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Abstract

Robustness is a critical aspect of machine learning models. Existing robustness evaluation
approaches often lack theoretical generality or rely heavily on empirical assessments, limiting
insights into the structural factors contributing to robustness. Moreover, theoretical robust-
ness analysis is not applicable for direct comparisons between models. To address these
challenges, we propose TopoLip, a metric based on layer-wise analysis that bridges topolog-
ical data analysis and Lipschitz continuity for robustness evaluation. TopoLip provides a
unified framework for both theoretical and empirical robustness comparisons across different
architectures or configurations, and it reveals how model parameters influence the robustness
of models. Using TopoLip, we demonstrate that attention-based models typically exhibit
smoother transformations and greater robustness compared to convolution-based models,
as validated through theoretical analysis and adversarial tasks. Our findings establish a
connection between architectural design, robustness, and topological properties.

1 Introduction

Robustness is a fundamental aspect of machine learning models (Bai et al., 2021; Wang et al., 2022). Build-
ing a robust model has various advantages, which include maintaining high performance under various input
corruptions, being resilient to adversarial attack, and generalizing well to out-of-distribution data (Buzhinsky
et al., 2023; Szegedy, 2013; Boopathy et al., 2019). When evaluating the robustness of models, performance
analysis or intrinsic robustness analysis are mainly used (Weng et al., 2018; Wang et al., 2016; Hein &
Andriushchenko, 2017). Performance analysis assesses how well a model maintains metrics like accuracy
and prediction entropy under adversarial attacks, noise, or other perturbations (Carlini & Wagner, 2017;
Rathnakumar et al., 2024). While this approach provides straightforward empirical evaluations, it often
lacks insights into the theoretical and structural properties contributing to robustness. In contrast, intrinsic
robustness analysis examines properties such as the Lipschitz continuity of models, probability distributions,
or intrinsic dimensions (Szegedy, 2013; Buzhinsky et al., 2023; Tulchinskii et al., 2024). However, such tech-
niques are either difficult to generalize (to multi-layer or other complex settings), or the given bounds are
too loose. Furthermore, such methods do not allow direct theoretical robustness comparison across different
architectures or configurations. Lacking theoretical foundations and relying largely on experiments for ro-
bustness analysis may lead to inconsistent conclusions and limited insights into the underlying mechanisms
contributing to robustness.

To fill this gap, we propose a method for robustness comparison. By comparing the robustness of different
architectures or configurations, we can gain insights into choosing or developing robust models without
deriving exact robustness based on some metric. Based on the comparison method, we propose TopoLip,
a metric based on layer-wise analysis that enables robustness comparison in both theory and experiments.
Additionally, TopoLip provides insights into how model parameters influence robustness.

To introduce and validate the proposed comparison method, we use Transformer and ResNet − two dom-
inant classifiers in vision tasks using distinct approaches − for comparison. The Transformer architecture,
introduced by Vaswani (2017), has become highly popular and has made significant impacts across various
fields. In contrast, ResNet, introduced by He et al. (2016), is built using convolutional layers with resid-
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ual connections. As noted by Bai et al. (2021), Transformers are more robust than CNNs when handling
out-of-distribution data. We further validate this by theory and experiments.

This paper is organized as follows: Section 3 presents preliminary concepts; Section 4 introduces the TopoLip
robustness metric; Section 5 demonstrates that attention-based models are smoother and thus more robust
than convolution-based models; and Section 6 provides experimental results to validate our theoretical find-
ings. Our main contributions are:

• We propose a metric for evaluating the robustness of models. This metric allows for both theoret-
ical and empirical comparisons of robustness across models and provides insights into how model
parameters influence robustness.

• We establish a relationship between the Lipschitz continuity of persistence diagrams and probability
distributions, linking topological data analysis to robustness evaluation.

• We analyze the mean-field regime of attention and convolution layers, comparing their Lipschitz
conditions. Our findings reveal that attention layers are inherently more robust to variations in
input data distributions compared to convolution layers.

• We extend the analysis to Vision Transformers (ViTs) and ResNets, demonstrating a consistent
relationship between architectural design and robustness.

• Finally, we validate our theoretical insights through adversarial tasks. Experimental results confirm
that attention-based models generally exhibit greater robustness than convolution-based models in
handling corrupted data.

2 Related work

Robustness metric. Weng et al. (2018) converts robustness analysis into a local Lipschitz constant esti-
mation problem to derive theoretical robustness. However, the method is algorithm-based, and the process
relies on computing some metric that serves as a theoretical performance for the final robustness derivation.
Therefore, it can not derive a robustness score without running the algorithm in a concrete setting, making
it impossible to get insights into the model robustness completely by theory. Similarly, Weng et al. (2018)
developed a robustness metric that is attack-independent and can be used with any neural network classifier.
However, this approach is not well-suited for the theoretical analysis of individual models. Buzhinsky et al.
(2023) proposes a metric to measure the robustness of a classifier. This metric is based on probabilistic rea-
soning within the latent spaces of generative models, which makes it challenging to apply to specific model
settings. Hein & Andriushchenko (2017) derives a closed-form Lipschitz bound for evaluating the robustness
of a multi-layer perception (MLP) with a single hidden layer. Nevertheless, a closed-form bound is hard to
derive for a neural network with more than one hidden layer, not to mention increasing the complexity of
the architecture such as the transformer. Wang et al. (2016) uses topology to study robustness. However,
no robustness bounds or estimates were provided for neural networks, and thus no comparison can be made
between architectures or model configurations.

Here, we propose a method that can not only derive a Lipschitz bound for robustness completely by theory,
but the bounds of different architectures or configurations can be compared with each other by replacing the
values of parameters as well. Moreover, the comparison is not only robust in theory but also in experiments.

Topological Data Analysis. This work is partly built upon Topological Data Analysis (TDA), which
focuses on measuring the topological structures within data. The Wasserstein distance is extensively used
in TDA to quantify differences between the topological structures of distributions (Cohen-Steiner et al.,
2005). Although persistence diagrams (discussed in Appendix A) are not equivalent to probability spaces,
they possess properties that allow for the definition of probability measures (Mileyko et al., 2011). In our
study, we further explore the relationship between persistence diagrams and probability spaces, particularly
in terms of their Lipschitz continuity.
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3 Preliminaries

3.1 Problem setup

Suppose the input is a 2D image with resolution (H, W ) and C channels. In Vision Transformers (ViT),
the image is reshaped into a sequence of flattened patches p ∈ RN×(P 2·C), where (P, P ) is the resolution of
the patches and N = HW/P 2 is the number of patches (Dosovitskiy, 2020). This input is then mapped by
an embedding matrix E ∈ R(P 2·C)×d, where d is the embedding dimension. The mapping yields a matrix of
size RN×d, which can be interpreted as a sequence of N input vectors {xi}N

i=1 ⊂ Rd. These vectors are often
expressed as an input matrix X = [x1, ..., xN ] ∈ Rd×N .

