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ABSTRACT

In this paper, we investigate the principle that good explanations are hard to vary
in the context of deep learning. We show that averaging gradients across examples
– akin to a logical OR (_) of patterns – can favor memorization and ‘patchwork’
solutions that sew together different strategies, instead of identifying invariances.
To inspect this, we first formalize a notion of consistency for minima of the loss
surface, which measures to what extent a minimum appears only when examples
are pooled. We then propose and experimentally validate a simple alternative
algorithm based on a logical AND (^), that focuses on invariances and prevents
memorization in a set of real-world tasks. Finally, using a synthetic dataset with a
clear distinction between invariant and spurious mechanisms, we dissect learning
signals and compare this approach to well-established regularizers.

1 INTRODUCTION
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Figure 1: Loss landscapes of a two-parameter
model. Averaging gradients forgoes informa-
tion that can identify patterns shared across dif-
ferent environments.

Consider the top of Figure 1, which shows a view from
above of the loss surface obtained as we vary a two di-
mensional parameter vector θ “ pθ1, θ2q, for a fictional
dataset containing two observations xA and xB . Note
the two global minima on the top-right and bottom-left.
Depending on the initial values of θ — marked as white
circles — gradient descent converges to one of the two
minima. Judging solely by the value of the loss function,
which is zero in both cases, the two minima look equally
good.

However, looking at the loss surfaces for xA and xB
separately, as shown below, a crucial difference between
those two minima appears: Starting from the same ini-
tial parameter configurations and following the gradient
of the loss, ∇θLpθ, xiq, the probability of finding the
same minimum on the top-right in either case is zero. In
contrast, the minimum in the lower-left corner has a sig-
nificant overlap across the two loss surfaces, so gradient
descent can converge to it even if training on xA (or xB)
only. Note that after averaging there is no way to tell
what the two loss surfaces looked like: Are we destroying information that is potentially important?

In this paper, we argue that the answer is yes. In particular, we hypothesize that if the goal is to
find invariant mechanisms in the data, these can be identified by finding explanations (e.g. model
parameters) that are hard to vary across examples. A notion of invariance implies something that
stays the same, as something else changes. We assume that data comes from different environments:
An invariant mechanism is shared across all, generalizes out of distribution (o.o.d.), but might be hard
to model; each environment also has spurious explanations that are easy to spot (‘shortcuts’), but do
not generalize o.o.d. From the point of view of causal modeling, such invariant mechanisms can be
interpreted as conditional distributions of the targets given causal features of the inputs; invariance
of such conditionals is expected if they represent causal mechanisms, that is — stable properties of
the physical world (see e.g. Hoover (1990)). Generalizing o.o.d. means therefore that the predictor
should perform equally well on data coming from different settings, as long as they share the causal
mechanisms.
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We formalize a notion of consistency, which characterizes to what extent a minimum of the loss
surface appears only when data from different environments are pooled. Minima with low consistency
are ‘patchwork’ solutions, which (we hypothesize) sew together different strategies and should not be
expected to generalize to new environments. An intuitive description of this principle was proposed
by physicist David Deutsch: “good explanations are hard to vary” (Deutsch, 2011).

Using the notion of consistency, we define Invariant Learning Consistency (ILC), a measure of the
expected consistency of the solution found by a learning algorithm on a given hypothesis class. The
ILC can be improved by changing the hypothesis class or the learning algorithm, and in the last
part of the paper we focus on the latter. We then analyse why current practices in deep learning
provide little incentive for networks to learn invariances, and show that standard training is instead
set up with the explicit objective of greedily maximizing speed of learning, i.e., progress on the
training loss. When learning “as fast as possible” is not the main objective, we show we can trade-off
some “learning speed” for prioritizing learning the invariances. A practical instantiation of ILC leads
to o.o.d. generalization on a challenging synthetic task where several established regularizers fail
to generalize; moreover, following the memorization task from Zhang et al. (2017), ILC prevents
convergence on CIFAR-10 with random labels, as no shared mechanism is present, and similarly
when a portion of training labels is incorrect. Lastly, we set up a behavioural cloning task based on
the game CoinRun (Cobbe et al., 2019b), and observe better generalization on new unseen levels.
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20Z0Z0Z0Z
1Z0Z0ZKZ0

a b c d e f g h

356
80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0o0ZNZ
3Z0ZKZ0Z0
20Z0Z0ZpL
1Z0Z0ZkZ0

a b c d e f g h

357
80Z0Z0ZRZ
7Z0Z0ZKm0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0S0
20Z0Z0Z0Z
1Z0Z0Z0Ak

a b c d e f g h

358
80Z0ZKZ0Z
7Z0Z0Z0Z0
60ZpZkZ0Z
5Z0Z0O0Z0
40Z0OQZ0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

359
80Z0Z0Z0Z
7jPO0Z0Z0
60SnZ0Z0Z
5Z0J0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

360
80Z0Z0ArZ
7Z0Z0Z0O0
60Z0Z0JBj
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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301
8rZbZkZ0s
7ZpopZ0Zp
6pZ0ZpL0Z
5ZNO0Z0Z0
40OKZ0Z0Z
3O0Z0OnZP
20Z0Z0O0Z
1Z0Z0Z0Z0

abcdefgh

302
80Z0ZkZ0Z
7Z0Z0OpZ0
60Z0O0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZQZ0
20J0Z0Z0Z
1Z0Z0l0Z0

abcdefgh

303
80Z0ZkZ0Z
7Z0Z0Z0Z0
60Z0Z0ONZ
5Z0ZQZ0Z0
40Z0Z0Z0Z
3Z0Z0ZpZ0
20Z0ZnZ0J
1Z0Z0ZqZ0

abcdefgh

304
80Z0Z0s0Z
7j0Z0Z0Z0
6No0Z0Z0Z
5Z0Z0Z0Zp
40O0ZbZpO
3Z0Z0OrZ0
2RZ0Z0OKA
1Z0Z0Z0Z0

abcdefgh

305
80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZNZ0
20orZ0ZPO
1s0j0J0ZR

abcdefgh

306
8ra0Z0Z0Z
7j0o0Z0ZR
6PZPZ0Z0Z
5OpJ0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0ZBZ0

abcdefgh
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421
8rZkZNZ0Z
7oRZRZ0Z0
6KZ0Z0Z0Z
5Z0Z0ZnZ0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

422
80Z0Z0Z0Z
7ZNZ0Z0Z0
6RZpZ0Z0Z
5ZkZ0Z0Z0
40MpZ0Z0Z
3Z0J0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

423
80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0ZNZB
40Z0Z0Z0Z
3Z0Z0o0ok
20Z0ZRZ0Z
1Z0Z0Z0J0

a b c d e f g h

424
80Z0Z0Z0Z
7Z0o0Z0S0
60ZRZNZ0j
5Z0Z0Z0Z0
40Z0Z0Z0o
3Z0Z0Z0ZK
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

425
80Z0Z0Z0Z
7Z0Z0Z0Zp
60Z0Z0Z0L
5Z0Z0Z0Z0
40Z0ZKZko
3Z0Z0Z0Z0
20Z0Z0ZPZ
1Z0Z0ZNZ0

a b c d e f g h

426
80Z0Z0Z0Z
7Z0ZRZ0Z0
60o0Z0Z0Z
5ZkZpZ0Z0
40Z0O0Z0Z
3Z0J0Z0Z0
2QZ0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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7Z0o0Z0S0
60ZRZNZ0j
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1Z0Z0Z0Z0
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80Z0Z0Z0Z
7Z0Z0Z0Zp
60Z0Z0Z0L
5Z0Z0Z0Z0
40Z0ZKZko
3Z0Z0Z0Z0
20Z0Z0ZPZ
1Z0Z0ZNZ0
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426
80Z0Z0Z0Z
7Z0ZRZ0Z0
60o0Z0Z0Z
5ZkZpZ0Z0
40Z0O0Z0Z
3Z0J0Z0Z0
2QZ0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

An example. Take these two second-hand books
of chess puzzles. We can learn the two independent
shortcuts (blue arrows for the left book OR hand-
written solutions on the right), or actually learn
to play chess (the invariant mechanism). While
both strategies solve other problems from the same
books (i.i.d.), only the latter generalises to new
chess puzzle books (o.o.d.). How to distinguish
the two? We would not have learned about the red
arrows had we trained on the book on the right, and vice versa with the hand-written notes.

2 EXPLANATIONS THAT ARE HARD TO VARY

We consider datasets tDeuePE , with |E | “ d, and De “ pxei , y
e
i q, ie “ 1, . . . , ne. Here xei P X Ď Rm

is the vector containing the observed inputs, and yei P Y Ď Rp the targets. The superscript e P E
indexes some aspect of the data collection process, and can be interpreted as an environment label.
Our objective is to infer a function f : X Ñ Y — which we call mechanism — assigning a target yei
to each input xei ; as explained in the introduction, we assume that such function is shared across all
environments. For estimation purposes, f may be parametrized by a neural network with continuous
activations; for weights θ P Θ Ď Rn, we denote the neural network output at x P X as fθpxq.

