Xt, µ̃⟩+ γc

√
2 log

(
1
δ

))
≤ τ

}
.

Since τ > 0, we first need to check the sign of ⟨Xt, µ̃⟩+ γc

√
2 log

(
1
δ

)
. If this expression is negative182

for all µ ∈ Ctµ, then we set Âf
t = [0, 1]. However, if there exists a µ ∈ Ctµ such that this expression is183

positive, we select the µ that minimizes the maximum feasible αt. This approach can be summarized184

in the following convex program, where µ̂ is the least squares estimate of µ.185

max
µ

⟨Xt, µ⟩

subject to ∥µ− µ̂∥Σt
⩽ βr

t
2,

⟨Xt, µ⟩+ γc

√
2 log

(
1

δ

)
⩾ 0

(6)

Let Kµ(t) = {µ ∈ Rd : ∥µ− µ̂∥Σt
⩽ βr

t
2, ⟨Xt, µ⟩ + γc

√
2 log

(
1
δ

)
⩾ 0} the be set of feasible186

solutions of the convex program 6. If Kµ(t) ̸= ∅, then let µ̃ ∈ argmaxµ∈Kµ(t){⟨Xt, µ⟩}.187

Âf
t =

[0, 1] , if Kµ(t) = ∅
[0, τ

⟨Xt,µ̃⟩+γc

√
2 log( 1

δ )
] , if Kµ(t) ̸= ∅ (7)

5 Regret Analysis188

The objective of the agent is to minimize the expected T -round (constrained) (pseudo)-regret, i.e.,

RC(T ) =

T∑
t=1

r∗(Xt)− r(Xt),

where
r∗(Xt) = max

α∈Af
t

α⟨Xt, θ
∗⟩,

r(Xt) = max
α∈Âf

t

α⟨Xt, θ
∗⟩.

We see that the choice of α depends on the sign of ⟨Xt, θ
∗⟩. If this inner product is positive we189

choose the largest feasible value and otherwise the lowest feasible one.190

RC(T ) =

T∑
t=1

max
α∈Af

t

(α⟨Xt, θ
∗⟩)− αt⟨Xt, θ

∗⟩

=

T∑
t=1

(α∗
t − αt)⟨Xt, θ

∗⟩.

(8)

We will use a decomposition of the regret similar to standard ones in the Linear Bandits under191

constraints literature, ([2],[21],[20]). We define as192

α̃t = argmax
α∈Af

t

{α⟨Xt, θ̂t⟩}. (9)
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Using the above definition we decompose the regret as follows.193

RC(T ) =

T∑
t=1

(α∗
t − αt)⟨Xt, θ

∗⟩

=

T∑
t=1

(α∗
t − α̃t)⟨Xt, θ

∗⟩
Term 1: Cost for approximating θ∗

+

T∑
t=1

(α̃t − αt)⟨Xt, θ
∗⟩

Term 2: Cost for approximating µ∗
.

(10)

5.1 Analysis of the Regret194

Lemma 2. The first term in the regret decomposition can be bounded as follows:

(α∗
t − α̃t)⟨Xt, θ

∗⟩ ≤ α̃t⟨Xt, θ̃ − θ∗⟩.

The proof is in Appendix A.2. We note that this is the standard bound in the Linear Bandits literature195

as first proved in the classical work of [1]. It remains to bound the second term.196

Lemma 3. The second term in the regret decomposition can be bounded as follows:

(α̃t − αt)⟨Xt, θ
∗⟩ ≤ L · S · ⟨Xt, µ̃− µ∗⟩

τ
.

The proof is in Appendix A.3.197

By using the lemmas 2, 3 combining with the regret decomposition (equation 10) we can bound the198

regret as following. The bound is conditioned on the following event that holds with probability at199

least 1− 2δ′.200

E :=
{
∥θ̃t − θ̂t∥Σt

≤ βt(δ
′, d) ∧ ∥µ̃t − µ̂t∥Σt

≤ βt(δ
′, d)

}
. (11)

It is important to mention that δ′ is not necessary equal to δ. The first one is the probability that the201

regret bounds holds and the second one the probability that the realization of the noise of the cost202

stays below the threshold.203

Theorem 2. With probability at least one 1− δ′ the regret of the High Probability Constrained UCB204

algorithm can be bounded by O
(

L·S
τ · βT (δ

′, d)
√
2Td log

(
1 + TL2

λ

))
.205

The proof is in A.4.206

6 Non-linear rewards and costs207

Instead of modeling the reward and the cost signal as linear functions in term of the unknown208

parameters θ and µ we can use more general functions and express our results in terms of the Eluder209

dimension as defined in [23].210

We denote the set of feasible actions in round t as At(Xt) = {α ∈ [0, 1] |

α

(
µ∗(Xt) + γc

√
2 log(

1

δ
)

)
≤ τ}. The agent selects and action αt ∈ At(Xt). Now the reward

and the cost signal take the following form.

