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Abstract. In urban areas, fluctuating road speeds due to traffic con-
gestion and accidents significantly impact bus operations and stop con-
nectivity. Current approaches cannot maintain public transport (PT)
network stability during adaptation to changing road conditions, under-
mining both operations and passenger experience. This paper proposes a
data sampling-based adjustment strategy to adapt the time-varying road
conditions. The innovation lies in utilising limited network modifications
to enhance the existing static PT network instead of considering recon-
struction from scratch or minor adjustments (such as stop-skipping),
aiming to minimise both passenger travel time degradation and the op-
erational duration of each transit line. Our proposed multi-objective op-
timization model leverages historical traffic data samples and integrates
route variation quantification with penalty mechanisms to enable real-
time adaptive routing decisions. The case studies utilising Mandl’s net-
work illustrate that our methodology can propose effective strategies for
time-varying roads with any coefficient of variation. Experimental find-
ings with high-variance samples indicate that our methodology decreases
passenger travel time in roughly 80% of various scenarios compared to
conventional static routes, providing a more efficient solution for public
transport systems.

Keywords: Adaptive Network Optimization · Time-Varying Road Con-
ditions · Data Sampling-driven

1 Introduction

Fluctuating road speeds in urban areas, caused by traffic congestion, accidents,
and varying demand patterns, significantly impact bus operations within public
transport (PT) network performance. These variations can disrupt bus schedules
and connectivity between stops, presenting growing challenges as urban popula-
tions expand [1].

When road conditions alter, current bus routes—including both alignments
and stops—must be modified to sustain service. This issue is termed the bus
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route adjustment problem, and the modified routes are identified as adaptive
bus routes. Prior research typically suggests a singular adaptive pathway for
each original route, whether through reconstructing PT networks from scratch
or implementing minor adjustments (e.g., stop-skipping), that remains constant
throughout the planning horizon [5,17]. However, the dynamic evolution of road
conditions complicates practical implementation [30]. These approaches fail to
minimize network modifications, thereby compromising operational manageabil-
ity and potentially causing user disorientation.

In response to these limitations, this paper presents a novelty data sampling-
based adjustment strategy designed to reduce extra passenger travel time re-
sulting from fluctuating road conditions. Thus, initially, static bus routes can be
dynamically adjusted as required, enhancing adaptability to constantly changing
traffic conditions. When designing adaptive bus service networks, the main goal is
usually to minimise the overall passenger cost, focusing solely on service-level fac-
tors while disregarding bus operating expenses. Nevertheless, designing adaptive
networks without considering operational costs can be unfeasible or infrequently
implemented [13]. Thus, the issue addressed here aims to minimise both overall
passenger expenses and bus operational time. Furthermore, to comprehensively
account for passenger expenses, our research considers passenger assignment as
an endogenous variable by integrating in-vehicle travel costs, transfer costs, and
waiting costs.

To the best of our knowledge, this paper is the first study to incorporate the
minimisation of route modifications into the objective of adaptive bus network
optimisation, thereby adapting the PT network to time-varying road conditions.
Specifically, we propose a multi-objective optimisation model employing sam-
pling methodology to reduce passenger travel time, minimise route alterations,
and concurrently decrease the duration of public transport operations.

Based on extensive experiments with high-variance samples (coefficient of
variation, CV =1), compared to conventional static PT routes, our proposed
approach demonstrates passenger travel time reductions in approximately 80%
of scenarios for each different test sample.

2 Related Work

2.1 Transit Network Design Problem

The Transit Network Design Problem (TNDP) is a critical strategic decision-
making challenge within public transit. Traditional research generally delineates
objective functions from two viewpoints: a user-centric perspective aimed at min-
imising the average travel time for passengers (comprising in-vehicle and transfer
durations) and an operator-centric perspective concentrated on costs, typically
represented by total route length. This fundamental version of the TNDP is of-
ten employed as a benchmark for evaluating various solutions. However, it has
been established as NP-hard [19].

As research has advanced, the user dimension has been broadened in many
ways. In addition to overall travel duration [16,14], recent studies also examine
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network coverage [4], route efficiency [22], and demand fulfillment [3]. Meanwhile,
the operator dimension persists in prioritising the optimisation of overall route
length and operational expenses [2,8]. Nonetheless, these traditional methodolo-
gies demonstrate limitations when confronted with dynamic urban settings and
ever-evolving commuter requirements [30].

