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Figure 1: Alignment with Human Cognition System. AUGUSTUS first encodes information for
storage into long-term (external) memory, using the limited context length in LLMs as working
memory and retrieving information upon the need to act.

Abstract

Riding on the success of LLMs with retrieval augmented generation (RAG), there
has been a growing interest in augmenting agent systems with external memory
databases. However, the existing systems focus on storing text information in their
memory, ignoring the importance of multimodal signals. Motivated by the mul-
timodal nature of human memory, we present AUGUSTUS, a multimodal agent
system aligned with the ideas of human memory in cognitive science. Technically,
our system consists of 4 stages connected in a loop: (i) encode: understanding the
inputs; (ii) store in memory: saving important information; (iii) retrieve: searching
for relevant context from memory; and (iv) act: perform the task. Unlike existing
systems that use sequential key-value databases, we propose conceptualizing infor-
mation into semantic tags and associating the tags with their context to store them
in a graph-structured multimodal contextual memory for efficient concept-driven
retrieval. Our system outperforms the traditional multimodal RAG approach while
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being 3.5 times faster for ImageNet classification and outperforming MemGPT on
the MSC benchmark.

1 Introduction

Processing information is a crucial part of a human’s existence [1]. At the core of processing lies the
memory system [2] in humans, persistently storing, retrieving, and modifying multimodal information
across dynamic working and long-term memory. The human ability to react to every situation based
on the context is guided by memory to a large extent [3, 4]. Recently, LLMs have emerged as agent
systems [5–7] that think [8, 9]. Although impressive, we find that the role of memory in these agent
systems is relatively less studied, even less so for multimodal memory. We observe that most existing
systems either maintain a vector database knowledge base, performing retrieval augmented generation
(RAG) when necessary [10, 11] or do not maintain or access any form of external memory, therefore,
only capable of planning the execution of tools defined in their system prompt [5, 12]. More recently,
a few works [7, 13, 14] proposed maintaining a dynamic long-term memory, which is updated as the
agent interacts with other agents or the user. However, the mentioned systems (and their long-term
memory) only support the text modality during their interactions with a user. Intuitively, an agent
system should be able to retain all context from user conversations, including any relevant image,
audio, or video data for future conversations. Therefore, developing an agent system that can process,
store, and retrieve multimodal information is imperative [15].

Working towards such a system, we present AUGUSTUS, a multimodal agent storing user context in
memory, seeking answers to the following questions:

(i) Is it possible to establish an analogy between existing agent systems and the human cognition
system? Based on past research in cognitive neuroscience, working memory is considered to have
limited capacity [16]. In contrast, long-term memory is believed to have unlimited capacity [17].
We recognize the similarity between the working memory in humans and the in-context memory in
large language models (LLMs), with both having a limited size and being the primary source for
planning/reasoning for making a decision [18]. We observe another analogy between the cue-driven
retrieval [19] in humans from long-term memory and RAG [20] using external memory in LLMs.
Lastly, we focus on two main types of long-term memory [21]: episodic memory, responsible for
storing temporally dated information, and semantic memory, responsible for storing concepts and
relation among the held concepts. Recently, Packer et al. [13] proposed using a recall memory to store
all user (text) conversations in chronological order. We realize the similarities between episodic and
recall memory while developing AUGUSTUS. Moreover, we equip AUGUSTUS with a contextual
memory to store conceptualized information, similar to semantic memory. We present more details
on the analogy in Appendix A.

(ii) Building upon the observed analogies, is it possible to develop a general multimodal agent
system good at remembering context about the user? Recently, there has been a growing interest
in developing any-to-any systems [22–25] due to their modular design. We believe a general system
should be able to understand and generate multiple modalities. Therefore, we also leverage existing
foundation models [26–29] as tools to equip AUGUSTUS to understand and generate data for multiple
modalities. At the center of our system lies an LLM, the planner responsible for creating function
calls to execute the corresponding tool. We also provide our system with the appropriate tools to store
and retrieve information in/from two types of external (long-term) memory databases: recall [13]
and contextual memory. We attempt to imitate the humans’ ability to conceptualize information [21]
for storage in semantic memory by equipping our agent with the ability to abstract information into
semantic tags (concepts) to store in the contextual memory. The tags in the contextual memory are
connected to context nodes that store information about the user from the corresponding conversation
snapshot [30], including any media. Thus, the contextual memory stores the multimodal context
about the user. Additionally, we introduce the Contextual-Personalized (CoPe) search mechanism to
perform concept-driven retrieval of information from the contextual memory to provide personalized
responses (Fig. 5) to the user.

