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Abstract—Pediatric sleep is an important but often overlooked
area in health informatics. We present PedSleepMAE, a gen-
erative model that fully leverages multimodal pediatric sleep
signals including multichannel EEGs, respiratory signals, EOGs
and EMG. This masked autoencoder-based model performs
comparably to supervised learning models in sleep scoring and
in the detection of apnea, hypopnea, EEG arousal and oxygen
desaturation. Its embeddings are also shown to capture subtle
differences in sleep signals coming from a rare genetic disorder.
Furthermore, PedSleepMAE generates realistic signals that can
be used for sleep segment retrieval, outlier detection, and missing
channel imputation. This is the first general-purpose generative
model trained on multiple types of pediatric sleep signals.

Index Terms—sleep, pediatric health, polysomnography, eeg,
apnea, generative AI, masked autoencoder

I. INTRODUCTION

Sleep is vital to the health and well-being of infants,
children, and adolescents. Sleep disorders and disturbances
can affect childhood neurobehavioral development and cog-
nitive functions and even cause morbidity in severe cases of
obstructive sleep apnea (OSA) [1]. However, pediatric sleep
has been often overlooked in health informatics, partially
due to underreporting, underdiagnosis [1] and lack of public
datasets. Most importantly, there is a common misconception
that pediatric sleep is not distinct from adult sleep, when in fact
children have unique physiology and therefore must be studied
separately from adults, including for computational models.
For example, [2] found that popular sleep stage classification
models based on adult data struggle to generalize well on
patients younger than 10 years old.

The clinical gold standard for sleep medicine is currently
based on polysomnography (PSG) or an overnight sleep study.
Since sleep is a complex process that involves multiple organ
systems, PSG data encompass many channels and modalities,
such as electroencephalography (EEG), respiratory signals and
sometimes videos. During PSG, a sleep technician monitors
the signals and manually annotates events such as movement,
coughing, breathing changes and sleep stages (e.g. REM).
Compared to adult counterparts, software for automated de-
tection of such sleep events is not as widespread (or verified
and trusted) in pediatric sleep clinics, making this a labor-
intensive process. Combined with the rich PSG data, this

strongly motivates the use of machine learning in pediatric
sleep research.

In the past few years, deep learning-based generative models
and self-supervised learning (SSL) have come to the forefront
of machine learning. Unlike supervised learning, SSL trains
the model to do auxiliary tasks on unlabeled data (e.g. predict
whether an image is rotated). Once informative embeddings
or features are learned, SSL only then uses labeled data
for downstream classification or regression tasks of interest.
This approach can fully leverage large unlabeled datasets and
have been shown to generalize well to unseen data, beating
supervised models in some cases [3]. Considering the cost
of acquiring gold standard labels in medicine, SSL is a
particularly promising approach in health informatics [4].

This work presents PedSleepMAE (Pediatric Sleep Masked
Autoencoder), a generative model for multichannel pediatric
PSGs. To our best knowledge, PedSleepMAE (Fig. 1) is the
first to satisfy all of the following characteristics:

• Explicitly focuses on pediatric sleep and leverages large
public data collected in real clinical setting.

• Handles multiple types and channels of PSG signals, e.g.
beyond EEGs [5], [6] and can be flexible with missing
channels.

• Trains a transformer-based model via SSL such that the
model can be used for multiple tasks, e.g. beyond sleep
scoring [5] or apnea detection [7].

Our experiments are carefully designed to demonstrate inter-
esting potential use cases of the PedSleepMAE framework:

• Automated sleep event detection and sleep scoring.
• Generate hypotheses for sleep biomarkers in conjunction

with the electronic health record (EHR).
• Generate or retrieve representative examples per patient.

Detect and flag outliers for clinicians or researchers.
• Impute missing channels.
In the rest of the paper, we will describe the dataset and

deep learning model in Sec. II, evaluate diagnostic quality of
model embeddings in Sec. III, evaluate accuracy of generated
signals in Sec. IV and conclude in Sec. V.

II. METHODOLOGY

We describe the dataset and PedSleepMAE. PedSleep-
MAE is open source and the full code is available at
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Fig. 1: An overview of PedSleepMAE framework.

https://github.com/sauravpandey123/PedSleepMAE.