For a convolutional layer in residual networks (ResNet), let y(α) ∈ RC represent the input at position α.
By utilizing a (2k + 1) × (2k + 1) filter, the response of a convolutional layer at position α can be written as
y(α) =

∑
β∈ker W::,βϕ(y(α+β))+b, where W ∈ RC×C×(2k+1)2 is a weight matrix representing C filters (where

we set the #(filter) = #(channel)), ϕ denotes the activation function, and b ∈ RC is a bias term. Here,
for each spatial offset β within the kernel support, W::,β ∈ RC×C is the submatrix of weights that maps the
C-dimensional input at position α + β to a C-dimensional contribution in the output at position α. Since
there are H × W positions at the input image, each corresponding to one response, the input image can be
regarded as a C × N ′ sequence where N ′ = HW . More details of the convolutional layer setting will be
discussed later.

Previous works have restricted the input sequence of the attention layer X = [x1, ..., xN ] ∈ BN
R where

BR ⊂ Rd is the closed ball centered at 0 and of radius R (Castin et al., 2024; Geshkovski et al., 2024). We
apply this restriction and assume each dimension of xi (i ∈ [N ]) is drawn i.i.d. from N(0, σ2). Specifically, by
applying Chebyshev’s inequality that with high probability 1 − d/t2, we have ∥xi∥ ≤ tσ. For the convolution
layer, we assume the input Y = [y1, ..., yN ′ ] ∈ B′N ′

R where B′
R ⊂ RC . Since we set C infinitely large to

introduce the mean-field regime of convolution, we instead bound each element: with a high probability
1 − 1/t2, we have |yij | ≤ tσ.

3.2 Discrete frameworks

We define the discrete frameworks of attention and convolution same as the settings in the previous research
(He et al., 2015; Chi et al., 2023).
Definition 1 (Attention layer). Given an input sequence X ∈ Rd×N , consider a single-head attention layer
with parameters {Qm, Km, Vm}m∈[M ] ⊂ Rd×d. The output of the single-head attention layer is denoted as
X = Attnm(X) = [x1, . . . , xN ] ∈ Rd×N , where each xi for i ∈ [N ] is given by

xi =
N∑

j=1
softmax

(
x⊤

i Q⊤
mKmxj√
d/M

)
Vmxj =

N∑
j=1

exp
(

x⊤
i Q⊤

mKmxj/
√

d/M
)

N∑
k=1

exp
(

x⊤
i Q⊤

mKmxk/
√

d/M
)Vmxj . (1)

A multi-head attention extends this concept by allowing the model to attend to information from different
representation sub-spaces jointly. A M -head attention layer is defined as MHAttn(xi, X) := oi, where

oi = W O(⊕M
m=1headm)

headm = [Attnm(X)]:i = [Attn(X; {Qm, Km, Vm})]:i,

with W O ∈ Rd×Md being learned projection matrices, and [A]:i denotes the i-th column of matrix A.

Next, we define transformers. For a given input vector xi ∈ Rd, layer normalization is defined as LN(xi) =
(xi − µi)/σi ⊙ γ + β, where µi = 1/d

∑d
j=1 xi,j , σi =

√∑d
j=1(xi,j − µi)2/d, γ ∈ Rd and β ∈ Rd are learned

scaling and shifting parameters, and ⊙ denotes element-wise multiplication. An MLP layer with hidden
dimension d′ = d is defined as MLP(xi) = W2ϕ(W1xi + b1) + b2 where W1, W2 ∈ Rd×d, b1, b2 ∈ Rd, and

3



Under review as submission to TMLR

ϕ denotes the ReLU activation. Each element in γ, β, W1, W2, b1, b2 is initialized following N(0, σ2). An
L-layer transformer is then expressed as:

TF(X) =
(

(1 + MLP ◦ LN) (X + MHAttn ◦ LN(X))
)L

. (2)

Definition 2 (Convolutional layer). Consider a convolutional layer with C filters and C input channels. In
practice, each filter could have a different size, and padding is typically applied to maintain consistent output
dimensions. To ease the analysis, we set all filters have the same size (2k + 1) × (2k + 1). Let yi(α) ∈ R
represents the input to the convolutional layer with filter i at position α, then the output at position α can
be writen as

yi(α) =
C∑

c=1

∑
β∈ker

Wci,βϕ(yc(α + β)) + b (3)

where ker := {(p0, p1) ∈ Z2; |p0|, |p1| ≤ k}, Wci,β ∈ RC×C denotes the weight for from channel c to channel i
at position (· + β), b ∈ RC is the corresponding bias term, and ϕ is the ReLU function.

Given a mini-batch of size N , and a given input sequence of vectors X = [x1, ..., xN ] ∈ Rd×N , batch
normalization (BN) is applied as BN(xi) = xi − µB/σB ⊙ γ + β, where µB = 1/N

∑N
i=1 xi, σB =√

1/N
∑N

i=1(xi − µB)2. An L-layer ResNet is then expressed as

Res(X) = (I + F ) ◦ · · · ◦ (I + F )︸ ︷︷ ︸
L times

(X),

F (X) = Conv ◦ BN ◦ Conv ◦ BN ◦ Conv ◦ BN(X).
(4)

3.3 Mean field frameworks

In this work, we utilize the mean-field frameworks of attention and convolution for several reasons. First,
the discrete attention mechanism involves handling interactions between all pairs of elements, and it has
been shown that properties such as variance depend on the input position, which makes the theoretical in-
vestigation of Lipschitz conditions challenging (Chi et al., 2023). Second, mean-field models typically exhibit
smoother behavior, which is advantageous when establishing stability properties like Lipschitz continuity, as
they mitigate the impact of local irregularities. Finally, the training of attention-based or convolution-based
models often requires large datasets, and the mean-field framework provides a natural way to capture the
macroscopic behavior of the system under such conditions.

We only define the mean-field attention layer and the mean-field convolution layer here, since our goal is to
evaluate the Lipschitz continuity of models, and the Lipschitz constants of the transformer and the ResNet
can be calculated by simply multiplying the Lipschitz numbers of other components.

When the input dimension N is infinitely large, it can be convenient to model self-attention as a map
between probability measures (Sander et al., 2022; Geshkovski et al., 2024; Castin et al., 2024). Indeed, the
self-attention map is permutation equivalent. Formally, a function f : XN → Y is said to be permutation
equivalent if for any permutation π of the indices {1, . . . , N}, we have f(x1, . . . , xN ) = f(xπ(1), . . . , xπ(N)).
This property naturally enables the map from X = [x1, . . . , xN ] to m(X) = 1

N

∑N
i=1 δxi , which is invariant

under any permutation of the inputs.
Definition 3 (Pushforward (Santambrogio, 2015)). For a probability measure µ on Rd and a measurable
map φ : Rd → Rd, the pushforward of µ through φ, denoted as φ#µ, is the probability measure defined by
(φ#µ)(B) := µ(φ−1(B)) for any Borel set B ⊂ Rd, where φ−1(B) := {x ∈ Rd : φ(x) ∈ B}.
Definition 4 (Mean-field self-attention (Castin et al., 2024)). Let Q, K, V ∈ Rd×d, and define A :=
K⊤Q/

√
d/M . Mean-field self-attention with parameters (A, V ) is described as:

F : µ ∈ Pc(Rd) 7→ (Γµ)#µ, Γµ(x) =
∫

exp(x⊤A⊤y)V y dµ(y)∫
exp(x⊤A⊤y) dµ(y)

for x ∈ Rd. (5)
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Since convolution can be permutation equivariant with respect to the channels, it can also be modeled as a
map between probability measures. Specifically, the convolutional layer maps the input Y = [y1, ..., yC ] to
m′(Y ) = 1

C

∑C
c=1 δyc

where yi(α) =
∑

β Wci,βϕ(xc(α + β)) is the response from channel c. In previous works,
the number of channels is set sufficiently large to make mean field theory applicable (Xiao et al., 2018).
Therefore, we can introduce the mean-field convolution based on this limit.
Definition 5 (Mean-field convolution). Set W ∈ RC×C×(2k+1)2 . For simplicity, we denote wβ ∈ R as the
weight from one channel to another at position (· + β). A mean-field convolutional layer with parameter W
is described as:

G : µ′ ∈ Pc(R) 7→ (Γ′
µ′)#µ′, Γ′

µ′(y(α)) = ReLU
(∫ ∑

β∈ker
wβ y(α + β) dµ′(wy) + b

)
, (6)

where ker = {β = (β1, β2) ∈ Z2 : |β1|, |β2| ≤ k} and b ∈ R.

4 Topological Lipschitzness

4.1 Robustness

We consider a classifier f1 = c1◦g1 where g1 maps input data from the input space X to an intermediate space
X1, which is equipped with a distance function d1. The function c1 subsequently maps data from (X1, d1)
to the output space Y , which represents the target labels or classes. Wang et al. (2016) defines the classifier
f1 : X → Y to be {δ, η1}-robust against adversarial attacks if for any x, x′ ∈ X, P(f1(x) = f1(x′)|f0(x) =
f0(x′), d0(g0(x), g0(x′)) < δ) > 1 − η1. Here, f0 represents an oracle that provides ground truth labels (e.g.,
a human annotator). Now, consider another classifier f2 and assume the following relationships among the
classifiers and their mappings:

(X1, d1)

(X, dX) (X0, d0) (Y, dY )

(X2, d2)

c1

g0

g1

g2

c0

c2

Under this framework, we can assert that f2 is more robust than f1 if f2 is {δ, η2}-robust with the same δ but a
smaller η2 < η1. Intuitively, this means that when the oracle considers two distinct inputs as belonging to the
same class, f2 has a higher possibility than f1 of recognizing them as such under perturbations within δ. In
other words, if there exist inputs x, x′ such that d(x, x′) < δ and dY (fi(x), fi(x′)) > ϵ for i = 1, 2, then a more
robust classifier satisfies Lip2 < Lip1 where Lipi := maxx,x′ dY (fi(x), fi(x′))/d(x, x′) (x, x′ ∈ X). Therefore,
by examining the Lipschitz constants of classifiers, we can gain insights into their robustness and effectively
compare different models. We transform the input and output of models into probability distributions and
consider the Wasserstein distance (Definition 7) in between to derive the topological Lipschitz condition.

4.2 Topological Lipschitzness

Before defining Topological Lipschitz continuity, we first explain why it is needed.

The Wasserstein distance is a metric between probability distributions defined on a given space. Instead
of considering Lipschitz continuity between individual data points, analyzing the Lipschitz condition of the
Wasserstein distance between the input and output distributions of a function provides insights into its global
behavior and smoothness (Santambrogio, 2015; Villani, 2021).

However, calculating the Wasserstein distance requires that both probability distributions are defined on the
same space. While one might try to use dimension reduction techniques to match distributions defined on
spaces of the same dimension, such approaches are generally inefficient when computing Wasserstein distances
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between layers of models like convolutional neural networks (CNNs). These networks often produce layers
with different embedding spaces, and forcing them into a common space via dimension reduction can lead to
information loss at different scales. Moreover, although the Gromov-Wasserstein distance is used to compare
distributions on different spaces, it is computationally expensive (Zhang et al., 2024; Vayer et al., 2019) and
may fail to capture subtle changes (e.g., small perturbations in feature embeddings) between distributions.
This is particularly problematic when analyzing the intermediate outputs of transformer-based and residual
models, where the inputs and outputs of each layer tend to be highly similar (Raghu et al., 2021) due to
their architectural design.

To address this challenge, we introduce the Topological Lipschitzness (TopoLip). TopoLip is defined as
the Wasserstein Lipschitz constant between the persistence diagrams (explained later) of a function’s input
and output. Compared to the Gromov-Wasserstein distance, computing the Wasserstein distance between
persistence diagrams is both computationally efficient and sensitive to small perturbations such as stretching
and squishing (Vishwanath et al., 2020). When comparing model robustness theoretically, the Wasserstein
Lipschitz constants of each layer’s input and output can be directly compared. Later, we will demonstrate
that TopoLip is a constant multiple of the Wasserstein Lipschitz constant. Experimentally, the input and
output are transformed into persistence diagrams, and their Wasserstein distance is computed. The maximum
rate of change of this Wasserstein distance defines TopoLip.

Persistence diagrams are a tool from topological data analysis (TDA) used to summarize the underlying
structure of data. They track significant features—such as connected components, loops, or voids—that
emerge and vanish as the scale of observation varies. In a persistence diagram, each feature is represented
by a point whose coordinates indicate the scale at which the feature appears (its "birth") and the scale at
which it disappears (its "death"). For further details on persistence diagrams, see Appendix A.

Informally, TopoLip measures the Lipschitz condition of the Wasserstein distance between the persistence
diagrams of a function’s input and output. The relationship can be illustrated as follows:

Input Distribution Feature Embeddings Persistence Diagrams

(Probability Distribution)

F g

Here, TopoLip combines the Lipschitz constant of the function F and that of the Lipschitz map g that
generates persistence diagrams. Formally, by Lemma 1, TopoLip is defined as follows:
Definition 6. Let g be a Lipschitz map defined by:

g : D −→ PDk,

g(X) = {(bi, di) | feature i in Hk(X) is born at bi and dies at di},

where D is the space of finite metric spaces (datasets), Hk(X) denotes the k-th homology group of X (which
captures k-dimensional topological features), and PDk is the space of persistence diagrams for dimension k
endowed with the Wasserstein distance Wp (p ≥ 1). For a Lipschitz function F , its Topological Lipschitzness
is defined as:

LipWp

TopoLip(F ) := LipWp(g) · LipWp(F ).

The map g is Lipschitz due to the stability theorem presented in Cohen-Steiner et al. (2005). When g is
fixed (in this work, the Čech complex filtration) to generate persistence diagrams, Lip(g) remains constant.
Therefore, the TopoLip of a function is directly proportional to its Wasserstein Lipschitz constant. By
examining the Wasserstein Lipschitz constant of a model, we can compare the TopoLip of different models
and thus assess their robustness.

