
SHAP zero Explains Biological Sequence Models with
Near-zero Marginal Cost for Future Queries

Darin Tsui
Georgia Institute of Technology

darint@gatech.edu

Aryan Musharaf
Georgia Institute of Technology

amusharaf3@gatech.edu

Yigit Efe Erginbas
UC Berkeley

erginbas@berkeley.edu

Justin Singh Kang
UC Berkeley

justin kang@berkeley.edu

Amirali Aghazadeh
Georgia Institute of Technology

amiralia@gatech.edu

Abstract

The growing adoption of machine learning models for biological sequences has
intensified the need for interpretable predictions, with Shapley values emerging
as a theoretically grounded standard for model explanation. While effective for
local explanations of individual input sequences, scaling Shapley-based inter-
pretability to extract global biological insights requires evaluating thousands of
sequences—incurring exponential computational cost per query. We introduce
SHAP zero, a novel algorithm that amortizes the cost of Shapley value computa-
tion across large-scale biological datasets. After a one-time model sketching step,
SHAP zero enables near-zero marginal cost for future queries by uncovering an
underexplored connection between Shapley values, high-order feature interactions,
and the sparse Fourier transform of the model. Applied to models of guide RNA
efficacy, DNA repair outcomes, and protein fitness, SHAP zero explains predictions
orders of magnitude faster than existing methods, recovering rich combinatorial in-
teractions previously inaccessible at scale. This work opens the door to principled,
efficient, and scalable interpretability for black-box sequence models in biology.

1 Introduction

The remarkable success of machine learning in modeling biological sequences, from DNA to proteins,
has created an urgent need for interpretability tools that can reveal what these models have learned.
Black-box sequence models now guide genome editing [1–3], protein design [4–6], and regulatory
variant prediction [7–9], yet explaining their predictions remains prohibitively expensive at scale [10].

In this work, we study the problem of explaining black-box models that map a length-n biological
sequence to a real-valued prediction. We denote such models as f : Zn

q → R, where each sequence
x ∈ Zn

q consists of symbols from an alphabet of size q (e.g., 4 for DNA, 20 for proteins). Our
goal is to explain the predictions of f over Q many input sequences x1,x2, . . . ,xQ at scale. A
popular interpretability framework is SHapley Additive exPlanations (SHAP) [11], which assigns
an additive importance score ISV

xi
(j) to each input feature j in a given sequence xi. These scores

are grounded in cooperative game theory [12] and quantify the marginal contribution of feature j

across all subsets of other features: ISV
xi

(j) =
∑

T⊆D\{j}
|T |! (|D|−|T |−1)!

|D|!
[
vT∪{j}(xi)− vT (xi)

]
,

where D = {1, 2, . . . , n} is the full feature set. The value function vT (xi) denotes the ex-
pected output when only features in T are fixed and the rest are marginalized over: vT (xi) =
1

q|T̄ |

∑
m:mT̄∈Z|T̄ |

q ,mT=xiT
f(m). See Appendix A for more details on Shapley values.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

0 500 1000

104

105

106

107

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
SHAP-IQ

Future
Queries

Fourier to Möbius

Möbius to SHAP values

Möbius to Shapley interactionsd

c

ba Fourier sketching (one-time)

Model

Aliasing

Peeling

Singletons

Multi-ton

Scalable amortized explanationse

Motif discoveryf

Positive
Negative
Microhomology

Top interactions

Figure 1: Overview of SHAP zero. a, SHAP zero pays a one-time cost to create a global Fourier
sketch of f . This illustration shows s = 4 Fourier coefficients strategically aliased into multiple
subsampled transforms (U1, U2), and recovered by identifying singleton bins. b, For each future query
x1, . . . ,xQ, SHAP zero localizes the global sketch via the Möbius transform of order ℓ, capturing
query-specific feature interactions. This maps to c, SHAP values, and d, Shapley interactions. By
marginalizing the cost of future queries, SHAP zero enables e, scalable amortized explanations and f,
discovery of biological motifs at unprecedented scale.

Unfortunately, computing exact SHAP values requires evaluating f on an exponential number of
perturbed sequences, making it intractable even for modest n. Stochastic estimators [11, 13–18], such
as KernelSHAP [11], reduce the cost with random sampling, while model-based approximators [11,
19–24] exploit internal structure but are often restricted to white-box access. Recent algorithms for
Shapley interaction indices [25–29], such as SHAP-IQ [25], further increase this burden, requiring
even more model evaluations.

These challenges are particularly severe in interpretation of biological sequence models, where one
often seeks explanations across thousands of query sequences in a dataset to gain a global insight
about the underlying biological phenomenon. For instance, estimating SHAP values for about a
thousand guide RNA sequences in the gene editing model TIGER took one day on our single NVIDIA
RTX A6000 machine. Estimating third-order Faithful Shapley (Faith-Shap) interactions through
SHAP-IQ is projected to take over 80 days—highlighting a fundamental scalability bottleneck.

This raises a key question: can we amortize the cost of explaining sequence models across queries?

A Fourier view of SHAP. We observe that model evaluations used to compute Shapley explanations
for one sequence contain information that can be reused to explain other sequences. This motivates a
different paradigm: rather than estimating SHAP values and interactions de novo for each sequence,
we can first sketch the black-box model globally, then compute local explanations from this sketch.

To realize this, we uncover a powerful and underexplored connection between Shapley explanations
and the model’s Fourier transform through the Möbius transform. The Fourier basis provides a
global, query-agnostic decomposition of f , and if f is compressible in this basis—as many biological
sequence models are [30–32]—we can estimate its top-s coefficients efficiently. To obtain localized
feature contributions, we introduce a novel mapping from the Fourier transform to the localized
Möbius transform around each query, reorganizing the global sketch to isolate interacting features.
This global-to-local framework enables efficient amortized computation of Shapley explanations
across future queries without recomputing model evaluations, and, as a result, allows for the discovery
of high-order features (motifs) at unprecedented scales (Fig. 1).

Contributions. We present SHAP zero, a new algorithm for efficient model explanation of black-box
sequence models via sparse Fourier sketching. After an initial one-time sketching phase, SHAP zero
estimates SHAP values and Shapley interactions with near-zero additional cost per query sequence.

Our key contributions are:

• Fourier sketching for biological sequences. We develop a sample-efficient algorithm to recover
the top-s Fourier coefficients of f , defined over Zn

q , with sample complexity O(sn2) and runtime
O(sn3), that is, only a polynomial dependence on the input sequence length n.

2

• Formal connection between Fourier and SHAP through the Möbius transform. We introduce
a formal pipeline for mapping global Fourier coefficients to the localized Möbius transform, and
then to SHAP values and interactions, enabling principled amortized explanations.

• Scalable amortized explanation and motif discovery. We conduct large-scale experiments to
explain two genomic models, TIGER [33] and inDelphi [34], and the protein language model
Tranception [35] with SHAP zero. We demonstrate that SHAP zero estimates feature interactions
with an amortized computational cost up to 1000 times faster than current methods. SHAP zero
reveals GC content of the seed region in TIGER, microhomologous motifs in inDelphi, and
epistatic interactions in Tranception as predictive features, a task previously inaccessible due to
the combinatorial space of possible feature interactions. Software for SHAP zero is available at
https://github.com/amirgroup-codes/shap-zero.

2 Background

Set Möbius Transform. We begin by first introducing the classic Möbius transform in relationship
to SHAP values and interactions. The classic Möbius transform formulation marginalizes the
contributions between interactions of sets [36, 37]. However, our global sketch via the Fourier
transform captures interactions between features in a sequence. For this reason, we will first introduce
the classic Möbius transform formulation, which we will refer to as the set Möbius transform for
clarity, and introduce the SHAP and Faith-Shap interaction equation in terms of the set Möbius
transform. Then, in a later section, we will introduce an extension of the Möbius transform for q-ary
functions. The definition of the set Möbius transform is as follows.

Definition 2.1. (Set Möbius transform). Given a value function v : 2n → R and a set S, the set
Möbius transform axi

(v, S) is defined using the forward and inverse transform:

Forward: axi
(v, S) =

∑
T⊆S

(−1)|S|−|T |vT (xi), Inverse: vT (xi) =
∑
S⊆T

axi
(v, S). (1)

Each set Möbius transform coefficient axi
(v, S), where S ⊆ T , represents the marginal contribution

of the subset S, given a value function v, in determining the score vT (xi). Reconstructing the original
score vT (xi) from all subsets S ⊆ T requires taking a linear sum over all the marginal contributions.

The set Möbius transform naturally provides a bridge between SHAP values [38] and Faith-Shap
interactions [26]. We give both equations below, where, given a maximum interaction order ℓ,
IFSI
xi

(T) is the Faith-Shap interaction index over a set T in a given sequence xi:

ISV
xi

(j) =
∑

T⊆D\{j}

1

|T ∪ {j}|
axi(v, T ∪ {j}), IFSI

xi
(T) = axi(v, T) (2)

Value Function in q-ary Functions. The computation of SHAP values and Faith-Shap interactions
depends on the value function vT (xi), which quantifies how much the features in T contribute toward
the prediction of f(xi). In this paper, we define the value function as the expectation of f(xi)
with respect to xiT̄ : vT (xi) = Ep(xiT̄) [f(xi)]. Here, we take the expectation over the marginal
distribution p(xiT̄) for the missing inputs. Ep(xiT̄) can be computed for any Shapley problem by
approximating the missing inputs xiT̄ . However, in q-ary functions, we can compute this equation
exactly because we are constrained to q alphabets at each site; every possible missing input must be
in ZT̄

q . By assuming that every possibility of xiT̄ ∈ ZT̄
q is equally likely, the value function reduces

to taking an average contribution over q|T̄ | possible inputs.

3 The SHAP zero Algorithm

In this section, we detail the SHAP zero algorithm. SHAP zero estimates SHAP values and interac-
tions in three steps: (i) Estimating Fourier coefficients, (ii) Computing the Möbius transform, and
(iii) Finding SHAP values and Faith-Shap interactions. An overview of SHAP zero is provided in
Algorithms 1 and 2 in Appendix B.

3

https://github.com/amirgroup-codes/shap-zero

3.1 Estimating Fourier Coefficients
The first key step in SHAP zero is to compute the sparse Fourier transform of f (Fig. 1a). Any
function f : Zn

q → R can be expressed in terms of its Fourier transform F [y] as:

f(m) =
∑
y∈Zn

q

F [y]ω⟨m,y⟩, m ∈ Zn
q , (3)

where ω = e
2πj
q , and y is the frequency vector. The Fourier transform provides a global sketch of f ,

irrespective of the input query sequence.

Computing the Fourier transform exactly requires obtaining qn samples from f , which can be
prohibitive for large values of q or n. Fortunately, in practice, sequence models tend to have a sparse
Fourier transform [30–32, 39, 40], meaning F [y] only has a few non-zero coefficients.

SHAP zero takes advantage of sparsity and pays a one-time cost to estimate the top-s Fourier
coefficients of f . We leverage structured subsampling in f using patterns from sparse-graph codes [40–
42], which implicitly hash Fourier coefficients into buckets. To do this in sequence models, SHAP
zero creates C many subsampling groups. For each subsampling group c = 1 . . . C, we define a
random subsampling matrix Mc ∈ Zn×b

q , where b is the subsampling dimension. Additionally, we
define a total of P offsets dc,p ∈ Zn

q , where p ∈ [P]. The subsampled transform Uc,p[j], indexed by
j ∈ Zb

q , is computed as: Uc,p[j] =
1
B

∑
ℓ∈Zb

q
f(Mcℓ+ dc,p)ω

⟨j,ℓ⟩.

By subsampling f , we leverage a classical result in signal processing, which states that regularly
subsampling a signal in time introduces predictable aliasing patterns in the Fourier domain. Using
Mc and dc,p, the induced aliasing structure satisfies:

Uc,p[j] =
∑

k:MT
c k=j

F [k]ω⟨dc,p,k⟩. (4)

Thus, each Uc,p[j] is a linear combination of F [k] that are hashed into buckets defined by Mc. Our
goal is to maximize the number of Uc,p[j] that contain exactly one non-zero Fourier coefficient, which
we call a singleton. Singletons allow direct recovery of the corresponding F [k]. However, inevitably,
some Uc,p[j] will contain more than one Fourier coefficient, which we call a multi-ton. In Fig. 1a,
we alias the s = 4 non-zero Fourier coefficients into two buckets, U1 and U2 (where we drop the
notation p in Uc,p for simplicity), assuming dc,p is a vector of all zeros. U1 generated two singletons
containing F [y1] and F [y4] and one multi-ton, and U2 similarly generated two singletons containing
F [y2] and F [y3] and one multi-ton, allowing us to recover the entire Fourier transform.

In practice, though, the Fourier transform may not be able to be fully recovered in one shot. Therefore,
we can resolve multi-tons to generate more singletons by modeling the aliasing structure across
subsampling groups as a sparse bipartite graph. SHAP zero then maximizes the number of singletons
recovered by applying a peeling procedure [40–42]. Upon recovery of a singleton, its contribution
can be subtracted from adjacent multi-tons, potentially creating new singletons. This peeling process
continues until no further singletons can be found. SHAP zero recovers the top-s Fourier coefficients
with a sample complexity of O(sn2) and a computational complexity of O(sn3). Appendix C
contains more details on computing the sparse Fourier transform in sequence models.

3.2 Computing the Möbius Transform
The second step of SHAP zero is to map the sparse Fourier coefficients of f to the Möbius transform of
f around an input query sequence xi (Fig. 1b). We build on the binary Möbius transform formulation
found in [43] for functions characterized in f : Zn

q → R, which we dub as the q-ary Möbius
transform.

We first define the q-ary Möbius transform as a function of f . Then, we describe how it can be
estimated via the Fourier transform. We denote m ≤ k to be mi = ki or mi = 0 for all of i, and
subtraction of k −m for m ≤ k by standard real field subtraction. The q-ary Möbius transform
around the input sequence xi, Mxi [k], where k is the feature interaction vector, is defined as:
Definition 3.1. (q-ary Möbius transform). Given f : Zn

q → R, the q-ary Möbius transform Mxi [k],
where k is the feature interaction vector, can be defined as,

Mxi [k] =
∑
m≤k

(−1)∥k−m∥0f((m+ xi) mod q), m,k ∈ Zn
q , (5)

4

with its inverse defined as,
f((m+ xi) mod q) =

∑
k≤m

Mxi
[k]. (6)

Mxi
[k] captures how the output of f changes when features in xi are perturbed (Fig. 1b). The

modulo operation is used to ensure the inequalities m ≤ k and k ≤ m hold when xi is encoded
as a vector in Zn

q . Appendix D illustrates the differences in computing the set and q-ary Möbius
transform.

Without assumptions, the q-ary Möbius transform scales with O(qn) computations, which is in-
tractable for large values of q or n. In order to bypass these computational issues, we map the top-s
Fourier coefficients to Mxi

[k]. In Appendix E.1, we prove the following Proposition:
Proposition 3.2. (Fourier transform to q-ary Möbius transform). Given the top-s Fourier coefficients
F [y] with a maximum order of ℓ and the input query sequence xi, Mxi

[k] is defined as:

Mxi [k] =
∑
y∈Zn

q

F [y]ω⟨xi,y⟩

(∑
m≤k

(−1)∥k−m∥0ω⟨m,y⟩

)
, ∀k ∈ Zn

q , (7)

where the computational complexity of Equation (7) scales with O(s2(2q)ℓ).

Here, ℓ is the maximum order of Fourier interactions recovered by SHAP zero and, in practice,
bounded by ℓ ≤ 5 [32]. Since F [y] provides a global sketch of the model irrespective of xi, the
shifting property of the Fourier transform (see Equation (21) in Appendix E.1) is first used to align
F [y] with xi. Then, Equation (3) is plugged into Equation (5) and simplified to obtain the final result.

3.3 Finding SHAP Values and Faith-Shap Interactions
The last step of SHAP zero is to map Mxi [k] to SHAP values and Faith-Shap interactions. We have a
direct relationship going from the set Möbius transform to SHAP values and Faith-Shap interactions.
Therefore, computing Shapley explanations for q-ary functions first requires a conversion from the
q-ary Möbius to the set Möbius transform. In Appendix E.2, we prove the following Proposition:
Proposition 3.3. (q-ary Möbius transform to set Möbius transform). Computing the set Möbius
transform axi

(v, S) given Mxi
[k] is defined as:

axi
(v, S) = (−1)|S|

∑
k:kS>0|S|

1

q∥k∥0
Mxi

[k]. (8)

The proof follows two major steps. After computing Mxi [k], the inverse q-ary Möbius transform
from Equation (6) is plugged into the q-ary value function. Then, the q-ary function is plugged into
the forward set Möbius transform to obtain Equation (8).