A. Polysomnography (PSG) Data

We utilize the Nationwide Children’s Hospital (NCH) Sleep
DataBank [8], which is a large, public, and fairly recent pedi-
atric PSG dataset collected in a real clinical setting. Within this
dataset, we analyzed 2,379 PSGs that had 16 of the most com-
mon channels [8, Table 2]. This includes 7 channels of EEG
(C3-M2, O1-M2, O2-M1, CZ-O1, C4-M1, F4-M1, F3-M2),
CO2 level (CAPNO), O2 level (SpO2), breathing effort (RESP
Thoracic, RESP Abdominal), snoring (SNORE), CPAP airflow
(C-FLOW), electrooculogram (EOG; LOC-M2, ROC-M1) and
electromyogram (EMG; CHIN1-CHIN2). These PSGs are also
accompanied by patients’ electronic health records (EHR)
and annotations such as sleep stages (Wake, Non-REM 1,
Non-REM 2, Non-REM 3, REM), EEG arousal, apnea, and
hypopnea for every 30 seconds of sleep. PSG is considered
in units of 30 seconds, recorded (or downsampled) at 128Hz
across 16 channels. We normalize all channels to 0 mean and
1 standard deviation for stable model training.

B. Multichannel Masked Autoencoder (MAE)

Masked autoencoder (MAE) [9] is a state-of-the-art deep-
learning-based generative model. It is based on the trans-
former neural network architecture [10] and has a encoder-
decoder structure. During SSL, input data is divided into
small patches and then randomly masked, and the MAE is
trained to reconstruct the masked patches. This is similar to
masked language modeling in natural language processing,
e.g. BERT [11]. During this reconstruction process, the en-
coder learns informative non-linear features or embeddings,
and the decoder learns how to generate data back from the

embeddings. MAEs are distinct from traditional autoencoders,
which focus on data compression, and are much easier to train
than variational autoencoders (VAEs) or generative adversarial
networks (GANs) since there are no regularization terms.

Although MAE is originally proposed for images and
videos, we easily adapted it to a multichannel signal setting
for PSGs. Both encoder and decoder module consist of three
layers of Vision Transformer [12] attention blocks with four
attention heads. The attention mechanism allows the model to
capture both intra- and inter-channel relationships in PSG. We
used a masking ratio of 50% for SSL, and the dimension of
the embeddings used in our experiments is 7,680. Appendix A
describes the model and pretraining strategy in greater detail.

III. HOW MUCH DIAGNOSTIC INFORMATION DO THE
EMBEDDINGS CONTAIN?

We evaluate how much diagnostic information is in the
7680-dimensional embeddings from the PedSleepMAE en-
coder. The PSGs in NCH Sleep DataBank are accompanied by
rich EHR and annotated with clinician-verified sleep events.
We fully utilize these clinical labels to qualitatively and
quantitatively measure how well these groups are separated
in the embedding space.

A. Visualization

We first employ Uniform Manifold Approximation and
Projection (UMAP) [13] to reduce the embeddings into 2
dimensions and visualize them in Fig. 2. Each plot corresponds
to one PSG, and each point represents 30 seconds of sleep,
colored by different sleep events. PSGs are selected as follows:
one PSG chosen randomly from all patients (Fig. 2a), one
PSG from the top 5 with the highest apnea occurrences (Fig.

https://github.com/sauravpandey123/PedSleepMAE
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Fig. 2: UMAP visualizations suggest that PedSleepMAE embeddings are clustered by sleep events. Each point represents 30
seconds of sleep, and each plot corresponds to one PSG. PSGs are selected as follows: (a) one PSG chosen randomly from all
patients, (b) one PSG from the top 5 with the highest apnea occurrences, and (c) one PSG from those with 5 to 30 cases of
hypopnea. This was to avoid cherry-picking but still ensure there are enough sleep events and show some breadth. See more
visualizations in Appendix B.

2b), and one PSG from those with 5 to 30 cases of hypopnea
(Fig. 2c). This was to avoid cherry picking while still ensuring
that there are enough sleep events to be plotted and also
showing some breadth in our results. For readability, we defer
UMAP plots of samples colored by oxygen desaturation and
EEG arousal to Figs. 10 and 11 in Appendix B. Figs. 2,
10 and 11 reveal clusters in most cases. We emphasize that
PedSleepMAE was able to capture characteristics of various
sleep events and distill it into the embeddings despite not
having seen any of these labels during pretraining.