Gradient-based optimization. To find an appropriate model fθ, standard optimizers rely on gradi-
ents from a pooled loss function L : Rn Ñ R. This function measures the average performance of
the neural network when predicting data labels, across all environments: Lpθq :“ 1

|E|
ř

ePE Lepθq,
with Lepθq :“ 1

|De|
ř

pxei ,y
e
i qPDe `pfpx

e
i ; θq, y

e
i q; where ` : Rp ˆ Rp Ñ r0,`8q is usually chosen to

be the L2 loss or the cross-entropy loss. The parameter updates according to gradient descent (GD)
are given by θk`1

GD “ θkGD ´ η∇LpθkGDq, where η ą 0 is the learning rate. Under some standard
assumptions (Lee et al., 2016), pθkGDqkě0 converges to a local minimizer of L, with probability one.

When do we not learn invariances? We start by describing what might prevent learning invari-
ances in standard gradient-based optimization.

(i) Training stops once the loss is low enough. If optimization learned spurious patterns by the time
it converged, invariances will not be learned anymore. This depends on the rate at which different
patterns are learned. The rates at which invariant patterns emerge (and vice-versa, the spurious
patterns do not) can be improved by e.g.: (a) careful architecture design, e.g. as done by hardcoding
spatial equivariance in convolutional networks; (b) fine-tuning models pre-trained on large amounts
of data, where strong features already emerged and can be readily selected.

2
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(ii) Learning signals: everything looks relevant for a dataset of size 1. Due to the summation in the
definition of the pooled loss L, gradients for each example are computed independently. Informally,
each signal is identical to the one for an equivalent dataset of size 1, where every pattern appears
relevant to the task. To find invariant patterns across examples, if we compute our training signals on
each of them independently, we have to rely on the way these are aggregated.1

(iii) Aggregating gradients: averaging maximizes learning speed. The default method to pool gradi-
ents is the arithmetic mean. GD applied to L is designed to minimize the pooled loss by prioritizing
descent speed.2 Indeed, a step of GD is equivalent to finding a tight3 quadratic upper bound L̂ to L,
and then jumping to the minimizer of this approximation (Nocedal and Wright, 2006). While speed is
often desirable, by construction GD ignores one potentially crucial piece of information: The gradient
∇L is the result of averaging signals ∇Le, which correspond to the patterns visible from each environ-
ment at this stage of optimization. In other words, GD with average gradients greedily maximizes for
learning speed, but in some situations we would like to trade some convergence speed for invariance.

θk
GD

θk+1
GD

Figure 2: Inconsistency in
gradient directions.

For instance, instead of performing an arithmetic mean between gradi-
ents (logical OR), we might want to look towards a logical AND, which
can be characterized as a geometric mean. Fig. 1 shows how a sum can be
seen as a logical OR: the two orthogonal gradients from data A and data B
at (0.5,0.5) point to different directions, yet both are kept in the combined
gradient.4 In Sec. 2.3 we elaborate on this idea and on implementing a
logical AND between gradients. Before presenting this discussion, we take
some time to better motivate the need for invariant learning consistency
and to construct a precise mathematical definition of consistency.

2.1 FORMAL DEFINITION OF ILC

Let Θ˚A be the set of convergence points of algorithm A when trained using all environments (pooled
data): that is, Θ˚A “ tθ˚ P Θ | D θ0 P Rn s.t. A8pθ0, Eq “ θ˚u. For instance, if A is gradient
descent, the result of Lee et al. (2016) implies that Θ˚A is the set of local minimizers of the pooled
loss L. To each θ˚ P Θ˚A, we want to associate a consistency score, quantifying the concept “good
θ˚ are hard to vary”. In other words, we would like the score to capture the consistency of the loss
landscape around θ˚ across the different environments. For example, in Fig. 1 the loss landscape near
the bottom-left minimizer is consistent across environments, while the top-right minimizer is not.

Loss surface for data A Loss surface for data B

{
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Let us characterize the landscape around θ˚ from the per-
spective of a fixed environment e P E . We define the set
N ε
e,θ˚ to be the largest path-connected region of space con-

taining both θ˚ and the set tθ P Θ s.t.|Lepθq´Lepθ˚q| ď
ε u, with ε ą 0. In other words, if θ P N ε

e,θ˚ then there
exist a path-connected region in parameter space including
θ˚ and θ where each parameter also is inN ε

e,θ˚ and its loss
on environment e is comparable. From the perspective of
environment e, all these points are equivalent to θ˚. We would like to evaluate the elements of this
set with respect to a different environment e1 ‰ e. We will say that e1 is consistent with e in θ˚ if
maxθPNε

e,θ˚
|Le1pθq ´ Lepθq

ˇ

ˇ is small. Repeating this reasoning for all environment pairs, we arrive
at the following inconsistency score:

Iεpθ˚q :“ max
pe,e1qPE2

max
θPNε

e,θ˚

|Le1pθq ´ Lepθ˚q|. (1)

1After computing the gradients for a dataset of n ´ 1 examples, if an n-th example appeared, we would
just compute one more vector of gradients and add it to the sum. A Gaussian Process (Rasmussen, 2003) for
example would require recomputing the entire solution from scratch, as all interactions are considered.

2The same reasoning holds for SGD in the finite-sum optimization case L “ 1
m

řm
i“1 Li, where gradients

from a mini-batch are seen as unbiased estimators of gradients from the pooled loss. (Bottou et al., 2018).
3Assume that L has L-Lipschitz gradients (i.e. curvature bounded from above by L). Then, at any point θ̃,

we can construct the upper bound L̂θ̃pθq “ Lpθ̃q `∇Lpθ̃qJpθ ´ θ̃q ` L}θ ´ θ̃}2{2.
4Loosely speaking, a sum is large if any of the summands is large, a product is large if all factors are large.
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This consistency is our formalization of the principle “good explanations are hard to vary”. Finally,
we can write down an invariant learning consistency score for A:

ILCpA, pθ0q :“ ´Eθ0„ppθ0q
“

IεpA8pθ0, Eq
‰

. (2)

That is, the learning consistency of an algorithm measures the expected consistency across environ-
ments of the minimizer it converges to on the pooled data.
Example: low consistency of a classic patchwork solution. One-hidden-layer networks with
sigmoid activations and enough neurons can approximate any function f˚ : r0, 1s Ñ R (Cybenko,
1989). In appendix A.1 we show how the construction used to obtain the weights leads to a maximally
inconsistent solution according to Iεpθ˚q, which would not be expected to generalize o.o.d.

2.2 ILC AS A LOGICAL AND BETWEEN LANDSCAPES

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 HA, HB
HA+B
HA∧B

Figure 3: Plotted are con-
tour lines θJH´1θ “ 1
for HA “ diagp0.05, 1q and
HB “ diagp1, 0.05q. HA^B
retains the original volumes,
while for HA`B it is 5ˆ big-
ger. This magnification shows
inconsistency of A and B.

Here we draw a connection between our definition of inconsistency
and the local geometric properties of the loss landscapes. For the sake
of clarity, we consider two environments (A and B) and assume θ˚ to
be a local minimizer (with zero loss) for both environments. Using a
Taylor approximation5, we get Lpθq « 1

2 pθ ´ θ
˚qJHA`Bpθ ´ θ

˚q for
}θ ´ θ˚} « 0, where HA`B “ pHA `HBq {2 is the arithmetic mean
of the Hessians HA :“ ∇2LApθ˚q and HB :“ ∇2LApθ˚q. HA`B

does not capture the possibly conflicting geometries of landscape A
or B: It performs a “logical OR” on the dominant eigendirections. In
contrast, the geometric mean, or Karcher mean, HA^B (Ando et al.,
2004) is affected by the inconsistencies between landscapes: It performs
a “logical AND”. In appendix A.2, we give a formal definition ofHA^B ,
and show that for diagonal Hessians, Iεpθ˚q ď 2εpdetpHA`Bq

detpHA^Bq
q2. As

for the geometric mean of positive numbers, 0 ď detpHA^Bq ď detpHA`Bq; thus, inconsistency is
lowest when shapes of A and B are similar – exactly as in the bottom-left minimizer of Fig. 1.