Using Proposition 3.3 and the ISV
xi

(j) equation from Equation (2), we prove the following Theorem:

Theorem 3.4. (q-ary Möbius transform to SHAP values). Given f : Zn
q → R and Mxi

[k], the SHAP
value equation can be written as:

ISV
xi

(j) = −
∑

k:kj>0

1

∥k∥0q∥k∥0
Mxi

[k], (9)

with a computational complexity of O(qℓ), where ℓ is the maximum q-ary Möbius coefficients order.

The proof can be found in Appendix E.3. Here, the > operation is defined over the standard real
field in Zn

q and the L0 norm ∥k∥0 counts the number of nonzero elements in k (Fig. 1c). ISV
xi

(j) can
be interpreted as the contribution of the jth feature to the prediction of f(xi); when ISV

xi
(j) > 0,

substituting the jth feature to a different feature will, on average, decrease the value of f(xi), and
vice versa. Therefore, ISV

xi
(j) sums over q-ary Möbius transform coefficients, which capture the

marginal effects of all subsets of features on f(xi), with a negative sign.

Similarly, SHAP zero can map the q-ary Möbius transform to IFSI
xi

(T) (Fig. 1d). Since the IFSI
xi

(T)
equation in Equation (2) is already written in terms of axi

(v, S):

5

0 250 500 750 1000

104

105

106

107

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
SHAP-IQ

0 explanations

0 250 500 750 1000

104

105

106

107

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
KernelSHAP

61 explanations

a

c

b

e

d

f

 TIGER 0.67 0.65 0.89 0.81
 SHAP zero 0.58 0.57 0.84 0.72
 Linear 0.44 0.45 0.77 0.62
 Pairwise 0.48 0.47 0.77 0.66

 Pearson Spearman AUROC AUPRC

Perfect match target sequence
 5’ C T G T C G G A G ...

Guide sequence
 ... A C C A T C TIGER

0.94
Guide score

 5’ C T G T C G G A G GG C A T T G A T G A G A T G GT
5’ context Seed region

n = 26

5 10 15 20 25

−0.1

0.0

0.1

0.2

SH
AP

 v
al

ue

 u
si

ng
 K

er
ne

lS
H

AP

A C G T

5 10 15 20 25

−0.1

0.0

0.1

0.2

SH
AP

 v
al

ue

 u
si

ng
 S

H
AP

 z
er

o

A C G T

5 10 15 20 25
Target sequence position

−0.2

0.0

0.2

Fa
ith

-S
ha

p
in

te
ra

ct
io

n
 u

si
ng

 S
H

AP
 z

er
o

5 10 15 20 25
Target sequence position

−0.5

0.0

0.5

Fa
ith

-S
ha

p
in

te
ra

ct
io

n
 u

si
ng

 S
H

AP
-IQ

Figure 2: SHAP zero enables scalable amortized explanations in TIGER. a, TIGER [33] predicts
the guide score of n = 26 length target sequences. b, The estimated top Fourier coefficients by SHAP
zero outperform linear and pairwise models in predicting the guide scores in a held-out set. c, SHAP
value estimates reveal high agreements (ρ = 0.83) between SHAP zero and KernelSHAP. d, Total
runtime of SHAP zero against KernelSHAP is marked by× in plots that depict the computational cost
versus the number of explained sequences in both algorithms. e, Histogram of Faith-Shap interactions
from SHAP zero compared to SHAP-IQ (see Appendix F). f, Total runtime of SHAP zero versus
SHAP-IQ in TIGER demonstrate that SHAP zero is more than 1000-fold faster.

Theorem 3.5. (q-ary Möbius transform to Faith-Shap). Given f : Zn
q → R and Mxi

[k] with a
maximum order ℓ, the ℓth order Faith-Shap interaction index equation can be written as:

IFSI
xi

(T) = (−1)|T |
∑

k:kT>0|T |

1

q∥k∥0
Mxi

[k], (10)

with a computational complexity of O(qℓ).

The proof in Appendix E.4 hinges on the fact that the Faith-Shap interaction index and the q-ary
Möbius transform are both ℓth order. If this is the case, computing Faith-Shap is equivalent to
converting from the q-ary Möbius transform to the set Möbius transform from Equation (8). Faith-
Shap can be seen as a generalization of the SHAP value for feature interactions [26]; when ℓ = 1,
computing Faith-Shap interactions becomes identical to computing SHAP values using Equation (9).

3.4 Computational Complexity of SHAP zero
After paying a one-time cost to find the top-s Fourier coefficients, which scale with poly(n), SHAP
zero explanations do not scale with n. By bounding the computational complexity of Proposition 3.2,
Theorem 3.4, and Theorem 3.5 by ℓ, we remove the computational dependency on n. The dependence
on ℓ does not impact SHAP zero in practice, since ℓ is typically a small constant for sequence models.
Additionally, while Equations (7), (9), and (10) depend on q, in biological sequences, we are restricted
to either q = 4 nucleotides or q = 20 amino acids. These combined enable SHAP zero to explain a
new query sequence with near-zero marginal cost (essentially free).

4 Experiments

Explaining Guide RNA Binding. TIGER [33] is a convolutional neural network trained to predict
the binding efficiency of CRISPR-Cas13d guide RNA (gRNA) to a target DNA sequences (Fig. 2a).
We considered length-n = 26 input sequences to the model that perfectly match the target and guide
RNA sequences that reverse complement the target. Positions 1-3 correspond to the additional 5’
context given to the target sequence and positions 6-12 of the target sequence correspond to the

6

a

c

b

e

d

f

Cut site

... T A T C T G T G G ...

Guide RNA
... G A A A T T A T A T C T G T G G T C T T ...

n = 40

inDelphi

70.6%
Frameshift frequency

 inDelphi 0.82 0.79
 SHAP zero 0.74 0.71
 Linear 0.37 0.46
 Pairwise 0.47 0.53

 Pearson Spearman

DNA target sequence

5 10 15 20 25 30 35 40

−10

−5

0

5

10

SH
AP

 v
al

ue

 u
si

ng
 K

er
ne

lS
H

AP

A C G T

5 10 15 20 25 30 35 40

−10

−5

0

5

10

SH
AP

 v
al

ue

 u
si

ng
 S

H
AP

 z
er

o

A C G T

5 10 15 20 25 30 35 40
Target sequence position

−10

0

10

Fa
ith

-S
ha

p
in

te
ra

ct
io

n
 u

si
ng

 S
H

AP
 z

er
o

5 10 15 20 25 30 35 40
Target sequence position

−50

0

50

Fa
ith

-S
ha

p
in

te
ra

ct
io

n
 u

si
ng

 S
H

AP
-IQ

0 200 400

105

106

107

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
SHAP-IQ

2 explanations

0 200 400

105

106

107

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
KernelSHAP

96 explanations

Figure 3: SHAP zero reveals high-order motifs in inDelphi. a, inDelphi [34] predicts DNA repair
outcomes in n = 40 length sequences. b, Recovered Fourier coefficients outperform linear and
pairwise models in repair outcomes in a held-out set. AUROC and AUPRC are not reported due to the
regression nature of the model (see Appendix G.7). c, SHAP zero and KernelSHAP estimates reveal
the importance of nucleotides around the cut site. d, Total runtime of SHAP zero versus KernelSHAP.
e, Histogram of Faith-Shap interactions in SHAP zero compared to SHAP-IQ (see Appendix F).
High-order feature interactions identified by SHAP zero reveal the importance of microhomology
patterns around the cut site (see Appendix F). f, Total runtime of SHAP zero versus SHAP-IQ.

nucleotides that bind with the seed region in the gRNA: a short segment that facilitates the initial
pairing with the target [44] and is especially sensitive to mutations [45].

To assess the accuracy of the recovered Fourier coefficients from SHAP zero, we predict the exper-
imental guide scores of 1038 held-out target sequences (Fig. 2b). SHAP zero’s recovered Fourier
coefficients predict experimental guide scores with a Pearson correlation of ρ = 0.58, outperforming
the linear (ρ = 0.44) and pairwise (ρ = 0.48) model with L2 regularization, suggesting that it
successfully captures high-order (ℓ > 1) feature interactions. SHAP zero and KernelSHAP estimates
are in high agreements (ρ = 0.83), with 47% and 56% of their top positive estimates attributed to C
and G nucleotides in the seed region, respectively, highlighting the GC content as a predictive feature
(see Fig. 2c and Appendix F). However, it took us an amortized time of only 6.5 seconds to compute
SHAP zero values compared to 109 seconds to find KernelSHAP values (Fig. 2d), a 17-fold speedup.

We then explained the high-order feature interactions with SHAP zero and compared it with SHAP-IQ.
The overlapping interactions in SHAP zero and SHAP-IQ, constituting 95% and 5% of the total
interactions, respectively, correlate with ρ = 0.79. We expected most interactions to be located
within the seed region [33, 46]; however, we observed that only 34% of SHAP-IQ’s interactions are
within the seed region, compared to 52% of SHAP zero’s interactions (Fig. 2e). Besides, estimating
the Faith-Shap interactions took an amortized time of 6.5 seconds for SHAP zero compared to 2
hours for SHAP-IQ (Fig. 2f), suggesting that SHAP zero is more than 1000-fold faster and enables a
biologically feasible explanation of feature interactions.

Explaining DNA Repair Outcome. inDelphi [34] is a machine learning model trained to predict
DNA repair outcomes after CRISPR-Cas9-induced double-stranded breaks, including the probability
of Cas9 inducing a one- or two-base pair insertion or deletion (frameshift frequency) (Fig. 3a). We
considered length-n = 40 input DNA target sequences, where the cut site occurs between positions
20 and 21, a region that is considered to have the most predictive power [30, 34, 47].

We used the recovered Fourier coefficients from SHAP zero to predict the experimental frameshift
frequencies of 84 held-out target sequences (Fig. 3b). SHAP zero (ρ = 0.74) significantly outper-
formed linear (ρ = 0.37) and pairwise models (ρ = 0.47), suggesting that inDelphi’s interactions
cannot be explained with just 2nd order interactions. SHAP zero and KernelSHAP estimates are in
high agreement again (ρ = 0.84) (see Fig. 3c and Appendix F). This time, it took SHAP zero an

7

ACDEFGH I K LMNPQRSTVWY

Amino Acid

1
2
3
4
5
6
7
8
9

10

Po
si

tio
n

−0.10

−0.05

0.00

KernelSH
AP

 value

ACDEFGH I K LMNPQRSTVWY

Amino Acid

1
2
3
4
5
6
7
8
9

10

Po
si

tio
n

0.00

0.05

SH
AP zero
 value

ACDEFGH I K LMNPQRSTVWY

Amino acid

A
C
D
E
F
G
H
I

K
L

M
N
P
Q
R
S
T
V
W
Y

Am
in

o
ac

id

−0.002

0.000

0.002

0.004 SH
AP zero interaction

ACDEFGH I K LMNPQRSTVWY

Amino acid

A
C
D
E
F
G
H
I

K
L

M
N
P
Q
R
S
T
V
W
Y

Am
in

o
ac

id

−0.005

0.000

0.005

0.010

SH
AP-IQ

 interaction

e

c

f

d

0 50 100 150 200

104

105

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
SHAP-IQ

26 explanations

0 50 100 150 200

104

105

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
KernelSHAP

57 explanations

 Tranception 0.57 0.75
 SHAP zero 0.55 0.69
 Linear 0.48 0.54
 Pairwise 0.33 0.41

 Pearson Spearman

L44

C48

M88

K85

F83

F84

L141

V163

V165

K166

b

a

Figure 4: SHAP zero uncovers epistatic interactions in Tranception. a, We analyze the green
florescence protein over n = 10 epistatic sites from [49]. b, SHAP zero Fourier coefficients
outperform linear and pairwise models in predicting protein function in a held-out set. c, SHAP zero
and KernelSHAP estimates (ρ = 0.97) reveal the importance of secondary structure promoters. d,
Total runtime of SHAP zero versus KernelSHAP. e, Heatmap of Faith-Shap interactions run over 200
sequences with SHAP zero and 50 sequences with SHAP-IQ. f, Total runtime of SHAP zero versus
SHAP-IQ.

amortized time of 40 minutes to estimate the SHAP values compared to KernelSHAP’s 55 minutes
(Fig. 3d). The difference in amortized time is smaller here than in TIGER due to the smaller set of
query sequences.

We then used SHAP zero and SHAP-IQ to extract high-order feature interactions. The overlapping
interactions (constituting 85% and 3% of the total interactions in SHAP zero and SHAP-IQ, respec-
tively) correlate with ρ = 0.74. However, just 17% of SHAP-IQ’s interactions are within three
nucleotides of the cut site compared to 55% of SHAP zero’s interactions (Fig. 3e). Similar to TIGER,
we noticed a significant speedup in amortized time when using SHAP zero compared to SHAP-IQ:
SHAP zero took 40 minutes compared to 37 hours from SHAP-IQ (Fig. 3f).

We performed a detailed analysis of the top SHAP zero feature interactions of inDelphi (see Ap-
pendix F). Our analysis reveals repeating motifs around the cut site as key high-order features
predictive of DNA repair [30, 34]. These high-order features can be attributed to microhomology
patterns that mediate long deletions around the cut site (Fig. 1f) [48]. Notably, a top feature identified
by SHAP zero enriching the frameshift frequency is the repetition of the GC motif at sites 17-18
and 21-22. This feature captures the microhomology-mediated deletion of four nucleotides at 17-20,
which results in a one-base pair frameshift. Another top feature identified by SHAP zero depleting the
frameshift frequency is the repetition of the TC motif at sites 18-19 and 21-22. This feature captures
the microhomology-mediated deletion of three nucleotides at 18-20, which results in no frameshift.
These examples highlight the unique capability of SHAP zero in extracting biologically meaningfully
high-order interactions, which was previously inaccessible due to the space of feature interactions.

Capturing Epistatic Interactions in Protein Language Models. Protein language models have
been shown to implicitly encode high-order (otherwise known as epistatic) interactions between
amino acid sites [32, 35, 50]. This motivates the question: can we explicitly extract these interactions
using SHAP zero? To explore this, we analyze Tranception [35], a protein language model trained to
predict fitness from an amino acid sequence. Specifically, we focus on the green fluorescent protein
(GFP), which has been shown to exhibit high-order interactions related its function [49, 51]. We
focus on evaluating predictions from Tranception over n = 10 epistatic positions from [49] (Fig. 4a).

Similar to the genomics experiments, SHAP zero’s recovered Fourier coefficients (ρ = 0.55) out-
performed linear (ρ = 0.48) and pairwise (ρ = 0.33) models in predicting protein function, further
reinforcing its ability to capture interactions (Fig. 4b). SHAP zero and KernelSHAP also showed
strong agreement in their estimates (ρ = 0.97) (Fig. 4c). Despite qn being on the order of ∼ 1013,
SHAP zero was still 3× faster in amortized time (5.2 vs. 17.7 minutes, respectively) (Fig. 4d).
Comparing SHAP zero to SHAP-IQ, the overlapping interactions correlated with ρ = 0.61 (Fig. 4e),
while running 7× faster in amortized time (5.2 vs. 38.1 minutes, respectively) (Fig. 4f).

8

We analyzed SHAP zero’s values (see Appendix F) and found that amino acids known to promote
β sheet stability, such as isoleucine (I) and valine (V), and alpha helix stability, such as leucine (L)
and methionine (M), were strongly associated with increased fitness [52]. Notably, proline (P) stood
out as a dominant amino acid associated with reduced fitness, aligning with its well-established
role as a secondary structure breaker due to its rigid backbone [53, 54]. However, SHAP zero’s
interaction values revealed a more complex picture: despite its overall negative effect, proline can
participate in positive epistatic interactions (e.g. when position 5 interacts with positions 7 and
9) when paired with specific residues like lysine (K) or asparagine (N), suggesting its disruptive
influence can be contextually mitigated. Lysine also displayed strong context dependence, appearing
in both favorable and unfavorable interactions. These results highlight SHAP zero’s ability to uncover
epistatic interactions at scale, a feat previously unattainable. Details about all experimental setups
can be found in Appendix G1.