We also applied UMAP to visualize randomly selected
embeddings from multiple PSGs (Fig. 12 in Appendix B).
Unlike with earlier per-PSG plots, this process did not yield
distinct clusters as anticipated. We hypothesize that due to high
variability and confounding variables among patients, such
as differences in age, sex and underlying health conditions,
clusters are not distinct enough to be seen in 2-dimensional
UMAP space.

B. Sleep Event Classification

To more quantitatively measure the separation of embed-
dings per sleep event (which might not be visible in 2-
dimensional UMAP space), we designed 6 downstream clas-
sification tasks. They are 5-stage sleep scoring and 5 binary
detection problems: oxygen desaturation, EEG arousal, apnea,
hypopnea, and a combined case of apnea and hypopnea. We
froze PedSleepMAE, then trained linear classifiers on top of
the embeddings. The classifiers are intentionally kept as simple
as possible so that we can measure the diagnostic information
in the embeddings and not the classifier. See Appendix C for
more details on experiment setup.

Table I and Fig. 3 present the overall accuracy, F-1 score,
AUC score and confusion matrix on the test sets. For sleep
scoring, we report the weighted F-1 score and weighted AUC
using a one-vs-rest (OvR) approach. Our F-1 scores for all
binary classification tasks are consistently higher than the
corresponding percentage of positive cases, which represents

TABLE I: Test set accuracy, F-1 score and AUROC from
linear probing suggest that PedSleepMAE embeddings contain
information relevant to sleep health. Last column shows the
percentage of positive samples for binary tasks, which is the
baseline performance for a random classifier.

Classification task Accuracy (%) F-1 (%) AUC Class 1 (%)

5-stage sleep scoring 69.2 71.3 0.899 -
Oxygen desaturation 67.9 28.4 0.773 8.78
EEG arousal 86.0 28.7 0.817 4.7
Apnea 97.6 10.4 0.797 0.83
Hypopnea 93.7 16.5 0.798 1.97
Apnea-Hypopnea 93.6 20.4 0.797 2.80

the random baseline F-1 score. Considering that there was no
fine-tuning of PedSleepMAE, and the classifiers are simply
fitting a hyperplane in the embedding space, the classification
is successful in all cases. This is comparable to 76% sleep
scoring accuracy reported by [5] and 66.8% oxygen desatu-
ration accuracy from [6], even though they used supervised
learning. However, it should be noted that those works only
used 7 EEG channels, and we cannot solely rely on accuracy
due to the high class imbalance. Also while they used the same
dataset as us, there is variability in which subset of PSGs ended
up being included in the analysis. Still, these results strongly
suggest that PedSleepMAE embeddings contain information
relevant to sleep health.

C. Prader-Willi Syndrome (PWS) Cluster Analysis

We now move beyond 30-second sleep events and demon-
strate that PedSleepMAE embeddings can capture more nu-
anced sleep characteristics that may not be even fully elu-
cidated yet by science. Following the case study in [8], we
focus on Prader-Willi syndrome (PWS) using the EHR. For
context, PWS is a rare genetic disorder that approximately
affects 1 out of 10,000 to 30,000 people, and there has been
observations of breathing abnormalities and sleep disorders
of PWS patients [14]. Note that compared to earlier labels,



Wake N1 N2 N3 REM
Predicted Label

W
ak

e
N1

N2
N3

RE
M

Ac
tu

al
 L

ab
el

70.6 10.6 12.0 1.8 4.9

14.5 26.2 44.3 1.2 13.9

3.2 5.0 83.8 3.8 4.3

1.8 0.8 22.3 72.7 2.4

5.3 9.8 44.5 0.9 39.4
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100% in this normalized confusion matrix.

detecting sleep characteristics of PWS is much more difficult
and nuanced due to many confounding variables and lack of
clarity in the exact connection between PWS and sleep.