From Hessians to gradients. We just saw that the consistency of θ˚ is linked to the geometric mean
of the Hessians tHepθ

˚quePE . Under the simplifying assumption that each He is diagonal6 and all
eigenvalues λei are positive, their geometric mean isH^ :“ diagpp

ś

ePE λ
e
1q

1{|E|, . . . , p
ś

ePE λ
e
nq

1{|E|q.
The curvature of the corresponding loss in the i-th eigendirection depends on how consistent the cur-
vatures of each environment are in that direction. Consider now optimizing from a point θk; gradient
descent reads θk`1 “ θk´ηH`pθk´θ˚q, whereH` :“ diagp 1

|E|
ř

ePE λ
e
1, . . . ,

1
|E|

ř

ePE λ
e
nq. For η

small enough7, we have |θk`1
i ´θ˚i | “ p1´η

1
|E|

ř

ePE λ
e
i q|θ

k
i ´θ

˚
i |. As noted, this choice maximises

the speed of convergence to θ˚, but does not take into account whether this minimizer is consistent. We
can reduce the speed of convergence on directions where landscapes have different curvatures – which
would lead to a high inconsistency – by following the gradients from the geometric mean of the land-
scapes, as opposed to the arithmetic mean. I.e, we substitute the full gradient ∇Lpθq “ H`pθk´ θ˚q

with ∇L^pθq “ H^pθk ´ θ˚q. Also, we have that8 ∇L^pθq “ p
ś

ePE ∇Lepθqq
1{|E|: to reduce the

speed of convergence in directions with inconsistency, we can take the element-wise geometric mean
of gradients from different environments (see also Fig. 11 in the appendix).

2.3 MASKING GRADIENTS WITH A LOGICAL AND
The element-wise geometric mean of gradients, instead of the arithmetic mean, increases consistency
in the convex quadratic case. However, there are a few practical limitations:
(i) The geometric mean is only defined when all the signs are consistent. It is still to be defined how

sign inconsistencies, which can occur in non-convex settings, should be dealt with.
(ii) It provides little flexibility for ‘partial’ agreement: Even a single zero gradient component in one

environment stops optimization in that direction.
5This provides a useful simplified perspective. Indeed, this quadratic model is heavily used in the optimization

community (see e.g. Jastrzębski et al. (2017); Zhang et al. (2019a); Mandt et al. (2017).)
6It was shown in (Becker et al., 1988) and recently in (Adolphs et al., 2019; Singh and Alistarh, 2020) that

neural networks have a strong diagonal dominance of the Hessian matrix at the end of training.
7Smaller than 1{λmax, λmax is the maximum eigenvalue of Hessians from different environments,
8This holds if θ ´ θ˚ is positive, otherwise we have ∇L^pθq “ ´

`
ś

ePE |∇Lepθq|
˘1{|E|.
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(iii) For numerical stability, it needs to be computed in log domain (more computationally expensive).

(iv) Adaptive step-size schemes (e.g. Adam (Kingma and Ba, 2015)) rescale the signal component-
wise for local curvature adaptation. The exact magnitude of the geometric mean would be ignored
and most of the difference from arithmetic averaging will come from the zero-ed components.

(i) can be overcome by treating different signs as zeros, resulting in a geometric mean of 0 if there
is any sign disagreement across environments for a gradient component. For (ii) we can allow for
some disagreement (with a hyperparameter), by not masking out if there is a large percentage of
environments with gradients in that direction. (iii) and (iv) can be addressed together: Since the
final magnitude will be rescaled except for masked components, i.e. where the geometric mean is 0,
we can use the average gradients (fast to compute) and mask out the components based on the sign
agreement (computable avoiding the log domain).

The AND-mask. We translate the reasoning we just presented to a practical algorithm that we will
refer to as the AND-mask. In its most simple implementation, we zero out those gradient components
with respect to weights that have inconsistent signs across environments. Formally, the masked
gradients at iteration k aremtpθ

kqd∇Lpθkq, wheremtpθ
kq vanishes for any component where there

are less than t P td{2, d{2` 1, . . . , du agreeing gradient signs across environments (d is the number
of environments in the batch), and is equal to one otherwise. For convenience, our implementation of
the AND-mask uses a threshold τ P r0, 1s as hyper-parameter instead of t, such that t “ d

2 pτ ` 1q.
Mathematically, for every component rmτ sj of mτ , rmτ sj “ 1 rτd ď |

ř

e signpr∇Lesjq|s.
Computing the AND-mask has the same time and space complexity of standard gradient descent,
i.e., linear in the number of examples that we average. Due to its simplicity and computational
efficiency, this is the algorithm that we will use in the experiment section. As a first result, we show
that following the AND-masked gradient leads to convergence in the directions made visible by the
AND-mask. The proof is presented in appendix A.3.

Proposition 1. Let L have L-Lipschitz gradients and consider a learning rate η ď 1{L. After k
iterations, AND-masked GD visits at least once a point θ where }mtpθq d∇Lpθq}2 ď Op1{kq.
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Figure 4: Magnitude of gradient (aver-
age or masked) on random data (|θ| =
3000, t “ 0.8d).

Behaviour in the face of randomness. Here we put the
AND mask through a theoretical test: For gradients coming
from different environments that are inconsistent (or even ran-
dom), how fast does the AND mask reduce the magnitude of
the step taken in parameter space, compared to standard GD?
In case of inconsistency, the AND mask should quickly make
the gradient steps more conservative.

To assess this property, we consider a fixed set of n parameters
θ and gradients ∇Le drawn independently from a multivariate
Gaussian with zero mean and unit covariance.

Proposition 2. Consider the setting we just outlined, with L “ p1{dq
řd
e“1 Le. While E}∇Lpθq}2 “

Opn{dq, we have that @t P td{2` 1, . . . , du, Dc P p1, 2s such that E}mtpθq d∇Lpθq}2 ď Opn{cdq.

The proof is presented in Appendix A.4, and an illustration with numerical verification in Fig. 4 (the
magnitudes of masked gradients (•) for more than 100 examples were always zero in the numerical
verification). Intuitively, in the presence of purely random patterns, the AND-mask has a desirable
property: it decreases the strength of these signals exponentially fast, as opposed to linearly.

3 EXPERIMENTS

Real-world datasets are generated by (causal) generative processes which share mechanisms (Pearl,
2009). However, mechanisms and spurious signals are often entangled, making it hard to assess what
part of the learning signal is due to either. As the goal of this paper is to dissect these two components
to understand how they ultimately contribute to the learning process, we create a simple synthetic
dataset that allows us to control the complexity, intensity, and number of shortcuts in the data. After
that, we evaluate whether spurious signals can be detected even in high-dimensional networks and
datasets by testing the AND-mask on a memorization task similar to the one proposed in Zhang et al.
(2017), and on a behavioral cloning task using the game CoinRun (Cobbe et al., 2019a).
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Environment A Environment B Pooled A & B Test o.o.d.
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Figure 5: A 4-dimensional instantiation of the synthetic memorization dataset for visualization. Every example
is a dot in both circles, and it can be classified by finding either of the “oracle” decision boundaries shown.

3.1 THE SYNTHETIC MEMORIZATION DATASET

We introduce a binary classification task. The input dimensionality is d “ dM ` dS . While ppy|xdM q
is the same across all environments (i.e. the mechanism), ppy|xdS , eq is not the same across all
environments (the shortcuts). While the mechanism is shared, it needs a highly non-linear decision
boundary to classify the data. The shortcuts are not shared across environments, but provide a simple
way to classify the data, even when pooling all the environments together. See Figure 5 for a concrete
example with dM and dS equal to 2, and two environments (A and B). The spirals (on dM ) are
invariant but hard to model. The shortcuts (on dS) are simple blobs but different in every environment:
in A, linearly separable through a vertical decision boundary, in B with a horizontal one. If the two
environments are pooled, a new diagonal decision boundary emerges on the shortcut dimensions as
the most ‘natural’ one. While this perfectly classifies data in both environments A and B, critically
it would have not been found by training on either partition A or B alone. The out-of-distribution
(o.o.d.) test data has the same mechanism but random shortcuts. Therefore, any method relying
exclusively on the shortcuts will have chance-level o.o.d. performance. Details about the dataset,
baselines, and training curves are reported in appendix B.

Despite the apparent simplicity of this dataset, note that it is challenging to find the invariant
mechanism. In high dimensions, even with tens of pooled environments, the shortcuts allow for a
simple classification rule under almost every classical definition of ‘simple’: the boundary is linear, it
has a large margin, it can be expressed with small weights, it is fast to learn, robust to input noise,
and has perfect accuracy and no i.i.d. generalization gap. Finding the complex decision boundary of
the spirals, instead, is a fiddly process and arguably a much slower path towards small loss.

Baselines. We evaluate several domain-agnostic baselines (all multilayer perceptrons) with some
of the most common regularizers used in deep learning — Dropout, L1, L2, Batch normalization.
We also consider methods that explicitly make use of the environment labels, namely: (i) Domain
Adversarial Neural Networks (DANN) (Ganin et al., 2016), a method specifically designed to address
domain adaptation by obfuscating domain information with an adversarial classifier; (ii) Invariant
Risk Minimization (IRM) (Arjovsky et al., 2019), discussed in detail in appendix B. The AND-mask
is trained with the same configurations in Table 1.

Dropout, L2, L1 DANN IRM AND-mask
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Figure 6: Results on the synthetic dataset.