5 Wasserstein Lipschitzness comparison

We begin by defining the Wasserstein Lipschitzness:
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Definition 7 (Lipschitz constant with respect to the ∞-Wasserstein distance). Denote Pc(Rd) the set of
compactly supported probability measures on Rd. For µ, ν ∈ Pc(Rd), the ∞-Wasserstein distance, also known
as the bottleneck distance, is defined as:

W∞(µ, ν) := inf
π∈Π(µ,ν)

sup
(x,y)∈supp(π)

∥x − y∥,

where Π(µ, ν) is the set of couplings between µ and ν. For a map F : Pc(Rd) → Pc(Rd) and any subset
X ⊂ Pc(Rd), the Lipschitz constant of F on X is defined as:

LipW∞(F|X ) := sup
µ,ν∈X ,µ̸=ν

W∞(F (µ), F (ν))
W∞(µ, ν) .

If LipW∞(F|X ) is finite, then F is said to be W∞-Lipschitz continuous on Pc(Rd).

The reason for using LipW∞ instead of LipW1 or LipW2 is that for any pair of probability measures µ and
ν, W1(µ, ν) ≤ W2(µ, ν) ≤ W∞(µ, ν) holds. This inequality indicates that the W∞ metric captures the
maximum (or worst-case) discrepancy between the measures. Consequently, a Lipschitz condition defined
in terms of W∞ ensures that the mapping is stable with respect to the largest deviation between µ and ν,
making it a tighter and more stringent requirement than those based on W1 or W2.

To ensure a fair comparison of variances between the self-attention and convolutional layers, we take each
element of Q, K, V, W O in the self-attention layer to be drawn i.i.d. from N (0, σ2). For the convolution
layer, to follow common initialization schemes such as He initialization (He et al., 2015), each element of W
is drawn from i.i.d. N (0, σ2/(C(2k + 1)2)). We assume H, W, C in the input image size H × W × C are
very large. For the self-attention layer, the input is a sequence with size d × N , where d is the embedding
dimension and N = HW/P 2. For the convolution layer, the input is a sequence with size C × N ′ where
N ′ = HW .

To apply the mean-field framework, the discrepancy between its outputs and those of the discrete models
must be negligible. From the Central Limit Theorem, averaging over n independent samples results in a
standard deviation proportional to 1/

√
n. For a convolutional layer, the sum over C channels has fluctuations

of order 1/
√

C, and for a self-attention layer, the sum over N tokens yields fluctuations of order 1/
√

N . To
ensure the mean-field approximation holds at a given fluctuation level—such as no more than 5%—we require
N, C ≳ 400. Such values are commonly found in practice—for instance, in 28 × 28 images or ResNet layers
with 512 filters.

5.1 Attention and convolution

Theorem 1. Let Q, K, V ∈ Rd×d. For any t >
√

d and s ≥ σ
√

2 log 2, with probability at least min{1 −
d/t2, 1 − 2e−s2/(2σ2)}, and assuming the operator norm ∥A∥op ≥ 2/σ2, the mean-field single-head attention
map Attn|P(Btσ) with parameter (Q, K, V ) is W∞-Lipschitz continuous on the set P(Btσ), and its Lipschitz
constant is bounded by

LipW∞(Attn|P(Btσ)) = 2tσ(2σ
√

d + s)2(1 + tσd−1/2(2σ
√

d + s)2)

Similarly, the Lipschitz constant of mean-field M -head attention map MHAttn|P(Btσ) is bounded by

LipW∞(MHAttn|P(Btσ)) = 2tσ
√

M(2σ
√

d + s)2(1 + tσ

√
M

d
(2σ

√
d + s)2).

The choice of using the mean-field attention model instead of the discrete attention mechanism is motivated
by several considerations:

To simplify the upper bounds, assume t = p
√

d, s = qσ for constants p, q > 0. Under this assumption, the
Lipschitz constants of a single-head and multi-head attention layer can be approximated as follows:

LipW∞(Attn|P(Btσ)) = O(σ6d5/2), LipW∞(MHAttn|P(Btσ)) = O(σ6d5/2M).
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Theorem 2. Let W ∈ RC×C×(2k+1)2 where Wci,β ∼ N(0, σ2

C(2k+1)2 ) represents the weight from channel c

to channel i at position (· + β). Denote the output vector of the mean-field convolutional layer as y(α) =[
y1(α), · · · , yC(α)

]
where yi(α) =

∫
R

(∑
β Wci,βyi(α + β) + bi

)
dµ(Wy). For any t > 0, with probability at

least 1 − 1/t2, the Lipschitz constant of the mean-field convolution map Conv|P(Btσ) with parameter W is
bounded by

LipW∞(Conv|P(Btσ)) = (2k + 1)

√
tσC

(
1 + 1

(2k + 1)
√

C

)
= O(k

√
σC).

where we assume t to be some moderate positive number to simplify the upper bound.

The proofs of Theorem 1 and 2 are available in Appendix B.

From the above bounds, we observe that the Wasserstein Lipschitz constant of attention layers, as well as
their TopoLip and robustness, are highly related to the embedding dimension d and the head number M .
Since d and M are fixed, we can indicate that LipW∞ of attention layers remains in a certain range. For
convolution layers, since their Wasserstein Lipschitz constant is related to the channel number C which
usually is not fixed in a model, its robustness tends to be lower than attention layers.

Suppose the bounds in Theorem 1 and 2 are tight, then we can assess the Lipschitz bounds of both models
from a practical perspective. In practice, typical parameter values are often set as follows: σ ∼ 10−2, d ∼ 102,
M ∼ 101, k ∼ 101, and C ∼ 102. Under this setting, the Lipschitz bound for multi-head attention is on the
order of O(10−6), whereas that for convolutional layers is significantly larger, around O(101). To provide a
more concrete comparison, consider the following specific parameter settings: d = 512, M = 8, σ = 0.05,
k = 3, and C = 512. Under this setting, σ5d2 ≈ 0.08, σ6d5/2M ≈ 0.74, while k

√
σC ≈ 15. Furthermore,

it is important to note that C is not fixed in practice. For instance, the number of channels in ResNet50
are 64→256→512→1024→2048, which leads to a larger Lipschitz bound for convolutional layers. Therefore,
convolution is more unstable under this setting, leading to greater TopoLip and lower robustness.

Theorems 1 and 2 indicate that while the LipW∞ bound for convolution depends on C, which can vary across
different convolutional models, the LipW∞ bound for attention remains fixed and is relatively tight under
practical settings. In a real-life scenario, attention and convolution layers are rarely used solely. Instead,
they are one part of the models. To conduct a thorough comparison, we extend our investigation to two
widely used models: Vision Transformer (ViT) and residual neural network (ResNet).