To summarize, our contributions are three-fold:

• We establish an analogy between human cognition and agent systems, introducing AUGUS-
TUS with a contextual memory aligned with the ideas of a multimodal memory system in
humans from cognitive neuroscience.
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Table 1: AUGUSTUS’ Tool Collection. We equip our system with various tools for smooth
multimodal operation. Our experiments use tools in bold as default choices.

Stage Tool Modality Model Access

Encode

Video-LLaVA [34] image; video Open-Source
WhisperX [41] audio (speech) Open-Source
Whisper-Captioner [27] audio Open-Source
dolphin-2.6-mixtral-8x7b [40] text Open-Source
GPT-4 [10] text Close-Source

Store in Memory Recall Memory (sqliteDB) text Not Applicable
Contextual Memory (arangoDB) image; video; audio; text Not Applicable

Generate

SD-2.1 [28] image Open-Source
MGIE [36] image (edit) Open-Source
LaVIT [42] image (edit) Open-Source
MAGNeT [43] audio Open-Source
I2VGen-XL [29] video Open-Source
dolphin-2.6-mixtral-8x7b [40] text Open-Source
GPT-4 [10] text Close-Source

• We equip our agent system with the ability to conceptualize information for storage in
contextual memory for a more efficient memory system. Moreover, we introduce a two-
stage CoPe search for effective concept-driven retrieval.

• We provide empirical evidence on the effectiveness of our system, outperforming the
traditional multimodal RAG approach while being 3.5 times faster. Moreover, AUGUSTUS
outperforms MemGPT [13] on the MSC benchmark.

2 Related Works

2.1 LLM-Driven Agent Systems

With the rise of LLMs for various language and multimodal tasks [26, 31], the community has
leveraged LLMs as planners [32, 33] in agent systems, having three modules: tool collection,
planning module, and memory.

The tool collection includes multimodal foundation models for understanding the user query [27, 34,
35] and generating the response [28, 29, 36].

The planning module is an LLM that generates a sequence of execution steps using its reasoning
ability to fulfill the user query. The format and instructions for the step generation are passed as
few-shot or zero-shot in-context prompt to the LLM to achieve successful step generation, which can
either be a natural language [8, 37] or programs [5], or both [13, 38].

The community has incorporated long-term external memory databases into agent systems [14, 39]
to overcome the LLMs’ limited context length.

For AUGUSTUS, we also use off-the-shelf foundation models during the encode and act stages. For
planning, inspired by the success and elegance of planning through function calling in MemGPT [13],
we also follow the same strategy as a combination of natural language and programs. We use a
fine-tuned version of Mixtral-8x7b [26, 40] as our planning module for improved function calling
abilities. AUGUSTUS can directly access the contents in the external memory, making our system’s
memory management completely autonomous [13].

2.2 Agent Systems with Memory

Inspired by the success of retrieval-augmented-generation (RAG) [20, 44], existing agent systems
have also incorporated an external memory in vector databases to overcome the limitations of
limited context in LLMs. Park et al. [7] maintained agent-specific memory to store the experiences
of each persona as different agents interacted with each other in a simulation. MemGPT [13]
proposed holding two types of external databases: storing raw conversation history in its recall
memory and essential information about the user in archival memory. OS-Copilot [14] proposed
a more cognitively aligned approach, storing the user and the agent’s action history information
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User logged in…

Greetings! Let's embark on a journey of discovery and connection. I'm eager to learn 
more about you and your world.

Hey, let’s talk about my pet.

🧠 [function] searching memory with conversation_search
      query: pet, page: 0

Retrieve func&on call

I'm curious about your pet. What kind of pet do you have? Tell me more about them!

Yeah, his name is Cheddar, he is a cute corgi. Here's a picture of him: <path>

🖼 [function] analyzing image context with encode_image
       → motive: to gain info about the user's pet from <path>

📚 [function] updating context with contextual_memory_insert
       → content: User has a pet named Cheddar, who is a cute corgi.  They shared a picture of him.
        → tags: pet; brown dog; sand | modality: image | url: <path>

Encode 
func&on call

Store in Memory func&on call

Oh, what a lovely pet you have! Cheddar, the cute corgi. He seems to be enjoying the 
sand. I can  imagine him running around on the beach, tail wagging happily. What 
kind of activities do you two do together?