For this experiment, we decide against training a linear
classifier as in Sec. III-B. Automatic detection of apnea, for
example, is a meaningful undertaking on its own beyond the
fact that it can demonstrate the usefulness of our embeddings.
But predicting PWS diagnosis has no clinical use at the end of
the day. So instead we perform a cluster analysis on PWS and
non-PWS cohorts using silhouette score [15]. Originally used
to evaluate clustering algorithms, silhouette score measures
how similar a point is to its own cluster compared to other
clusters. In general, higher silhouette score indicates better
clustering with +1 being perfect, and 0 being that all samples
lie on the decision boundary. Silhouette scores are known to
suffer from the curse of dimensionality [16], but we sidestep
this issue by interpreting scores only relative to each other. We
borrow this metric to measure the separation between PWS
and non-PWS sleep in PedSleepMAE embedding space.

Cohort 1 has 9,600 PedSleepMAE embeddings from PWS
patients, and Cohort 2 has 279,236 embeddings from obese
but non-PWS patients. We control for the effect of OSA as in
[8]. For computational feasibility, we randomly select 2,500
embeddings from each cohort to compute a silhouette score
[17]. This sampling process is repeated 100 times, which
is then used to calculate the 95% confidence interval (CI)
of the true silhouette score. Same analysis is performed 20
more times with randomly shuffled clusters. The 21 CIs are
presented in Fig. 4.

We initially hypothesized that the embeddings would have
captured small differences in sleep characteristics that are
relevant to PWS. If the features are not related to the PWS
labels at all (i.e. under the null hypothesis), the silhouette
score calculated from PWS/non-PWS clusters should be indis-
tinguishable from the score calculated from any random two
clusters. Therefore, the non-overlapping CIs in Fig. 4 provide
evidence supporting our hypothesis. We also conducted a
Welch’s t-test comparing the true PWS/non-PWS cluster with
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Fig. 4: Comparison of silhouette scores with 95% confidence
intervals for PWS/non-PWS and randomly clusters. Higher
value is better clustering with +1 being perfect.

each of the 20 random clusters. All 20 t-tests returns t-statistics
between 90-93, translating to p-values less than 1 × 10−100.
While the effect size is small, the statistical significance is
robust. Furthermore, since the exact effect of PWS on the
sleep signals are not fully understood yet, using generative
models to identify potential biomarkers could be an exciting
avenue of future research.

IV. HOW ACCURATE ARE THE GENERATED SIGNALS?

Now that we have established the usefulness of the em-
beddings, we bring the decoder back into the picture. In this
section, we demonstrate how the decoder can be used to
retrieve or generate representative examples for a patient, as
well as impute missing channels.

A. Generating and Retrieving Representative Examples

Seminal works in computer vision (e.g. [18]) and natural
language processing (e.g. [19]) have shown that with good
generative models, arithmetic operations in the embedding
space could lead to analogous operations in the original data
space. For example, one could take the Euclidean average
of face embedding vectors and push it through the decoder
to create an “average face image.” In comparison, taking the
average in the pixel space will not result in a valid face image.
Borrowing this idea, we use PedSleepMAE to retrieve and
generate representative examples of a patient’s sleep.

First, we investigate whether pairwise relationships in the
embedding space are maintained in the generated signal space.
We check this by measuring pairwise Euclidean distances in
both spaces and calculating Pearson’s correlation coefficient
(ρ). ρ ranges from -1 to 1, where 1 indicates a perfect positive
linear relationship. Fig. 5 shows a strong positive correlation
of 0.93 based on 1,000 samples from a randomly selected
patient. While ρ is calculated using all pairwise distances,
only 2,000 pairwise distances are plotted to ensure readability.
To make sure this was not an outlier patient, we repeated
this experiment on 1,000 samples randomly selected from all
patients, which yielded ρ = 0.88 (Fig. 14 in Appendix D). We
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also repeated the process with dynamic time warping (DTW)
distance in Appendix D with similar results.

Given this promising quantitative result, we next tackled
representative signal generation and retrieval. Let’s consider
a single sleep stage (REM). We begin by acquiring the
embeddings for all REM sleep from a randomly selected
PSG, then take the Euclidean average to generate an “average
embedding.” This vector is then pushed through the decoder
to generate an “average 30 seconds of REM sleep” for this
PSG (Fig. 6). Albeit noisy, they seem to be valid signals with
the right shape, which is not the case if we take the Euclidean
average in the original signal space. These synthetic signals
can circumvent privacy concerns and be useful toy data in
classrooms or be used to develop code quickly in fast-paced
projects while waiting for the real medical data to arrive.