5.2 ViT and ResNet

We consider the Vision Transformers (ViTs) and ResNets. Building upon the calculations presented in
Theorems 1 and 2, and utilizing Lemma 1, we have the following theorems.
Theorem 3. For any t >

√
d and s ≥ σ

√
2 log 2, with probability at least min{1−d/t2, 1−2e−s2/(2σ2)}, and

assuming A in Definition 5 satisfies ∥A∥op ≤ 2/σ2, the transformer defined in Equation 2 is W∞-Lipschitz
continuous on the set P(Btσ), and its Lipschitz constant is bound by

LipW∞(TF|P(Btσ)) ≤
(

1 + t(2σ
√

d + s)2
)L
(

1 + 2t2σ
√

M(2σ
√

d + s)2(1 + tσ

√
M

d
(2σ

√
d + s)2)

)L

. (7)

Using the same approach above that assuming t = p
√

d, s = qσ for constants p, q > 0, the Lipschitz constants
becomes

LipW∞(TF|P(Btσ)) = O
(

max
{

1, σ2d3/2, σ6d3M, σ8d9/2M
})L

. (8)

Theorem 4. For any t > 0, with probability at least 1 − 1/t2, the ResNet defined in Equation 4 is W∞-
Lipschitz continuous on the set P(Btσ), and its Lipschitz constant is bound by

LipW∞(Res|P(Btσ)) ≤

(
1 + t9/2(2k + 1)3

(
σC

(
1 + 1

(2k + 1)
√

C

))3/2
)L

= O
(

max
{

1, t9/2k3σ3/2C3/2
})L

.

(9)
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Table 1: Model Comparisons.
Parameter Impact Configuration

Depth (ResNet) Kernel size 3, ResNet18/50/101/152
Kernel size (ResNet) ResNet18, kernel size 3/7/11
Depth (ViT) Head 12, embedding dimension 768, depth 6/12/24
Head (ViT) Depth 12, embedding dimension 768, head 6/12/16
Embedding dimension (ViT) Head 12, depth 12, embedding dimension 384/768/1024

The proofs of Theorem 3 and 4 are available in Appendix B.

From the results, we observe that the Lipschitz constants LipW∞ for both ViTs and ResNets retain and
further magnify the parameter dependencies inherent in their respective attention and convolutional layers.
Specifically, under the same conditions as those discussed in Section 5.1, we find that LipW∞(TF) = O(10−1)
for ViTs, while LipW∞(Res) = O(t9/2) for ResNets. Given that Theorem 4 holds with probability 1 − 1/t2

for t > 1, t cannot be too small. As a result, LipW∞(Res) is generally larger than LipW∞(TF). Additionally,
since the number of channels C in ResNet can be very large, the Lipschitz constant for ResNet can become
significantly higher than that of ViT. As a result, ViTs tend to have a lower TopoLip value, which means
they are smoother in terms of their topological properties compared to ResNets. This smoothness suggests
that ViTs are less affected by changes or noise in the input, which could make them more stable and robust
in their performance.

6 Experimental results

We conduct experiments on the CIFAR-10 and CIFAR-10-C datasets to evaluate the relationship between
TopoLip and model robustness (Hendrycks & Dietterich, 2019). Specifically, we train various ResNets
(ResNet18/50/101/152) and seven ViTs under practical settings.

For ResNets, we train ResNet18/50/101/152 with a kernel size of 3 to examine the effect of network depth,
and train ResNet18 with kernel sizes of 3/7/11 to investigate the impact of kernel size on TopoLip and
robustness (Table 1). Each model is trained for 150 epochs on CIFAR-10 until performance plateaued. The
evaluation accuracy for ResNets ranges from 86.72% to 90.61% (Figure 10 and 11). For ViTs, we use models
with head 12, embedding dimension 768, and depths of 6/12/24 to study the effect of depth; models with
embedding dimension 768, depth 12, and heads of 6/12/16 to evaluate the effect of the number of heads;
and models with head 12, depth 12, and embedding dimensions of 384/768/1024 to examine the impact of
embedding dimension (Table 1). Each ViT model is trained for 200 epochs on CIFAR-10 until performance
plateaued. The evaluation accuracy for ViTs ranges from 78.39% to 80.32% (Figure 12, 13, and 14). Finally,
we compare TopoLip and robustness between ResNets and ViTs to verify our theoretical predictions.

After training, we first evaluate the TopoLip of the models and investigate its relationship with robustness.
To measure the Bottleneck distance between the persistence diagrams of the input and output at each
layer (or each block for ResNets), we switch the models to evaluation mode to freeze their parameters. We
then input the test dataset and collect the outputs from all layers. Using these outputs, we compute their
persistence diagrams and calculate the Bottleneck distances between adjacent layers. Next, we compute
the absolute change rates between consecutive layers. Given two adjacent layers with Bottleneck distances
W∞,1 and W∞,2, the absolute change rate between them is defined as |(W∞,2 − W∞,1)/W∞,1|. Finally,
the TopoLip is computed as the maximum absolute change rate observed across all layers. Here, we
compare the TopoLips of ResNet18/50/101/152 and ViTs with varying depths (Table 2). From Table 2, we
observe that as model depth increases, TopoLip values increase for both ResNets and ViTs. Furthermore,
ViTs with fewer layers (6 or 12) exhibit lower TopoLip values compared to ResNets, whereas the TopoLip
of ViT(L = 24) exceeds that of all ResNets.

Next, we evaluate model robustness using CIFAR-10-C and analyze the relationship between TopoLip and
model robustness. Specifically, we focus on three corruption types: "Gaussian noise," "impulse noise," and

9
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Table 2: TopoLip on CIFAR-10. Here, "Res" denotes ResNet, and L represents the depth of ViT with
embedding dimension 768 and 12 heads.

Res18 Res50 Res101 Res152 ViT(L = 6) ViT(L = 12) ViT(L = 24)
TopoLip (↓) 0.43 0.57 0.78 1.17 0.39 0.70 1.56

"pixelate." Since CIFAR-10-C includes five corruption levels for each type, we compute the model accuracy
at each level and take the average. We then calculate the mean Corruption Error (mCE) and the Expected
Calibration Error (ECE) based on CIFAR-10-C results. Beyond corruption robustness, we also examine
adversarial and perturbation robustness. For adversarial robustness, we generate adversarial examples using
the Fast Gradient Sign Method (FGSM), perturbing images along the gradient direction with strength
ϵ = 0.01, and measure model accuracy under these attacks. For perturbation robustness, we introduce
Gaussian noise with a standard deviation of σ = 0.01 to the images and evaluate model performance on
the noisy inputs. Since ViTs and ResNets achieve similar model accuracies, we assess their robustness by
measuring the percentage drop in accuracy when under attack.

Figure 1: TopoLip and robustness performance of ViTs and ResNets under Gaussian noise corruption. Eval-
uated models include ResNet18/50/101/152 and ViTs with 12 attention heads, 768 embedding dimensions,
and 6 (S), 12 (M), or 24 (L) layers. A higher ECE, mCE, or accuracy drop suggests lower robustness.

The results of ResNets and ViTs with varying depths under Gaussian noise corruption are shown in Figure
1. From the figure, we observe that models with higher ECE, mCE, or accuracy drop tend to have higher
TopoLip values. Although both ResNets and ViTs exhibit this trend, it is less pronounced for smaller models.
For example, ResNet50 and ResNet101 show similar robustness, as do ViT(L = 6) and ViT(L = 12).