Results. Fig. 6 shows training and test accuracy.
DANN fails because it can align the representation-
layer distributions from different environments using
only shortcuts, such that they become indistinguishable
to the domain-discriminating classifier. The AND-mask
was the only method to achieve perfect test accuracy,
by fitting the spirals instead of the shortcuts. In par-
ticular, the combination of the AND-mask with L1 or
L2 regularization gave the most robust results overall,
as they help suppress neurons that at initialization are
tuned towards the shortcuts.

Correlations between average, memorization and generalization gradients. Due to the syn-
thetic nature of the dataset, we can intervene on its data-generating process in order to examine
the learning signals coming from the mechanisms and from the shortcuts. We isolate the two and
measure their contribution to the average gradients, as we vary the agreement threshold of the
mask. More precisely, we look at the gradients computed with respect to the weights of a ran-
domly initialized network for different sets of data: (i) The original data, with mechanisms and
shortcuts. (ii) Randomly permuting the dataset over the mechanisms dimensions, thus leaving the
“memorization” signal of the shortcuts. (iii) Randomly permuting over the shortcuts dimensions,
isolating the “generalization” signal of the mechanisms alone. Figure 7 shows the correlation be-
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tween the components of the original average gradient (i) and the shortcut gradients ((ii), dashed
line), and between the original average gradients and the mechanism gradients ((iii), solid line).
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Figure 7: Gradient correlations.

While the signal from the mechanisms is present in the
original average gradients (i.e. ρ « 0.4 for τ “ 0), its mag-
nitude is smaller and it is ‘drowned’ by the memorization
signal. Instead, increasing the threshold of the AND-mask
(right side) suppresses memorization gradients due to the
shortcuts, and for τ « 1 most of the gradient components
remaining contain signal from the mechanism. On the left
side, we test the other side of our hypothesis: An XOR-
mask zeroes out consistent gradients, preserves those with
different signs, and results in a sharper decrease of the
correlation with the mechanism gradients.

3.2 EXPERIMENTS ON CIFAR-10

Memorization in a vision task. Zhang et al. (2017) showed that neural networks trained with
standard regularizers — like L2 and Dropout — can still memorize large training datasets with
shuffled labels, i.e. reaching «100% training accuracy. Their experiments raised significant questions
about the generalization properties of neural networks and the role of regularizers in constraining
the hypothesis class. Our hypothesis is that ILC — for example implemented as the AND-mask
— should prevent memorization on a similar task with the shuffled labels, as gradients will tend to
largely ‘disagree’ in the absence of a shared mechanism. However, when the labels are not shuffled,
ILC should have a much weaker effect, as real shared mechanisms are still present in the data.

To test our hypothesis, we ran an experiment that closely resembles the one in (Zhang et al., 2017) on
CIFAR-10. We trained a ResNet on CIFAR-10 with random labels, with and without the AND-mask.
In all experiments we used batch size 80, and treated each example as its own “environment”. Recall
that standard gradient averaging is equivalent to an AND-mask with threshold 0. As shown in Figure
8, the ResNet with standard average gradients memorized the data, while slightly increasing the
threshold for the AND-mask quickly prevented memorization (dark blue line). In contrast, training
the same networks on the dataset with the original labels resulted in both of them converging and
generalizing to the test set, confirming that the mask did not significantly affect the generalization
error with a general underlying mechanism in the data.
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Figure 8: As the AND-mask threshold
increases, memorization on CIFAR-10
with random labels is quickly hindered.

Note that there is no standard notion of environments in CIFAR-
10, which is why we treated every example as coming from
its own environment. This assumption is not unreasonable,
as every image in the dataset was literally collected in a dif-
ferent physical environment. If anything, it is the standard
i.i.d. assumption that hides this variety behind a notion of a
single distribution encompassing all environments. The results
of this experiment further support this interpretation, and can
serve as evidence that — in some cases — we might be able
to identify invariances even without an explicit partition into
environments, as this can be already identified at the level of
individual examples.
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Figure 9: The AND-mask prevents
overfitting to the incorrectly labeled
portion of the training set (left) without
hurting the test accuracy (right).

Label noise. Following up on this experiment, we test how
the AND-mask performs in the presence of label noise, i.e. when
a portion of the labels in the training set are randomly shuffled
(25% here). According to our hypothesis, gradients computed
on examples with random labels should disagree and get masked
out by the AND-mask, while signal from correctly labeled data
should contribute to update the model. As shown in Figure 9,
the performance on the incorrectly labeled portion of the dataset
is well below chance for the AND-mask (as it predicts correctly
despite the wrong labels), while the baseline again memorizes
the incorrect labels. On the test set (with untouched labels), the
baseline peaks early then decreases as the model overfits, while
the AND-mask slowly but steadily improves.
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3.3 BEHAVIORAL CLONING ON COINRUN

CoinRun (Cobbe et al., 2019b) is a game introduced to test how RL agents generalize to novel
situations. The agent needs to collect coins, jumping on top of walls and boxes and avoiding
enemies.9 Each level is procedurally generated — i.e. it has a different combination of sprites,
background, and layout — but the physics and goals are invariant. Cobbe et al. (2019b) showed that
state-of-the-art RL algorithms fail to model these invariant mechanisms, performing poorly on new
levels unless trained on thousands of them. To test our hypothesis, we set up a behavioral cloning
task using CoinRun.10 We start by pre-training a strong policy π˚ using standard PPO (Schulman
et al., 2017) for 400M steps on the full distribution of levels. We then generate a dataset of pairs
ps, π˚pa|sqq from the on-policy distribution. The training data consists of 1000 states from each
of 64 levels, while test data comes from 2000 levels. A ResNet-18 π̂θ is then trained to minimize
the loss DKLpπ

˚||π̂θq on the training set. We compare the generalization performance of regular
Adam to a version that uses the AND-mask. For each method we ran an automatic hyperparameter
optimization study using Tree-structured Parzen Estimation (Bergstra et al., 2013) of 1024 trials.
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Despite the theoretical computational efficiency of computing the AND-
mask as presented in Section 2.3 (i.e., linear time and memory in the size of
the mini-batch, just like classic SGD), current deep learning frameworks like
PyTorch (Paszke et al., 2017) have optimized routines that sum gradients
across examples in a mini-batch before it is possible to efficiently compute
the AND-mask. We therefore test the AND-mask in a slightly different way.
In training, in each iteration we sample a batch of data from a randomly
chosen level out of the 64 available (and cycle through them all once per
epoch). We then apply the AND-mask ‘temporally’, only allowing gradients
that are consistent across time (and therefore across levels). See Algorithm
1 in appendix B.6 for a detailed description of this alternative formulation
of the AND-mask. The figure shows the minimum test loss for the 10 best
runs, supporting the hypothesis that the AND-mask helps identify invariant
mechanisms across different levels.

4 RELATED WORK

Generalization and covariate shift. The classic formulation of statistical learning theory (Vapnik)
concerns learning from independent and identically distributed samples. The case where the distribu-
tion of the covariates at test time differs from the one observed during training is termed covariate
shift (Sugiyama et al., 2007; Quionero-Candela et al., 2009; Sugiyama and Kawanabe, 2012). Stan-
dard solutions involve re-weighting of the training examples, but require the additional assumption of
overlapping supports for train and test distributions.
Causal models and invariances. As we mentioned in the Introduction, causality provides a strong
motivation for our work, based on the notion that statistical dependencies are epiphenomena of an
underlying causal model (Pearl, 2009; Peters et al., 2017). The causal description identifies stable
elements – e.g. physical mechanisms – connecting causes and effects, which are expected to remain
invariant under interventions or changing external conditions (Haavelmo, 1943; Schölkopf et al.,
2012)). This motivates our notion of invariant mechanisms, and inspired related notions which have
been proposed for robust regression (Rojas-Carulla et al., 2018; Heinze-Deml et al., 2018; Arjovsky
et al., 2019; Hermann and Lampinen, 2020; Ahuja et al., 2020; Krueger et al., 2020). We discuss this
in more detail in appendix C.1.
Domain generalization. ILC can be used in a setting of domain generalization (Muandet et al., 2013),
but it is not limited to it: as demonstrated in the experiments in Section 3.2, the AND-mask can be
applied even if domain labels are not available. In contrast, by treating every example as a single
domain, methods relying on domain classifiers (like DANN Ganin et al. (2016) or Balaji et al. (2018))
would require as many output units as there are training examples (i.e. 50’000 for CIFAR-10).
Gradient agreement. Looking at gradient agreement to learn meaningful representations in neural
networks has been explored in (Du et al., 2018; Eshratifar et al., 2018; Fort et al., 2019; Zhang et al.,
2019b). These approaches mainly rely on a measure of cosine similarity between gradients, which

9See Figure 17 in appendix B.6 for a visualization of the game.
10To obtain a robust evaluation, we preferred to approach behavioral cloning instead of the full RL problem, as

it is a standard supervised learning task and has substantially fewer moving parts than most deep RL algorithms.
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we did not consider here for two main reasons: (i) It is a ‘global’ property of the gradients, and it
would not allow us to extract precise information about different patterns in the network; (ii) It is
unclear how to extend it beyond pairs of vectors, and for pairwise interactions its computational cost
scales quadratic in the number of examples used.