Rt = αtθ∗(Xt) + αtξ
r
t , Ct = αtµ∗(Xt) + αtξ

c
t ,

where θ∗(·) ∈ Gr and µ∗(·) ∈ Gc are the mean reward and cost function respectively that belong to211

the known function classes Gr,Gc. We will assume that θ∗(·), µ∗(·) take values in [−1, 1], relaxing212

the standard assumption made that the non-linear functions take values in [0, 1]. We show that the213

important property is that the non-linear functions remain bounded. We also assume that the reward214

and the cost signals are bounded, i.e. lie in [−1, 1]. For the noise signals ξrt , ξ
c
t we assume that they215

are conditionally sub-Gaussian. Moreover, we use the definition of the width of a subset F̃ ⊂ F at a216

context X ∈ A by217
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wF̃ (X) = sup
f,f∈F̃

(
f(X)− f(X)

)
. (12)

In the new terminology, the T period regret is written as218

R(T, π) =
T∑

t=1

[α∗
t θ∗(Xt)− αtθ∗(Xt)] .

First we define the dataset Dt = {(Xs, Rs, Cs)}t−1
s=1 for s such that As ̸= 0, that is the dataset219

of observed information up to the beginning of round t, and ∥f∥Dt
=
√∑

x∈Dt
f2(x) the norm220

induced by the dataset for any function f : At → R.221

In every round we define the confidence ellipsoids as follows222

Crt (δ) = {θ ∈ Gr :
∥∥∥θ − θ̂

∥∥∥
Dt

≤ ρr(t, δ/2)}

Cct (δ) = {θ ∈ Gc :
∥∥∥θ − θ̂

∥∥∥
Dt

≤ ρc(t, δ/2)}

Using these confidence intervals we compute the actions of the algorithm as follows. To compute the223

feasible dosages, first we solve the following Non-Linear program.224

max
µ

µ(Xt)

subject to ∥µ(Xt)− µ̂(Xt)∥Dt
⩽ β2

t ,

µ(Xt) + γc

√
2 log

(
1

δ

)
⩾ 0

(13)

Then if there is no feasible solution in the above optimization problem we select Ât = [0, 1] otherwise,225

let say K(µ̂t) its solution, then Âf
t = [0, τ

K(µ̂t)+γc

√
2 log( 1

δ )
] as before.226

Our estimate for θ is θ̃(Xt) = maxθ∈Cr
t (δ

′) θ(Xt).227

Algorithm 2 Non-Linear High Probability Constrained UCB

1: Input: Constraint threshold τ ≥ 0; Confidence parameter δ; Sub-Gaussianity constant γc
2: α0 ← min{1, τ

γc

√
2 log( 1

δ )+maxX µ∗(X)
}

3: for t = 1, 2, · · · , T do
4: Compute µ̂, θ̂ by using Least Squares Estimators
5: Construct the Âf

t , θ̃(Xt)

6: Compute action αt = argmaxα∈Âf
t
αθ̃(Xt)

7: Take action αt and if αt ̸= 0 store the reward and the cost signals (Rt, Ct)
8: end for

We want to apply the same regret decomposition as before. First, we define analogously Ât(Xt) =228

{α ∈ [0, 1] | α

(
µ∗(Xt) + γc

√
2 log(

1

δ
)

)
≤ τ}. We also define229

α∗
t ∈ argmax

α∈At

θ∗(α).

αt ∈ argmax
α∈Ât

sup
θ∈Gr

θ(α).

α̃t ∈ argmax
α∈At

sup
θ∈Gr

θ(α).
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As in Proposition 1 in [23] our goal is to bound the regret using wF̃ (Xt). First we apply the same230

decomposition to express the regret in terms of the cost due to the lack of knowledge of θ∗ and µ∗.231

R(T, π) =
T∑

t=1

[α∗θ∗(Xt)− α̃tθ∗(Xt)]

+

T∑
t=1

[α̃tθ∗(Xt)− αtθ∗(Xt)] .

The first sum can be bounded in a similar way to proof A in the appendix of [23]. The second sum232

measures the regret the algorithm suffers from the lack of knowledge of µ. Then we can bound in233

terms of wF̃µ
the same way as before.234

Lemma 4. α∗
t θ∗(Xt)− α̃tθ∗(Xt) ≤ wGr

(Xt) + 21{(θ∗ /∈ Gr)}.235

The proof is in B.1.236

For the remaining part, we need to bound |α̃t − αt| in terms of µ∗. We will follow a similar proof as237

in the case of the inner product function.238

Lemma 5. |α̃t − αt| ≤ wGc(Xt)/τ.239

The proof is similar to the linear case and it is provided in B.2.240

Now that we have bound the regret in terms of the width of the set that the non-linear functions241

belong we can translate our results to bound for the regret. First, as in the linear model case, we242

define the reward and the cost set confidence radii as in [20].243

ρr(t, δ
′) = 512 log

(
24|Gr| log(2t)

δ

)
,

ρc(t, δ
′) = 512 log

(
24|Gc| log(2t)

δ

)
.