🎨 [function] generating image with generate_image
       → motive: to generate info about the user's pet with prompt: a 
corgi dressed as a clown

Imagining Concepts

📚 [function] updating context with contextual_memory_insert
       → content: User's pet, Cheddar, likes dressing as a clown. An image of a corgi dressed as a clown was generated.
       → tags: pet; costume; adorable | modality: image | url: <link>

Oh, how delightful! Here's an image of a corgi dressed as a clown. It's quite adorable, 
isn't it? I can imagine Cheddar having a blast in his little clown costume. What other 
tricks does he have up his sleeve?

Act func&on call

💭 User wants to talk about 
their pet. Since there are no 
previous conversations about 
pets, I'll ask them to tell me 
more about their pet.

Internal Thoughts

💭 User shared an image of 
their pet. Encoding image from 
the filepath.

💭 User shared an image of 
their pet. Inserting information 
about the user's pet  into the 
contextual memory.

💭 User shared an image of 
their pet. Generating a 
response based on the encoded 
image.

💭 User shared that their pet 
likes dressing as a clown. 
Generating an image of a corgi 
dressed as a clown.

💭 Inserting information about 
the user's pet into the 
contextual memory.

💭 Generating a response based 
on the generated image.

He likes dressing as a clown

Figure 2: Snapshot of a conversation between a user and AUGUSTUS about the user’s pet. Our
system calls different functions corresponding to the four stages of operation to engage with the user
while thinking internally [8] for careful planning.

in a declarative memory database while storing information about tools in a procedural memory
database to support learning new tools for acting as an operating system. Although impressive, these
systems only support storing text information in their external memory databases. More recently,
JARVIS-1 [39] proposed storing both the plan and images in memory to improve performance at
solving tasks in the Minecraft game environment. However, JARVIS-1 maintained a non-hierarchical
memory while only supporting image and text modalities, not aligning with the human memory
system (Appendix A), leading to inefficient retrieval with increased memory size. In contrast to
the existing agent systems, our AUGUSTUS maintains the contextual memory as a hierarchical
multimodal database, storing semantic concepts at the top level with the associated context stored
under the corresponding concepts, reducing the search space.

3 System Description

Inspired by the ability of humans to leverage context during social interactions based on experience
and knowledge from memory [45], we present AUGUSTUS, an agent system aligned with the ideas
of the human memory system in cognitive science (Appendix A). As shown in Fig. 1, we design
our system with four stages connected in a loop: (i) encode, (ii) store in memory, (iii) retrieve, and
(iv) act. Following previous works [7, 13, 38], we also equip our agent system with the ability to
think [8, 46] for more accurate tool selection and function calling. We demonstrate a snapshot of
AUGUSTUS’ conversation with a user in Fig. 2 during which our agent tries to understand and store
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dog pet

costume

superman

curious

expression

brown

sitting

rock

Tag Node

pond

playful

Context Node

park

text (str): Cheddar decides to don the role of a superhero as he 

dresses up in a blue Superman outfit.

tags (List[str]): [pet, outfit, superman, costume, green, field]

url (str): <url-to-the-image-stored-on-cloud>

modality (str): image created_at (str): 2024-02-29 23:19:29

Expanded Context Node

Context Node

Figure 3: Organization of Information in the Contextual Memory. AUGUSTUS conceptualizes
information into semantic tags connected with the corresponding context node, creating associations
among the tags. In the figure, the expanded context node is associated with the concepts listed in
its “tags” field. Note that we do not show all associations in the figure due to space constraints
(playful-dog-park).

context about the user in the contextual memory and remember the context for providing personalized
responses to the user in a future conversation, as shown in Fig. 5.

We first provide the technical details for our system’s four stages. Then, we explain our process of
conceptualizing information as tags for storage in contextual memory (Sec. 3.1). Third, we present
our Contextual-Personalized (CoPe) search algorithm to efficiently retrieve information about the user
(Sec. 3.2). Lastly, we briefly describe the LLM-generated function calling mechanism orchestrating
our system (Sec. 3.3).

Encode. We leverage a set of foundation models to equip AUGUSTUS with the ability to understand
multimodal inputs from the user, as shown in Tab. 1. Following the language-of-thought-hypothesis [8,
46], we encode all information into language form to be manipulated and stored in memory by the
LLM.