To balance diverse objectives, researchers have introduced multi-objective
optimization models. Szeto and Jiang [23] established a bilevel transit network
design framework, wherein the upper-level model aims to minimise passenger
transfers, while the lower-level model focuses on transit assignment. Tian et
al. [25] proposed an innovative trilevel programming model that not only con-
siders congestion in public transit routes but also achieves more comprehensive
network design through three levels of optimization: the upper-level minimizes
both passenger and operating costs, the middle level formulates passenger rout-
ing strategies, and the lower-level describes the equilibrium state under congested
public lines. Based on these approaches, Cervantes-Sanmiguel et al. [7] investi-
gated the trade-off between cutting travel time and decreasing fares in further
detail. Nonetheless, as noted by [24], existing route planning methodologies ex-
hibit significant deficiencies, especially their incapacity to adjust to real-time
variations in traffic patterns.

2.2 Bus Route Adjustment Problem

Various approaches can be employed in the bus route adjustment problem to
generate adaptive bus routes, including rerouting, short-turning, skip-stopping,
and branching [6,18,29]. Previous research on bus route localised adjustments
has often aimed at two main objectives: accommodating demand fluctuations
and enhancing integration with subway networks.

Guan et al. [11] focused on customizing bus routes for passengers with multi-
ple trip requests. They proposed a bilevel planning model based on a spatiotem-
poral state network, aiming to optimize customized bus routes while considering
trip characteristics, time windows, capacity constraints, and mixed loads. How-
ever, their approach creates entirely new routes for each demand pattern. Zhang
et al. [31] investigated long-distance bus routes located near subway stations,
seeking to adapt them to urban rail networks. To achieve this, the authors de-
veloped a bilevel planning model to optimize both bus route adjustments and
vehicle headways and then solved it using a tailored genetic algorithm. While ef-
fective for subway integration, this method only addresses localized adjustments
near stations rather than system-wide adaptation to varying road conditions.
Under circumstances where passenger flow control is implemented in a subway
system, Zhou et al. [33] adjusted existing bus routes to evacuate passengers
stranded at regulated subway stations. Their study integrated passenger flow
control with bus route adjustments in an optimization framework, aiming to
relieve passenger congestion and reduce travel times. Wang et al. [28] proposed
a two-stage method to mitigate disruptions to bus routes. First, they identified
affected routes based on newly developed indicators and generated a set of can-
didate adaptive routes using skip-stop and detour strategies. Subsequently, an



4 Z. GUO et al.

optimization model was formulated to determine the combination of these adap-
tive routes that maximizes the number of passengers served. While practical for
local disruptions, their skip-stop and detour strategies are insufficient for han-
dling system-wide performance degradation under highly variable conditions.
Zheng et al. [32] proposed a methodology for generating adaptive bus routes
that incorporate diversion, short-run, and cancellation strategies. Nonetheless,
their localised adjustments depend on prior awareness of disruptions, render-
ing them less suitable for fluctuating road conditions where decisions must be
made regarding the necessity of systematic network alterations to implement
adaptive routes. Additionally, route cancellations can severely impact network
connectivity.

Existing methods fall into two extremes: complete network redesign, which
is computationally expensive and disrupts stability, or minor local adjustments
(e.g., skip-stopping, detouring) with limited adaptability. More critically, cur-
rent research rarely quantifies the operational costs of route modifications, yet
frequent changes increase complexity and confuse passengers. Thus, balancing
network stability with adaptation to time-varying conditions remains an unre-
solved challenge.

2.3 Our Contribution

As previously reviewed, to minimize travel time and the length of public trans-
port’s operating time, a large number of studies have delved into the transit net-
work design and bus route adjusting problem by integrating route adjustment
and passenger assignment optimization. However, to the best of our knowledge,
to adapt to time-varying traffic conditions, no prior research has done such an in-
tegration while minimizing route modifications. Specifically, this study proposes
a multi-objective optimization model that samples historical traffic data as in-
puts and incorporates route variation quantification and penalty mechanisms to
make real-time decisions on adaptive routing, generating effective strategies that
adapt to road fluctuations.

3 Methodology

In this section, we first present the graph model of the public transport (PT) net-
work and describe our problem statement. We then formulate a multi-objective
optimization problem to obtain the optimal PT routes that adapt to travel time
variations while maintaining network stability.