We also use the following notation dreluder = deluder(Gr, 1/T ) and dceluder = deluder(Gc, 1/T ). The244

algorithm is similar to that one in the linear case. For the regret bound, like [20], we use the Lemma245

3 in [10], by setting P = 1.246

Theorem 3. With probability at least 1−δ′, the regret of the Non-Linear High Probability Constrained247

UCB satisfies248

R(T ) = O(
√

Tdreluderρr(T, δ
′/2)+

1/τ
√

Tdceluderρc(T, δ
′/2)+

dreluder +
dceluder

τ
).
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A Appendix316

A.1 Constraint formulation317

We assume that the cost noise is conditionally sub-Gaussian with a known constant γc. Under this318

assumption, the random variable Ct−αt⟨Xt,µ⟩
αt

is γc sub-Gaussian. We will define a constraint event319

such that, when satisfied, the cost signal remains below the threshold with high probability. Now, we320

can analyze the cost using the following theorem.321

Theorem 4. [Sub Gaussian concentration bounds - Theorem 5.3 [15]] If X is γc-subgaussian, then322

for any ϵ > 0,323

Pr(X ≥ ϵ) ≤ exp(− ϵ2

2γ2
c

)

Using the above property of the cost noise and the theorem we derive that324

Pr(Ct ≥ τ | Ht) = Pr

(
Ct − αt⟨Xt, µ

∗⟩
αt

≥ τ − αt⟨Xt, µ
∗⟩

αt

∣∣∣∣Ht

)
(14)

≤ exp

−
(
τ − αt⟨Xt, µ

∗⟩
αt

)2

2γ2
c

 (15)

By requiring the right-hand side to be less than or equal to δ, we derive:325

exp

−
(
τ − αt⟨Xt, µ

∗⟩
αt

)2

2γ2
c

 ≤ δ

(
τ − αt⟨Xt, µ

∗⟩
αt

)2

2γ2
c

≥ log

(
1

δ

)
τ − αt⟨Xt, µ

∗⟩
αt

≥ γc

√
2 log

(
1

δ

)

τ ≥ αt

(
⟨Xt, µ

∗⟩+ γc

√
2 log

(
1

δ

))

(16)

A.2 Analyzing the cost for approximating θ326

The first term need to be bounded is
∑T

t=1 (α
∗
t − α̃t)⟨Xt, θ

∗⟩. In order to bound this term we will327

follow a standard procedure in Linear Bandits. Initially, we will bound the term α∗
t ⟨Xt, θ

∗⟩. With328
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probability at least 1− δ it holds θ∗ ∈ Cθt ,∀t ∈ [T ].329

α∗
t ⟨Xt, θ

∗⟩ ≤ max
θ∈Cθ

t

{α∗
t ⟨Xt, θ⟩}

≤ max
α∈Af

t

max
θ∈Cθ

t

{α⟨Xt, θ⟩}

= max
α∈Af

t

{α⟨Xt, θ̃⟩}

= α̃t⟨Xt, θ̃⟩

Using the above it holds that

(α∗
t − α̃t)⟨Xt, θ

∗⟩ ≤ α̃t⟨Xt, θ̃ − θ∗⟩

A.3 Analyzing the cost for approximating µ∗330

We can bound the second term using the Cauchy-Schwarz inequality as follows:

(α̃t − αt)⟨Xt, θ
∗⟩ ≤| α̃t − αt | ·LS.

It remains to bound | α̃t − αt |. First, we remind the definitions of α̃t and αt:

α̃t = arg max
α∈Af

t

{α⟨Xt, θ̂t⟩},

αt = arg max
α∈Âf

t

{α⟨Xt, θ̂t⟩}.

We observe that both the choice of α̃t and the choice of αt depend on the sign of the inner product331

⟨Xt, θ̂t⟩. If ⟨Xt, θ̂t⟩ ≥ 0, then α̃t equals the maximum element of the set Af
t . Similarly, αt equals332

the maximum of the set Âf
t when ⟨Xt, θ̂t⟩ ≥ 0. On the other side, when ⟨Xt, θ̂t⟩ < 0, both α̃t and333

αt are zero.334

We will write down again the sets Af
t and Âf

t to see the possible values for (α̃t, αt):

Af
t =

{
α ∈ [0, 1] :

(
⟨Xt, µ

∗⟩+ γc

(√
2 log

(
1
δ

)))
α ≤ τ

}
,

Âf
t =

{
α ∈ [0, 1] :

(
⟨Xt, µ̃⟩+ γc

(√
2 log

(
1
δ

)))
α ≤ τ

}
.

Our estimator µ̃ for µ∗ is a pessimistic one. Among all possible choices for µ̃, in order to be robust,335

we will choose µ̃ such that Âf
t has the smallest possible length.336

Having that in mind, we have the four following scenarios for (α̃t, αt):337

1. (1, 1)338

2.

1,min

1,
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩


339

3.

min

1,
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ∗⟩

 , 1

340

4.

min

1,
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ∗⟩

 ,min

1,
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩


341

For all the above cases we can show that342

maxAf
t −max Âf

t ≤
⟨Xt, µ̃− µ∗⟩

τ
.

