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ABSTRACT

In this paper, we investigate the principle that good explanations are hard to vary
in the context of deep learning. We show that averaging gradients across examples
— akin to a logical OR (V) of patterns — can favor memorization and ‘patchwork’
solutions that sew together different strategies, instead of identifying invariances.
To inspect this, we first formalize a notion of consistency for minima of the loss
surface, which measures to what extent a minimum appears only when examples
are pooled. We then propose and experimentally validate a simple alternative
algorithm based on a logical AND (), that focuses on invariances and prevents
memorization in a set of real-world tasks. Finally, using a synthetic dataset with a
clear distinction between invariant and spurious mechanisms, we dissect learning
signals and compare this approach to well-established regularizers.

1 INTRODUCTION

Average loss surface

Consider the top of Figure[I} which shows a view from
above of the loss surface obtained as we vary a two di-
mensional parameter vector § = (61, 65), for a fictional
dataset containing two observations z 4 and z . Note
the two global minima on the top-right and bottom-left.
Depending on the initial values of § — marked as white
circles — gradient descent converges to one of the two
minima. Judging solely by the value of the loss function,
which is zero in both cases, the two minima look equally
good.

However, looking at the loss surfaces for x4 and zp
separately, as shown below, a crucial difference between
those two minima appears: Starting from the same ini-
tial parameter configurations and following the gradient
of the lOSS, V@,C,(H, xi)9 the probabi]ity of ﬁndlng the  Loss surface for data A Loss surface for data B
same minimum on the top-right in either case is zero. In
contrast, the minimum in the lower-left corner has a sig- del. A . di . )
) . model. Averaging gradients forgoes informa
nificant overlap across the two l'oss s'ur.faces, so gradient o that can identify patterns shared across dif-
descent can converge to it even if training on £ 4 (Or £B)  ferent environments.
only. Note that after averaging there is no way to tell
what the two loss surfaces looked like: Are we destroying information that is potentially important?

Figure 1: Loss landscapes of a two-parameter

In this paper, we argue that the answer is yes. In particular, we hypothesize that if the goal is to
find invariant mechanisms in the data, these can be identified by finding explanations (e.g. model
parameters) that are hard to vary across examples. A notion of invariance implies something that
stays the same, as something else changes. We assume that data comes from different environments:
An invariant mechanism is shared across all, generalizes out of distribution (0.0.d.), but might be hard
to model; each environment also has spurious explanations that are easy to spot (‘shortcuts’), but do
not generalize 0.0.d. From the point of view of causal modeling, such invariant mechanisms can be
interpreted as conditional distributions of the targets given causal features of the inputs; invariance
of such conditionals is expected if they represent causal mechanisms, that is — stable properties of
the physical world (see e.g.Hoover| (1990)). Generalizing 0.0.d. means therefore that the predictor
should perform equally well on data coming from different settings, as long as they share the causal
mechanisms.
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We formalize a notion o€onsistencywhich characterizes to what extent a minimum of the loss
surface appearnly when data from different environments are pooled. Minima with low consistency
are “patchwork’ solutions, which (we hypothesize) sew together different strategies and should not be
expected to generalize to new environments. An intuitive description of this principle was proposed
by physicist David Deutschgood explanations are hard to vary(Deutsch, 2011).

Using the notion of consistency, we de mvariant Learning ConsistendyLC), a measure of the
expected consistency of the solution found by a learning algorithm on a given hypothesis class. The
ILC can be improved by changing the hypothesis class or the learning algorithm, and in the last
part of the paper we focus on the latter. We then analyse why current practices in deep learning
provide little incentive for networks to learn invariances, and show that standard training is instead
set up with the explicit objective of greedily maximizing speed of learning, i.e., progress on the
training loss. When learning “as fast as possible” is not the main objective, we show we can trade-off
some “learning speed” for prioritizing learning the invariances. A practical instantiation of ILC leads
to 0.0.d. generalization on a challenging synthetic task where several established regularizers fail
to generalize; moreover, following the memaorization task from Zhang et al. (2017), ILC prevents
convergence on CIFAR-10 with random labels, as no shared mechanism is present, and similarly
when a portion of training labels is incorrect. Lastly, we set up a behavioural cloning task based on
the game CoinRun (Cobbe et al., 2019b), and observe better generalization on new unseen levels.

An example. Take these two second-hand books

of chess puzzles. We can learn the two independent

shortcuts (blue arrows for the left bo@R hand-

written solutions on the right), or actually learn

to play chess (the invariant mechanism). While

both strategies solve other problems from the same

books (i.i.d.), only the latter generalises to new

chess puzzle books (0.0.d.). How to distinguish

the two? We would not have learned about the red

arrows had we trained on the book on the right, and vice versa with the hand-written notes.

2 EXPLANATIONS THAT ARE HARD TO VARY

We consider dataset®€uepe, With |[E|  d,andD® p xF;yfgie 1;:::;n® HerexP PX , R™

is the vector containing the observed inputs, gfidP Y , RP the targets. The superscripP E

indexes some aspect of the data collection process, and can be interpreted as an environment label.
Our objective is to infer a functioh : X N Y — which we callmechanism— assigning a target®

to each inpuk?; as explained in the introduction, we assume that such function is shared across all
environments. For estimation purposesnay be parametrized by a neural network with continuous
activations; for weights P, R", we denote the neural network outpua® X asf g

Gradient-based optimization. To nd an appropriate moddl , standard optimizers rely on gradi-
ents from gpooledloss functiorL : R" N R. This function measures tlaveragepesformance of
the neural network when predicting data labels, across all environmemts: ﬁ epelLeP G

with Lep q: ﬁ eyeqroe | X Gyfg where’ :RP RPN r0; 8q isusually chosen to
be thel 2 loss or the cross-entropy loss. The parameter updates according to gradient descent (GD)
are given by éDl 5o rL p Kpg where | Ois the learning rate. Under some standard

assumptions (Lee et al., 2018) K0y o converges to a local minimizer &f, with probability one.

When do wenot learn invariances? We start by describing what might prevent learning invari-
ances in standard gradient-based optimization.

(i) Training stops once the loss is low enoudfroptimization learned spurious patterns by the time

it converged, invariances will not be learned anymore. This depends on the rate at which different
patterns are learned. The rates at which invariant patterns emerge (and vice-versa, the spurious
patterns do not) can be improved by e.g.: (a) careful architecture design, e.g. as done by hardcoding
spatial equivariance in convolutional networks; (b) ne-tuning models pre-trained on large amounts
of data, where strong features already emerged and can be readily selected.
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