5 CONCLUSIONS

Generalizing out of distribution is one of the most significant open challenges in machine learning,
and relying on invariances across environments or examples may be key in certain contexts. In
this paper we analyzed how neural networks trained by averaging gradients across examples might
converge to solutions that ignore the invariances, especially if these are harder to learn than spurious
patterns. We argued that if learning signals are collected on one example at the time — as it is the
case for gradients, e.g., computed with backpropagation — the way these signals are aggregated
can play a significant role in the patterns that will ultimately be expressed: Averaging gradients in
particular can be too permissive, acting as a logical OR of a collection of distinct patterns, and lead to
a ‘patchwork’ solution. We introduced and formalized the concept of Invariant Learning Consistency,
and showed how to learn invariances even in the face of alternative explanations that — although
spurious — fulfill most characteristics of a good solution. The AND-mask is but one of multiple
possible ways to improve consistency, and it is unlikely to be a practical algorithm for all applications.
However, we believe this should not distract from the general idea which we are trying to put forward
— namely, that it is worthwhile to study learning of explanations that are hard to vary, with the longer
term goal of advancing our understanding of learning, memorization and generalization.
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A APPENDIX TO SECTION 2

A.1 A CLASSIC EXAMPLE OF A PATCHWORK SOLUTION

Consider a neural network with one hidden layer consisting of two neurons and sigmoidal activations:

fθpxq “ θ5σpθ1x` θ2q ` θ6σpθ3x` θ4q, σpzq :“ 1{p1` e´zq. (3)

We want to learn the continuous function f˚ : r0, 1s Ñ r0, 2s defined as

f˚pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 x P r0, 0.4q;

10px´ 0.4q x P r0.4, 0.5q;

1 x P r0.5, 0.7q;

10px´ 0.7q ` 1 x P r0.7, 0.8q;

2 x P r0.8, 1s.

To perform this task, we have access to (noiseless) data from two environments:

A : tpx, fpxqq | x P r0, 0.5qu, B : tpx, fpxqq | x P r0.5, 1su.

There is a simple constructive way, provided by the universal function approximation theorem Cy-
benko (1989) to fit this function11 using fθ up to an arbitrarily small mean squared error LA`Bpθ˚q.
Leaving out the details of such a construction (Cybenko (1989) for details), the reader can check
on the left panel of Figure 10 that θ˚ “ p100,´50, 100,´75, 1, 1q provides a good fit for both
environments A and B — both LApθ˚q and LBpθ˚q are small.
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Figure 10: Performance of the neural network in Equation 3 for two different parameters. Any reasonable
modification on θ6 (say ˘1) leaves the performance on environment A unchanged, while the performance on
environment B quickly degrades.

However, it is easy to realize that θ˚ — while being a solution which can be returned by gradient
descent using the pooled data A+B — is not consistent (formal definition given in the main paper in
Section 2). Indeed, it is possible to modify θ̃˚ such that the loss in environment A remains almost
unchanged, while the loss in environment B gets larger. In particular, on the right panel of Figure 10,
we show that θ̃˚ “ p100,´50, 100,´75, 1,´0.5q is such that LApθ˚q ď LApθ̃˚q ` ε (with ε very
small) but LBpθ˚q ! LBpθ̃˚q. According to our definition in Equation 1 (see main paper), we have
Iεpθ˚q ď |LBpθ˚q ´ LBpθ̃˚q|— that is a large number (low consistency).
Remark 1 (Connection to out of distribution generalization). The main point of this analysis was to
show an example of where our measure of consistency behaves according to expectations: A typical
implementation of the universal approximation theorem — which one would not expect to generalize
out of distribution, due to its ‘patchwork’ behavior — leads indeed to a very low consistency score.

11For a graphical description, the reader can check http://neuralnetworksanddeeplearning.
com/chap4.html
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A.2 SECTION 2.2: CONSISTENCY AS ARITHMETIC/GEOMETRIC MEAN OF LANDSCAPES

Geometric mean of matrices. Given an n-tuple of dˆ d positive definite matrices pAjqnj“1, the
geometric (Karcher) mean Ando et al. (2004) is the unique positive definite solutionX to the equation
řm
i“1 logpA´1

i Xq “ 0, where log is the matrix logarithm. This matrix average has many desirable
properties, which make it relevant to signal processing and medical imaging. The Karcher mean
can also be written as arg minXPS``pdq fpXq “

1
2m

řm
i“1 dpAi, Xq

2, where d is the Riemannian
distance in the manifold of SPD matrices S``pdq.
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Figure 11: While the arithmetic mean of the two loss surfaces on the left is identical in all three cases (third
column), the geometric mean has weaker and weaker gradients (black arrow) the more inconsistent the two loss
surfaces become.

Link between consistency and geometric means. Here we show how the consistency score
introduced in Equation 1 can be linked (in a simplified setting) to a comparison between the arithmetic
and geometric means of the Hessians approximating the landscapes of two separate environments A
and B.

At the local minimizer θ˚ “ 0, we assume that LA “ LB “ 0 and consider the local quadratic
approximations LApθq “ 1

2θ
JHAθ and LBpθq “ 1

2θ
JHBθ. Here, we make the additional

simplifying assumption that HA and HB are diagonal (or, more broadly, co-diagonalizable):
HA “ diagpλA1 , ¨ ¨ ¨ , λ

A
n q, HB “ diagpλB1 , ¨ ¨ ¨ , λ

B
n q, with λAi ě 0 and λBi ě 0 for all i “ 1, . . . , n.

The arithmetic and geometric means (noted as HA`B and HA^B) of these matrices are defined in
this simplified setting as follows:

HA`B “ diag
ˆ

1

2
pλA1 ` λ

B
1 q, ¨ ¨ ¨ ,

1

2
pλAn ` λ

B
n q

˙

, HA^B “ diag
ˆ

b

λA1 λ
B
1 , ¨ ¨ ¨ ,

b

λAnλ
B
n

˙

.

As motivated in the main paper and in Figure 12, one can link the consistency of two landscapes to a
comparison between the geometric and arithmetic means of the corresponding Hessians.

Proposition 3. In the setting we just described, the consistency score in Equation 1 can be estimated
as follows:

Iεpθ˚q ď 2ε

ˆ

detpHA`Bq

detpHA^Bq

˙2

.
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Figure 12: Plotted are contour lines θJH´1θ “ 1 for HA “ diagp0.01, 1q and HB “ diagp1, 0.01q. It is
convenient to provide this visualization because it is linked to the matrix determinant: VolptθJH´1θ “ 1uq “

π
a

detpHq. The geometric average retains the volume of the original ellipses, while the volume of HA`B is 25
times bigger. This magnification indicates that landscape A is not consistent with landscape B.

Before showing the proof, we note that the proposition gives a lower bound on the consistency.
That is, it provides a pessimistic estimate. Yet, as we motivated, this estimate has a nice geometric
interpretation. However, as we outline in a remark after the proof, this estimate is tight in two
important limit cases.

Proof. In this setting, Equation 1 gives

Iεpθ˚q :“ max

"

max
LApθqďε

LBpθq, max
LBpθqďε

LApθq
*

.

Recall that
LApθq “

1

2
θJHAθ “

1

2

ÿ

i

λAi θ
2
i .

Hence, this is a simple quadratic program with quadratic constraints, and

max
LApθqďε

LBpθq “ max
1
2

ř

i λ
A
i θ

2
iďε

1

2

ÿ

i

λBi θ
2
i .

Further, we can change variables and introduce θ̃i “ θi
a

λAi {2. The problem gets even simpler:

max
LApθqďε

LBpθq “ max
}θ̃}2ďε

ÿ

i

λBi
λAi

θ̃2
i “ ε ¨max

i

λBi
λAi

.

All in all, we get

Iεpθ˚q “ εmax

"

max
i

λBi
λAi

,max
i

λAi
λBi

*

“ ε ¨max
i

max

"

λBi
λAi

,
λAi
λBi

*

ď ε ¨max
i

ˆ

λBi
λAi

`
λAi
λBi

˙

“ ε ¨max
i

"

pλBi q
2 ` pλAi q

2

λBi λ
A
i

*

ď ε ¨max
i

"

pλBi ` λ
A
i q

2

λBi λ
A
i

*

.