5 Discussion

Contrasting Different Amortization Strategies. From the amortization perspective, SHAP zero is
closely related to SHAP estimation algorithms that use surrogate models to speed up computations [55–
57]. One such algorthim, FastSHAP [55], trains a surrogate model to predict model outputs given a
partially masked input. Although FastSHAP is theoretically optimal when the surrogate achieves
the global minimizer [58], our results show poor empirical correlation with KernelSHAP on TIGER
(ρ = −0.39), inDelphi (ρ = 0.08), and Tranception (ρ = 0.03) (Appendix F). We attribute this
failure to the nature of sequence models, where model outputs are highly sensitive to specific masked
features (e.g., seed regions in TIGER, cut sites in inDelphi, and epistatic positions in Tranception).
Training a reliable surrogate would require model evaluations over nearly all unmasked combinations,
which is infeasible. This contrasts with data modalities such as images, where the model output
is rarely a function of a few masked pixels. SHAP zero, on the other hand, solely relies on the
assumption that the mode is compressible, leading to an accurate and less biased amortization strategy
with comparable speedup. Other methods that offer amortization assume that the input is binary
(q = 2), which are unsuitable for sequence models [59].

Explainability Trade-offs in White-box Methods. White-box explainability methods, such as
DeepSHAP [11] and DeepLIFT [19], leverage the model architecture to estimate SHAP values
extremely efficiently; however, they naturally fall short in (i) estimating high-order feature interactions,
and (ii) black-box settings with only query access, which is the focus of this work. Regardless, SHAP
zero due to its amortized nature, outperforms these methods in computational cost asymptotically.
Extrapolating the amortized runtimes, our results in TIGER demonstrate that SHAP zero is more
efficient when the queries exceed 25,000 sequences (see Appendix F).

Limitations. SHAP zero provides accurate and amortized Shapley estimates under the assumption
that the Fourier transform is sparse. However, this does not hinder the generalizability of SHAP
zero. In sequence models, sparsity is more than just a theoretical assumption; it emerges from
models learning the biophysical properties underlying sequence-function relationships. Sparsity in
Fourier transform reflects the presence of only a select few higher-order, epistatic interactions [60], a
phenomenon consistent with biological studies [39, 51, 61]. Nevertheless, we emphasize that SHAP
zero can adapt to varying levels of sparsity by tuning the number of samples while still amortizing
explanation costs. For sparser models, SHAP zero requires fewer samples; for denser models, SHAP
zero requires more samples. We can always take more samples to combat lack of sparsity. Our
empirical results confirm this: SHAP zero took 4 million samples for inDelphi, 6 million samples for
TIGER, and 800,000 samples for Tranception, but successfully amortized explanation costs across all
settings. We provide detailed documentation on how to tune SHAP zero for future sequence models
in Appendix G.1.

Additionally, SHAP zero’s strategy for marginalizing absent features is closest to the uniform
approach proposed in [62]. Estimating the top-s Fourier coefficients by subsampling the sequence
space is made under the key assumption that all q alphabets are equally probable. This contrasts with
other Shapley-based algorithms [11, 25, 26, 28, 62], which marginalize absent features based on the
empirical training distribution. For instance, in Tranception, the empirical distribution of amino acids

1Code and implementation for conducting the experiments can be found at https://github.com/
amirgroup-codes/shapzero. Refer to the Appendix for more details.

9

https://github.com/amirgroup-codes/shapzero
https://github.com/amirgroup-codes/shapzero

in real-world protein sequences used for KernelSHAP heavily favors a small subset of amino acids
(less than 5), biasing KernelSHAP to produce more negative SHAP estimates when encountering rare
amino acid substitutions (see Appendix F). While SHAP zero and KernelSHAP estimates remain well
correlated, they approximate slightly different quantities due to their marginalization assumptions.
An interesting extension would be to marginalize absent features using the training data distribution,
which would necessitate the development of sparse Fourier algorithms capable of subsampling the
sequence space while accounting for this distribution.

Despite these differences, SHAP zero provides sufficient explanations to identify both impactful
amino acids and epistatic interactions. Comparing the top SHAP values from SHAP zero and
KernelSHAP (Tables 8 and 9), SHAP zero recovers all of the top positive amino acids and 17 of the
20 top negative amino acids identified by KernelSHAP, with the three missed negatives appearing
in the bottom five of KernelSHAP’s ranking. Thus, although SHAP zero tends to assign negative
contributions more conservatively, it still captures the most impactful amino acids. To further assess
SHAP zero’s reliability, we examined the top five positive and negative interactions from Table 10
and verified that these interactions are epistatic in Tranception (see Appendix F.1 for details). Taken
together, these results demonstrate that SHAP zero reliably uncovers impactful amino acids and
combinatorial interactions at scale.

6 Conclusion

In this paper, we introduced SHAP zero, an algorithm for estimating Shapley values and interactions
with a near-zero additional cost for future queried sequences after paying an initial up-front cost to
find the Fourier transform. Our theoretical analysis and large-scale experiments show that SHAP zero
significantly reduces amortized computational cost by orders of magnitude while identifying nearly all
predictive motifs. Overall, SHAP zero expands our toolkit in the explainability of biological sequence
models and, more broadly, in problems with a combinatorial nature. Our work will further encourage
interdisciplinary algorithms and theoretical frameworks at the intersection of signal processing,
coding theory, and algebraic geometry for the benefit of explainability in machine learning.

7 Acknowledgment

This research was supported by the National Science Foundation (NSF) Graduate Research Fel-
lowship Program (GRFP), the Parker H. Petit Institute for Bioengineering and Biosciences (IBB)
interdisciplinary seed grant, the Institute of Matter and Systems (IMS) Exponential Electronics seed
grant, and Georgia Institute of Technology start-up funds.

References
[1] Guohui Chuai, Hanhui Ma, Jifang Yan, Ming Chen, Nanfang Hong, Dongyu Xue, Chi Zhou,

Chenyu Zhu, Ke Chen, Bin Duan, Feng Gu, Sheng Qu, Deshuang Huang, Jia Wei, and Qi Liu.
DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biology, 19:
1–18, 2018.

[2] Daqi Wang, Chengdong Zhang, Bei Wang, Bin Li, Qiang Wang, Dong Liu, Hongyan Wang, Yan
Zhou, Leming Shi, Feng Lan, and Yongming Wang. Optimized CRISPR guide RNA design for
two high-fidelity Cas9 variants by deep learning. Nature Communications, 10(1):4284, 2019.

[3] Xi Xiang, Giulia I. Corsi, Christian Anthon, Kunli Qu, Xiaoguang Pan, Xue Liang, Peng Han,
Zhanying Dong, Lijun Liu, Jiayan Zhong, Tao Ma, Jinbao Wang, Xiuqing Zhang, Hui Jiang,
Fengping Xu, Xin Liu, Xun Xu, Jian Wang, Huanming Yang, Lars Bolund, George M. Church,
Lin Lin, Jan Gorodkin, and Yonglun Luo. Enhancing CRISPR-Cas9 gRNA efficiency prediction
by data integration and deep learning. Nature Communications, 12(1):3238, 2021.

[4] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J. Sofroniew, Deniz Oktay, Zeming Lin,
Robert Verkuil, Vincent Q. Tran, Jonathan Deaton, Marius Wiggert, Rohil Badkundri, Irhum
Shafkat, Jun Gong, Alexander Derry, Raul S. Molina, Neil Thomas, Yousuf A. Khan, Chetan
Mishra, Carolyn Kim, Liam J. Bartie, Matthew Nemeth, Patrick D. Hsu, Tom Sercu, Salvatore
Candido, and Alexander Rives. Simulating 500 million years of evolution with a language
model. Science, 2025.

10

[5] Benjamin Fram, Yang Su, Ian Truebridge, Adam J. Riesselman, John B. Ingraham, Alessandro
Passera, Eve Napier, Nicole N. Thadani, Samuel Lim, Kristen Roberts, Gurleen Kaur, Michael A.
Stiffler, Debora S. Marks, Christopher D. Bahl, Amir R. Khan, Chris Sander, and Nicholas P.
Gauthier. Simultaneous enhancement of multiple functional properties using evolution-informed
protein design. Nature Communications, 15(1):5141, 2024.

[6] Jung-Eun Shin, Adam J. Riesselman, Aaron W. Kollasch, Conor McMahon, Elana Simon, Chris
Sander, Aashish Manglik, Andrew C. Kruse, and Debora S. Marks. Protein design and variant
prediction using autoregressive generative models. Nature Communications, 12(1):2403, 2021.

[7] Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R. Ledsam, Agnieszka Grabska-
Barwinska, Kyle R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R. Kelley.
Effective gene expression prediction from sequence by integrating long-range interactions.
Nature Methods, 18(10):1196–1203, 2021.

[8] Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza,
Adam Henryk Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P.
de Almeida, Hassan Sirelkhatim, Guillaume Richard, Marcin Skwark, Karim Beguir, Marie
Lopez, and Thomas Pierrot. Nucleotide Transformer: building and evaluating robust foundation
models for human genomics. Nature Methods, 22(2):287–297, 2025.

[9] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-
Sykes, Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, Stefano Ermon,
Christopher Ré, and Stephen Baccus. HyenaDNA: Long-range genomic sequence modeling at
single nucleotide resolution. In Advances in Neural Information Processing Systems, volume 36,
pages 43177–43201, 2023.

[10] Nicolae Sapoval, Amirali Aghazadeh, Michael G. Nute, Dinler A. Antunes, Advait Balaji,
Richard Baraniuk, C. J. Barberan, Ruth Dannenfelser, Chen Dun, Mohammadamin Edrisi,
R. A. Leo Elworth, Bryce Kille, Anastasios Kyrillidis, Luay Nakhleh, Cameron R. Wolfe, Zhi
Yan, Vicky Yao, and Todd J. Treangen. Current progress and open challenges for applying deep
learning across the biosciences. Nature Communications, 13(1):1728, 2022.

[11] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems, volume 30, 2017.

[12] Lloyd S. Shapley. A value for n-person games. In Contributions to the Theory of Games,
volume 2, pages 307–317. Princeton University Press, 1953.

[13] Erik Štrumbelj and Igor Kononenko. An efficient explanation of individual classifications using
game theory. The Journal of Machine Learning Research, 11:1–18, 2010.

[14] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the Shapley value
based on sampling. Computers & Operations Research, 36(5):1726–1730, 2009.

[15] Grah Simon and Vincent Thouvenot. A projected stochastic gradient algorithm for estimating
Shapley value applied in attribute importance. In Proceedings of the International Cross-
Domain Conference for Machine Learning and Knowledge Extraction, pages 97–115. Springer
International Publishing, 2020.

[16] Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual predictions
with feature contributions. Knowledge and Information Systems, 41:647–665, 2014.

[17] Ian Covert, Scott M. Lundberg, and Su-In Lee. Understanding global feature contributions
with additive importance measures. In Advances in Neural Information Processing Systems,
volume 33, pages 17212–17223, 2020.

[18] Christopher Musco and R. Teal Witter. Provably accurate Shapley value estimation via leverage
score sampling. In International Conference on Learning Representations, 2025.

[19] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International Conference on Machine Learning, pages
3145–3153. PMLR, 2017.

11

[20] Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks with a
polynomial time algorithm for Shapley value approximation. In International Conference on
Machine Learning, pages 272–281. PMLR, 2019.

[21] Rui Wang, Xiaoqian Wang, and David I. Inouye. Shapley explanation networks. In International
Conference on Learning Representations, 2021.

[22] Hugh Chen, Scott M. Lundberg, and Su-In Lee. Explaining a series of models by propagating
Shapley values. Nature Communications, 13(1):4512, 2022.

[23] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. L-Shapley and C-Shapley:
Efficient model interpretation for structured data. In International Conference on Learning
Representations, 2019.

[24] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair,
Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to
global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1):56–67,
2020.

[25] Fabian Fumagalli, Maximilian Muschalik, Patrick Kolpaczki, Eyke Hüllermeier, and Barbara
Hammer. SHAP-IQ: Unified approximation of any-order Shapley interactions. Advances in
Neural Information Processing Systems, 36, 2024.

[26] Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Faith-Shap: The faithful Shapley
interaction index. Journal of Machine Learning Research, 24(94):1–42, 2023.

[27] Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The Shapley Taylor interaction
index. In International Conference on Machine Learning, pages 9259–9268. PMLR, 2020.

[28] Sebastian Bordt and Ulrike von Luxburg. From Shapley values to generalized additive models
and back. In International Conference on Artificial Intelligence and Statistics, pages 709–745.
PMLR, 2023.

[29] Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, and Quanshi Zhang. Interpreting multi-
variate Shapley interactions in DNNs. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 10877–10886, 2021.

[30] Amirali Aghazadeh, Orhan Ocal, and Kannan Ramchandran. CRISPRLand: Interpretable
large-scale inference of DNA repair landscape based on a spectral approach. Bioinformatics, 36
(Supplement_1):i560–i568, 2020.

[31] David H. Brookes, Amirali Aghazadeh, and Jennifer Listgarten. On the sparsity of fitness
functions and implications for learning. Proceedings of the National Academy of Sciences, 119
(1):e2109649118, 2022.

[32] Darin Tsui and Amirali Aghazadeh. On recovering higher-order interactions from protein
language models. In ICLR 2024 Workshop on Generative and Experimental Perspectives for
Biomolecular Design, 2024.

[33] Hans-Hermann Wessels, Andrew Stirn, Alejandro Méndez-Mancilla, Eric J. Kim, Sydney K.
Hart, David A. Knowles, and Neville E. Sanjana. Prediction of on-target and off-target activity
of CRISPR–Cas13d guide RNAs using deep learning. Nature Biotechnology, 42(4):628–637,
2024.

[34] Max W. Shen, Mandana Arbab, Jonathan Y. Hsu, Daniel Worstell, Sannie J. Culbertson, Olga
Krabbe, Christopher A. Cassa, David R. Liu, David K. Gifford, and Richard I. Sherwood.
Predictable and precise template-free CRISPR editing of pathogenic variants. Nature, 563
(7733):646–651, 2018.

[35] Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez,
Debora S. Marks, and Yarin Gal. Tranception: Protein fitness prediction with autoregressive
transformers and inference-time retrieval. In International Conference on Machine Learning,
pages 16990–17017. PMLR, 2022.

12

[36] Michel Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets
and Systems, 92(2):167–189, 1997.

[37] Gian-Carlo Rota. On the foundations of combinatorial theory: I. theory of Möbius functions. In
Classic Papers in Combinatorics, pages 332–360. Birkhäuser Boston, 1964.

[38] Majid Mohammadi, Ilaria Tiddi, and Annette Ten Teije. Unlocking the game: Estimating games
in Möbius representation for explanation and high-order interaction detection. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pages 19512–19519, 2025.

[39] Amirali Aghazadeh, Hunter Nisonoff, Orhan Ocal, David H. Brookes, Yijie Huang, O. Ozan
Koyluoglu, Jennifer Listgarten, and Kannan Ramchandran. Epistatic Net allows the sparse
spectral regularization of deep neural networks for inferring fitness functions. Nature Communi-
cations, 12(1):5225, 2021.

[40] Yigit E. Erginbas, Justin S. Kang, Amirali Aghazadeh, and Kannan Ramchandran. Efficiently
computing sparse Fourier transforms of q-ary functions. In 2023 IEEE International Symposium
on Information Theory (ISIT), pages 513–518. IEEE, 2023.

[41] Xiao Li, Joseph K. Bradley, Sameer Pawar, and Kannan Ramchandran. The SPRIGHT algorithm
for robust sparse Hadamard transforms. In 2014 IEEE International Symposium on Information
Theory, pages 1857–1861. IEEE, 2014.

[42] Darin Tsui, Kunal Talreja, and Amirali Aghazadeh. Efficient algorithm for sparse fourier
transform of generalized q-ary functions. In IEEE Information Theory Workshop, 2025.

[43] Justin S. Kang, Yigit E. Erginbas, Landon Butler, Ramtin Pedarsani, and Kannan Ramchandran.
Learning to understand: Identifying interactions via the Möbius transform. In Advances in
Neural Information Processing Systems, 2024.