Of course, a clinician is unlikely to accept this set of AI-
generated signals to make clinical decisions. But now that
we have a notion of mean and distance, we can perform a
nearest neighbors search to retrieve an actual data sample that
is closest to the mean (Fig. 7). On the flip side, we can also
find outliers and bring them to the doctor’s attention.

Lastly, we showcase a PedSleepMAE-generated “average
30 seconds of sleep with apnea” in Fig. 8. We used a random
PSG with at least 100 apnea occurrences to calculate the
average embedding. A notable finding is the decreasing SpO2
values and increasing CAPNO levels over time, as well as
the fluctuations in C-Flow and RESP abdominal. In patients
with apnea, there are frequent interruptions in breathing during
sleep, which can lead to periods of reduced blood oxygen
levels and increased CO2 levels. During this time, the amount
of air flowing from the CPAP machine (if the patient has one)
and the effort their body puts into breathing (as measured
by elastic bands) may also fluctuate. This event is clearly
reflected in Fig. 8. Moreover, the timings are coordinated
across channels, which suggest that PedSleepMAE has learned
accurate inter-channel information about apnea.
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Fig. 6: A 30 seconds of REM sleep generated by PedSleepMAE.

B. Channel Imputation and Evaluation

Our final experiment is on using PedSleepMAE for missing
channel imputation. Recall that during SSL, the model is
trained to reconstruct small patches of size 8 (≈ 0.0625
seconds). Generating 30 seconds is a much more difficult
task. We systematically remove one channel at a time and
let PedSleepMAE reconstruct the missing signal based on the
other 15 channels. Table II reports the reconstruction error
across 5,000 samples as measured by MSE and DTW. For
comparison, a simple mean imputation should theoretically
give an MSE of 1 in expectation, because we normalized
each channel to 0 mean and 1 standard deviation (SD) in
the beginning. It is difficult to make a definite statement due
to high SD, but it is promising that the MSE values are
much lower than that baseline. We also show an example of
the reconstruction for channel EEG F3-M2 in Fig. 9. While
there are differences in the amplitude of the signals, the
reconstructed signal maintains a similar shape.

V. CONCLUSIONS

We designed PedSleepMAE, a masked autoencoder (MAE)
trained on a large set of pediatric sleep signals. Our
transformer-based model learns informative representations
of the multimodal data, which includes EEGs, respiratory
signals, EOGs and EMG. Our extensive evaluations were both
qualitative and quantitative, and we demonstrated a wide range
of interesting use cases from apnea detection to information
retrieval to data imputation.

While writing this paper, we came across a concurrent
work [20] that built a foundation model on an impressively



0.5

0.0

0.5
EE

G
 C

3-
M

2

0.25

0.00

0.25

EE
G

 O
1-

M
2

0.25

0.00

0.25

EE
G

 O
2-

M
1

0.5

0.0

0.5

EE
G

 C
Z-

O
1

0.0

0.5

EE
G

 C
4-

M
1

0.5

0.0

EE
G

 F
4-

M
1

0.25
0.00
0.25

EE
G

 F
3-

M
2

1

0

CA
PN

O

0.0

0.1

0.2

SP
O

2

0.25

0.00

0.25

RE
SP

 T
H

O
RA

CI
C

0.0

0.5

RE
SP

 A
BD

O
M

IN
AL

0.1650

0.1625

0.1600

SN
O

RE

0.026

0.025

0.024

C-
FL

O
W

0.25

0.00

0.25

EO
G

 L
O

C-
M

2

0.0

0.5

EO
G

 R
O

C-
M

1

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0.05

0.00

0.05

EM
G

 C
H

IN
1-

CH
IN

2

Fig. 7: Real REM sleep example closest to the sample in Fig. 6.
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Fig. 8: An average 30 seconds of sleep with apnea generated
by PedSleepMAE (EEG channels not shown). Changes in
respiratory signals are consistent with apnea.

large private PSG dataset with similar modalities. Our work
is differentiated by our use of a public dataset that is focused
on pediatric sleep and our design of meaningful and diverse
experiments that go beyond sleep scoring and age or gender
classification. However, it would be intriguing to try their
model on NCH Sleep DataBank, which we defer to future
work. Other future directions include trying different genera-
tive AI models, especially those that can be trained conditional
on patient information derived from the EHR. We also plan
to investigate our PWS case study further to come up with
biomarkers that can be verified in future clinical experiments.
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TABLE II: Reconstruction error by PedSleepMAE in missing
channel imputation. Averaged over 5000 samples.