This means
a

Iεpθ˚q ď εmax
i

λBi ` λ
A
i

a

λBi λ
A
i

“ 2εmax
i

pλBi ` λ
A
i q{2

a

λBi λ
A
i

ď 2ε

ś

ipλ
B
i ` λ

A
i q{2

ś

i

a

λBi λ
A
i

“ 2ε
detpHA`Bq

detpHA^Bq
,

where the first inequality comes from the monotonicity of the square root function, and the second
inequality comes from the fact that (i) the geometric mean is always smaller or equal than the
arithmetic mean and (ii) for any sequence of numbers αi ą 1, maxi αi ď

ś

i αi.
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Remark 2 (Sanity check). There are two important cases where we can test the bound above. First, if
HA “ HB , then Iεpθ˚q “ ε, and the bound returns Iεpθ˚q ď 2ε, since the geometric and arithmetic
mean are the same. Next, say λAi “ 0 but λBi ą 0; then, both the bound and the inconsistency score
are8 (highest possible inconsistency).

A.3 PROOF OF PROPOSITION 1

In this appendix section we consider the AND-masked GD algorithm, introduced at the end of
Section 2. We recall that the masked gradients at iteration k are mtpθ

kq d∇Lpθkq, where mtpθ
kq

vanishes for any component where there are less than t P td{2` 1, . . . , du agreeing gradient signs
across environments, and is equal to one otherwise. In a full-batch setting, the algorithm is

θk`1 “ θk ´ η mtpθ
kq d∇Lpθkq, (AND-masked GD)

where η ą 0 is the learning rate.

Proposition 1. Let L have L-Lipschitz gradients and consider a learning rate η ď 1{L. After k
iterations, AND-masked GD visits at least once a point θ where }mtpθq d∇Lpθq}2 ď Op1{kq.

Proof. Thanks to the component-wise L-smoothness and using a Taylor expansion around θi we
have

Lpθi`1q ď Lpθiq ´ ηx∇Lpθiq,mtpθ
iq d∇Lpθiqy ` Lη2

2
}mtpθ

iq d∇Lpθiq}2

“ Lpθiq ´
ˆ

η ´
Lη2

2

˙

}mtpθ
iq d∇Lpθiq}2.

If we seek η ´ Lη2{2 ě η{2, then η ď 1
L , as we assumed in the proposition statement. Therefore,

Lpθi`1q ď Lpθiq ´ pη{2q}mtpθ
iq d∇Lpθiq}2, for all i ě 0. Summing over i from 0 to a desired

iteration k, we get

k´1
ÿ

i“0

pη{2q}mtpθ
iq d∇Lpθiq}2 ď Lpθ0q ´ Lpθkq ď Lpθ0q.

Therefore,

min
i“0,...,k

}mtpθ
iq d∇Lpθiq}2 ď 1

k

k´1
ÿ

i“0

pη{2q}mtpθ
iq d∇Lpθiq}2 ď 2Lpθ0q

ηk
.

Hence, there exist an iteration i˚ P t0, . . . , ku such that }mtpθ
i˚q d∇Lpθi˚q}2 ď Op1{kq.

A.4 PROOF OF PROPOSITION 2

Here we fix parameters θ P Rn and assume gradients ∇Lepθq P Rn coming from environments
e P E are drawn independently from a multivariate Gaussian with zero mean and σ2I covariance. We
want to show that, in this random setting, the AND-mask introduced in Section 2.3 decreases the
magnitude of the gradient step.

Proposition 2. Consider the setting we just outlined, with L “ p1{dq
řd
e“1 Le. While E}∇Lpθq}2 “

Opn{dq, we have that @t P td{2` 1, . . . , du, Dc P p1, 2s such that E}mtpθq d∇Lpθq}2 ď Opn{cdq.

Proof. Let us drop the argument θ for ease of notation. First, let us consider ∇L (no gradient
AND-mask):

E

›

›

›

›

›

1

d

d
ÿ

i“1

∇Lei

›

›

›

›

›

2

“
1

d2

d
ÿ

i“1

E}∇Lei}2 “
nσ2

d
,

where in the first equality we used the fact that the ∇Lei are uncorrelated and in the second the fact
that Er}∇Lei}2s is the trace of the covariance of ∇Lei .
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Next, assume we apply the element-wise AND-mask mt to the gradients, which puts to zero the
components (dimensions) where there are less than t P td{2, . . . , du equal signs. Since Gaussians are
symmetric around zero, the probability of having exactly u positive j-th gradient component among
d environments is Prppj “ uq “

`

1
2

˘d `d
u

˘

. Hence, the probability to keep the j-th gradient direction
(considering also negative consistency) is

Prrrmtsj “ 1s “
d
ÿ

u“t

Prppj “ uq `
d´t
ÿ

u“0

Prppj “ uq

“

ˆ

1

2

˙d d
ÿ

k“t

ˆ

d

k

˙

`

ˆ

1

2

˙d d´t
ÿ

k“0

ˆ

d

k

˙

“ 2

ˆ

1

2

˙d d
ÿ

k“t

ˆ

d

k

˙

. (4)

We would now like to compute E
›

›

›
mt d

´

1
d

řd
i“1 ∇Lei

¯
›

›

›

2

. The difficulty lies in the fact that the
event mt “ 1 makes gradients conditionally dependent. Indeed, conditioning on both mt “ 1 and
r∇Lesj ą 0 changes the distribution of r∇Le1sj : this gradient entry is going to be more likely to be
positive or negative, depending on the value of r∇Lesj and on the details of the gradient mask. To
solve the issue, we our strategy is to reduce the discussion (without loss in generality and with no
additional assumption) to the case where gradient entries have all the same sign and hence conditional
independence is restored.

We consider the following writing for the quantity we are interested in:

E

›

›

›

›

›

mt d

˜

1

d

d
ÿ

i“1

∇Lei

¸
›

›

›

›

›

2

“

n
ÿ

j“1

E

»

–rmtsj

˜

1

d

d
ÿ

i“1

r∇Leisj

¸2
fi

fl

“

n
ÿ

j“1

d
ÿ

p̂j“0

E

»

–rmtsj

˜

1

d

d
ÿ

i“1

r∇Leisj

¸2
ˇ

ˇ

ˇ

ˇ

pj “ p̂j

fi

flPrrpj “ p̂js

“

n
ÿ

j“1

pd´tq
ÿ

p̂j“0

d
ÿ

p̂j“t

E

»

–

˜

1

d

d
ÿ

i“1

r∇Leisj

¸2
ˇ

ˇ

ˇ

ˇ

pj “ p̂j

fi

flPrrpj “ p̂js

“ 2
n
ÿ

j“1

d
ÿ

p̂j“t

E

»

–

˜

1

d

d
ÿ

i“1

r∇Leisj

¸2
ˇ

ˇ

ˇ

ˇ

pj “ p̂j

fi

fl

ˆ

1

2

˙dˆ
d

p̂j

˙

,

where we used the definition of 2-norm, the law of total expectation, and the symmetry of the problem
with respect to positive and negative numbers. Finally, since the gradient components within the
same environment are conditionally independent, for any j P t1, . . . , nu we can write

E

›

›

›

›

›

mt d

˜

1

d

d
ÿ

i“1

∇Lei

¸
›

›

›

›

›

2

“ 2n
d
ÿ

p̂j“t

E

»

–

˜

1

d

d
ÿ

i“1

r∇Leisj

¸2
ˇ

ˇ

ˇ

ˇ

pj “ p̂j

fi

fl

ˆ

1

2

˙dˆ
d

p̂j

˙

.

Finally, we note that the following bound holds:

E

»

–

˜

1

d

d
ÿ

i“1

r∇Leisj

¸2
ˇ

ˇ

ˇ

ˇ

pj “ p̂j ď d

fi

fl ď E

»

–

˜

1

d

d
ÿ

i“1

r∇Leisj

¸2
ˇ

ˇ

ˇ

ˇ

pj “ d

fi

fl .

Indeed, if all environments lead to positive (or, symmetrically, negative) and non-interacting gradients
in the j-th direction, the average will be the biggest in norm. Moreover — crucially — conditioned
on the event pj “ d, gradients coming from different environments are distributed as a positive
half-normal distributions. Moreover, they are conditionally independent; this because, since they are
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all positive, the value of a gradient in one environment cannot influence the value of the gradient
in another one. We remark that conditional independence on the right-hand side is therefore not an
assumption, but is intrinsic to the upper bound.

Putting it all together, we have

E

›

›

›

›

›

mt d

˜

1

d

d
ÿ

i“1

∇Lei

¸
›

›

›

›

›

2

ď 2n
d
ÿ

p̂j“t

E

»

–

˜

1

d

d
ÿ

i“1

r∇Leisj

¸2
ˇ

ˇ

ˇ

ˇ

pj “ d

fi

fl

ˆ

1

2

˙dˆ
d

p̂j

˙

ď 2n
d
ÿ

p̂j“t

σ2

ˆ

1

2

˙dˆ
d

p̂j

˙

ď σ2npd´ tq

ˆ

d

t

˙ˆ

1

2

˙d´1

,

where in the second line we bounded the squared average of a sum of half normal distributions: let
tXiu

d
i“1 be a family of uncorrelated positive half-normal distributions derived from a Gaussians with

mean zero and variance σ2, we have12 that ErXis “ σ
a

2{π and ErX2
i s “ σ2. Also, ErXiXjs “

ErXisErXjs ď σ2. Therefore,

E

»

–

˜

1

d

d
ÿ

i“1

Xi

¸2
fi

fl “
1

d2

d
ÿ

i,j“1

ErXiXjs ď σ2.