[44] Tim Künne, Daan C. Swarts, and Stan J.J. Brouns. Planting the seed: target recognition of short
guide RNAs. Trends in Microbiology, 22(2):74–83, 2014.

[45] Hans-Hermann Wessels, Alejandro Méndez-Mancilla, Xinyi Guo, Mateusz Legut, Zharko
Daniloski, and Neville E. Sanjana. Massively parallel Cas13 screens reveal principles for guide
RNA design. Nature Biotechnology, 38(6):722–727, 2020.

[46] Jingyi Wei, Peter Lotfy, Kian Faizi, Sara Baungaard, Emily Gibson, Eleanor Wang, Hannah
Slabodkin, Emily Kinnaman, Sita Chandrasekaran, Hugo Kitano, Matthew G. Durrant, Connor V.
Duffy, April Pawluk, Patrick D. Hsu, and Silvana Konermann. Deep learning and CRISPR-
Cas13d ortholog discovery for optimized RNA targeting. Cell Systems, 14(12):1087–1102,
2023.

[47] Ryan T. Leenay, Amirali Aghazadeh, Joseph Hiatt, David Tse, Theodore L. Roth, Ryan
Apathy, Eric Shifrut, Judd F. Hultquist, Nevan Krogan, Zhenqin Wu, Giana Cirolia, Hera Canaj,
Manuel D. Leonetti, Alexander Marson, Andrew P. May, and James Zou. Large dataset enables
prediction of repair after CRISPR–Cas9 editing in primary T cells. Nature Biotechnology, 37
(9):1034–1037, 2019.

[48] Eiichiro Sonoda, Helfrid Hochegger, Alihossein Saberi, Yoshihito Taniguchi, and Shunichi
Takeda. Differential usage of non-homologous end-joining and homologous recombination in
double strand break repair. DNA Repair, 5(9-10):1021–1029, 2006.

[49] Karen Sarkisyan, Dmitry Bolotin, Margarita Meer, Dinara Usmanova, Alexander Mishin,
George Sharonov, Dmitry Ivankov, Nina Bozhanova, Mikhail Baranov, Onuralp Soylemez, et al.
Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401, 2016.

[50] Rosalie Lipsh-Sokolik and Sarel J. Fleishman. Addressing epistasis in the design of protein
function. Proceedings of the National Academy of Sciences, 121(34):e2314999121, 2024. doi:
10.1073/pnas.2314999121.

[51] Frank J Poelwijk, Michael Socolich, and Rama Ranganathan. Learning the pattern of epistasis
linking genotype and phenotype in a protein. Nature communications, 10(1):4213, 2019.

13

[52] Kazuo Fujiwara, Hiromi Toda, and Masamichi Ikeguchi. Dependence of α-helical and β-sheet
amino acid propensities on the overall protein fold type. BMC Structural Biology, 12:1–15,
2012.

[53] Karen A Williams and Charles M Deber. Proline residues in transmembrane helixes: structural
or dynamic role? Biochemistry, 30(37):8919–8923, 1991.

[54] James H Hurley, David A Mason, and Brian W Matthews. Flexible-geometry conformational
energy maps for the amino acid residue preceding a proline. Biopolymers: Original Research
on Biomolecules, 32(11):1443–1446, 1992.

[55] Neil Jethani, Mukund Sudarshan, Ian Covert, Su-In Lee, and Rajesh Ranganath. FastSHAP:
Real-time Shapley value estimation. In International Conference on Learning Representations,
2022.

[56] Ian Covert, Chanwoo Kim, Su-In Lee, James Y. Zou, and Tatsunori B. Hashimoto. Stochastic
amortization: A unified approach to accelerate feature and data attribution. In Advances in
Neural Information Processing Systems, volume 37, pages 4374–4423, 2024.

[57] Ian Covert, Chanwoo Kim, and Su-In Lee. Learning to estimate shapley values with vision
transformers. In International Conference on Learning Representations, 2023.

[58] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In International Conference on
Machine Learning, pages 883–892. PMLR, 2018.

[59] Ali Gorji, Andisheh Amrollahi, and Andreas Krause. Amortized shap values via sparse fourier
function approximation. arXiv preprint arXiv:2410.06300, 2024.

[60] Frank J Poelwijk, Vinod Krishna, and Rama Ranganathan. The context-dependence of mutations:
a linkage of formalisms. PLoS computational biology, 12(6):e1004771, 2016.

[61] Zachary R Sailer and Michael J Harms. Detecting high-order epistasis in nonlinear genotype-
phenotype maps. Genetics, 205(3):1079–1088, 2017.

[62] Hugh Chen, Ian Covert, Scott M. Lundberg, and Su-In Lee. Algorithms to estimate Shapley
value feature attributions. Nature Machine Intelligence, 5(6):590–601, 2023.

[63] Ammar Tareen, Mahdi Kooshkbaghi, Anna Posfai, William T Ireland, David M McCandlish,
and Justin B Kinney. MAVE-NN: learning genotype-phenotype maps from multiplex assays of
variant effect. Genome Biology, 23(1):98, 2022.

[64] Mandy S Wong, Justin B Kinney, and Adrian R Krainer. Quantitative activity profile and context
dependence of all human 5’ splice sites. Molecular Cell, 71(6):1012–1026, 2018.

[65] Ian Covert and Su-In Lee. Improving KernelSHAP: Practical Shapley value estimation via
linear regression. In International Conference on Artificial Intelligence and Statistics. PMLR,
2021.

[66] Pascal Notin, Aaron W. Kollasch, Daniel Ritter, Lood van Niekerk, Steffanie Paul, Han Spinner,
Nathan Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, Jonathan Frazer, Mafalda Dias,
Dinko Franceschi, Yarin Gal, and Debora S. Marks. ProteinGym: Large-scale benchmarks for
protein fitness prediction and design. In Advances in Neural Information Processing Systems
Datasets and Benchmarks Track, 2023.

14

A Computing Shapley Values in q-ary Functions

The exact computation of Shapley values requires querying f over an exponential number of query
sequences. To illustrate this, we will walk through an example of computing the Shapley value
ISV
xi

(j = 1) for a q-ary function that takes as an input of alphabet size q = 2 and sequence length of
n = 3. For brevity, we will drop the notation xi.

For simplicity, let us assume the following function for f and we are trying to explain the sequence
x = [0, 1, 0]:

f(m) = m1 +m2 +m3,

where mi indicates the ith coordinate of m. In this example, it follows from n = 3 that D = {1, 2, 3}.
The total possible subsets T ⊆ D\{j = 1} can then be written out as: [∅, {2}, {3}, {2, 3}], where ∅
is the empty set. Expanding out the Shapley value equation from the Introduction, we then have the
following:

ISV (j = 1) =
0!(3− 0− 1)!

3!
[v{1}(x)− v∅(x)]

+
1!(3− 1− 1)!

3!
[v{1,2}(x)− v{2}(x)]

+
1!(3− 1− 1)!

3!
[v{1,3}(x)− v{3}(x)]

+
2!(3− 2− 1)!

3!
[v{1,2,3}(x)− v{2,3}(x)]

=
1

3
[v{1}(x)− v∅(x)] +

1

6
[v{1,2}(x)− v{2}(x)]

+
1

6
[v{1,3}(x)− v{3}(x)] +

1

3
[v{1,2,3}(x)− v{2,3}(x)].

From here, we compute each value function, which requires fixing features in T and marginalizing
the rest.

v∅(x) =
1

23
(f([0, 0, 0]) + f([1, 0, 0]) + f([0, 1, 0]) + f([0, 0, 1]) + f([1, 1, 0])

+ f([1, 0, 1]) + f([0, 1, 1]) + f([1, 1, 1])) =
3

2
.

v{1}(x) =
1

22
(f([0, 0, 0]) + f([0, 1, 0]) + f([0, 0, 1]) + f([0, 1, 1])) = 1.

v{2}(x) =
1

22
(f([0, 1, 0]) + f([1, 1, 0]) + f([0, 1, 1]) + f([1, 1, 1])) = 2.

v{3}(x) =
1

22
(f([0, 0, 0]) + f([1, 0, 0]) + f([0, 1, 0]) + f([1, 1, 0])) = 1.

v{1,2}(x) =
1

2
(f([0, 1, 0]) + f([0, 1, 1])) =

3

2
.

v{1,3}(x) =
1

2
(f([0, 0, 0]) + f([0, 1, 0])) =

1

2
.

v{2,3}(x) =
1

2
(f([0, 1, 0]) + f([1, 1, 0])) =

3

2
.

v{1,2,3}(x) =
1

20
(f([0, 1, 0])) = 1.

Due to the reliance of q in the value function, we are required to loop over all qn sequences.
Substituting all of these value functions into our Shapley value equation:

ISV (j = 1) =
1

3
[1− 3

2
] +

1

6
[
3

2
− 2] +

1

6
[
1

2
− 1] +

1

3
[1− 3

2
]

= −1

6
− 1

12
− 1

12
− 1

6
= −1

2
.

15

B The SHAP zero Algorithm

Algorithm 1 SHAP zero: Estimating Fourier Coefficients (One-time Cost)
Require: Alphabet size q, Subsampling dimension b, Number of subsampling groups C, Number of

offsets P , Subsampling matrices {Mc}c∈[C], Offsets {dc,p}c∈[C],p∈[P]

1: F ← ∅
2: {Initialize recovered Fourier coefficients}
3: for each c ∈ [C] do
4: for p ∈ [P] do
5: for each j ∈ Zb

q do
6: Uc,p[j]← 1

qb

∑
ℓ∈Zb

q
f(Mcℓ+ dc,p)ω

⟨j,ℓ⟩

7: end for
8: end for
9: end for

10: Build sets S = {(c, j) : Uc,p[j] is a singleton}, and L = {(c, j) : Uc,p[j] is a multi-ton}
11: {Peeling}
12: while |S| > 0 do
13: for each (c, j) ∈ S do
14: Recover k and F [k] from Uc,p[j]
15: F ← F ∪ (k, F [k])
16: for each c′ ∈ [C] do
17: j′ ←MT

c′k

18: Uc′,p[j
′]← Uc′,p[j

′]− F [k]ω⟨dc′,p,k⟩

19: end for
20: Update S, L accordingly
21: end for
22: end while
23: return F {Fourier transform estimate}

Algorithm 2 SHAP zero: Computing SHAP Values and Faith-Shap Interactions (Per Query Sequnce)
Require: Input query sequences {xi}i∈[Q], Fourier transform estimate F with maximum order ℓ

1: for each input query sequence xi do
2: {Compute Möbius transform around xi}
3: for each k ∈ Zn

q do

4: Mxi
[k] =

∑
y∈Zn

q
F [y]ω⟨xi,y⟩

(∑
m≤k(−1)∥k−m∥0ω⟨m,y⟩

)
5: end for
6: {Map Möbius transform to SHAP values}
7: for each feature j = 1, . . . , n do
8: ISV

xi
(j) = −

∑
k:kj>0

1
∥k∥0q∥k∥0 Mxi

[k]

9: end for
10: ϕi ← [ISV

xi
(1), . . . , ISV

xi
(n)]

11: {Map Möbius transform to Faith-Shap interactions}
12: for each interaction set T ∈ Tℓ do
13: IFSI

xi
(T) = (−1)|T |∑

k:kT>0|T |
1

q∥k∥0 Mxi [k]

14: end for
15: Φi ← [IFSI

xi
(T), ∀T ∈ Tℓ]

16: end for
17: return {ϕi,Φi}i∈[Q]

B.1 Shapley Explanations, Möbius Transform, and Fourier Transform in SHAP zero

The connection between Shapley explanations, the Möbius transform, and the sparse Fourier transform
lies in how we represent and recover feature interactions in complex models. SHAP values attribute

16

a model’s prediction to individual features and their combinations by decomposing the function
into additive contributions over subsets. Simiarly, Faith-Shap interactions extend SHAP values over
interactions of features. These decompositions align with the Möbius transform, a mathematical
framework that captures how a function defined over feature subsets can be expressed in terms
of unique contributions from each subset. However, in practice, the exact computation of this
decomposition is infeasible for high-dimensional problems due to its exponential computational
complexity. The sparse Fourier transform offers a computational shortcut by exploiting the empirical
sparsity of interactions in biological sequence models.

The only approximation in SHAP zero is computing the sparse Fourier transform. Given an exact
Fourier transform and infinite compute power, one could compute the Möbius transform and, conse-
quently, SHAP values and Faith-Shap interactions, exactly. Thus, the quality of Shapley estimates is
heavily dependent on how well the Fourier coefficients approximate the model. To facilitate the easy
usage of SHAP zero, we have released a pip package (https://github.com/amirgroup-codes/shap-zero)
that automatically tunes the parameters of SHAP zero and provides the best estimate of the Fourier
transform given a user’s computational budget.

C Computing the Fourier Transform

C.1 Example of a Sparse Fourier Tranform

The key to SHAP zero lies in the assumption that the model is s-sparse in the Fourier domain. To
illustrate an example of sparsity in Fourier, consider the following function, defined over n = 3 sites
for a q = 4 alphabet, modeled using Equation (3):

f(m) = (5 + 2j)ω⟨m,[0,1,0]⟩ − (3 + j)ω⟨m,[1,2,0]⟩ + (1 + j)ω⟨m,[1,0,3]⟩.

f contains the Fourier coefficients F [[0, 1, 0]] = 5 + 2j, F [[1, 2, 0]] = −(3 + j), and F [[1, 0, 3]] =
1+ j. The Fourier transform is sparse with s = 3 non-zero coefficients out of qn = 43 = 64 possible
coefficients. Additionally, the Fourier transform also has a maximum interaction order of ℓ = 2
(∥[1, 2, 0]∥0 = ∥[1, 0, 3]∥0 = 2).

C.2 Estimating the Sparse Fourier Transform

In this section, we add more details about finding the sparse Fourier transform. The procedure SHAP
zero takes can be broken down into three steps: 1) Subsampling and aliasing, 2) Bin detection, and 3)
Peeling.

Subsampling and aliasing. From Equation (4), we note that the coefficients Uc,p[j] are aliased
versions of the coefficients F [k]. We denote Uc[j] as the grouping of subsampled Fourier coefficients
Uc[j] = [Uc,1[j], . . . , Uc,P [j]], with their respective offsets also grouped up into the matrix Dc ∈
ZP×n
q . We rewrite Equation (4) as:

Uc[j] =
∑

k:MT
c k=j

F [k]ωDck. (11)

We additionally denote sc,k = ωDck, which allows us to re-write the above equation as:

Uc[j] =
∑

k: MT
c k=j

F [k]sc,k. (12)

Noiseless Bin Detection. After aliasing f , we aim to recover the Fourier coefficients using a bin
detection procedure, where we aim to identify which Uc[j] contains only one Fourier coefficient.
For simplicity, we break this into two sections: noiseless (when the Fourier transform is perfectly
s-sparse) and noisy (when the Fourier transform is approximately s-sparse) bin detection.

In the noiseless case, suppose that for each subsampling group c, we choose Mc to be a partial-identity
matrix structure of the form:

Mc = [0b×b(c−1), Ib×b,0b×(n−cb)]
T . (13)

Fig. 1a shows an example of the aliasing pattern with the partial-identity matrix structure. Additionally,
we choose P = n (the number of offsets) and Dc = In×n. We also choose a fixed delay dc,0 = 0n,

17

https://github.com/amirgroup-codes/shap-zero

where 0n is the vector of all 0’s of length n. Consequently, Uc,0[j] =
∑

k:MT
c k=j F [k]. We then use

Uc,0[j] to identify Uc[j] as a zero-ton, singleton, or multi-ton bin based on the following criteria:

• Zero-ton verification: Uc[j] is a zero-ton if F [k] = 0 for vectors k such that MT
c k = j (the

summation condition in Equation (12). In the noiseless case, this is true when Uc,p[j] = 0 for all
p = 1, . . . , P .

• Singleton verification: Uc[j] is a singleton if there exists only one k where F [k] ̸= 0, given
MT

c k = j. In the noiseless case, this implies that |Uc,1[j]| = |Uc,2[j]| = . . . = |Uc,P [j]|. This
allows us to denote Uc[j] as a singleton if the following condition is met:∣∣∣∣Uc,p[j]

Uc,0[j]

∣∣∣∣ = 1, p = 1, 2, . . . , P.