Next, we examine the impact of other parameters on model robustness. Figure 2 shows that ViTs with
higher embedding dimensions tend to suffer a larger accuracy drop under corruption, even though their
mCE and ECE are not necessarily lower. Furthermore, the number of attention heads has little effect on
both robustness and TopoLip. This can be explained by the fact that the Lipschitz constant of ViTs depends
on M at first order, but on d and L at higher orders. As a result, changes in M have limited impact on the
Lipschitz condition, while d and L have a much larger effect. Consequently, the overall Lipschitz condition
of the model is only slightly influenced, especially considering that the calculated Lipschitz constant is not
necessarily tight.

Then, we investigate the impact of kernel size on the robustness of ResNets. From Figure 3, we observe
that a larger kernel size results in a higher TopoLip and a more robust model. The calculated Lipschitz
constant indicates that since TopoLip depends on multi-order k, it increases as k grows. However, a larger
k also enhances the robustness of ResNets. This is because a larger k leads to a greater receptive field,

10
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Figure 2: TopoLip and robustness performance of ViTs under Gaussian noise corruption. Evaluated models
include ViTs with 12 layers and 12 heads at embedding dimensions 384 (S), 768 (M), and 1024 (L), as well
as ViTs with 12 layers, 768 embedding dimensions, and 6 (S), 12 (M), or 16 (L) heads. A higher mCE, ECE,
or accuracy drop suggests lower robustness.

allowing ResNet to smooth out local noise and small adversarial perturbations by averaging the response
over a wider area. Consequently, the network becomes less sensitive to minor, localized changes, thereby
improving robustness.

Additionally, training results indicate that ResNets with larger kernel sizes are more prone to overfitting,
as larger kernels contain more parameters (Figure 11). Similar trends are observed in ViTs, where larger
models with more parameters are more susceptible to overfitting (Figures 12, 13, and 14).

Figure 3: TopoLip and robustness of ResNet18 models with kernel sizes 3, 7, and 11 under Gaussian noise
corruption. A higher mCE, ECE, or accuracy drop indicates lower robustness.

Results under impulse corruption and pixelate corruption are shown in Appendix C.1.

7 Conclusion

In this paper, we introduced TopoLip, a metric designed to assess the robustness of machine learning models
at a layer-wise level. TopoLip can be used for both theoretical and experimental comparisons of different
architectures or configurations, and can provide insights into how model robustness depends on parameters.
Through theoretical analysis of the Wasserstein-Lipschitz conditions in mean-field attention and convolution,
we revealed that attention-based models are inherently smoother than convolutional models, making them
more robust as defined by TopoLip. Experimental results further validated these findings, showing that
attention-based models exhibit greater robustness than convolution-based models when handling corrupted
data.
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A Persistence Homology and Topological Data Analysis

Topological Data Analysis (TDA) offers a set of tools from algebraic topology to study the shape of data. One
central concept in TDA is persistent homology, which captures the evolution of topological features across
multiple scales. See Le & Yamada (2018); Bubenik et al. (2015); Naitzat et al. (2020) for more details.

The process begins with the construction of a filtration, which is a one-parameter family of nested simplicial
complexes:

∅ = K0 ⊆ Kr1 ⊆ Kr2 ⊆ · · · ⊆ Krn
= K,

where 0 ≤ r1 < r2 < · · · < rn are scale parameters. A common way to build such a filtration is via the Čech
complex. Given a finite set of points X = {x1, . . . , xN } in a metric space, the Čech complex at scale r is
defined as

Kr =
{

σ ⊆ X
∣∣∣ ⋂

x∈σ

B(x, r) ̸= ∅
}

,

where B(x, r) denotes the closed ball of radius r centered at x. As the radius r increases, more simplices are
added (see Figure 4), capturing the topology of the data at different scales.

Figure 4: Construction of the Čech complex: Balls of radius r are centered at data points, and simplices are
formed when these balls intersect.

As the filtration progresses, topological features appear (are born) and disappear (die). These features
are summarized by the homology groups Hi: H0 records connected components, H1 captures loops (or
one-dimensional holes), and higher homology groups Hi describe i-dimensional voids. Persistent homology
tracks the birth and death scales of these features, assigning each a lifespan [b, d). This information is
commonly visualized as a persistence barcode (left of Figure 5) or, equivalently, as a persistence diagram
(right of Figure 5), where each point (b, d) represents a feature born at b and dying at d.

Figure 5: Left: Persistence barcode, where each bar represents the lifespan of a topological feature. Right:
Persistence diagram, with each point (b, d) corresponding to a feature born at b and dying at d.

Mathematically, a persistence diagram can be viewed as a discrete measure µDg
=
∑

u∈Dg
δu, where δu is

the Dirac measure at u ∈ R2. To compare the topological signatures of different datasets, metrics such as
the bottleneck distance and the p-Wasserstein distances are employed (Le & Yamada, 2018; Adams et al.,
2017; Berwald et al., 2018).
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B Proof of Section 5

Lemma 1 ((Lipschitz Constant of Composed Functions (Gouk et al., 2021))). Let (X, dX), (Y, dY ), and
(Z, dZ) be metric spaces. Suppose that f : X → Y is Lipschitz continuous with Lipschitz constant Lf , and
g : Y → Z is Lipschitz continuous with Lipschitz constant Lg. Then the composition g ◦ f : X → Z is
Lipschitz continuous with Lipschitz constant at most Lf · Lg. In other words, for all x1, x2 ∈ X,

dZ(g(f(x1)), g(f(x2))) ≤ Lf · Lg · dX(x1, x2).

Lemma 2 ((Vershynin, 2010)). Given a matrix A ∈ Rd×d with entries Aij ∼i.i.d. N(0, σ2), denote the
singular values as s1(A) ≥ s2(A) ≥ · · · ≥ sd(A) ≥ 0. Then:

P [s1(A) ≤ 2σ
√

d + t] ≥ 1 − 2e− t2
2σ2 .

Proof of Theorem 1. We begin by bounding the Lipschitz constant for single-head attention. While
Castin et al. (2024) provides an upper bound for Lip(Attn|P(Btσ)), their proof is abbreviated. Here, we
present the comprehensive proof and offer a potentially tighter lower bound. We also extend the analysis to
multi-head attention by providing an upper bound for Lip(MHAttn|P(Btσ)).

Define the kernel function K(x, y) := exp(x⊤A⊤y). The mean-field attention map is then expressed as:

Γµ(x) =
∫
Rd

K(x, y)V y∫
K(x, y)dµ(y)

dµ(y).