Finally, if we set r “ t{d P p0.5, 1s, we have13

ˆ

d

t

˙

„

ˆ

1

rrp1´ rq1´r

˙d

as dÑ8 (discarding all polynomial terms). Hence
`

d
t

˘

is of the form qd, with 1 ď q ă 2. So, the

quantity σ2npd´ tq
`

d
t

˘ `

1
2

˘d´1
will be exponentially decreasing at a rate Opn{p2´ qqdq. Notably, if

t “ d{2, then we lose the exponential rate and get back to Opn{dq.

12https://en.wikipedia.org/wiki/Half-normal_distribution
13Theorem 1 in Burić, Tomislav, and Neven Elezović. “Asymptotic expansions of the binomial coefficients.”

Journal of applied mathematics and computing 46.1-2 (2014): 135-145.
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B APPENDIX TO SECTION 3

We used Pytorch Paszke et al. (2017) to implement all experiments in this pa-
per. Our codebase is publicly available at https://github.com/gibipara92/
learning-explanations-hard-to-vary.

B.1 SECTION 3.1

Table 1: Hyperparameter ranges for synthetic data experiments. The regularizers L1 and L2 are never combined;
instead, one weight regularization type out of L1, L2 and none is selected and we sample from the respective
range afterwards.

Hyperparameter Ranges

No. hidden units t256, 512u
No. hidden layers t3, 5u
Batch-size t64, 128, 256u
Optimizer tAdamβ1“0.9,β2“0.999, SGD + momentum0.9u

Learning rate t1e-3, 1e-2, 1e-1u
Batch-normalization tYes, Nou
Dropout t0.0, 0.5u
L2 regularization t1e-5, 1e-4, 1e-3u
L1 regularization t1e-6, 1e-5, 1e-4u

B.2 DATASET

x1

x 2

Figure 13: The spirals
used as the mechanism
in the synthetic memo-
rization dataset.

Here we report more technical details about the synthetic dataset described in
Section 3. Each example is constructed as follows: we first choose the label
randomly to be either `1 or ´1, with equal probability. The example is a
vector with dS ` dM entries, consisting of the shortcut and the mechanism. In
our experiments, dM “ 2 and dS “ 32.

The Gaussian shortcuts are obtained by first sampling one random vector
xs P RdS per environment. Its components xs,i are sampled independently
from a Normal distribution: xs,i „ N p0, 0.1q. We use xs for class 1, and ´xs
for class -1. In the test set, all shortcut components are sampled i.i.d. from the
same Normal distribution. Effectively, each example of the test set belongs to
a different domain. The mechanism is implemented as the two interconnected
spirals shown in Figure 13 by sampling the radius r „ Unifp0.08, 1.0q and
then computing the angle as α “ 2πnr where n is the number of revolutions of the spiral. We add
uniform noise in the range r´0.02, 0.02s to the radii afterwards.

The training dataset consists of 1280 examples per environment and we use D “ 32 environments
unless otherwise mentioned. The training datasets consists of 2000 examples.

B.3 EXPERIMENT

We train all networks for t3000{Du epochs, dropping the learning rate by a factor 10 halfway through,
and again at three-quarters of training. For computational reason, we stop each trial before completion
if the training accuracy exceeds 97% and the test accuracy is below 60%. All networks are MLPs with
LeakyReLU activation functions and a cross-entropy loss on the output. We run a hyperparameter
search over the ranges shown in Table 1. For IRM and the AND-mask, we select the best-performing
run and re-run it 50 times with different random seeds. For DANN and the standard baselines nothing
produced results significantly better than chance.

B.3.1 STANDARD REGULARIZERS AND AND-MASK

The networks with the L1, L2, Dropout and Batch-normalization regularizers, have hyperparameters
that were randomly selected from Table 1. For the AND-mask we used the very same ranges. The
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regularizers L1 and L2 are never combined; instead, one weight regularization type out of L1, L2
and none is selected and we sample from the respective range afterwards. The parameters found to
work best from the grid search were: agreement threshold of 1, 256 hidden units, 3 hidden layers,
batch size 128, Adam with learning rate 1e-2, no batch norm, no dropout, L2-regularization with a
coefficient of 1e-4, no L1-regularization. In practice, we often found it helpful to rescale the gradients
after masking to compensate for the decreasing overall magnitude. We add the option for gradient
rescaling as an additional hyperparameter, as we found it to help in several experiments. It rescales
gradient components layer-wise after masking, by multiplying the remaining gradient components
by c, where c is the ratio of the number of components in that layer over the number of non-masked
components in that layer (i.e. the sum of the binary elements in the mask).14. We speculate that for
very large layers, a less extreme normalization scheme or the additional use of gradient clipping
might be appropriate.

B.3.2 DOMAIN ADVERSARIAL NEURAL NETWORKS

The experiments using DANN follow a similar pattern. The model consists of an embedding network,
a classification network, and a “domain discrimination” network. All three modules are two-layer
multi-layer perceptrons (MLP). The number of hidden units of all MLPs are sampled from the range
specified in Table 1, and we trained 100 models. Both label classifier and domain discriminator
are applied to the output of the embedding network. The label classifier is trained to minimize the
cross-entropy-loss between the predicted and the true label. Similarly, the domain discriminator is
trained to minimize the loss between predicted and true domain-label. The embedding network is
trained to minimize the regular task classification loss and at the same time to maximize the the
domain-loss achieved by the domain discriminator.

B.3.3 INVARIANT RISK MINIMIZATION

For the experiments using IRM we used the authors’ PyTorch implementation from https:
//github.com/facebookresearch/InvariantRiskMinimization. We perform a
random hyperparameter search over with the ranges shown in Table 2

Table 2: Hyperparameter ranges for IRM.

Hyperparameter Ranges

No. hidden units t256, 512u
No. hidden layers t3, 5u
Batch-size t64, 128, 256u
Optimizer tAdamβ1“0.9,β2“0.999, SGD + momentum0.9u

Batch-normalization tYes, Nou
Penalty weight t10.0, 100.0, 1000.0u
Number of annealing iterations t0, 1, 2, 4, 8u
Learning rate t1e-3, 1e-2, 1e-1, 1u

B.3.4 CURVES FOR ALL EXPERIMENTS

In Figure 14 we show the learning curves of training and test accuracy for the different methods.

B.3.5 CORRELATION PLOTS

For the correlation plots in Figure 7 we used a randomly initialized MLP with the following configu-
ration: 3 hidden layers, 256 hidden units. The dataset was using 16 environments and batches of size
1024. The lines in Figure 7 are linear least-squares regressions to the gradient data shown as scatter
plots. We repeat the experiment 10 times with different network weight seeds, resulting in the 10
regression lines. Zero gradients are excluded from the regression computation, as most gradients are
masked out by the product mask in both cases.

14Therefore, c is 1 if the AND-mask has only 1s, and infinite if all components are masked out (which we
then keep as 0.)
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Figure 14: Learning curves for the evaluated methods. The top row shows the accuracy on the training set, the
bottom row shows the accuracy on the test set.

B.4 FURTHER VISUALIZATIONS AND EXPERIMENTS

In Figure 15 we show how many environments need to be present for the baseline without AND-mask
to switch the decision boundary from the shortcuts to the mechanism. Under the same experimental
condition as in the main paper, the baseline first succeeds at 1024 environments.

2 4 8 16 32 256 512 1024 2048 409664 128
0.5

1.0

M
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ur
ac

y Baseline
Prod-mask

Training environments

Figure 15: Relationship between number of training environments and test accuracy for the AND-mask method
compared to the baseline. We show the best performance out of five runs using the settings that were used for
the experiment in the main text.

B.5 SECTION 3.2: CIFAR-10 MEMORIZATION AND LABEL NOISE EXPERIMENTS

      0.00      0.05      0.10      0.20       0.40      0.60      0.80
Agreement threshold

0.25

0.50

0.75

1.00

A
cc

ur
ac

ie
s

AND-mask

Standard Labels
Random Labels

Figure 16: Dashed lines show test acc,
solid lines show training acc.

Memorization experiment In Figure 16, we report the test
performance (dashed lines) corresponding to the curves pre-
sented in the main paper for the CIFAR-10 memorization
experiment. The test performance with standard labels de-
creases slower than the training performance as the threshold
increases, and they eventually reach the same value. This is
consistent with the hypothesis that by training on the consis-
tent directions, the AND-mask selects the invariant patterns
and prunes out the signals that are not invariant.