Imputed channel Mean MSE (SD) Mean DTW (SD)

EEG C3-M2 0.0199 (0.187) 63.5 (106.4)
EEG O1-M2 0.0195 (0.137) 73.9 (94.2)
EEG O2-M1 0.0156 (0.150) 42.8 (102.8)
EEG CZ-O1 0.0241 (0.177) 65.0 (117.9)
EEG C4-M1 0.0189 (0.205) 63.6 (118.2)
EEG F4-M1 0.00995 (0.0939) 55.4 (67.9)
EEG F3-M2 0.0122 (0.0721) 58.5 (68.8)
CAPNO 0.0581 (0.314) 114.5 (156.0)
SPO2 0.0821 (0.648) 139.9 (229.5)
RESP THORACIC 0.0821 (0.566) 83.6 (211.6)
RESP ABDOMINAL 0.0760 (0.325) 116.8 (194.7)
SNORE 0.000876 (0.00644) 49.5 (23.9)
C-FLOW 0.00178 (0.0125) 72.9 (25.7)
EOG LOC-M2 0.0128 (0.0894) 46.4 (73.6)
EOG ROC-M1 0.0136 (0.123) 43.8 (98.9)
EMG CHIN1-CHIN2 0.0202 (0.152) 59.5 (127.5)

REFERENCES

[1] M. L. Splaingard and A. May, “Sleep Disturbances (Nonspecific)
(Chapter 194),” in American Academy of Pediatrics Textbook of Pediatric
Care. American Academy of Pediatrics, 06 2016.

[2] W. Nazih, M. Shahin, M. I. Eldesouki, and B. Ahmed, “Influence of
channel selection and subject’s age on the performance of the single
channel eeg-based automatic sleep staging algorithms,” Sensors, vol. 23,
no. 2, p. 899, 2023.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[4] D. Spathis, I. Perez-Pozuelo, L. Marques-Fernandez, and C. Mascolo,
“Breaking away from labels: The promise of self-supervised machine
learning in intelligent health,” Patterns, vol. 3, no. 2, 2022.

[5] H. Lee and A. Saeed, “Automatic sleep scoring from large-scale multi-
channel pediatric eeg,” arXiv preprint arXiv:2207.06921, 2022.

[6] S. Manjunath and A. Sathyanarayana, “Detection of sleep oxy-
gen desaturations from electroencephalogram signals,” arXiv preprint
arXiv:2405.09566, 2024.

[7] H. Fayyaz, A. Strang, and R. Beheshti, “Bringing at-home pediatric sleep
apnea testing closer to reality: A multi-modal transformer approach,” in
Machine Learning for Healthcare Conference. PMLR, 2023, pp. 167–
185.

[8] H. Lee, B. Li, S. DeForte, M. L. Splaingard, Y. Huang, Y. Chi, and
S. L. Linwood, “A large collection of real-world pediatric sleep studies,”
Scientific Data, vol. 9, no. 1, p. 421, 2022.

[9] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked au-
toencoders are scalable vision learners,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp.
16 000–16 009.



[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” in International Conference on Learning Representations, 2021.

[13] L. McInnes, J. Healy, N. Saul, and L. Großberger, “Umap:
Uniform manifold approximation and projection,” Journal of Open
Source Software, vol. 3, no. 29, p. 861, 2018. [Online]. Available:
https://doi.org/10.21105/joss.00861

[14] M. Pavone, V. Caldarelli, S. Khirani, M. Colella, A. Ramirez,
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APPENDIX A
MAE PARAMETERS AND SSL STRATEGY

This section discusses the MAE model and pretraining
strategy in more detail, following Sec. II-B. The encoder
and decoder modules in PedSleepMAE are of the same size.
They have three layers of Vision Transformer (ViT) [12]
attention blocks, each of which has four attention heads, a
multi-layer perceptron (MLP) and normalizing layers. We used
the PyTorch implementation of ViT blocks from [21]. The
embedding from the encoder is of size (16 channels) ×
(480 patches) × (64 patch emb dim). Since this is
very high-dimensional, we aggregated information from each
patch with average pooling in our experiments. This brings
down the embedding dimension to 16× 480 = 7680.