Let’s prove this one by one.343
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A.3.1 1st case344

In this case, it is true that maxAf
t −max Âf

t = 1− 1 = 0.345

A.3.2 2nd case346

The non-trivial pair in this case is

1,
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

.347

When the above relation for maxAf
t and max Âf

t holds, then it is true that:348

1. γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ

∗⟩ ≤ 0,349

2.
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

≤ 1.350

Using the above, we can bound 1− τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

as follows:351

1− τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

=
γc

(√
2 log

(
1
δ

))
− τ + ⟨Xt, µ̃⟩

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

≤ −⟨Xt, µ
∗⟩+ ⟨Xt, µ̃⟩
τ

=
⟨Xt, µ̃− µ∗⟩

τ
.

A.3.3 3rd case352

We choose µ̃ pessimistically, so in this case the only valid pair is (1, 1) and | α̃t − αt |= 0.353

A.3.4 4th case354

This case can be divided into four different subcases:355

1. (1, 1) then | α̃t − αt |= 0.356

2.

1,
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

. We saw that the above case can be bounded by357

⟨Xt, µ̃− µ∗⟩
τ

.358

3.

 τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ∗⟩

, 1

; this case cannot exist due to the way we choose µ̃.359

4.

 τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ∗⟩

,
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

.360

In this case, it holds that 0 < τ < γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ

∗⟩ and 0 < τ < γc

(√
2 log

(
1
δ

))
+361

⟨Xt, µ̃⟩.362
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We are going to bound | maxAf
t −max Âf

t | as follows:363

| maxAf
t −max Âf

t | =

∣∣∣∣∣∣∣
τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ∗⟩

− τ

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
τ ⟨Xt, µ̃− µ∗⟩)(

γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ∗⟩

)(
γc

(√
2 log

(
1
δ

))
+ ⟨Xt, µ̃⟩

)
∣∣∣∣∣∣∣

≤ τ ⟨Xt, µ̃− µ∗⟩|
τ2

=
⟨Xt, µ̃− µ∗⟩

τ
.

A.4 Proof of theorem 2364

Proof.

RC(T ) =

T∑
t=1

(α∗
t − α̃t)⟨Xt, θ

∗⟩+
T∑

t=1

(α̃t − αt)⟨Xt, θ
∗⟩

≤
T∑

t=1

|α̃t| ∥xt∥Σ−1
t

∥∥∥θ̃ − θ∗
∥∥∥
Σt

+
LS

τ

T∑
t=1

|α̃t| ∥xt∥Σ−1
t
∥µ̃− µ∗∥Σt

≤
T∑

t=1

βt(δ
′, d) ∥xt∥Σ−1

t
+

LS

τ

T∑
t=1

βt(δ
′, d) ∥xt∥Σ−1

t

≤ βT (δ
′, d)(1 +

LS

τ
)

(
T∑

t=1

∥xt∥Σ−1
t

)

≤ βT (δ
′, d)(1 +

LS

τ
)

√
2Td log

(
1 +

TL2

λ

)
365

B Non-Linear case366

B.1 Bound of α∗
t θ∗(Xt)− α̃tθ∗(Xt)367

Proof. The proof of the lemma 4 is similar to [23] as the decision set is the same for both α∗
t and α̃t.368

We define Ut(α) = sup{αθ∗(Xt) : θ∗ ∈ Gr} and Lt(α) = inf{αθ∗(Xt) : θ∗ ∈ Gr}. When θ∗ lies369

in Gr it holds that Lt(α) ≤ θ∗(α) ≤ Ut(α). Using this we derive370

α∗
t θ∗(Xt)− α̃tθ∗(Xt) ≤ (Ut(α

∗
t )− Lt(α̃t))1{(}θ∗ ∈ Gr) + 21{(}θ∗ /∈ Gr)

≤ (Ut(α
∗
t )− Lt(α̃t)) + 21{(}θ∗ /∈ Gr)

≤ wGr
(Xt) + 21{(}θ∗ /∈ Gr) + [Ut(α

∗
t )− Ut(α̃t)]

≤0 due to selection rule

(17)

371

Where in the last line we also used the fact that α̃ ∈ [0, 1].372

B.2 Analyzing the cost for approximating µ∗(Xt)373

We need to bound | α̃t − αt |. First, we remind the definitions of α̃t and αt:

α̃t = arg max
α∈Af

t

{αθ̂∗(Xt)},

αt = arg max
α∈Âf

t

{αθ̂∗(Xt)}.
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We observe that both the choice of α̃t and the choice of αt depend on the sign of the value of θ̂∗(Xt).374

If θ̂∗(Xt) ≥ 0, then α̃t equals the maximum element of the setAf
t . Similarly, αt equals the maximum375

of the set Âf
t when θ̂∗(Xt) ≥ 0. On the other side, when θ̂∗(Xt) < 0, both α̃t and αt are zero.376

We will write down again the sets Af
t and Âf

t to see the possible values for (α̃t, αt):

Af
t =

{
α ∈ [0, 1] :

(
µ∗(Xt) + γc

(√
2 log

(
1
δ

)))
α ≤ τ

}
,

Âf
t =

{
α ∈ [0, 1] :

(
µ̃(Xt) + γc

(√
2 log

(
1
δ

)))
α ≤ τ

}
.

Our estimator µ̃ for µ∗ is a pessimistic one. Among all possible choices for µ̃, in order to be robust,377

we will choose µ̃ such that Âf
t has the smallest possible length.378

Having that in mind, we have the four following scenarios for (α̃t, αt):379

1. (1, 1)380

2.