• Multi-ton verification: Uc[j] is a multi-ton if there exists more than one k where F [k] ̸= 0, given
MT

c k = j. In the noiseless case, this means that:∣∣∣∣Uc,p[j]

Uc,0[j]

∣∣∣∣ ̸= 1, p = 1, 2, . . . , P.

If a singleton is found, we know that Uc,0[j] = F [k]. The only unknown is what the vector k is. By
exploiting the identity structure of Dc, we know k must satisfy:argq[Uc,1[j]/Uc,0[j]]

...
argq[Uc,P [j]/Uc,0[j]]

 = Dck. (14)

Here, argq : C→ Zq is the q-quantization of the argument of a complex number:

argq(z) :=
⌊ q

2π
arg(ze

jπ
q)
⌋
. (15)

Therefore, after obtaining the vector k from the above equation, we know F [k] = Uc,0[j].

Noisy Bin Detection. In the noisy case, we cannot assume that most coefficients are exactly zero.
We model this problem as one where the subsampled Fourier coefficients are corrupted by noise:

Uc,p[j] =
∑

k: MT
c k=j

F [k]ω⟨dc,p,k⟩ +Wc,p[j], (16)

where Wc,p[j] is Gaussian noise with zero mean and variance ν2, such that ν2 = σ2/B.

To recover the sparse Fourier transform, we relax the constraints made to Mc and Dc in the noiseless
case. We let Mc be a random matrix in Zn×b

q , and given the hyperparameter P1, we let P = P1n and
Dc be a random matrix in ZP×n

q . In the presence of noise σ2, which is a hyperparameter in practice,
for some γ ∈ (0, 1), we do bin detection using the following criteria:

• Zero-ton verification: Uc[j] is a zero-ton if 1
P ∥Uc[j]∥2 ≤ (1 + γ)ν2.

• Singleton verification: After ruling out zero-tons, obtain an estimate of k, which we denote as k̂.
Then, estimate F [k̂] as sT

c,k̂
Uc[j]/P . We can then check if Uc[j] is a singleton if:

1

P
∥Uc[j]− F [k̂]sc,k̂∥

2 ≤ (1 + γ)ν2.

• Multi-ton verification: If Uc[j] is neither a zero-ton nor a singleton, then Uc[j] is a multi-ton.

SHAP zero obtains an estimate of k for singleton detection based on repetition coding. Given our
P1 random offsets dp∈[P1] such that P = P1n, we construct perturbed versions of each offset by
modulating with each column of the identity matrix such that we have n offsets dp,r :

dp,r = dp ⊕q er,∀p ∈ [P1], ∀r ∈ n. (17)

18

This allows us to employ a majority test to estimate the rth value of k̂:

k̂r = argmax
a∈Zq

∑
p∈[P1]

1{a = argq[Uc,p,r/Uc,p]}, (18)

where 1 is the indicator function. SHAP zero uses noisy bin detection to recover the sparse Fourier
transform. Details about how to run the sparse Fourier transform in practice can be found in
Appendix G.1.

Peeling. After determining the bin type, we apply a peeling decoder to recover additional singletons.
The problem is modeled as a sparse bipartite graph: each F [k] corresponds to a variable node, each
Uc[j] is a check node, and an edge connects F [k] and Uc[j] when MT

c k = j.

Upon identifying a singleton, for every subsampling group c, we subtract F [k] from the check node
Uc[M

T
c k]. This effectively peels an edge off the bipartite graph. We repeat this process over all

subsampled Fourier coefficients, iteratively peeling singletons until no further singletons remain.

After peeling can no longer be done, SHAP zero recovers all Fourier coefficients with a sample
complexity of O(sn2) and a computational complexity of O(sn3). We refer readers to [40] for a
comprehensive theoretical analysis.

C.3 Sparsity and Interaction Order in Encoding q-ary Functions

Our theoretical analysis shows that the performance of SHAP zero depends on s and ℓ. A natural
question arises: does the choice of encoding scheme in q-ary functions (e.g., in DNA, A = 0, C = 1,
T = 2, G = 3 versus C = 0, T = 1, G = 2, A = 3) affect s or ℓ?

We emphasize that SHAP zero is robust to the choice of encoding scheme. Both s and ℓ are intrinsic
to the underlying sequence-function relationship. By the shifting property of the Fourier transform
(Equation (21) in Appendix E.1), changing the encoding scheme will only change the magnitude of
non-zero Fourier coefficients, leaving s and ℓ untouched. Consequently, the theoretical guarantees of
SHAP zero are unaffected by the encoding scheme.

To validate this empirically, we consider a multilayer perceptron trained on RNA sequences of
length n = 9 from [63] predicting splicing efficiency [64]. We ran SHAP zero under four encoding
schemes (see Table 1) and, following the methodology described in Appendix G.1, computed the R2

when reconstructing model predictions on 10, 000 random sequences using the recovered Fourier
coefficients. Although s varied across encoding schemes (437± 119), likely due to the model not
being exactly sparse, R2 values remained highly consistent (0.78± 0.01), and ℓ was consistently 4.
These results empirically demonstrate that SHAP zero is robust to the choice of encoding scheme in
real-world models.

Encoding scheme s R2 ℓ

A = 0 C = 1 U = 2 G = 3 567 0.80 4
A = 1 C = 2 U = 3 G = 0 326 0.77 4
A = 2 C = 3 U = 0 G = 1 345 0.78 4
A = 3 C = 0 U = 1 G = 2 508 0.77 4

Table 1: s, R2, and ℓ across different RNA base encodings when recovering Fourier coefficients with
SHAP zero.

D Computing the Möbius Transform

D.1 Set Möbius Transform

From Definition 2.1, each set Möbius transform coefficient a(v, S), where S ⊆ T , represents the
marginal contribution of the subset S, given a value function v, in determining the score vT (x).
Reconstructing the original score vT (x) from all subsets S ⊆ T requires taking a linear sum over
all the marginal contributions. For instance, in an n = 4 problem, say we want to compute the set
Möbius transform of the set S = {1, 4}. Let v∅(x) be the output of the value function v when no

19

inputs are given. The set Möbius transform a(v, S) can be written as:

a(v, {1, 4}) = (−1)|{1,4}|−|{1,4}|v{1,4}(x) + (−1)|{1,4}|−|{1}|v{1}(x)

+ (−1)|{1,4}|−|{4}|v{4}(x) + (−1)|{1,4}|−|∅|v∅(x).

Each exponent raised to the negative one corresponds to the sign of each value function’s output.
Simplifying each exponent results in the following:

a(v, {1, 4}) = v{1,4}(x)− v{1}(x)− v{4}(x) + v∅(x).

Now, suppose we want to compute the inverse set Möbius transform of the set T = {1, 4}. The value
function can be written in terms of a(v, S):

v{1,4}(x) = a(v, ∅) + a(v, {1}) + a(v, {4}) + a(v, {1, 4}).

D.2 q-ary Möbius Transform

Examples of Standard Real Field Operations. Computing the q-ary Möbius transform into the q-ary
domain involves utilizing standard real field operations over Zn

q → R. To illustrate the subtraction of
k−m, consider the vectors k = [1, 0, 0, 2] and m = [1, 0, 0, 0]. Then,

∥k−m∥0 = ∥[1, 0, 0, 2]− [1, 0, 0, 0]∥0 = ∥[0, 0, 0, 2]∥0 = 1.

This is only computable when m ≤ k. For example, the vectors m = [1, 0, 0, 0] and k = [1, 0, 0, 2]
satisfy m ≤ k: m1 = k1 = 1, m2 = k2 = 0, m3 = k3 = 0, and m4 = 0. An example of vectors
that do not satisfy m ≤ k are m = [1, 0, 1, 1] and k = [1, 0, 0, 2]. Here, m3 = 1 ̸= k3 = 0 and
m4 = 1 ̸= k4 = 2, so m ≤ k is violated.

Computing the q-ary Möbius Transform. To illustrate computing the q-ary Möbius transform from
f , consider a function where q = 4 and n = 4, and define the encoding scheme as A = 0, C = 1,
T = 2, and G = 3. Suppose the query sequence is xi = [2, 1, 0, 3] (corresponding to the sequence
‘TCAG’). We wish to compute the q-ary Möbius transform Mxi

[k] for k = [1, 0, 0, 2].

Using the definition from Equation (5), we have:

Mxi
[[1, 0, 0, 2]] =

∑
m≤[1,0,0,2]

(−1)∥[1,0,0,2]−m∥0f ((m+ xi) mod 4) . (19)

Expanding the sum over all m ≤ [1, 0, 2, 0]:

Mxi
[[1, 0, 0, 2]] = (−1)0f (([1, 0, 0, 2] + [2, 1, 0, 3]) mod 4)

+ (−1)1f (([1, 0, 0, 0] + [2, 1, 0, 3]) mod 4)

+ (−1)1f (([0, 0, 0, 2] + [2, 1, 0, 3]) mod 4)

+ (−1)2f (([0, 0, 0, 0] + [2, 1, 0, 3]) mod 4) .

Simplifying each term of f results in:

• [1, 0, 0, 2] + [2, 1, 0, 3] = [3, 1, 0, 5]; [3, 1, 0, 5] mod 4 = [3, 1, 0, 1]

• [1, 0, 0, 0] + [2, 1, 0, 3] = [3, 1, 0, 3]; [3, 1, 0, 3] mod 4 = [3, 1, 0, 3]

• [0, 0, 0, 2] + [2, 1, 0, 3] = [2, 1, 0, 5]; [2, 1, 0, 5] mod 4 = [2, 1, 0, 1]

• [0, 0, 0, 0] + [2, 1, 0, 3] = [2, 1, 0, 3]; [2, 1, 0, 3] mod 4 = [2, 1, 0, 3]

This allows us to simplify as follows:

Mxi
[[1, 0, 0, 2]] = f([3, 1, 0, 1])− f([3, 1, 0, 3])− f([2, 1, 0, 1]) + f([2, 1, 0, 3]).

Computing the Inverse q-ary Möbius Transform. Now, we illustrate computing the inverse q-ary
Möbius transform to recover f from Mxi

. Suppose again the same query sequence xi = [2, 1, 0, 3],
except we wish to compute f((m+ xi) mod 4) for m = [1, 0, 0, 2].

Using the definition from Equation (6), we have:

f (([1, 0, 0, 2] + xi) mod 4) =
∑

k≤[1,0,0,2]

Mxi
[k]. (20)

20

Expanding the sum over all k ≤ [1, 0, 0, 2]:

f (([1, 0, 0, 2] + [2, 1, 0, 3]) mod 4) = Mxi [[0, 0, 0, 0]] +Mxi [[1, 0, 0, 0]]

+Mxi [[0, 0, 0, 2]] +Mxi [[1, 0, 0, 2]].

This results in the following:

f ([3, 1, 0, 1]) = Mxi [[0, 0, 0, 0]] +Mxi [[1, 0, 0, 0]] +Mxi [[0, 0, 0, 2]] +Mxi [[1, 0, 0, 2]].

E Proofs

In this section, we provide proofs for the Proposition 3.2, Proposition 3.3, Theorem 3.4, and Theo-
rem 3.5. For simplicity in notation, we drop the subscript i from xi and write x.

E.1 Proof of Proposition 3.2

In the Fourier transform, all alphabets in q are treated as a dictionary that maps an input to a q-ary
value. However, since the q-ary Möbius transform generalizes the ≤ operation in Zn

q → R, for
each input query sequence x, we utilize the shifting property of the Fourier transform. The shifting
property of the Fourier transform states that every Fourier coefficient must be shifted by the sample’s
q-ary encoding using the following equation [40]:

F̂ [y] = F [y]ω⟨x,y⟩, ∀y ∈ Zn
q (21)

where F̂ [y] refers to the shifted Fourier coefficient, x refers to the Fourier-encoded query sequence,
and F [y] refers to the original q-ary Fourier coefficient. To shift the entire s-sparse Fourier transform,
we have to loop over all s Fourier coefficients and shift them by the query sequence.

As a consequence of the shifting property of the Fourier transform, we can re-write Equation (3) as:

f((m+ x) mod q) =
∑
y∈Zn

q

F̂ [y]ω⟨m,y⟩. (22)

To illustrate this further, consider the query sequence [0, 1, 2], assuming the encoding pattern where
0 = A, 1 = C, 2 = G, and 3 = T . The shifting property of the Fourier transform allows us to
characterize this same sequence as [0, 0, 0], which satisfies the ≤ operation (see Appendix D.2).
Generalizing this, we aim to shift the Fourier transform in such a way that our sequence x is encoded
as 0n.

After obtaining F̂ [y], we plug in Equation (22) into Equation (5) to obtain:

Mx[k] =
∑
m≤k

(−1)∥k−m∥0

(∑
y∈Zn

q

F̂ [y]ω⟨m,y⟩

)
. (23)

By pulling
∑

y∈Zn
q
F̂ [y] out of the summation

∑
m≤k(−1)∥k−m∥0 , we obtain the mapping from the

q-ary Fourier transform to Mx[k] as given in Equation (7):

Mx[k] =
∑
y∈Zn

q

F̂ [y]

(∑
m≤k

(−1)∥k−m∥0ω⟨m,y⟩

)

=
∑
y∈Zn

q

F [y]ω⟨x,y⟩

(∑
m≤k

(−1)∥k−m∥0ω⟨m,y⟩

)
, ∀k ∈ Zn

q .

Equation (7) details how to convert the shifted Fourier transform to Mx[k] for a single k (a single
q-ary Möbius coefficient). If no assumptions are made, the complexity of mapping the Fourier
transform into every possible Mx[k] scales withO(qn). However, if we assume the Fourier transform
is low-order and has a maximum order of ℓ, we can bound the number of nonzero elements in Mx[k].
This is because Equation (7) will always go to zero when there exists an i such that yi = 0 and ki ̸= 0.
As an example, consider finding the q-ary Möbius transform of a function which is s = 1-sparse

21

in Fourier and let us assume F̂ [[2, 1, 0]] is the only non-zero Fourier coefficient. In this setup, one
example of k for which Mx[k] is zero is k = [0, 1, 1] since it satisfies the condition that y3 = 0 and
k3 ̸= 0. Computing Equation (7), we get:

Mx[k] = F̂ [[2, 1, 0]]

(
(−1)∥[0,1,1]−[0,0,0]∥0ω⟨[0,0,0],[2,1,0]⟩ + (−1)∥[0,1,1]−[0,1,0]∥0ω⟨[0,1,0],[2,1,0]⟩

+ (−1)∥[0,1,1]−[0,0,1]∥0ω⟨[0,0,1],[2,1,0]⟩ + (−1)∥[0,1,1]−[0,1,1]∥0ω⟨[0,1,1],[2,1,0]⟩

)
.

From here, we can simplify to the following:

Mx[k] = F̂ [[2, 1, 0]]

(
(−1)2ω0 + (−1)1ω1 + (−1)1ω0 + (−1)0ω1

)
= 0.

As a consequence, now we can bound the number of nonzero elements in Mx[k] by counting the
number of vectors k for which there is no i such that yi = 0 and ki ̸= 0. If we assume that the
Fourier transform is low-order and bounded by ℓ, then we can bound it by O(qℓ) instead of O(qn).
Generalizing this example, if there exists an i such that yi = 0 and ki ̸= 0, this allows us to rewrite
Equation (7) as the following:

Mx[k] =
∑
y∈Zn

q

F̂ [y]

(∑
m≤k
mi=0

(−1)∥k−m∥0ω⟨m,y⟩ + (−1)∥k−m+∥0ω⟨m+,y⟩

)
,

where m+ is equal to m everywhere except at location i and m+
i = ki. Since yi = 0, ⟨m,y⟩ =

⟨m+,y⟩. Additionally, we can rewrite ∥k−m∥0 as ∥k−m+∥0 + 1, since we know that the only
difference between m+ and m is a single nonzero value at position i. Therefore, we can say that:

Mx[k] =
∑
y∈Zn

q

F̂ [y]

(∑
m≤k
mi=0

(−1)∥k−m∥0ω⟨m,y⟩ + (−1)∥k−m∥0+1ω⟨m,y⟩

)
= 0.