To bound the Lipschitz constant, we consider the difference between Γµ and Γν for two probability measures
µ and ν in P(Btσ):

∥Γµ(x) − Γν(x)∥L∞(Btσ,Rd)

=
∣∣∣∣
∫
Rd K(x, y)V ydµ(y)

∫
Rd K(x, y)dν(y) −

∫
Rd K(x, y)V ydν(y)

∫
Rd K(x, y)dµ(y)∫

Rd K(x, y)dµ(y)
∫
Rd K(x, y)dν(y)

∣∣∣∣.
Denote y∗ := max

y∈Btσ

∥y∥. We bound the numerator first:∣∣∣∣∫
Rd

K(x, y)V ydµ(y)
∫
Rd

K(x, y)dν(y) −
∫
Rd

K(x, y)V ydν(y)
∫
Rd

K(x, y)dµ(y)
∣∣∣∣

=
∣∣∣∣∫

Rd

K(x, y)V ydµ(y)
∫
Rd

K(x, y)(dν − dµ)(y)

−
∫
Rd

K(x, y)V y(dν − dµ)(y)
∫
Rd

K(x, y)dµ(y)
∣∣∣∣

≤
∣∣∣∣∫

Rd

K(x, y)dµ(y)
∣∣∣∣(∥V ∥opy∗

∣∣∣∣∫
Rd

K(x, y)(dν − dµ)(y)
∣∣∣∣+
∣∣∣∣∫

Rd

K(x, y)V y(dν − dµ)(y)
∣∣∣∣)

≤ 2∥V ∥opy∗
∣∣∣∣∫

Rd

K(x, y)dµ(y)
∣∣∣∣∣∣∣∣∫

Rd

K(x, y)(dν − dµ)(y)
∣∣∣∣

≤ 2∥V ∥opy∗
∣∣∣∣∫

Rd

K(x, y)dµ(y)
∣∣∣∣∥K(x, ·)∥C0,1(Btσ)W1(µ, ν)

≤ 2y∗∥V ∥op

∣∣∣∣∫
Rd

K(x, y)dµ(y)
∣∣∣∣∥K(x, ·)∥C0,1(Btσ)W∞(µ, ν)

where we use the inequality W1(µ, ν) ≤ W∞(µ, ν). By Lemma 2, with probability at least 1 − 2e−s2/(2σ2),
we have ∥V ∥op ≤ 2σ

√
d + s, ∥A∥op ≤

√
M
d ∥K∥op∥Q∥op ≤

√
M
d (2σ

√
d + s)2, where ∥ · ∥op is the operator

norm. For ∥K(x, ·)∥C0,1(Btσ), we can bound it as follows:

∥K(x, ·)∥C0,1(Btσ)
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= sup
y∈Btσ

|K(x, y)| + sup
y1 ̸=y2∈B(0,tσ)

|K(x, y1) − K(x, y2)|
∥y1 − y2∥

≤ sup
y∈Btσ

|K(x, y)| + sup
y∈Btσ

∥∇yK(x, y)∥

≤ K∗(x, y) + y∗∥A∥opK∗(x, y)
= K∗(x, y)(1 + y∗∥A∥op)

where K∗(x, y) := supy∈Btσ
K(x, y) = exp(y∗∥x⊤A∥) and the first inequality follows from the definition of

the C0,1 norm and the mean value theorem. Then ∥Γµ(x) − Γν(x)∥L∞(Btσ,Rd) can be bounded by

∥Γµ(x) − Γν(x)∥L∞(Btσ,Rd)

≤
2y∗∥V ∥op

∣∣∣∣∫Rd K(x, y)dµ(y)
∣∣∣∣K∗(x, y)(1 + y∗∥A∥op)∣∣∣∣∫Rd K(x, y)dµ(y)
∫
Rd K(x, y)dν(y)

∣∣∣∣ W∞(µ, ν)

= 2y∗∥V ∥op(1 + y∗∥A∥op) K∗(x, y)∫
Rd K(x, y)dν(y)

W∞(µ, ν).

To bound the integral part, we transform
∫

dν(y) to
∫

p(y)dy where p(y) is the probability density function
(pdf) of y. Since y ∼ N(0, σ2I), by using the pdf of the multivariate Gaussian distribution, we have∫

Rd

K(x, y)dν(y) =
∫

Rd

K(x, y)p(y)dy

= 1
(2πσ2)d/2

∫
Rd

ex⊤Ay · e−∥y∥2/(2σ2)dy

= eσ2∥x⊤A∥2/2 1
(2πσ2)d/2

∫
Rd

e−∥y−σ2x⊤A∥2/(2σ2)dy

= eσ2∥x⊤A∥2/2.

Therefore,
K∗(x, y)∫

Rd K(x, y)dν(y)
= exp(y∗∥x⊤A∥ − σ2∥x⊤A∥2/2).

To bound it at 1, we need to ensure that

y∗ ≤ σ2

2 ∥x⊤A∥ ≤ y∗σ2

2 ∥A∥op =⇒ ∥A∥op ≥ 2
σ2 .

holds. Under this condition, the final bound is

∥Γµ(x) − Γν(x)∥L∞(Btσ,Rd) ≤ 2y∗∥V ∥op(1 + y∗∥A∥op)W∞(µ, ν) =: Lip(Attn)W∞(µ, ν).

Finally, since

ΓMHAttn
µ (x) − ΓMHAttn

ν (x) = W O

 Γ1
µ(x) − Γ1

ν(x)
...

ΓM
µ (x) − ΓM

ν (x)


where Γk

ν(x) denotes the mean-field self-attention of k-th head, we have

∥ΓMHAttn
µ (x) − ΓMHAttn

ν (x)∥L∞(Btσ,Rd)

≤ ∥W O∥op

∥∥∥∥∥
 Γ1

µ(x) − Γ1
ν(x)

...
ΓM

µ (x) − ΓM
ν (x)

∥∥∥∥∥
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≤ ∥W O∥op

√√√√ M∑
i=1

Lip(Attn|P(Btσ))2

≤ 2y∗
√

M∥W O∥op∥V ∥op(1 + y∗∥A∥op)W∞(µ, ν) =: Lip(MHAttn)W∞(µ, ν).

With probability at least min{1 − d/t2, 1 − 2 exp(−s2/(2σ2))}, we can bound the terms by y∗ =
tσ, ∥W O∥op, ∥V ∥op ≤ 2σ

√
d + s, ∥A∥op ≤

√
M/d∥K∥op∥Q∥op ≤

√
M/d(2σ

√
d + s)2. Therefore, the fi-

nal bounds become

∥ΓMHAttn
µ (x) − ΓMHAttn

ν (x)∥L∞(Btσ,Rd) ≤ 2tσ
√

M(2σ
√

d + s)2(1 + tσ

√
M

d
(2σ

√
d + s)2)W∞(µ, ν)

where M = 1 for the single-head attention.

Proof of Theorem 2. We begin by bounding the Lipschitz constant for a single response y(α). We denote
yµ(α) =

∫
R

(∑
β Wβyi(α + β) + bi

)
dµ(Wy), then

|yµ(α) − yν(α)|

=

∣∣∣∣∣∣
∫
R

∑
β

Wβy(α + β) + bi

 dµ(Wy) −
∫
R

∑
β

Wβy(α + β) + bi

 dν(Wy)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
R

∑
β

Wβy(α + β) + bi

 (dµ − dν)(Wy)

∣∣∣∣∣∣
≤

∥∥∥∥∥
∇W

∑
β

Wβy(α + β) + bi

 , ∇y

∑
β

Wβy(α + β) + bi

∥∥∥∥∥
2

W1(µ, ν)

≤
√

|
∑

β

y(α + β)| + |
∑

β

Wβ | W1(µ, ν)

≤
√∑

β

|y(α + β)| +
∑

β

|Wβ | W1(µ, ν)

≤ (2k + 1)
√

tσ + tσ

(2k + 1)
√

C
W∞(µ, ν) =: L W∞(µ, ν).