1,min

1,
τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)


381

3.

min

1,
τ

γc

(√
2 log

(
1
δ

))
+ µ∗(Xt)

 , 1

382

4.

min

1,
τ

γc

(√
2 log

(
1
δ

))
+ µ∗(Xt)

 ,min

1,
τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)


383

For all the above cases we can show that384

maxAf
t −max Âf

t ≤
µ̃(Xt)− µ∗(Xt)

τ
.

Let’s prove this one by one.385

B.2.1 1st case386

In this case, it is true that maxAf
t −max Âf

t = 1− 1 = 0.387

B.2.2 2nd case388

The non-trivial pair in this case is

1,
τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

.389

When the above relation for maxAf
t and max Âf

t holds, then it is true that:390

1. γc

(√
2 log

(
1
δ

))
+ µ∗(Xt) ≤ 0,391

2.
τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

≤ 1.392
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Using the above, we can bound 1− τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

as follows:393

1− τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

=
γc

(√
2 log

(
1
δ

))
− τ + µ̃(Xt)

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

≤ −µ∗(Xt) + µ̃(Xt)

τ

=
µ̃(Xt)− µ∗(Xt)

τ
.

B.2.3 3rd case394

We choose µ̃ pessimistically, so in this case the only valid pair is (1, 1) and | α̃t − αt |= 0.395

B.2.4 4th case396

This case can be divided into four different subcases:397

1. (1, 1) then | α̃t − αt |= 0.398

2.

1,
τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

. We saw that the above case can be bounded by399

µ̃(Xt)− µ∗(Xt)

τ
.400

3.

 τ

γc

(√
2 log

(
1
δ

))
+ µ∗(Xt)

, 1

; this case cannot exist due to the way we choose µ̃.401

4.

 τ

γc

(√
2 log

(
1
δ

))
+ µ∗(Xt)

,
τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

.402

In this case, it holds that 0 < τ < γc

(√
2 log

(
1
δ

))
+ µ∗(Xt) and 0 < τ < γc

(√
2 log

(
1
δ

))
+403

µ̃(Xt).404

We are going to bound | maxAf
t −max Âf

t | as follows:405

| maxAf
t −max Âf

t | =

∣∣∣∣∣∣∣
τ

γc

(√
2 log

(
1
δ

))
+ µ∗(Xt)

− τ

γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
τ (⟨Xt, µ̃⟩ − µ∗(Xt))(

γc

(√
2 log

(
1
δ

))
+ µ∗(Xt)

)(
γc

(√
2 log

(
1
δ

))
+ µ̃(Xt)

)
∣∣∣∣∣∣∣

≤ τ |µ̃(Xt)− µ∗(Xt)|
τ2

=
µ̃(Xt)− µ∗(Xt)

τ
.

Now by following exaclty the same procedure as in lemma 4 we derive that |α̃t − αt| ≤ wGc
(A)/τ .406

C Experimental Results407

As mentioned earlier, potential applications of this problem include advertising, optimal dosage408

determination, and reinforcement learning from human feedback (RLHF). However, obtaining409
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suitable data to evaluate the algorithm is challenging for the first two applications, while the last is410

left for future exploration. Consequently, in this initial version of our work, we evaluate the algorithm411

using synthetic data.412

To produce θ∗ and µ∗, these entities were drawn from a d-dimensional normal distribution, followed413

by normalization. Similarly, the contexts were derived from a multivariate normal distribution414

and subsequently normalized. The experiments were conducted employing vectors of 5 and 10415

dimensions, utilizing various values of τ across 5× 104 iterations. In practical terms, it is pertinent to416

explore the interrelations between τ and max ∥X∥, ∥θ∗∥, and ∥µ∗∥, as these are intrinsically linked417

to the problem’s formulation, feature selection, and the choice of τ .418

Our observations indicate that for larger values of τ , such as those exceeding 0.5, there is an increase419

in regret. This phenomenon is anticipated since a lower threshold constrains the algorithm more420

significantly, thereby facilitating a more rapid exploration of the available dosage space. Furthermore,421

it was observed that for larger values of τ , including 0.6 and 0.8, the results exhibited a sub-linear422

progression after 104 iterations. Notably, after 4 × 105 iterations, we detected a stabilization in423

growth, suggesting the convergence of our estimators to the true values of θ∗ and µ∗, accompanied424

by reduced confidence intervals.425
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(a) τ = 0.5, d = 5 (b) τ = 0.5, d = 10

(c) τ = 0.7, d = 5 (d) τ = 0.7, d = 10

(e) τ = 0.8, d = 5 (f) τ = 0.8, d = 10

(g) τ = 1.0, d = 5 (h) τ = 1.0, d = 10

Figure 1: Plots of the regret for various τ and d values.
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NeurIPS Paper Checklist426