Network architecture and training details Each trial
trains the ResNet “FastResNet” from the PyTorch-Ignite example15 for 80 epochs on the full
CIFAR-10 training set. We use the Adam optimizer with a learning rate of 5e´4, and a 0.1 learning
rate decay at epoch 40 and 60. We fix the batch size to 80. We set up 14 trials by evaluating each of the
AND-mask-thresholds t0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8u for two datasets: (a) unchanged CIFAR-10, (b)
CIFAR-10 with the training labels replaced by random labels. Note that a threshold of 0 corresponds
to not using the AND-mask. Each trial is run twice with separate random seeds.

Label noise experiment We trained the same ResNet as for the experiment above, once with and
once without the AND-mask. We ran each experiment with three different starting learning rates

15https://github.com/pytorch/ignite/blob/master/examples/contrib/
cifar10/fastresnet.py
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t5e´4, 1e´3, 5e´3u and a learning rate decay at epoch 60. The baseline worked best with a learning
rate of 1e´3, while the AND-mask with 5e´3, likely to compensate for the masked out gradients.
The AND-mask threshold that worked best was 0.2, which is consistent with the results obtain in the
experiment above.

B.6 SECTION 3.3: BEHAVIORAL CLONING ON COINRUN

The target policy π˚ is obtained by training PPO (Schulman et al., 2017) for 400M time steps
using the code16 for the paper Cobbe et al. (2020). This policy is trained on the full distribution of
levels in order to maximize its generality. We use π˚ to generate a behavioral cloning (BC) dataset,
consisting of pairs ps, π˚pa|sqq, where s are the input-images (64 ˆ 64 RGB) and π˚pa|sq is the
discrete probability distribution over actions output by π˚.

The states are sampled randomly from trajectories generated by π˚. In order to test for generalization
performance, the BC training dataset is restricted to 64 distinct levels. We generate 1000 examples
per training level. The test set consists of 2000 examples, each from a different level which does not
appear in the training set.

Figure 17: Screenshots of 6 levels of CoinRun (from OpenAI).

A ResNet-18 π̂θ is trained to minimize the loss DKLpπ
˚||π̂θq. We ran two automatic hyperparameter

optimization studies using Tree-structured Parzen Estimation (TPE) (Bergstra et al., 2013) of 1024
trials each, with and without the AND-mask. The learning rate was decayed by a factor of 10 half-way
at at 3{4 of the training epochs.

The “temporal” version of the AND-mask used for this experiment is reported in Algorithm 1.

Algorithm 1: Temporal AND-mask Adam
1 mÐ β1 ¨m` p1´ β1q ¨ g
2 vÐ β2 ¨ v ` p1´ β2q ¨ pg ˝ gq
3 aÐ β3 ¨ a` p1´ β3q ¨ elemwise_signpgq
4 bÐ 1r|a| ě τ s
5 θ Ð θ ´ αpm ˝ bq m

?
v ` ε

In blue we highlight the additional lines compared to traditional Adam. The threshold τ and β3

are hyperparameters that we included in the 1’024 trials of the search using Tree-structured Parsen
Estimators. For the top 10 runs, hyperparameter values that were selected via the TPE search for the
AND-mask are the following.

Table 3: Hyperparameters for the 5 best runs using the AND-mask, from the TPE search.

Test KL div lr β1 β3 τ weight decay

1.652e-2 0.0078 0.21 0.79 0.36 0.057
1.656e-2 0.0072 0.26 0.86 0.40 0.041
1.662e-2 0.0080 0.23 0.84 0.41 0.045
1.665e-2 0.0068 0.33 0.72 0.47 0.077
1.672e-2 0.0063 0.67 0.65 0.47 0.080

We found that applying weight decay as a second independent update after the AND-mask routine
improved performance. To keep the comparison fair, we added this as a switch in the hyperparameter
search for the Adam baseline as well, and it improved performance there as well.

16https://github.com/openai/train-procgen

22

https://github.com/openai/train-procgen


Published as a conference paper at ICLR 2021

1 15 30
Epoch

10 3

10 2
Tr

ai
n 

D
KL

Adam
AND-mask

1 15 30
Epoch

2 × 10 2

3 × 10 2

Te
st

 D
KL

Adam
AND-mask

Figure 18: Learning curves for the behavioral cloning experiment on CoinRun. Training loss is shown on the
left, test loss is shown on the right. We show the mean over the top-10 runs for each method. The shaded regions
correspond to the 95% confidence interval of the mean based on bootstrapping.

C APPENDIX TO SECTION 4

C.1 RELATED WORK IN CAUSAL INFERENCE

Causal graphs and causal factorizations The formalization of causality through directed acyclic
graphs (Pearl, 2009) is a key element informing our exposition. According to such formalization,
a causal model gives rise to each observed distribution. It is thereby possible to exploit properties
of the causal factorization of the joint probability distribution over the observed variables. Clearly,
there are many ways to factorize a joint distribution into conditionals; a distinguishing feature
of the causal factorization is that many of the conditionals, which we can think of as physical
mechanisms underlying the statistical dependencies represented, are expected to remain invariant
under interventions or changing external conditions. This postulate has appeared in various forms in
the literature (Haavelmo, 1943; Simon, 1953; Hurwicz, 1962; Pearl, 2009; Schölkopf et al., 2012).17

Causal models and robust regression Based on this insight, it was proposed that regression based
on causal features should presents desirable invariance and robustness properties (Mooij et al., 2009;
Schölkopf et al., 2012; Peters et al., 2016; Rojas-Carulla et al., 2018; Heinze-Deml et al., 2018; von
Kügelgen et al., 2019; Parascandolo et al., 2018). In this view, the mechanisms can be considered
as features of the patterns such that they support stable conditional probabilities. Thus learning the
mechanisms may help achieve a stable performance across a number of conditions. Other works
connecting causality and learning through invariances are (Subbaswamy et al., 2019; Heinze-Deml
and Meinshausen, 2017), and perhaps – most related to our work – (Arjovsky et al., 2019): we
presented a comparison with this method in the following section.

Causal regularization Recently (Janzing, 2019) showed that biasing learning towards models of
lower complexity might in some cases be beneficial for a notion of generalization from observational
to interventional regimes. Our proposed solution is however different, in that we only indirectly deal
with penalizing model complexity, and rather focus on our proposed notion of consistency.

C.2 LEARNING INVARIANCES IN THE DATA

Here we are going to compare ILC to other approaches for learning invariances in the data with
neural networks, and in particular to Invariant Risk Minimization (IRM) Arjovsky et al. (2019).
The authors of IRM analyze a set up where minimizing training error might lead to models which
absorb all the correlations found within the training data, thus failing to recover the relevant causal
explanation. They consider a multi-environment setting and focus on the objective of extracting data
representations that lead to invariant prediction across environments.

While the high level objective is close to the one we focused on, the differences become clear when
considering the definition of invariant predictors presented in Arjovsky et al. (2019):

17This would be different for a non-causal factorization of the joint distribution, see Schölkopf (2019)
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Definition 1. A data representation Φ : X Ñ H elicits an invariant predictor w ˝ Φ across envi-
ronments E if there is a classifier w : H Ñ Y simultaneously optimal for all environments, i.e.,
w P arg minw̄:HÑy Repw̄ ˝ Φq @e P E .

In particular, the objective minimized by IRM is:

min
Φ:XÑY

ÿ

ePEtr

RepΦq ` λ ¨
›

›∇w|w“1.0R
epw ¨ Φq

›

›

2
(5)

where Φ are the logits predicted by the neural network and w is a dummy scaling variable (see
Arjovsky et al. (2019)). The relevant part is the penalty term λ ¨

›

›∇w|w“1.0R
epw ¨ Φq

›

›

2
: One way to

interpret it, is that the penalty is large on every environment where the distribution outputted by Φ
could be made ‘closer’ to the distribution of the labels by either sharpening (w ą 1) or softening it
(i.e., closer to uniform w ă 1).

Let us consider the example from IRM, where the authors describe two datasets of images that each
contain either a cow or a camel: In one of the datasets, there is grass on 80% of the images with cows,
while in the other dataset there is grass on 90% of them. IRM then makes the point that we can learn
to ignore grass as a feature, because its correlation with the label cow is inconsistent (80% vs 90%).
The setting we consider in this paper is slightly different: take our example from the CIFAR-10
experiments. Under our concept of invariance, we expect that (depending on the data generating
process) even a single dataset where we treat every image as coming from its own ‘environment’
should be sufficient to discover invariances. Drawing a connection to the setting from IRM, we would
argue that the second dataset should not be necessary to learn that ‘grass’ is not ‘cow’. If one treats
every example as coming from its own environment, there is already sufficient information in the first
dataset to realize that cows are not grass: Grass is predictive of cows only in 80% of the data, so grass
cannot be ‘cow’. The actual cow on the other hand, should be present in 100% of the images, and as
such it is the invariance we are looking for. Note that this is of course a much more strict definition of
invariance: If our dataset contains images labeled as ’cows’ but that have no cows within them, we
might start to discard the features of cows as well.
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