We now move to analyze the computational complexity of converting from the Fourier to the q-ary
Möbius transform. First, shifting all the Fourier coefficients scales with O(s), since we have to
loop through all s Fourier coefficients once. The time complexity of doing the conversion using
Equation (7) depends on the distribution of the Fourier coefficient interaction orders. In the worst-case
scenario, we can assume that all Fourier coefficients are all ℓ-th order. We break up the problem
into two categories: the computational complexity of computing the most expensive q-ary Möbius
coefficient and analyzing the total amount of q-ary Möbius coefficients created. From Equation (7),
the most expensive q-ary Möbius coefficient to compute will be an ℓ-th order Möbius coefficient due
to summing over 2ℓ vectors, which is the total amount of vectors encompassed in m ≤ k; this single
q-ary Möbius coefficient requires s summations over 2ℓ vectors, which scales with computational
complexity O(s2ℓ). Additionally, if all s Fourier coefficients are ℓ-th order, there are at most sqℓ
possible q-ary Möbius coefficients to loop through. Therefore, the overall computational complexity
of converting from the Fourier to the q-ary Möbius transform is O(s+ s2ℓ × sqℓ) ≈ O(s2(2q)ℓ).

E.2 Proof of Proposition 3.3

To prove Proposition 3.3, we require using the q-ary value function, which we leave here for reference:

vT (x) =
1

q|T̄ |

∑
m:mT̄∈Z|T̄ |

q ,mT=xT

f(m), (24)

We plug in the inverse q-ary Möbius transform from Equation (6) into the q-ary value function. By
using Mx[k], this means that we shift m such that mT = 0|T |. Here, value 0 is assigned to subset
indices T , which indexes the subset of the original inputs xT . Over the missing inputs xT̄ and their

22

respective indices T̄ , the vector mT̄ ∈ ZqT̄
is used, by definition of the value function:

vT (x) =
1

q|T̄ |

∑
m:mT̄∈Z|T̄ |

q
mT=xT

f(m) =
1

q|T̄ |

∑
m:mT̄∈Z|T̄ |

q

mT=0T

f((m+ x) mod q)

=
1

q|T̄ |

∑
m:mT̄∈Z|T̄ |

q

mT=0|T |

(∑
k≤m

Mx[k]

)
.

Due to the recursive nature of the q-ary Möbius transform, each q-ary Möbius coefficient is looped
through q|T̄ |−∥m∥0 times. Therefore, we can simplify as follows:

vT (x) =
1

q|T̄ |

∑
m:mT̄∈Z|T̄ |

q

mT=0|T |

q|T̄ |−∥m∥0Mx[m].

We can pull the q|T̄ | out of the summation, which will allow us to cancel the q|T̄ | term in the
denominator. This leaves us with the following:

vT (x) =
∑

m:mT̄∈Z|T̄ |
q

mT=0|T |

1

q∥m∥0
Mx[m]. (25)

Plugging Equation (25) into the forward set Möbius transform equation from Definition 2.1 returns
an equation for the set Möbius transform in terms of the q-ary Möbius transform:

a(v, S) =
∑
T⊆S

(
(−1)|S|−|T |

∑
m:mT̄∈Z|T̄ |

q

mT=0|T |

1

q∥m∥0
Mx[m]

)
. (26)

Although Equation (26) loops only over subsets T ⊆ S, all possible q-ary Möbius coefficients are
accounted for, since m is nonzero at coordinates given by T̄ . We rewrite Equation (26) such that we
loop over all possible q-ary Möbius coefficients, given by the subsets L̄ ⊆ D:

a(v, S) =
∑
L̄⊆D

(∑
T :T⊆S
if L̄⊆T̄

(−1)|S|−|T |
(

1

q|L̄|

∑
m:∀i∈L̄,mi>0

mL=0|L|

Mx[m]

))
.

Notably, we are looping through T ⊆ S over the set T in order to compute (−1)|S|−|T |, but our if
condition is with respect to T̄ . For every T , T̄ is implicitly defined already, since T̄ is the complement
of T .

We look to simplify the outer summation. Consider the relationship between an arbitrary L̄ given
the condition L̄ ⊆ T̄ . L̄ ⊆ T̄ is only true when L̄ ∩ T = ∅ based on the way T̄ is implicitly defined.
Since T ⊆ S, the total number of features that can be in T that can satisfy L̄ ∩ T = ∅ is |S \ L̄|.
Therefore, the amount of T subsets that will loop through T ⊆ S is equal to 2|S\L̄| for an arbitrary
L̄. From here, we will cancel out terms by noting that we must loop through the alternating series
2|S\L̄| times. We divide L̄ into two cases: when S ⊆ L̄ and when S ⊈ L̄. When S ⊈ L̄, |S \ L̄| > 0,
which means we loop through the alternating series an even amount of times, canceling out any q-ary
Möbius coefficients that have |L̄| nonzero values. However, when S ⊆ L̄, |S \ L̄| = 0. Therefore,
we can rewrite the outer summation to be over all possible L̄’s where S ⊆ L̄:

a(v, S) =
∑

L̄:S⊆L̄

(∑
T :T⊆S

if L̄∩T=∅

(−1)|S|−|T |
(

1

q|L̄|

∑
m:∀i∈L̄,mi>0

mL=0|L|

Mx[m]

))
.

Now, given S ⊆ L̄, the only way T ⊆ S and L̄ ∩ T = ∅ can be satisfied is when T = ∅. T cannot
contain any features in its set because it will violate L̄ ∩ T = ∅. To illustrate this, consider an n = 3

23

problem. Let S = {1, 2} and L̄ = {1, 2, 3}. The possible subsets T ⊆ S include ∅, {1}, {2}, and
{1, 2}. For the subsets {1} and {2}, {1} ∩ {1, 2, 3} = {1} ≠ ∅ and {2} ∩ {1, 2, 3} = {2} ≠ ∅. The
only case where L̄ ∩ T = ∅ is when T = ∅, which means |T | = 0.

Setting |T | = 0 and the outer summation to loop over all possible L̄’s where S ⊆ L̄, we obtain the
following expression:

a(v, S) =
∑

L̄:S⊆L̄

(
(−1)|S|

(
1

q|L̄|

∑
m:∀i∈L̄,mi>0

mL=0|L|

Mx[m]

))
.

Pulling (−1)|S| out of the summation, we obtain an expression to convert from the q-ary Möbius
transform to set Möbius transform:

a(v, S) = (−1)|S|
∑

L̄:S⊆L̄

(
1

q|L̄|

∑
m:∀i∈L̄,mi>0

mL=0|L|

Mx[m]

)
. (27)

This can equivalently be written in vector notation as:

a(v, S) = (−1)|S|
∑

k:kS>0|S|

1

q∥k∥0
Mx[k]. (28)

E.3 Proof of Theorem 3.4

With a conversion from the q-ary Möbius transform to the set Möbius transform, we can now derive
the SHAP value formula with respect to the q-ary Möbius transform. To do this, we will need to use
the following Lemmas.
Lemma E.1. For all n ≥ 0 and k ≥ 0, where n and k are integers:(

n− 1

k − 1

)
=

k

n

(
n

k

)
.

Proof. Expanding the right-hand side results in the following:
(
n−1
k−1

)
= k

n

(
n
k

)
= k·n!

n·k!·(n−k)! =
(n−1)!

(k−1)!·(n−k)! =
(
n−1
k−1

)
.

Lemma E.2. For all n ≥ 1, where n is an integer:
n∑

k=1

(−1)k
(
n

k

)
= −1.

Proof. We require a special case of the binomial theorem. The binomial theorem states that, for any
number x and y, and given an integer n ≥ 0: (x + y)n =

∑n
k=0

(
n
k

)
xkyn−k. Plugging in y = 1

and x = −1 leads to the following simplification:
∑n

k=0(−1)k
(
n
k

)
= 0. We pull out the summation

term where k = 0, and instead loop the summation over from k = 1 to n: 1 +
∑n

k=1(−1)k
(
n
k

)
= 0.

Finally, isolating the summation term leaves us with Lemma E.2.
∑n

k=1(−1)k
(
n
k

)
= −1.

Our derivation will require the classic SHAP value equation, which we leave below. Since we drop
the i subscript from xi, we write ISV

x (i) instead of ISV
xi

(j):

ISV
x (i) =

∑
T⊆D\{i}

|T |! (|D| − |T | − 1)!

|D|!
[
vT∪{i}(x)− vT (x)

]
(29)

To begin our derivation, we plug in Equation (27) into Equation (29):

ISV
x (i) =

∑
T⊆D\{i}

1

|T ∪ {i}|

(
(−1)|T∪{i}|

∑
L̄:T∪{i}⊆L̄

(
1

q|L̄|

∑
m:∀j∈L̄,mj>0

mL=0|L|

Mx[m]

))
. (30)

24

Summing up over all sets T ⊆ D \ {i} results in repeatedly looping over the same q-ary Möbius
coefficients several times. We re-write Equation (30) to sum over all q-ary Möbius coefficient sets
L̄ ⊆ D \ {i}, which allows us to loop over all unique q-ary Möbius coefficients as we keep track of
how many times the alternating series gets summed:

ISV
x (i) =

∑
L̄⊆D\{i}

1

q|L̄∪{i}|

(∑
m:∀j∈L̄∪{i},mj>0
mL\{i}=0|L\{i}|

Mx[m]

(∑
T⊆L̄∪{i}

i∈T

1

|T |
(−1)|T |

))
. (31)

The amount of times to sum through
∑

T⊆L̄∪{i},i∈T
1
|T | (−1)

|T | depends on |T |. For example,
consider an n = 3 problem, where i = 1 and L̄ = {2, 3}. There is only one possible set where
|T | = 1, {1}, because i ∈ T . However, there are two possible sets where |T | = 2: {1, 2} and {1, 3}.
Generalizing this, the amount of possible sets for an arbitrary |T | that satisfy i ∈ T is equivalent to(|L̄∪{i}|−1

|T |−1

)
. Using this, we re-write Equation (31) by summing over all possibilities of |T |:

ISV
x (i) =

∑
L̄⊆D\{i}

1

q|L̄∪{i}|

(∑
m:∀j∈L̄∪{i},mj>0
mL\{i}=0|L\{i}|

Mx[m]

(|L̄∪{i}|∑
k=1

(
|L̄ ∪ {i}| − 1

k − 1

)
1

k
(−1)k

))
.

We can apply Lemmas E.1 and E.2 to arrive at the following:

ISV
x (i) =

∑
L̄⊆D\{i}

1

q|L̄∪{i}|

(∑
m:∀j∈L̄∪{i},mj>0
mL\{i}=0|L\{i}|

Mx[m](
1

|L̄ ∪ {i}|
)

|L̄∪{i}|∑
k=1

(
|L̄ ∪ {i}|

k

)
(−1)k

)
.

ISV
x (i) =

∑
L̄⊆D\{i}

1

q|L̄∪{i}|

(∑
m:∀j∈L̄∪{i},mj>0
mL\{i}=0|L\{i}|

Mx[m](
−1

|L̄ ∪ {i}|
)

)
.

Finally, we can pull −1
|L̄∪{i}| out of the summation to be left with our final expression:

ISV
x (i) = −

∑
L̄⊆D\{i}

1

|L̄ ∪ {i}|q|L̄∪{i}|

∑
m:∀j∈L̄∪{i},mj>0
mL\{i}=0|L\{i}|

Mx[m]. (32)

This is equivalently written in vector notation as:

ISV
x (i) = −

∑
k:ki>0

1

∥k∥0q∥k∥0
Mx[k]. (33)

Analyzing the time complexity, in the worst-case scenario, if every q-ary Möbius coefficient is
nonzero up to order ℓ, the total amount of coefficients to sum up is qℓ−1(q − 1) ≈ qℓ. Therefore, the
time complexity of Equation (33) is upper-bounded by O(qℓ).

E.4 Proof of Theorem 3.5

The Faith-Shap equation given in Equation (2) is valid under the assumption that both f and IFSI
x (T)

are constrained to a order ℓ. If f is not constrained by order ℓ, we compute IFSI
x (T) using the

following equation [26]:

IFSI(T) = a(v, T) + (−1)ℓ−|T | |T |
ℓ+ |T |

(
ℓ

|T |

)
×
∑
S⊃T,
|S|>ℓ

(|S|−1
ℓ

)(|S|+ℓ−1
ℓ+|T |

)a(v, S), ∀T ∈ Tℓ, (34)

where Tℓ denotes the set of all T ⊆ D where |T | ≤ ℓ.

This formulation is not computationally scalable, as the set Möbius transform requires looping over
2|D| subsets. However, for a q-ary Möbius transform with a maximum order ℓ, all set Möbius

25

coefficients with a maximum order greater than ℓ are 0, by Equation (27). Therefore, when computing
the ℓth order Faith-Shap interaction index, there are no set Möbius coefficients that satisfy |S| > ℓ in
the summation term of Equation (34), allowing us to drop the summation term. Therefore, we can
define the ℓth order Faith-Shap interaction index equation as follows:

IFSI(T) = a(v, T), ∀T ∈ Tℓ. (35)

From Proposition 3.3, this is equivalently in vector notation as:

IFSI(T) = (−1)|T |
∑

k:kT>0|T |

1

q∥k∥0
Mx[k], (36)

with a computational complexity of O(qℓ).
Similarly to the computational complexity from Theorem 3.4, if every q-ary Möbius coefficient is
nonzero up to order ℓ, the total amount of coefficients to sum up is qℓ−|T |(q − 1)|T | ≈ qℓ. Therefore,
the time complexity of Theorem 3.5 is O(qℓ). Notably, when ℓ = 1, Theorem 3.5 becomes identical
to computing SHAP values in Theorem 3.4.

26

F Additional Experimental Results

Top positive SHAP values Top negative SHAP values
Position Nucleotide Average SHAP value Position Nucleotide Average SHAP value

5 G 0.120 8 A -0.079
6 G 0.118 10 A -0.076
7 G 0.087 6 C -0.073

25 T 0.080 7 A -0.071
22 T 0.070 9 A -0.069
11 C 0.061 20 C -0.064
21 T 0.061 5 T -0.055
10 C 0.061 5 C -0.050
8 G 0.060 6 T -0.047
3 C 0.058 23 C -0.045
9 G 0.053 21 C -0.045
4 C 0.047 3 T -0.043
8 C 0.043 22 A -0.042
2 A 0.043 5 A -0.041

23 T 0.042 25 C -0.041
4 G 0.037 4 T -0.041
9 C 0.036 4 A -0.039

10 G 0.036 18 C -0.037
24 G 0.032 11 A -0.037
18 A 0.031 17 C -0.037

Table 2: Top 20 positive and negative SHAP zero values in TIGER from SHAP zero when predicting
the guide score of perfect match target sequences. The top SHAP values are centered around the seed
region and are in agreement with KernelSHAP.

27

Top positive SHAP values Top negative SHAP values
Position Nucleotide Average SHAP value Position Nucleotide Average SHAP value

6 G 0.123 10 A -0.066
5 G 0.119 7 A -0.065
7 G 0.094 8 A -0.062

11 C 0.076 9 A -0.062
25 T 0.073 20 C -0.060
4 C 0.070 6 C -0.058

10 C 0.062 3 T -0.046
8 C 0.059 6 T -0.044
3 C 0.055 9 T -0.041
8 G 0.054 3 A -0.040
9 C 0.052 11 A -0.040

21 T 0.050 5 T -0.040
22 T 0.049 8 T -0.038
7 C 0.049 4 A -0.038
9 G 0.047 22 A -0.037
4 G 0.046 23 C -0.037

12 C 0.039 21 C -0.037
18 A 0.038 10 T -0.036
10 G 0.037 5 G -0.036
23 T 0.036 5 C -0.035

Table 3: Top 20 positive and negative SHAP values in TIGER from KernelSHAP when predicting
the guide score of perfect match target sequences. Similar to SHAP zero, the top SHAP values are
centered around the seed region.

28

Top positive interactions Top negative interactions
Positions Nucleotides Average interaction Positions Nucleotides Average interaction

5,6 G,T 0.061 3,4 C,C -0.097
5,6 C,A 0.061 8,9 C,C -0.079
3,4 A,C 0.056 3,4 G,G -0.061
3,4 C,G 0.055 4,5 G,G -0.059

19,20 C,A 0.052 4,5 C,C -0.059
5,6 A,C 0.052 6,7 C,C -0.059
5,6 T,G 0.052 6,7 G,G -0.059

19,20 A,C 0.046 5,6 G,G -0.059
4,5 T,G 0.044 5,6 C,C -0.059
4,5 A,C 0.044 9,10 T,T -0.059
8,9 A,C 0.043 19,20 A,A -0.059

18,19 C,A 0.041 10,11 G,G -0.057
4,5 G,T 0.038 10,11 C,C -0.057
4,5 C,A 0.038 9,10 C,C -0.056

10,11 A,C 0.038 11,12 G,G -0.056
10,11 T,G 0.038 11,12 C,C -0.056

8,9 C,G 0.038 8,9 G,G -0.054
11,12 A,C 0.037 7,8 T,T -0.052
11,12 T,G 0.037 7,8 G,G -0.052

6,7 T,G 0.037 7,8 C,C -0.052

Table 4: Top 20 positive and negative Faith-Shap interactions in TIGER from SHAP zero when
predicting the guide score of perfect match target sequences. The top interactions exhibit high GC
content around the seed region.