1. Claims427

Question: Do the main claims made in the abstract and introduction accurately reflect the428

paper’s contributions and scope?429

Answer: [Yes]430

Justification: We provide an no-regret algorithm that satisfy the proposed constraint for the431

realization of the cost signal instead of its expected value.432

Guidelines:433

• The answer NA means that the abstract and introduction do not include the claims434

made in the paper.435

• The abstract and/or introduction should clearly state the claims made, including the436

contributions made in the paper and important assumptions and limitations. A No or437

NA answer to this question will not be perceived well by the reviewers.438

• The claims made should match theoretical and experimental results, and reflect how439

much the results can be expected to generalize to other settings.440

• It is fine to include aspirational goals as motivation as long as it is clear that these goals441

are not attained by the paper.442

2. Limitations443

Question: Does the paper discuss the limitations of the work performed by the authors?444

Answer: [Yes]445

Justification: Our work lacks from strong experimental evaluation and applications in applied446

domains as we described in the experimental section. We believe that the contribution of447

this paper is more conceptual, to propose an easy way to apply techniques from constraint448

satisfaction in expectation to high-probability one.449

Guidelines:450

• The answer NA means that the paper has no limitation while the answer No means that451

the paper has limitations, but those are not discussed in the paper.452

• The authors are encouraged to create a separate "Limitations" section in their paper.453

• The paper should point out any strong assumptions and how robust the results are to454

violations of these assumptions (e.g., independence assumptions, noiseless settings,455

model well-specification, asymptotic approximations only holding locally). The authors456

should reflect on how these assumptions might be violated in practice and what the457

implications would be.458

• The authors should reflect on the scope of the claims made, e.g., if the approach was459

only tested on a few datasets or with a few runs. In general, empirical results often460

depend on implicit assumptions, which should be articulated.461

• The authors should reflect on the factors that influence the performance of the approach.462

For example, a facial recognition algorithm may perform poorly when image resolution463

is low or images are taken in low lighting. Or a speech-to-text system might not be464

used reliably to provide closed captions for online lectures because it fails to handle465

technical jargon.466

• The authors should discuss the computational efficiency of the proposed algorithms467

and how they scale with dataset size.468

• If applicable, the authors should discuss possible limitations of their approach to469

address problems of privacy and fairness.470

• While the authors might fear that complete honesty about limitations might be used by471

reviewers as grounds for rejection, a worse outcome might be that reviewers discover472

limitations that aren’t acknowledged in the paper. The authors should use their best473
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judgment and recognize that individual actions in favor of transparency play an impor-474

tant role in developing norms that preserve the integrity of the community. Reviewers475

will be specifically instructed to not penalize honesty concerning limitations.476

3. Theory assumptions and proofs477

Question: For each theoretical result, does the paper provide the full set of assumptions and478

a complete (and correct) proof?479

Answer: [Yes]480

Justification: We describe the assumptions used in the problem formulation section, and all481

the proofs of our theorems are in the main text or in the appendix.482

Guidelines:483

• The answer NA means that the paper does not include theoretical results.484

• All the theorems, formulas, and proofs in the paper should be numbered and cross-485

referenced.486

• All assumptions should be clearly stated or referenced in the statement of any theorems.487

• The proofs can either appear in the main paper or the supplemental material, but if488

they appear in the supplemental material, the authors are encouraged to provide a short489

proof sketch to provide intuition.490

• Inversely, any informal proof provided in the core of the paper should be complemented491

by formal proofs provided in appendix or supplemental material.492

• Theorems and Lemmas that the proof relies upon should be properly referenced.493

4. Experimental result reproducibility494

Question: Does the paper fully disclose all the information needed to reproduce the main ex-495

perimental results of the paper to the extent that it affects the main claims and/or conclusions496

of the paper (regardless of whether the code and data are provided or not)?497

Answer: [Yes]498

Justification: In the experimental section we provide all details about our experiments.499

Guidelines:500

• The answer NA means that the paper does not include experiments.501

• If the paper includes experiments, a No answer to this question will not be perceived502

well by the reviewers: Making the paper reproducible is important, regardless of503

whether the code and data are provided or not.504

• If the contribution is a dataset and/or model, the authors should describe the steps taken505

to make their results reproducible or verifiable.506

• Depending on the contribution, reproducibility can be accomplished in various ways.507

For example, if the contribution is a novel architecture, describing the architecture fully508

might suffice, or if the contribution is a specific model and empirical evaluation, it may509

be necessary to either make it possible for others to replicate the model with the same510

dataset, or provide access to the model. In general. releasing code and data is often511

one good way to accomplish this, but reproducibility can also be provided via detailed512

instructions for how to replicate the results, access to a hosted model (e.g., in the case513

of a large language model), releasing of a model checkpoint, or other means that are514

appropriate to the research performed.515

• While NeurIPS does not require releasing code, the conference does require all submis-516

sions to provide some reasonable avenue for reproducibility, which may depend on the517

nature of the contribution. For example518

(a) If the contribution is primarily a new algorithm, the paper should make it clear how519

to reproduce that algorithm.520
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(b) If the contribution is primarily a new model architecture, the paper should describe521

the architecture clearly and fully.522

(c) If the contribution is a new model (e.g., a large language model), then there should523

either be a way to access this model for reproducing the results or a way to reproduce524

the model (e.g., with an open-source dataset or instructions for how to construct525

the dataset).526

(d) We recognize that reproducibility may be tricky in some cases, in which case527

authors are welcome to describe the particular way they provide for reproducibility.528