Finally, since Γ′
µ(α) = y(α), we can bound the difference between Γ′

µ and Γ′
ν as:

∥Γ′
µ(α) − Γ′

ν(x)∥L∞(Btσ,Rd) =

√√√√ C∑
i=1

|yµ(α) − yν(α)|2

≤
√

CL W∞(µ, ν)

= (2k + 1)

√
tσC

(
1 + 1

(2k + 1)
√

C

)
W∞(µ, ν).

Proof of Theorem 3. We omit the subscript |P(Btσ) for convenience. From Equation 2 and Lemma 1,
we obtain

LipW∞(TF) =
(

1 + LipW∞(MLP) · LipW∞(LN)
)(

1 + LipW∞(MHAttn) · LipW∞(LN)
)

.
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We set x ∈ Rd. Since MLP(x) = W2ϕ(W1x + b1) + b2 and the Lipschitz constant of the ReLU activation
is 1, we have

LipW∞(MLP) = ∥W1∥ · ∥W2∥.

By Lemma 2, with probability at least 1 − 2e−s2/(2σ2), we obtain ∥W1∥op, ∥W2∥op ≤ 2σ
√

d + s. Therefore,

LipW∞(MLP) ≤ (2σ
√

d + s)2.

Since LN(x) = (x − µ)/σx ⊙ γ + β where µ =
∑d

i=1 xi/d, σx =
√∑d

i=1(xi − µi)2/d, we have

LipW∞(LN) = maxi |γi|
σx

= tσ

σx
.

For large d, we approximate σx ≈ σ. Specifically, by Lemma 3, with high probability, we obtain

|σx − σ| ≤ σϵ

2 .

When σ and ϵ are small, σϵ/2 → 0, leading to σx ≈ σ. Therefore, using Theorem 1, the Lipschitz constant
of the Transformer becomes

LipW∞(TF) ≤
(

1 + t(2σ
√

d + s)2
)(

1 + 2t2σ
√

M(2σ
√

d + s)2(1 + tσ

√
M

d
(2σ

√
d + s)2)

)
,

where M = 1 for single-head attention.
Lemma 3. Denote x ∼ N(0, σ2Id), µ = 1

d

∑d
i=1 xi, and

y =

√√√√1
d

d∑
i=1

(xi − µ)2.

For any 0 < ϵ < 1, with probability at least 1 − 2 exp(−dϵ2/8), we have

|y − σ| ≤ σϵ

2 .

Proof of Lemma 3. Since x ∼ N(0, σ2Id), the sample variance satisfies

d∑
i=1

(xi − µ)2 ∼ σ2 χ2
d−1.

Define the chi-squared variable Q ∼ χ2
d−1. Then, we can write

y2 = 1
d

d∑
i=1

(xi − µ)2 = σ2

d
Q,

or equivalently, y = σ
√

Q/d.

Standard concentration results for chi-squared random variables imply that for any 0 < ϵ < 1,

P

[∣∣∣ Q

d − 1 − 1
∣∣∣ ≥ ϵ

]
≤ 2 exp

(
− (d − 1)ϵ2

8

)
.

For large d, replacing d − 1 by d yields

P

[∣∣∣Q
d

− 1
∣∣∣ ≥ ϵ

]
≤ 2 exp

(
−dϵ2

8

)
.
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Thus, with probability at least 1 − 2 exp
(

− dϵ2

8

)
, we have

∣∣∣Q
d

− 1
∣∣∣ ≤ ϵ.

Now, define the function h(u) =
√

u and note that its derivative is h′(u) = 1
2

√
u

. Since Q/d concentrates
around 1, we evaluate the derivative h′(1) = 1

2 .

Using a first-order Taylor expansion (the delta method), we obtain that

∣∣∣√Q

d
− 1
∣∣∣ ≤ ϵ

2 .

Multiplying by σ, we conclude that

∣∣∣y − σ
∣∣∣ = σ

∣∣∣√Q

d
− 1
∣∣∣ ≤ σϵ

2 .

This completes the proof.

Proof of Lemma 4. We omit the subscript |P(Btσ) for convenience. From Equation 4 and Lemma 1, we
obtain

LipW∞(Res) = 1 + LipW∞(Conv)3 · LipW∞(BN)3.

Using Lemma 3, with high probability, we have

LipW∞(BN) ≤ maxi |γi|
σB

≈ t.

Therefore, using Theorem 2, the Lipschitz constant of the bottleneck block becomes

LipW∞(Res) ≤ 1 + t9/2(2k + 1)3
(

σC

(
1 + 1

(2k + 1)
√

C

))3/2
.

C Further experimental results

C.1 TopoLip and robustness performance

Results under impulse noise and pixelate corruption are shown in Figures 6–9. Overall, the trends observed
with Gaussian noise largely hold for these corruptions. However, as the ResNet depth increases, the mCE,
ECE, and accuracy drop on corrupted data decrease, which contrasts with the general trend observed in
other cases.
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Figure 6: TopoLip and robustness performance of ResNet18 with kernel size 2k + 1 = 3/7/11 under impulse
noise corruption (CIFAR10-C). A higher ECE, mCE, or accuracy drop suggests lower robustness.

Figure 7: TopoLip and robustness performance of ViTs under impulse noise corruption (CIFAR10-C). Top
row: ViTs with 12 layers and 12 heads at embedding dimensions 384 (S), 768 (M), and 1024 (L). Middle
row: ViTs with 12 layers, 768 embedding dimensions, and 6 (S), 12 (M), or 16 (L) heads. Bottom row: ViTs
with 12 heads, 768 embedding dimensions, and 6 (S), 12 (M), or 24 (L) layers. A higher mCE, ECE, or
accuracy drop suggests lower robustness.
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Figure 8: TopoLip and robustness performance of ResNet18 with kernel size 2k + 1 = 3/7/11 under pixelate
corruption (CIFAR10-C). A higher ECE, mCE, or accuracy drop suggests lower robustness.

Figure 9: TopoLip and robustness performance of ViTs under pixelate corruption (CIFAR10-C). Top row:
ViTs with 12 layers and 12 heads at embedding dimensions 384 (S), 768 (M), and 1024 (L). Middle row:
ViTs with 12 layers, 768 embedding dimensions, and 6 (S), 12 (M), or 16 (L) heads. Bottom row: ViTs with
12 heads, 768 embedding dimensions, and 6 (S), 12 (M), or 24 (L) layers. A higher mCE, ECE, or accuracy
drop suggests lower robustness.
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C.2 Training results

Figure 10: Accuracy and loss of ResNet18/50/101/152.

Figure 11: Accuracy and loss of ResNet18 with kernel size 2k + 1 = 3/7/11.

Figure 12: Accuracy and loss of ViT with 12 heads, 12 layers, and embedding dimension 384/768/1024.
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Figure 13: Accuracy and loss for a 12-layer ViT (embedding dim 768) with 6, 12, or 16 heads.

Figure 14: Accuracy and loss for a 12-head ViT (embedding dim 768) with 6, 12, or 24 layers.
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