3.1 Graph Model of PT Network

We model the original static PT network before travel time variation as graph
Gorig

PT = (Vorig
PT , Eorig

PT ), where Vorig
PT represents the set of bus stops and Eorig

PT rep-
resents the set of links between consecutive bus stops. To clarify, in this paper,
the term public transport exclusively denotes buses. Gorig

PT composed of multiple
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PT lines. Each line ℓ has a headway hℓ, defined as the distance between two con-
secutive vehicles expressed in time [27]. The headway can be calculated using
the formula hℓ = tℓ

Nℓ , where tℓ represents the round trip time along the entire
line, and N ℓ denotes the number of vehicles operating on that line (Eq. 4.4 of
[27]). To avoid introducing nonlinearity into our model, we treat N ℓ as a param-
eter rather than a decision variable in this work. A line consists of a sequence
of stops connected by edges. For simplicity, we ignore the dwell time at stops.
Assuming random passenger arrivals, the average waiting time for passengers’
first boarding on line ℓ is hℓ

2 [21]. We define tij , the time taken to travel between
any two successive stops i and j. For interchange at stop i from line ℓ to line ℓ′,
we consider an average waiting time hℓ′

2 at stop i.

3.2 Time-varying Road Network and Travel Time Sampling

Let CV be the set of coefficient of variation values. For a substrate network
Gsub = (Vsub, Esub), representing the underlying physical road infrastructure
upon which transit services operate. For simplicity, we consider Vsub = Vorig

PT ,
representing the set of bus stops, and Esub = Eorig

PT , representing the road seg-
ments connecting these stops. We consider travel times with varying coefficients
of variation cv ∈ CV . For each cv, we generate a set of samples Ωcv, where each
sample ω ∈ Ωcv corresponds to a set of travel times {tcv,ωi,j |∀(i, j) ∈ Esub} across
the network. Given the periodic nature of traffic patterns [10], these samples
can be viewed as historical observations that represent potential future travel
times under the same CV. In this work, we use log-normal distribution to gen-
erate these samples, which is described in Section 4.2. For future work, we’ll use
actual historical data as Ωcv.

3.3 Problem Statement

Our research addresses the challenge of optimizing conventional static PT net-
works under these varying road conditions. We aim to minimize both increased
trip durations and total route lengths while maintaining network stability through
limited line modifications. Fig. 1 illustrates this concept with a time-varying PT
network comprising 16 bus stops. Based on the coefficient of variation cv ∈ CV
for each time t, we sample a ω ∈ Ωcv to derive travel times {tcv,ωi,j |∀(i, j) ∈ Esub}
that reflect the prevailing road conditions, which informs our adaptation of bus
routes.

Our optimization problem makes the following three decisions: (a) How to
dynamically modify PT lines’ topology to adapt to actual road conditions when
they severely deviate from the expected one? (b) How to determine which routes
should be made available for users to travel among OD pairs? and (c) How to
optimally locate the terminals of each line?
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Fig. 1: Illustration of Bus Routes and Corresponding Road Network under Time-
Varying Travel Times.

3.4 Multi-objective Optimization Model

For the origin-destination (OD) pair k ∈ K, following sampling, we acquire a
particular realisation of the travel times for each link ti,j within the road network
Gsub. Let tok and tk denote the travel times (comprising transfer, waiting, and in-
vehicle time) attained with the original static PT network Gorig

PT and the adaptive
PT network Gadpt

PT , respectively. Our objective is to optimize the adaptive PT
network to reduce both passenger travel time degradation and the operational
duration of each transit line via constrained network alterations.

Objective Functions We formulate our public transport network adaptation
problem as a three-objective optimization. The first objective Z1 minimizes pas-
senger travel time deterioration, where qk is the demand for OD pair k, tk and
tok are the travel times under adaptive and original networks respectively. Using
max(tk − tok, 0) ensures only deteriorations are penalized. The second objective
Z2 minimizes operational costs through total vehicle-hours, where tij is the link
travel time and xℓ

ij indicates whether link (i, j) is used by line ℓ. The third
objective Z3 minimizes network modifications, calculated as the sum of abso-
lute differences |xℓ

ij −xℓo
ij | between adaptive and original network configurations,

where xℓo
ij denotes the original link usage. This preserves operational stability

and reduces user disorientation. For a detailed explanation of the notation and
variables used, please refer to Table 1.
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min
Gadpt
PT