In the case of closed-source models, it may be that access to the model is limited in529

some way (e.g., to registered users), but it should be possible for other researchers530

to have some path to reproducing or verifying the results.531

5. Open access to data and code532

Question: Does the paper provide open access to the data and code, with sufficient instruc-533

tions to faithfully reproduce the main experimental results, as described in supplemental534

material?535

Answer: [No]536

Justification: We are happy to provide the code for our experiments. We aim to add more537

experiments, comparing with other algorithms and apply this algorithm in other fields as538

mentioned.539

Guidelines:540

• The answer NA means that paper does not include experiments requiring code.541

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/542

public/guides/CodeSubmissionPolicy) for more details.543

• While we encourage the release of code and data, we understand that this might not be544

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not545

including code, unless this is central to the contribution (e.g., for a new open-source546

benchmark).547

• The instructions should contain the exact command and environment needed to run to548

reproduce the results. See the NeurIPS code and data submission guidelines (https:549

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.550

• The authors should provide instructions on data access and preparation, including how551

to access the raw data, preprocessed data, intermediate data, and generated data, etc.552

• The authors should provide scripts to reproduce all experimental results for the new553

proposed method and baselines. If only a subset of experiments are reproducible, they554

should state which ones are omitted from the script and why.555

• At submission time, to preserve anonymity, the authors should release anonymized556

versions (if applicable).557

• Providing as much information as possible in supplemental material (appended to the558

paper) is recommended, but including URLs to data and code is permitted.559

6. Experimental setting/details560

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-561

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the562

results?563

Answer: [No]564

Justification: Our experiments do not require setting the details mentioned.565

Guidelines:566

• The answer NA means that the paper does not include experiments.567
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• The experimental setting should be presented in the core of the paper to a level of detail568

that is necessary to appreciate the results and make sense of them.569

• The full details can be provided either with the code, in appendix, or as supplemental570

material.571

7. Experiment statistical significance572

Question: Does the paper report error bars suitably and correctly defined or other appropriate573

information about the statistical significance of the experiments?574

Answer: [Yes]575

Justification: In our experiments we have plotted the expected value of the regret and its576

standard deviation.577

Guidelines:578

• The answer NA means that the paper does not include experiments.579

• The authors should answer "Yes" if the results are accompanied by error bars, confi-580

dence intervals, or statistical significance tests, at least for the experiments that support581

the main claims of the paper.582

• The factors of variability that the error bars are capturing should be clearly stated (for583

example, train/test split, initialization, random drawing of some parameter, or overall584

run with given experimental conditions).585

• The method for calculating the error bars should be explained (closed form formula,586

call to a library function, bootstrap, etc.)587

• The assumptions made should be given (e.g., Normally distributed errors).588

• It should be clear whether the error bar is the standard deviation or the standard error589

of the mean.590

• It is OK to report 1-sigma error bars, but one should state it. The authors should591

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis592

of Normality of errors is not verified.593

• For asymmetric distributions, the authors should be careful not to show in tables or594

figures symmetric error bars that would yield results that are out of range (e.g. negative595

error rates).596

• If error bars are reported in tables or plots, The authors should explain in the text how597

they were calculated and reference the corresponding figures or tables in the text.598

8. Experiments compute resources599

Question: For each experiment, does the paper provide sufficient information on the com-600

puter resources (type of compute workers, memory, time of execution) needed to reproduce601

the experiments?602

Answer: [Yes]603

Justification: The experiments can be run on a simple laptop without the need of a GPU.604

Guidelines:605

• The answer NA means that the paper does not include experiments.606

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,607

or cloud provider, including relevant memory and storage.608

• The paper should provide the amount of compute required for each of the individual609

experimental runs as well as estimate the total compute.610

• The paper should disclose whether the full research project required more compute611

than the experiments reported in the paper (e.g., preliminary or failed experiments that612

didn’t make it into the paper).613
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9. Code of ethics614

Question: Does the research conducted in the paper conform, in every respect, with the615

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?616

Answer: [Yes]617

Justification: We have studied the ethics guidelines and followed carefully.618

Guidelines:619

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.620

• If the authors answer No, they should explain the special circumstances that require a621

deviation from the Code of Ethics.622

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-623

eration due to laws or regulations in their jurisdiction).624

10. Broader impacts625

Question: Does the paper discuss both potential positive societal impacts and negative626

societal impacts of the work performed?627

Answer: [Yes]628

Justification: We discuss further impact on potential applications in the introduction and the629

problem formulation section.630

Guidelines:631

• The answer NA means that there is no societal impact of the work performed.632

• If the authors answer NA or No, they should explain why their work has no societal633

impact or why the paper does not address societal impact.634

• Examples of negative societal impacts include potential malicious or unintended uses635