TABLE III: Parameters for pretraining MAE.

Parameter Value

Patch size (p) 8
Embedding dimension (d) 64
Masking ratio (m) 50%
Optimizer AdamW
Learning rate 1e-4
Weight decay 5e-4
Batch size 64
Total epochs 600
Iterations per epoch 2000

When pretraining, we consider PSG data in units of 30
seconds of sleep, recorded (or downsampled) at 128Hz across
16 channels. We start by dividing the signal in each channel
into patches of p samples. Each patch is then projected into
a d-dimensional (d > p) space. Then, m% of the patches are
masked at random, and the model is trained to reconstruct
the masked patches. Loss function is the mean squared error
(MSE) between the reconstructed and original signals. Table
III summarizes key parameters.

We experimented with different combinations of masking
ratios (50%, 75%) and patch sizes (8, 16), and chose the model
with the best training and validation loss. These settings result
in a total of 76.5 million model parameters.

APPENDIX B
ADDITIONAL UMAP VISUALIZATIONS OF EMBEDDINGS

We include additional embedding visualizations in continu-
ation of Sec. III-A. Figs. 10 and 11 are plotted similar to Figs.
2b and 2c in Sec. III-A. Each plot represents one randomly
chosen PSG, and each point represents 30 seconds of sleep,
colored by different sleep events. In many cases, there are
clustering behaviors by sleep events. In Fig. 12, each plot
contains random samples from multiple randomly selected
PSGs. In this case, we do not observe clusters in the 2-
dimensional UMAP space, potentially due to high variability
and confounding variables among patients.

APPENDIX C
LINEAR CLASSIFIER PARAMETERS

The details in this section support the sleep event classifi-
cation experiment in Sec. III-B. We split our dataset into 80%
training, 10% validation, and 10% testing. For each of our
classification tasks, we implemented the classifier as one fully
connected feedforward layer in PyTorch [22]. It was then fitted
to the training data with batch size 256, AdamW optimizer,
learning rate 1e-3, weight decay 1e-5, weighted cross entropy
loss and 2000 iterations per epoch for 50 epochs. For binary
classification tasks, we chose the threshold for the positive
class based on the value that maximized the binary F-1 score
on the validation set.

APPENDIX D
ADDITIONAL PAIRWISE DISTANCE PLOTS

We provide additional plots and correlation calculations
from Sec. IV-A. Figs. 14 and 13 show that regardless of

https://doi.org/10.21105/joss.00861
http://arxiv.org/abs/1511.06434
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
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Fig. 10: Each plot represents one PSG. PSGs are randomly chosen from 5 PSGs with most occurrences of the sleep event.
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Fig. 11: Each plot represents one PSG. PSGs are randomly chosen from those with between 5 and 30 cases of the sleep event.
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Fig. 12: Unlike previous UMAP visualizations, each plot contains random samples from multiple randomly selected PSGs.
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Fig. 13: Pairwise distances calculated using DTW.

whether we use Euclidean or dynamic time warping (DTW)
distance, or whether we consider a single random patient or
random samples from across all patients, pairwise similarities
in embedding space are preserved in the generated signal
space. We used fast implementation of DTW by [23] and
calculated Pearson’s correlation coefficient with SciPy [24].

These results provide justification for generating “average”
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Fig. 14: Pairwise Euclidean distances are highly correlated
(ρ = 0.88) between embedding space and generated signal
space. Data from 1,000 randomly selected samples from
multiple random patients.

or representative signals using PedSleepMAE. Additionally,
strong linear correlation suggest that a nearest neighbor search
done in either the embedding space or the generated signal
space would give similar results. Therefore our nearest neigh-
bor search (Fig. 7) is done in the generated signal space.
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