Z1

Z2

Z3

 =



∑
k∈K

qk ·max(tk − tok, 0)︸ ︷︷ ︸
passenger travel time deterioration∑

ℓ∈L

∑
i,j∈N

tijx
ℓ
ij︸ ︷︷ ︸

total operating time∑
ℓ∈L

∑
i,j∈N

|xℓ
ij − xℓ

ij
o|

︸ ︷︷ ︸
penalty for route modification


(1)

Table 1: Notation for Adaptive PT Network Design Problem
Symbol Description
Sets:
N Set of nodes, indexed by i, j ∈ N
L Set of transit lines, indexed by ℓ ∈ L
K Set of origin-destination pairs, indexed by k ∈ K
E Set of feasible edges in the network, indexed by (i, j) ∈ E
Parameters:
qk, ; k ∈ K Demands for OD pair k (passengers)
tij

o, ; (i, j) ∈ E Travel time on link (i, j) before changes (minutes)
tij , ; (i, j) ∈ E Travel time on link (i, j) (minutes)
tk

o, ; k ∈ K Original travel time for OD pair k before changes (minutes)
α, β Weights for objective functions
N ℓ, ; ℓ ∈ L Number of vehicles on line ℓ (vehicles per hour)
M Large constant
ok, dk; k ∈ K Origin and destination node of OD pair k

xℓ
ij

o, ; i, j ∈ N , ℓ ∈ L Original network configuration (1 if link (i, j) is used by line ℓ)
Decision Variables:
Binary Variables:
xℓ
ij , ; i, j ∈ N , ℓ ∈ L 1 if link (i, j) is used by line ℓ in new network

ykl
ij , ; i, j ∈ N , k ∈ K, ℓ ∈ L 1 if OD pair k uses link (i, j) on line ℓ

aℓ
i , b

ℓ
i , ; i ∈ N , ℓ ∈ L 1 if node i is the start/end terminal of line ℓ

tbℓki, ; k ∈ K, i ∈ N , ℓ ∈ L 1 if OD pair k transfers by boarding line ℓ at node i

dxl+
ij , ; i, j ∈ N , ℓ ∈ L 1 if link (i, j) is added to line ℓ in new network

dxl−
ij , ; i, j ∈ N , ℓ ∈ L 1 if link (i, j) is removed from line ℓ in new network

Continuous Variables:
uℓ
i , ; i ∈ N , ℓ ∈ L Auxiliary variable for subtour elimination (MTZ)

ski , ; i ∈ N , k ∈ K Order of node i in the path of OD pair k (0 if not visited)
ttℓki, ; k ∈ K, i ∈ N , ℓ ∈ L Transfer waiting time for OD pair k at node i for line ℓ

ftℓk, ; k ∈ K, ℓ ∈ L Initial waiting time for OD pair k on line ℓ

tℓ, ; ℓ ∈ L Total travel time of line ℓ
itk, ; k ∈ K Increased travel time for OD pair k
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Subject to:

ftℓk ≥ tℓ

2N ℓ
−M(1−

∑
j∈N

ykℓ
ok,j) ∀k ∈ K, ℓ ∈ L (2)

ftℓk ≤ M ·
∑
j∈N

ykℓ
ok,j ∀k ∈ K, ℓ ∈ L (3)

ttℓki ≥
tℓ

2N ℓ
−M(1− tbℓki) ∀k ∈ K, i ∈ N , ℓ ∈ L (4)

ttℓki ≤ M · tbℓki ∀k ∈ K, i ∈ N , ℓ ∈ L (5)

Line Constraints

∑
i∈N

aℓ
iM ≥

∑
(i,j)∈E

xℓ
ij ,

∑
i∈N

bℓiM ≥
∑

(i,j)∈E

xℓ
ij ∀ℓ ∈ L (6)

∑
i∈N

aℓ
i ≤ 1,

∑
i∈N

bℓi ≤ 1 ∀ℓ ∈ L (7)

1 ≤ uℓ
i ≤ |N | ∀i ∈ N , ℓ ∈ L (8)

uℓ
i − uℓ

j + 1 ≤ (|N | − 1)(1− xℓ
ij) ∀(i, j) ∈ E , ℓ ∈ L (9)∑

j:(j,i)∈E

xℓ
ji + aℓ

i =
∑

j:(i,j)∈E

xℓ
ij + bℓi ∀i ∈ N , ℓ ∈ L (10)