29

Top positive SHAP values Top negative SHAP values
Position Nucleotide Average SHAP value Position Nucleotide Average SHAP value

19 T 3.727 19 G -5.462
19 A 2.466 18 G -3.105
20 G 2.431 20 C -2.981
21 A 1.833 21 C -2.891
22 T 1.754 18 A -2.617
22 G 1.751 21 A -2.539
18 T 1.734 17 C -2.495
21 C 1.733 17 A -2.495
17 G 1.696 17 T -2.461
20 A 1.649 22 A -2.451
18 A 1.527 23 C -2.266
17 C 1.492 21 G -2.239
21 G 1.490 22 G -2.223
18 C 1.490 18 C -2.138
21 T 1.422 22 T -2.120
22 C 1.355 22 C -2.034
23 C 1.220 20 T -2.001
16 C 1.177 17 G -1.972
22 A 1.121 20 G -1.877
17 A 1.104 18 T -1.775

Table 5: Top 20 positive and negative SHAP values in inDelphi from SHAP zero when predicting the
frameshift frequency of DNA target sequences. Top SHAP values are centered around the cut site
and are in agreement with KernelSHAP.

30

Top positive SHAP values Top negative SHAP values
Position Nucleotide Average SHAP value Position Nucleotide Average SHAP value

19 T 4.383 19 G -6.148
17 G 4.308 18 G -4.731
20 G 3.585 23 C -3.483
18 T 2.773 17 C -3.212
19 A 2.649 20 C -2.650
20 A 2.497 21 C -2.641
22 G 2.359 22 T -2.534
21 T 2.253 21 A -2.507
14 G 2.237 17 T -2.458
21 A 2.161 19 C -2.305
18 C 2.156 22 A -2.282
18 A 2.117 20 G -2.247
21 C 2.085 15 G -2.235
17 C 2.013 21 G -2.216
22 T 1.999 20 T -2.164
23 C 1.921 18 A -2.144
21 G 1.838 18 C -2.116
15 T 1.648 26 G -2.091
14 T 1.580 15 T -2.009
23 G 1.528 22 G -1.959

Table 6: Top 20 positive and negative SHAP values in inDelphi from KernelSHAP when predicting
the frameshift frequency of DNA target sequences. Like SHAP zero, the top SHAP values are
centered around the cut site.

31

Top positive interactions Top negative interactions
Positions Nucleotides Average Positions Nucleotides Average

interaction interaction
18,19,21,22 G,C,G,G 2.504 18,19,21,22 T,C,T,C -5.640
18,19,21,22 C,G,C,C 2.504 18,19,21,22 A,G,A,G -5.640
18,19,21,22 A,G,A,C 2.504 18,19,21,22 G,C,G,C -5.640
18,19,21,22 T,C,T,G 2.504 18,19,21,22 C,G,C,G -5.640

18,21 G,C 2.073 18,19,21,22 G,G,G,G -5.640
18,21 C,G 2.073 18,21 G,G -5.325

17,18,21,22 G,C,G,C 1.983 18,21 C,C -5.325
17,18,21,22 G,G,G,G 1.983 17,18,20,21 G,A,G,A -4.658
17,18,21,22 A,A,A,A 1.983 17,18,20,21 T,G,T,G -4.658
17,18,21,22 A,G,A,G 1.983 17,18,20,21 A,T,A,T -4.658
17,18,21,22 A,C,A,C 1.983 17,18,20,21 C,A,C,A -4.658
17,18,21,22 T,T,T,T 1.983 17,18,20,21 T,C,T,C -4.658
17,18,21,22 T,A,T,A 1.983 17,18,20,21 G,G,G,G -4.658
18,19,20,21 C,T,C,T 1.982 17,18,20,21 C,G,C,G -4.658
18,19,20,21 A,G,A,G 1.982 17,18,20,21 G,C,G,C -4.658
18,19,20,21 C,A,C,A 1.982 17,18,20,21 A,G,A,G -4.658
18,19,20,21 G,G,G,G 1.982 17,18,20,21 A,A,A,A -4.658
18,19,20,21 G,A,G,A 1.982 17,18,20,21 T,T,T,T -4.658
18,19,20,21 T,G,T,G 1.982 17,18,20,21 T,A,T,A -4.658
18,19,20,21 A,C,A,C 1.982 18,21 T,T -4.553

Table 7: Top 20 positive and negative Faith-Shap interactions in inDelphi from SHAP zero when
predicting the frameshift frequency of DNA target sequences. GCGC and TCTC interactions at
positions 17-18 and 21-22 and at 18-19 and 21-22, respectively, show high-order microhomology
patterns.

32

Top positive SHAP values Top negative SHAP values
Position Amino acid Average SHAP value Position Amino acid Average SHAP value

8 L 0.074 8 D -0.046
4 L 0.074 4 E -0.044
4 I 0.060 4 D -0.044
6 C 0.058 5 P -0.041
5 F 0.058 4 P -0.040
8 V 0.053 4 K -0.039
8 I 0.050 4 N -0.039
8 M 0.050 4 R -0.037
4 M 0.049 8 E -0.036
2 F 0.046 8 G -0.036
5 I 0.042 9 P -0.036
0 F 0.040 7 W -0.035
5 Y 0.037 9 W -0.035
7 V 0.037 5 D -0.034
1 M 0.035 8 P -0.034
3 K 0.034 4 Q -0.033
4 V 0.034 6 W -0.032
4 A 0.032 8 N -0.031
9 K 0.032 8 K -0.031
1 F 0.032 5 E -0.030

Table 8: Top 20 positive and negative SHAP values from SHAP zero when predicting protein fitness
of protein sequences in Tranception. Top SHAP values are consistent with secondary structure
predictors and are in agreement with KernelSHAP.

33

Top positive SHAP values Top negative SHAP values
Position Amino acid Average SHAP value Position Amino acid Average SHAP value

5 F 0.012 8 D -0.108
4 L 0.008 4 D -0.107
6 C 0.007 4 E -0.103
8 L 0.006 8 E -0.101
1 M 0.006 4 P -0.100
2 F 0.005 4 N -0.100
0 F 0.005 8 P -0.099
9 K 0.005 4 K -0.096
3 K 0.003 5 P -0.095
7 V 0.003 4 R -0.095
- - - 8 G -0.094
- - - 8 K -0.093
- - - 8 N -0.093
- - - 5 D -0.092
- - - 8 W -0.090
- - - 4 Q -0.090
- - - 5 E -0.089
- - - 6 W -0.082
- - - 8 R -0.080
- - - 4 G -0.080

Table 9: Top positive and negative SHAP values from KernelSHAP in Tranception. KernelSHAP is
biased toward negative SHAP values due to marginalization in training data.

34

Top positive interactions Top negative interactions
Positions Amino acids Average Positions Amino acids Average

interaction interaction
4,6 R,Y 0.013 4,6 K,E -0.017
4,6 K,W 0.011 2,3 F,W -0.011
5,9 K,P 0.011 4,6 G,F -0.011
5,9 D,W 0.011 5,9 K,K -0.011
2,3 F,K 0.010 7,9 V,P -0.010
5,7 P,N 0.009 5,9 W,I -0.010
4,6 I,E 0.009 4,6 K,Q -0.008
4,6 K,Y 0.008 5,7 K,L -0.008
5,9 F,K 0.008 4,6 Y,T -0.008
2,3 F,R 0.008 2,3 F,F -0.008
5,7 W,G 0.007 2,3 F,I -0.008
4,6 K,F 0.007 5,9 E,Q -0.008
2,3 F,Q 0.007 5,7 K,I -0.008
4,6 N,W 0.007 5,7 K,M -0.008
4,6 G,H 0.007 5,7 A,N -0.007
5,7 K,E 0.006 5,7 P,F -0.007
7,9 N,P 0.006 5,9 K,D -0.007
5,7 K,Q 0.006 5,7 K,V -0.007
5,9 K,F 0.006 4,6 W,T -0.007
7,9 P,P 0.006 5,7 G,C -0.007

Table 10: Top 20 positive and negative Faith-Shap interactions from SHAP zero when predicting
protein fitness in Tranception reveals epistatic interactions in secondary structure predictors.

35

5 10 15 20 25
Target sequence position

−0.10

−0.05

0.00

0.05

0.10

Fa
ith

-S
ha

p
in

te
ra

ct
io

n
 u

si
ng

 S
H

AP
 z

er
o

A C G T

5 10 15 20 25
Target sequence position

−0.10

−0.05

0.00

0.05

0.10

Fa
ith

-S
ha

p
in

te
ra

ct
io

n
 u

si
ng

 S
H

AP
-IQ

A C G T
a b

Figure 5: Top interactions in TIGER. a, Top 80 Faith-Shap interactions in TIGER with SHAP zero
and b, SHAP-IQ. Although overlapping interactions in SHAP zero and SHAP-IQ are in agreement,
SHAP zero interactions are more concentrated around the seed region.

36

5 10 15 20 25 30 35 40
Target sequence position

−6

−4

−2

0

2

4

Fa
ith

-S
ha

p
in

te
ra

ct
io

n
 u

si
ng

 S
H

AP
-IQ

A C G T

5 10 15 20 25 30 35 40
Target sequence position

−6

−4

−2

0

2

4

Fa
ith

-S
ha

p
in

te
ra

ct
io

n
 u

si
ng

 S
H

AP
 z

er
o

A C G T
a b

Figure 6: Top interactions in inDelphi. a, Top 80 Faith-Shap interactions in inDelphi with SHAP
zero and b, SHAP-IQ. While overlapping interactions are in agreement, the majority of SHAP-IQ
interactions are not centered around the cut site.

37

5 10 15 20 25
Target sequence position

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

SH
AP

 v
al

ue

 u
si

ng
 F

as
tS

H
AP

A C G T

5 10 15 20 25
Target sequence position

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

SH
AP

 v
al

ue

 u
si

ng
 D

ee
pS

H
AP

A C G T

0 500 1000
Number of sequences explained

100

101

102

103

104

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
FastSHAP
DeepSHAP

a b

Figure 7: FastSHAP and DeepSHAP on TIGER. a, FastSHAP and DeepSHAP estimates over 1038
query sequences, with a random subset of 50 estimates shown for clarity. b, Total runtime of SHAP
zero, FastSHAP, and DeepSHAP over 1038 target sequences. While both methods are faster than
SHAP zero, FastSHAP estimates do not correlate well with KernelSHAP, and DeepSHAP estimates
are not black-box and do not support amortized inference.

38

5 10 15 20 25 30 35 40
Target sequence position

−0.5

0.0

0.5

1.0

1.5

SH
AP

 v
al

ue

 u
si

ng
 F

as
tS

H
AP

A C G T

0 100 200 300 400 500

103

104

105

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
FastSHAP

a b

Figure 8: FastSHAP on inDelphi. a, SHAP values of 40 random target sequences from FastSHAP.
b, Total runtime of SHAP zero and FastSHAP over 134 target sequences. While FastSHAP is faster
than SHAP zero, FastSHAP estimates do not correlate well with KernelSHAP.

39

a b

A C D E F G H I K L M N P Q R S T V W Y

Amino Acid

1

2

3

4

5

6

7

8

9

10

Po
si

tio
n

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

FastSH
AP

 value

0 50 100 150 200

100

101

102

103

104

105

To
ta

l r
un

tim
e

(s
ec

on
ds

)

SHAP zero
FastSHAP

Figure 9: FastSHAP on Tranception. a, SHAP values on held-out sequences from FastSHAP. b,
Total runtime of SHAP zero and FastSHAP over 200 sequences. While FastSHAP is faster than
SHAP zero, FastSHAP estimates do not correlate well with KernelSHAP.

40

F.1 Verifying Epistatic Interactions in Tranception

We evaluated whether the top five positive and negative interactions identified in Table 10 correspond
to epistasis in Tranception. As computing ground-truth Faith-Shap interactions is too computationally
expensive at the scales we run SHAP zero, we opted to use SHAP zero to predict the top mutations in
sequences that would result in epistasis.

From the held-out sequence set (Appendix G.8), we first selected sequences containing the relevant
amino acid pairs. For each pair, we use SHAP zero’s Möbius transform to predict whether mutations
to the amino acids pairs will results in epistasis, where second-order Möbius coefficients quantify
pairwise interactions. We extracted the top three mutation pairs per interaction and introduced these
mutations into the selected sequences.

To measure epistasis, we compared the Tranception scores of the original selected sequence x0, the
corresponding single mutants x1

i and x1
j at positions i and j, respectively, and the double mutant x2

i,j .
Epistasis values ϵ were computed as [60]:

ϵ = f(x2
i,j)− f(x1

i)− f(x1
j) + f(x0),

where f(·) denotes the Tranception score. By construction, ϵ is equivalent to the ground-truth
second-order Möbius coefficient for the corresponding amino acid pair.

Table 11 reports the average epistasis value found in Tranception for these interactions. Here, we
see that SHAP zero correctly identifies interactions where Tranception exhibits positive and negative
epistasis.

Top positive interactions Top negative interactions
Positions Amino acids Epistasis Positions Amino acids Epistasis

4,6 R,Y 0.04 4,6 K,E -0.04
4,6 K,W 0.03 2,3 F,W -0.01
5,9 K,P 0.04 4,6 G,F -0.02
5,9 D,W 0.04 5,9 K,K -0.05
2,3 F,K 0.02 7,9 V,P -0.02

Table 11: Top positive and negative pairwise interactions identified by SHAP zero, with epistasis
values from Tranception.

G Experimental Setup

Experiments that involve querying TIGER or Tranception were run on a single NVIDIA RTX A6000
machine. All other experiments were run on CPU.

G.1 Implementation of Computing the Sparse Fourier Transform

In all experiments to recover Fourier coefficients, we applied the sparse Fourier algorithm q-SFT [40]
through their GitHub repository (https://github.com/basics-lab/qsft). We specify which q and n
we run in each experimental subsection. There are three tunable parameters in SHAP zero that
determine the number of samples used: subsampling dimension b, number of subsampling matrices
(C), and number of offset matrices (P1). Given a length-n sequence, these parameters determine the
number of samples SHAP zero takes to recover the most significant Fourier coefficients: samples =
qb×C ×P1× (n+1). Increasing b increases the number of samples SHAP zero takes exponentially.
The theory of compressed sensing tells us that the quality of recovered top Fourier coefficients
depends on the total number of samples queried, meaning that performance improves monotonically
with respect to all parameters. We also observe this in our empirical results: increasing b results
in recovering more Fourier coefficients and better SHAP zero accuracy. Therefore, to determine
the number of samples to take in SHAP zero, we maximize b as large as computationally feasible
while leaving C = 3 and P1 = 3 (which follows the default parameters of q-SFT), ensuring
the recovery of the top Fourier coefficients. All other parameters in q-SFT were left as default,

41

https://github.com/basics-lab/qsft

which includes setting query_method to “complex”, delays_method_source to “identity”, and
delays_method_channel to “nso”.

After determining the number of samples to use, we then optimized the hyperparameter noise_sd,
which sets the peeling threshold to recover Fourier coefficients. To find the optimal value of noise_sd,
we performed a coarse search from 0 to 20 at 20 evenly spaced points and used the recovered Fourier
coefficients at each level of noise_sd to predict the values of a test set of 10,000 samples (done by
setting the test argument n_samples to 10, 000). After finding the general range where R2 was the
largest, we refined our search within that general range at a smaller step size. We report the specific
hyperparameters used for q-SFT in each experimental subsection.