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations636

(e.g., deployment of technologies that could make decisions that unfairly impact specific637

groups), privacy considerations, and security considerations.638

• The conference expects that many papers will be foundational research and not tied639

to particular applications, let alone deployments. However, if there is a direct path to640

any negative applications, the authors should point it out. For example, it is legitimate641

to point out that an improvement in the quality of generative models could be used to642

generate deepfakes for disinformation. On the other hand, it is not needed to point out643

that a generic algorithm for optimizing neural networks could enable people to train644

models that generate Deepfakes faster.645

• The authors should consider possible harms that could arise when the technology is646

being used as intended and functioning correctly, harms that could arise when the647

technology is being used as intended but gives incorrect results, and harms following648

from (intentional or unintentional) misuse of the technology.649

• If there are negative societal impacts, the authors could also discuss possible mitigation650

strategies (e.g., gated release of models, providing defenses in addition to attacks,651

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from652

feedback over time, improving the efficiency and accessibility of ML).653

11. Safeguards654

Question: Does the paper describe safeguards that have been put in place for responsible655

release of data or models that have a high risk for misuse (e.g., pretrained language models,656

image generators, or scraped datasets)?657

Answer: [NA]658

Justification: We use synthetic data only.659

Guidelines:660
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• The answer NA means that the paper poses no such risks.661

• Released models that have a high risk for misuse or dual-use should be released with662

necessary safeguards to allow for controlled use of the model, for example by requiring663

that users adhere to usage guidelines or restrictions to access the model or implementing664

safety filters.665

• Datasets that have been scraped from the Internet could pose safety risks. The authors666

should describe how they avoided releasing unsafe images.667

• We recognize that providing effective safeguards is challenging, and many papers do668

not require this, but we encourage authors to take this into account and make a best669

faith effort.670

12. Licenses for existing assets671

Question: Are the creators or original owners of assets (e.g., code, data, models), used in672

the paper, properly credited and are the license and terms of use explicitly mentioned and673

properly respected?674

Answer: [Yes]675

Justification: We used the appropriate citations when needed.676

Guidelines:677

• The answer NA means that the paper does not use existing assets.678

• The authors should cite the original paper that produced the code package or dataset.679

• The authors should state which version of the asset is used and, if possible, include a680

URL.681

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.682

• For scraped data from a particular source (e.g., website), the copyright and terms of683

service of that source should be provided.684

• If assets are released, the license, copyright information, and terms of use in the685

package should be provided. For popular datasets, paperswithcode.com/datasets686

has curated licenses for some datasets. Their licensing guide can help determine the687

license of a dataset.688

• For existing datasets that are re-packaged, both the original license and the license of689

the derived asset (if it has changed) should be provided.690

• If this information is not available online, the authors are encouraged to reach out to691

the asset’s creators.692

13. New assets693

Question: Are new assets introduced in the paper well documented and is the documentation694

provided alongside the assets?695

Answer: [Yes]696

Justification: We mention our contribution in the introduction and the problem formulation.697

Guidelines:698

• The answer NA means that the paper does not release new assets.699

• Researchers should communicate the details of the dataset/code/model as part of their700

submissions via structured templates. This includes details about training, license,701

limitations, etc.702

• The paper should discuss whether and how consent was obtained from people whose703

asset is used.704

• At submission time, remember to anonymize your assets (if applicable). You can either705

create an anonymized URL or include an anonymized zip file.706
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14. Crowdsourcing and research with human subjects707

Question: For crowdsourcing experiments and research with human subjects, does the paper708

include the full text of instructions given to participants and screenshots, if applicable, as709

well as details about compensation (if any)?710

Answer: [NA]711

Justification: We do not have any crowdsourcing experiment.712

Guidelines:713

• The answer NA means that the paper does not involve crowdsourcing nor research with714

human subjects.715

• Including this information in the supplemental material is fine, but if the main contribu-716

tion of the paper involves human subjects, then as much detail as possible should be717

included in the main paper.718

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,719

or other labor should be paid at least the minimum wage in the country of the data720

collector.721

15. Institutional review board (IRB) approvals or equivalent for research with human722

subjects723

Question: Does the paper describe potential risks incurred by study participants, whether724

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)725

approvals (or an equivalent approval/review based on the requirements of your country or726

institution) were obtained?727

Answer: [NA]728

Justification: The paper does not involve crowdsourcing nor research with human subjects.729

Guidelines:730

• The answer NA means that the paper does not involve crowdsourcing nor research with731

human subjects.732

• Depending on the country in which research is conducted, IRB approval (or equivalent)733

may be required for any human subjects research. If you obtained IRB approval, you734

should clearly state this in the paper.735

• We recognize that the procedures for this may vary significantly between institutions736

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the737

guidelines for their institution.738

• For initial submissions, do not include any information that would break anonymity (if739

applicable), such as the institution conducting the review.740

16. Declaration of LLM usage741

Question: Does the paper describe the usage of LLMs if it is an important, original, or742

non-standard component of the core methods in this research? Note that if the LLM is used743

only for writing, editing, or formatting purposes and does not impact the core methodology,744

scientific rigorousness, or originality of the research, declaration is not required.745

Answer: [NA]746

Justification: We used LLMs for grammar and vocabulary suggestions.747

Guidelines:748

• The answer NA means that the core method development in this research does not749

involve LLMs as any important, original, or non-standard components.750

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)751

for what should or should not be described.752
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