∑
l∈L

xℓ
ij =

∑
l∈L

xℓ
ji ∀(i, j) ∈ E (11)

Passenger Flow Constraints

ykℓ
ij ≤ xℓ

ij ∀(i, j) ∈ E , k ∈ K, ℓ ∈ L (12)∑
j:(ok,j)∈E

∑
ℓ∈L

ykℓ
ok,j = 1 ∀k ∈ K (13)

∑
j:(j,dk)∈E

∑
ℓ∈L

ykℓ
j,dk = 1 ∀k ∈ K (14)

∑
j:(j,i)∈E

∑
ℓ∈L

ykℓ
ji =

∑
j:(i,j)∈E

∑
ℓ∈L

ykℓ
ij ∀k ∈ K, i ∈ N \ {ok, dk} (15)

skok = 1 ∀k ∈ K (16)

skj ≥ ski + 1−M(1−
∑
ℓ∈L

ykℓ
ij ) ∀k ∈ K, (i, j) ∈ E (17)
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Transfer Constraints

tbℓki ≤
∑

j:(j,i)∈E

∑
ℓ′ ̸=ℓ

ykℓ′
ji ∀k ∈ K, i ∈ N , ℓ ∈ L (18)

tbℓki ≤
∑

j:(i,j)∈E

ykℓ
ij ∀k ∈ K, i ∈ N , ℓ ∈ L (19)

tbℓki ≥
∑

j:(j,i)∈E

∑
ℓ′ ̸=ℓ

ykℓ′
ji +

∑
j:(i,j)∈E

ykℓ
ij − 1 ∀k ∈ K, i ∈ N , ℓ ∈ L (20)

tbℓkok = 0, tbℓkdk = 0 ∀k ∈ K, ℓ ∈ L, i = ok or dk (21)∑
j:(i,j)∈E

xℓ
ij ≥ tbℓki ∀k ∈ K, i ∈ N , ℓ ∈ L (22)

∑
j:(j,i)∈E

ykℓ
ji =

∑
j:(i,j)∈E

ykℓ
ij +

∑
ℓ′ ̸=ℓ

tbℓ
′

ki ∀k ∈ K, i ∈ N \ {ok, dk}, ℓ ∈ L (23)

Constraints (2)-(5) define passenger waiting time and transfer time at stops. Line con-
straints (6)-(11) ensure the feasibility of the transit network structure. Constraints
(6)-(7) specify unique start and end points for each line, constraints (8)-(9) eliminate
potential subtours, constraint (10) maintains line continuity, and constraint (11) en-
sures bidirectional connectivity at the network level by maintaining an equal number of
transit lines between each node pair in both directions. Passenger flow constraints (12)-
(17) govern passenger movement within the network. Constraint (12) restricts passen-
ger flows to established transit lines, constraints (13)-(14) ensure all origin-destination
demands are satisfied, and constraints (15)-(17) guarantee the validity of passenger
paths by preventing cycles and ensuring logical progression from origin to destination.
Transfer constraints (18)-(23) handle passenger transfers within the network. Con-
straints (18)-(20) define the conditions for transfers to occur, constraint (21) prohibits
transfers at origin and destination nodes, constraint (22) ensures the presence of nec-
essary lines at transfer points, and constraint (23) maintains flow balance considering
transfers between lines.

3.5 Linearization

The objective function (1) contains nonlinear components, and in order to obtain an
exact solution using the solver, we need to linearize it using the following constraints.

itk ≥
∑

(i,j)∈E

∑
ℓ∈L

ykℓ
ij tij +

∑
i∈N

∑
ℓ∈L

ttℓki +
∑
ℓ∈L

ftℓk − tok ∀k ∈ K (24)

itk ≥ 0 ∀k ∈ K (25)

xℓ
ij + dxl−

ij = xlo
ij + dxl+

ij ∀(i, j) ∈ E , ℓ ∈ L (26)

dxl−
ij + dxl+

ij ≤ 1 ∀(i, j) ∈ E , ℓ ∈ L (27)

Constraints (24)-(25) calculate and control changes in passenger travel time af-
ter network optimization. Constraints (26)-(27) manage line changes during network
optimization.
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After linearization, the optimization problems become as follows:

Minimize Z = β
∑
k∈K

dk · itk︸ ︷︷ ︸
passenger inconvenience

+(1− β)
∑
ℓ∈L

∑
i,j∈N

xℓ
ijtij︸ ︷︷ ︸

operating cost

+ α
∑
ℓ∈L

∑
i,j∈N

(dxl+
ij + dxl−

ij )︸ ︷︷ ︸
network modification

(28)

s.t.
constraints (2)–(27)

4 Numerical Results

The performance of the proposed methodology is evaluated through numerical exper-
iments. A case study on Mandl’s Swiss network (see Section 4.1) is presented, along
with a travel time variance sample pool generated using a log-normal distribution (see
Section 4.2). The corresponding mixed-integer programming model is implemented in
Python and solved using the Gurobi 11.0.3 solver on an Intel Core i5 PC operating at
4.6 GHz with 16.0 GB of RAM. A maximum CPU time of 1200 seconds is set for all
computations. The code is available on this GitHub repository.

Fig. 2: Mandl’s network [20].

4.1 Mandl’s Swiss Network

Mandl’s Swiss network (see Fig. 2) is a small network consisting of 15 nodes and 21
links, initially used by Mandl [20]. The network includes a total of 15,570 trips, and the
demand is symmetric. This dataset is one of the few publicly accessible resources for
the route planning problem and has emerged as the predominant benchmark instance.

https://github.com/zihao-guo/Data-Sampling-driven-Adaptive-Bus-Route-Optimization
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The predominant route length restriction confines each route to a maximum of 8 nodes.
In this paper, we minimise human bias by permitting an unlimited number of nodes
per route, thereby enabling the model to determine the optimal routes autonomously.
These "unlimited" routes remain constrained by the condition that each node may be
visited no more than once per route.

We adopted the PT network reported by Vermeir et al. [26] that performed best in
minimizing total passenger travel time. Under their assumption that passengers always
choose the shortest path, we obtained the passenger travel times T ver

k under their PT
network. Nonetheless, as our goal encompasses not only the optimisation of passenger
travel time but also the operational duration of lines, and considering the inherent
complexity of the Transit Network Design Problem with differing assumptions across
various studies, direct comparisons prove to be difficult [9]. We used these passenger
travel times T ver

k with the penalty parameter α = 0 in our objective function (28) to
generate our own transport network that optimizes both passenger travel times and
operating times, which serves as our original existing static PT network Gorig

PT .

4.2 Travel Time Variability Modeling

In this work, we account for the variability in travel times by modeling them with
a log-normal distribution, which has been shown to capture the skewed nature of
travel time data effectively [12]. For a log-normal distribution with parameters µ

and σ, the mean and variance are given by E[X] = exp
(
µ+ σ2

2

)
and Var(X) =[

exp(σ2)− 1
]
exp

(
2µ+ σ2

)
, respectively. Therefore, the coefficient of variation (CV),

defined as the ratio of the standard deviation to the mean, is

CV =

√
Var(X)

E[X]
=

√
[exp(σ2)− 1] exp (2µ+ σ2)

exp
(
µ+ σ2

2

) =
√

exp(σ2)− 1.

Based on this property, for each link (i, j), we can compute the median as exp(µi,j)

and the coefficient of variation as CVi,j =
√

exp(σ2
i,j)− 1. Considering the Mandl’s

network (Fig. 2), we assume the nominal travel time on link (i, j) in the original dataset
as the median, which we denote as mi,j . Since mi,j = exp(µi,j), we have µi,j = ln(mi,j).
Given a desired coefficient of variation cv ∈ CV , we can derive σi,j =

√
ln(cv2 + 1).

The travel time tcv,ωi,j for each sample ω ∈ Ωcv is then generated as a realization of
log-normal(µi,j , σ

2
i,j).

4.3 Performance Comparison under Different Scenarios

We now show the improvement in network performance, achieved via our method
that adapts the PT network to current road conditions. To demonstrate our method’s
adaptability to travel time variations, for each cv ∈ CV , we consider a subset of samples
Ω′

cv = {1, ..., 5} ⊂ Ωcv. For each sampled travel time realization {tcv,ωi,j |∀(i, j) ∈ E}
where ω ∈ Ω′

cv. Let z ∈ Z denote the trips, each corresponding to a certain OD pair k ∈
K. We denote by T o,cv,ω

z and T ∗,cv,ω
z the travel time of that trip when performed on

the original PT network and the optimized one, respectively. We evaluate the network
performance improvement by:

T o,cv,ω
z − T ∗,cv,ω

z

T o,cv,ω
z

× 100% (29)
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Fig. 3: Inverse Cumulative Distribution of Improvement Rates for Different Seeds
(based on cv=1)

Figure 3 shows the inverse cumulative distribution of improvement rates for different
seeds with cv = 1. For any point (x, y) on the curve, y represents the probability
that a randomly selected trip will experience an improvement rate of at least x%. The
horizontal dashed lines highlight the probability of achieving a positive improvement
for each seed value. The results reveal that our method yields positive enhancements
in approximately 80% of trips across different instances. Furthermore, the consistency
of the distribution curves across various seeds indicates that our method identifies the
optimal value across all sample cases.