G.2 Comparison With Baselines

Computing exact SHAP values or interactions for q-ary functions requires O(qn) computations (see
Appendix E.3 and E.4). For realistic values of q and n in sequence models, even a single evaluation
is intractable; for example, estimating one SHAP value for inDelphi would take on the order of 1010
years on our servers. As a result, we benchmark SHAP zero against KernelSHAP and SHAP-IQ, two
methods that yield unbiased Shapley estimations [11, 25, 62, 65]. To ensure fair comparisons, we
conduct a thorough convergence analysis for both KernelSHAP and SHAP-IQ (see below), and verify
that that both baselines produce stable explanations. In addition, we performed a detailed analysis of
SHAP zero’s explanations and uncovered interactions that align with known biological motifs from
the literature. Together, these results demonstrate that SHAP zero produces biologically plausible
and scalable amortized explanations for sequence models.

G.3 Implementation of KernelSHAP, SHAP-IQ, and FastSHAP

To create the KernelSHAP baseline, we used the Python package SHAP’s KernelSHAP implementa-
tion. For the background set, we used training sequences from inDelphi and TIGER. In Tranception,
we used deep mutational scanning GFP data [49] from ProteinGym [66], and filtered out sequences
that were mutated outside of the 10 sites chosen. In Tranception, we were able to run SHAP on the
full background dataset, due to the manageable number of sequences present in the dataset. However,
in the instance of TIGER and inDelphi, we were unable to feasibly run SHAP with all training
sequences. Therefore, to determine the size of the background dataset, we ran KernelSHAP over
different background dataset sizes on a subset of the held-out sequences and plotted the R2 of the
KernelSHAP estimates with respect to the largest background dataset size. Error bars are generated
by computing the R2 over each sequence’s KernelSHAP estimates. We picked the background dataset
size where KernelSHAP values converged with an R2 > 0.97 to run on all the held-out sequences.

To compute Faith-Shap interactions, we used SHAP-IQ’s implementation, available on their GitHub
repository (https://github.com/mmschlk/shapiq). Since SHAP zero’s recovered interactions were
greater than 3 in both TIGER and inDelphi, we wanted to run SHAP-IQ at max_order (ℓ) > 3.
However, we ran into computational issues in both cases, resulting in us setting ℓ = 3. In Tranception,
we set ℓ = 2, since SHAP zero wasn’t unable to recover significant interactions greater than
2. Additionally, since SHAP-IQ was computationally too expensive to run over all sequences,
we randomly selected a few sequences to analyze. We used the same background dataset from
KernelSHAP and hyperparameter tuned budget (which determines the number of model evaluations
to make). Similar to KernelSHAP, we ran SHAP-IQ over different budgets on a subset of held-
out sequences and plotted the R2 of the SHAP-IQ interactions with respect to the largest budget
size. Error bars are generated by computing the R2 over each sequence’s Faith-Shap estimates,
stratified by interaction order. We picked the budget where Faith-Shap estimates converged with
an R2 > 0.6 to run on all the held-out sequences. In the case of Tranception, we noticed that the
Faith-Shap interactions converged quickly to R2 = 1 at budget = 10, 000. Therefore, we opted
to use budget = 10, 000 for our experiments. We report the specific KernelSHAP and Faith-Shap
parameters for TIGER and inDelphi in each experimental subsection. Fig. 10 shows the convergence
plots for all three models, with dashed lines showing what experimental parameters were used.

To run FastSHAP, we used the FastSHAP implementation available on their GitHub repository
(https://github.com/iancovert/fastshap). We removed all instances of calling the softmax function.
We replaced the KL divergence loss used to train the surrogate neural network for mean squared
error loss since the FastSHAP implementation on their GitHub is designed for classification and not

42

https://github.com/mmschlk/shapiq
https://github.com/iancovert/fastshap

10 20 30 40 50
Background sample size

0.6

0.7

0.8

0.9

1.0

Ke
rn

elS
HA

P
R
2 (

TI
GE

R)

0 10000 20000 30000 40000 50000 60000
Budget

0.00

0.25

0.50

0.75

1.00

Fa
ith

-S
ha

p
R
2 (

TI
GE

R)

10 20 30 40 50
Background sample size

0.4

0.6

0.8

1.0

Ke
rn

elS
HA

P
R
2 (

inD
elp

hi)

0 5000 10000 15000 20000 25000
Budget

0.00

0.25

0.50

0.75

1.00

Fa
ith

-S
ha

p
R
2 (

inD
elp

hi)

10 20 30 40 50 60 70 80
Background sample size

0.92

0.94

0.96

0.98

1.00

Ke
rn

elS
HA

P
R
2 (

Tr
an

ce
pt

ion
)

0 10000 20000 30000 40000 50000 60000
Budget

0.9997

0.9998

0.9999

1.0000

Fa
ith

-S
ha

p
R
2 (

Tr
an

ce
pt

ion
)

Figure 10: Shapley convergence plots in TIGER, inDelphi, and Tranception. We hyperparameter
tuned the size of the background dataset in KernelSHAP and budget in SHAP-IQ. Dashed lines
indicate what experimental parameters were used.

regression. Following the FastSHAP implementation left on their GitHub for the census dataset,
the surrogate model is implemented using a neural network consisting of three fully connected
layers, where each layer is 128 units wide, with ReLU activation. We did not train the surrogate
model according to their CIFAR implementation because their CIFAR-10 surrogate model uses a
pre-trained ResNet-50 model designed for image-specific tasks. The surrogate model was trained on
the entire training set. All other FastSHAP parameters were left as default according to their GitHub
implementation on the CIFAR-10 dataset.

G.4 Calculation of Top SHAP Values, Top Faith-Shap Interactions, and Total Runtime

To determine the top SHAP values in the Appendix (see Tables 2, 3, 5, 6, 8, and 9), we separated the
SHAP values into positive and negative values. For the positive and negative grouping, we calculated
the average contribution of each nucleotide at each position to report the average SHAP value. The
same procedure was used to determine the top Faith-Shap interactions (see Tables 4, 7, and 10),
but instead by calculating the average contribution of each unique interaction. Total runtime was
computed by summing the sample and computational complexities of each algorithm. We estimated
the runtime per sample by dividing the total runtime by the number of query explanations performed.

G.5 Visualization of SHAP Values and Faith-Shap Interactions in TIGER and inDelphi

To visualize SHAP values (see Fig. 2c, Fig. 3c, Fig. 7a, and Fig. 8a), we randomly sampled
50 sequences and plotted their SHAP values on a scatterplot. To plot a histogram of Faith-Shap
interactions (see Fig. 2e and 3e), we used the visualization scheme described in [28]. After separating
the positive and negative interactions, we evenly distributed the interaction magnitudes across all
affected nucleotides. We reported the summed contributions of each nucleotide at each position
on a bar graph. However, slightly deviating from [28], rather than stratifying the bar plots by the
order of interactions, we stratified them by nucleotide type and only plot interactions with an order
greater than 1. For more details, refer to Appendix B of [28]. To visualize Faith-Shap interactions as
shown in the Appendix (see Fig. 5 and 6), we plotted interactions as data points with line connecting
points to show the order of interaction. For visual clarity, we only plotted the larger interaction if
interactions with the same nucleotides at the same positions have an estimated difference of 0.001.
We plotted the top 80 interactions from SHAP zero and SHAP-IQ.

43

G.6 TIGER

We considered the sequence-only implementation of TIGER by inputting length-n = 26 perfect
match target sequences, where the model assumes that the gRNA is a perfect sequence complement
of the target sequence. We set q = 4, n = 26, and b = 7. For noise_sd, after finding the general
range where R2 was the largest, we refined our search using a step size of 0.025. We used b = 7 and
noise_sd = 0.725, which corresponded to an R2 of 0.55.

We used the held-out perfect match target sequences provided by TIGER [33] to predict the experi-
mental scores. We evaluated the performance of the recovered Fourier coefficients using Pearson
correlation, Spearman correlation, area under the receiver operating characteristic curve (AUROC),
and area under the precision-recall curve (AUPRC). AUROC and AUPRC were used because TIGER
allows thresholding predictions to formulate a binary classification problem. We created our linear
and pairwise interaction model baselines using sklearn in Python. Our baseline models were trained
on one-hot encoded sequences using the training data from TIGER to predict the experimental guide
score, employing Ridge regression with λ = 0.5. To construct the pairwise interaction model, we
used sklearn’s PolynomialFeatures implementation, setting degree to 2 and interaction_only to
True.

For KernelSHAP and SHAP-IQ, background samples were randomly drawn from the training set.
During hyperparameter tuning, we evaluated KernelSHAP using 5, 10, 15, 30, 40, and 50 background
samples across 30 held-out sequences; we selected 30 background samples for our experiments. For
SHAP-IQ, we performed a hyperparameter search over budgets of 1,000, 10,000, 30,000, 50,000,
60,000, and 70,000 on two held-out sequences; we chose a budget of 50,000 for downstream analysis.
Due to SHAP-IQ’s high computational cost, we limited evaluation to a randomly selected subset of
eight sequences. We additionally set max_order = 3: the highest order feasible before encountering
computational constraints. SHAP zero was run on all held-out sequences.

DeepSHAP was implemented using the Python package SHAP. The background dataset consists of
5000 samples randomly drawn from the training set, which is the number of background samples
TIGER utilizes in their own DeepSHAP implementation. All other parameters were left as default.

G.7 inDelphi

We applied SHAP zero on inDelphi by inputting n = 40 DNA target sequences over a q = 4 alphabet,
which were additionally padded with 20 nucleotides on each end due to inDelphi’s minimum length
requirement, to get their frameshift frequency. We refined our noise_sd estimate using a step size of
0.1. We used b = 7 and noise_sd = 15, which corresponded to an R2 of 0.82.

We used the held-out DNA target sequences provided by inDelphi [34] to predict the experimental
scores. We evaluated the performance of the recovered Fourier coefficients using Pearson and
Spearman correlation. Since inDelphi does not have an option to threshold predictions like in TIGER,
we do not report AUROC or AUPRC. The baseline models were trained on one-hot encoded sequences
using the training data from inDelphi to predict inDelphi’s predicted frameshift frequency, as the
experimental frameshift frequencies were not provided. KernelSHAP, SHAP-IQ, and FastSHAP were
created using the same procedure as in the TIGER experiment.

SHAP zero was run on all held-out sequences plus an additional 50 training sequences due to
the limited amounts of held-out data to compute SHAP values and Faith-Shap interactions. For
hyperparameter tuning, we evaluated KernelSHAP using 5, 10, 15, 30, 40, and 50 background
samples across 10 held-out sequences, and selected 30 background samples for our experiments. To
hyperparameter tune SHAP-IQ, we performed a hyperparameter search over budgets of 1,000, 5,000,
10,000, 20,000, 25,000, 30,000 on one held-out sequence, and chose a budget of 20,000 for our
experiments. We limited our final SHAP-IQ experiments to run on a randomly selected subset of four
sequences. Similar to TIGER, we additionally set max_order = 3 due to computational constraints.

G.8 Tranception

Unlike TIGER and inDelphi, Tranception takes in protein sequences. We consider the “large” model
on Tranception with retrieval, which has 700 million parameters [35]. Tranception with retrieval
scores each mutant by taking a weighted average of two values: the log-likelihood from the main
transformer model and the log-likelihood derived from the multiple sequence aligment (MSA) at the

44

mutant’s position, computed from the empirical amino acid distribution. When applying SHAP zero
on Tranception, the MSA is initialized once during the beginning and remains fixed throughout the
duration of sampling, ensuring a consistent sequence-function model.

We feed in the cannonical wildtype GFP sequence (which can be found at [66]) and mutate the
n = 10 epistatic sites [49] experimentally tested (located in Supplementary Table 1). We additionally
use the MSA provided from ProteinGym [66] for retrieval. We refine our noise_sd estimate using a
step size of 0.01. We used b = 3 and noise_sd = 0.03, which corresponded to an R2 of 0.97.

SHAP zero was evaluated on 200 held-out sequences, randomly generated by introducing up to five
mutations from the wildtype. To ensure comprehensive coverage, each amino acid appeared at least
once at every position across the held-out set. We opted for synthetic test sequences because the
deep mutational scanning (DMS) dataset from [49] lacked full coverage of all amino acids across
all positions, which would have limited the effectiveness of SHAP zero to find epistatic interactions.
KernelSHAP and SHAP-IQ are run using the DMS dataset from [49], containing 79 sequences, over
the sites chosen. Since n = 10, we were able to run KernelSHAP and SHAP-IQ over all of the DMS
data without computational issues. We run SHAP-IQ with max_order = 2 and budget = 10, 000
over 50 held-out sequences.

To create the linear and pairwise baselines, our baseline models were trained on our 200 sequence
dataset to predict Tranception’s score. We opted to use these sequences specifically, as Tranception
was trained in an self-supervised fashion, and does not have any explicit sequence-function training
data unlike TIGER and inDelphi. We then tested SHAP zero, linear, and pairwise models to predict
experimental protein function from the DMS sequences.

G.9 Visualization of SHAP Values and Faith-Shap Interactions in Tranception

To visualize SHAP values (see Fig. 4c and Fig. 9a), we computed the average SHAP value per
amino acid at each position, and plotted the top 20% of the positive and negative SHAP values on a
heatmap. In the case of KernelSHAP, we plotted all the positive SHAP values on the heatmap, since
we observed that KernelSHAP was biased toward negative values (see Discussion). To visualize
Faith-Shap interactions (see Fig. 4e), we computed the average pairwise interaction of amino acids.
We plotted the top 20% of the positive and negative interactions on the heatmap.

45

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Across all three models run in Section 4, SHAP zero was shown to enable
amortized explanations faster than before and recover biological motifs. We additionally
do a full biological analysis of the motifs in Section 4 and Appendix F. All mathematical
results are justified in Appendix E.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed thoroughly in Section 5, which talk about assump-
tions in sparsity and marginalization.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

46

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions for each proof, as well the complete proofs, can be found
in Appendix E. We additionally re-state the assumptions in the Limitations sections in
Section 5.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have thoroughly discussed SHAP zero in Section 3 and how to estimate the
sparse Fourier transform in Appendix C. All experimental details are provided in Appendix G.
We additionally have released our code base to reproduce our experiments and provided
thorough documentation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

47

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code can be found in the contributions section of Section 1. More details
are available in the GitHub repository README file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details can be found in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard deviations where appropriate, such as in Appendix C
and Appendix G. Due to the nature of explaining sequences, the majority of our results in
Section 4 have been supported with thorough comparisons with baselines and analysis of
motifs.

48

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: GPU usage is left in Section 1 and Appendix G. The majority of our ex-
periments require CPU, and can be reproduced with limited resources in G. Any figures
dependent on time (such as amortized time taken) can be reproduced using files on our
GitHub. Regardless, our claims that SHAP zero provides scalable amortized explanations
are not dependent on computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work conforms to the guidelines outlined in the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

49

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: While explaining biological sequence models has clear societal implications,
this work presents a scalable algorithm to achieve this that is tangential to applications with
direct positive or negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not pose any risks that require safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All credit for datasets and models have been properly cited and follow appro-
priate usage as provided by these works.

50

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code for new assets is released publicly on our GitHub and includes extensive
documentation both on the GitHub and in this work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

51

paperswithcode.com/datasets

Answer: [NA]
Justification: This work does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

52

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	The SHAP zero Algorithm
	Estimating Fourier Coefficients
	Computing the Möbius Transform
	Finding SHAP Values and Faith-Shap Interactions
	Computational Complexity of SHAP zero

	Experiments
	Discussion
	Conclusion
	Acknowledgment
	Computing Shapley Values in q-ary Functions
	The SHAP zero Algorithm
	Shapley Explanations, Möbius Transform, and Fourier Transform in SHAP zero

	Computing the Fourier Transform
	Example of a Sparse Fourier Tranform
	Estimating the Sparse Fourier Transform
	Sparsity and Interaction Order in Encoding q-ary Functions

	Computing the Möbius Transform
	Set Möbius Transform
	q-ary Möbius Transform

	Proofs
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5

	Additional Experimental Results
	Verifying Epistatic Interactions in Tranception

	Experimental Setup
	Implementation of Computing the Sparse Fourier Transform
	Comparison With Baselines
	Implementation of KernelSHAP, SHAP-IQ, and FastSHAP
	Calculation of Top SHAP Values, Top Faith-Shap Interactions, and Total Runtime
	Visualization of SHAP Values and Faith-Shap Interactions in TIGER and inDelphi
	TIGER
	inDelphi
	Tranception
	Visualization of SHAP Values and Faith-Shap Interactions in Tranception