To ensure brevity, we perform the following analysis utilising a singular representa-
tive sample (ω = 1 ∈ Ω′

cv) for each cv ∈ CV . The results presented herein are derived
with α = 10 and β = 0.5. In Figure 4, we represent, for different values of cv ∈ CV ,
the distribution of travel times of the original PT network {T o,cv,ω

z |z ∈ Z} versus the
ones on the optimized adaptive PT network {T ∗,cv,ω

z |z ∈ Z}. We observe the improve-
ment of travel times is consistent, and it is particularly strong when variability is high
(cv = 1); indeed, in this case, adaptivity to actual road conditions is particularly ben-
eficial. We also specify in the figure the Total Variation Distance (TVD) between the
distribution of {T o,cv,ω

z |z ∈ Z} and {T ∗,cv,ω
z |z ∈ Z}, which as expected increases with

cv.

To quantify the similarity between the old and new routes. We adopt the Jaccard
index [15], defined as R = |A∩B|

|A∪B| , where A and B denote the node sets of the original
and new routes, respectively. Table 2 illustrates that our method adeptly reconciles
route preservation with performance enhancement: it achieves reductions in operat-
ing time while ensuring substantial overlap with the original routes. It’s worth noting
that the most substantial time savings are realised in longer routes, as these routes
present greater opportunities for optimisation through strategic adjustments. Line 3,
the longest route in the network, exhibits a significant time reduction of 71.6 mins
under cv = 1, while preserving a 71.4% overlap with its original trajectory.
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(a) Minimal Variation (cv = 0.05) (b) Low Variation (cv = 0.25)

(c) Moderate Variation (cv = 0.50) (d) High Variation (cv = 1.00)

Fig. 4: Trip Time Distribution Analysis: Comparison of Original Optimal
Static and Adaptive Optimal PT Networks

5 Conclusion

This paper presents a method to modify the existing static bus lines to adapt to time-
varying road conditions. Its novelty is that, instead of considering rebuilding from
scratch or localized adjustments, we aim to optimize the original public transport
(PT) network to reduce both passenger travel time degradation and the operational
duration of each transit line via constrained network alterations.

We formulate the adaptive PT design problem as a mixed-integer program. The
model samples historical traffic data as input parameters and incorporates route varia-
tion quantification and penalisation processes to develop resilient strategies that adjust
to variations in road speed. The case studies utilising Mandl’s network demonstrate
that our methodology can suggest effective strategies for time-varying roads with any
coefficient of variation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Table 2: Comparison of Route Adjustments Under Different cv
Coefficient

of
variation

(cv)

Line Path Sequence Overlap
(%)

Time
differ-
ence

(mins)

Original
1 11→10→8→6→3→2→4→5 – –
2 2→4→6→15→9 – –
3 5→4→12→11→13→14→

10→7→15→8→6→3→2→1
– –

0.05
1 11→10→8→6→3→2→1 66.7 +1.7
2 10→7→15→8→6→4→5 33.3 +3.9
3 10→14→13→11→12→4→

2→3→6→15→9
66.7 -10.2

0.25
1 1→2→3→6→8→15→9 36.4 +4.6
2 11→13→14→10→8→6→4 20.0 +11.8
3 5→2→4→12→11→10→

7→15→6
64.3 -24.0

0.50
1 1→2→3→6→8→15→9 36.4 -6.4
2 11→10→8→6→4→5 22.2 +8.6
3 5→2→4→12→11→13→

14→10→8→15→7
78.6 -31.1

1.00
1 9→15→6→3→2→4→

12→11→13→14→10
46.2 +18.4

2 11→10→8→6→3→2→5 20.0 +5.7
3 1→2→4→6→8→15→

7→10→13→14
71.4 -71.6
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