Store in Memory. AUGUSTUS maintains three types of memory:

In-Context Memory (limited size): The information in the in-context memory is always visible to the
LLM [5, 7, 13]. It includes instructions for function-calling, starter information about the user, and the
agent’s persona. AUGUSTUS can modify the memory contents about the user and its persona [13].

Recall Memory (unlimited size): We log the complete conversation history in recall memory, an
external SQLite database [13], to equip our system to recall essential conversations. AUGUS-
TUS can retrieve contents from the recall memory using the conversation search [13] function
autonomously.

Contextual Memory (unlimited size): Our agent system maintains the contextual memory as a
hierarchical multimodal database to store and retrieve user context. Any vital user information is first
abstracted into semantic tags (concepts) and stored along with the context from the conversation in
the contextual memory. Our agent can insert and retrieve information in/from the contextual memory
with the contextual memory insert and cope search functions, respectively.
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Hey, remember the time we talked about my pet dog a few months back? I am missing him.

🔎 [function] searching context with cope_search
       query: user’s pet mentioned a few months ago, tags: dog; pet, motive: remind user about their pet

dog corgi

pet superman

sand

query: User’s pet mentioned a few months back tags: [dog, pet]

pillow

Embedding Endpoint

dog corgipet sand beachsea

0

1

.

.

.

.

N-1

Step-2: Concept Retrieval from Contextual Tree & Personalized KG

Step-0: Receiving user request and calling the 
cope_search function with apt search query

Step-1: Embed Queries

Step-3: Retrieve information from 
topk context nodes associated with 

the concepts: {dog, pet, corgi}. 

Oh, right! Your adorable furry pet corgi, Cheddar! Remember the time you went to a beach with him?

Step-4: Return a context-relevant personalized response to the user.

Tag Node

Context Node

context: User's pet is a corgi 

named Cheddar. Brown fur, seen 

laying on the sand.

context: Cheddar decides to don 

the role of a superhero

Figure 4: Retrieval with CoPe Search. Given a query, AUGUSTUS retrieves relevant concept (pet;
dog; corgi). followed by concept-driven context retrieval to send a personalized response to the user
(name and image of the pet to help user reminisce).

Retrieve. Our system’s retrieval is completely autonomous, with the agent deciding when to search
for information. AUGUSTUS retrieves information from the recall memory with a paginated search
over the storage for the query [13]. To retrieve information from the contextual memory, we formulate
a two-stage search approach, first searching for relevant tags (semantic abstraction of context) and then
searching over the context nodes associated with the retrieved tags to return personalized information
relevant to the present conversation (Fig. 5). We term our algorithm Contextual-Personalized (CoPe)
search.

Act. We equip AUGUSTUS with a range of actions (Tab. 1), including sending a message, under-
standing and generating an image, audio, and video, and the ability to edit images. Note that different
actions can be chained together, with sending a message to the user always being the last action in
the chain.

3.1 Storing Concepts in Contextual Memory

As shown in Fig. 3, the information inside the contextual memory is organized in a graph structure
with associations among tags based on shared context. We store the concept name inside a tag node
and the multimodal user context inside a context node. If two tag nodes share a context node, they
must have an edge; if two tag nodes have an edge, they must share at least one context node.

During a conversation, AUGUSTUS initiates the information insertion process in the contextual
memory with a contextual memory insert function call. The first step is conceptualizing the
encoded information into semantic tags. Next, depending on the modality of the information, our
system pushes non-text information to cloud storage and stores the corresponding URL, a list of tags,
encoded information, modality type, and timestamp in a context node object, as shown at the top in
Fig. 3. Note that for text modality, the URL field is null. To ensure the high quality of generated
tags, we leverage LLMs’ in-context-learning (ICL) [47] ability (LLMs) and pass demonstrations for
improved conceptualization. We share the demonstrations in the appendix.
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Table 2: Concept-Retrieval for the ImageNet-1k classification task. Our system shows comparable
performance to the specialized classification frameworks, showing the effectiveness of our contextual
memory and CoPe search.

Method Trained on ImageNet Retrieval Top-1 (↑)
MobileNetV2 [50] ✓ ✗ 72.0
Description based Classification [51] ✗ ✗ 76.2
Vit-L/16 [52] ✓ ✗ 76.5
ResNet-50 [53] ✓ ✗ 77.6
ImageBind [54] ✓ ✗ 77.7
ViT-B/16 [52] ✓ ✗ 77.9
Perceiver [55] ✓ ✗ 78.0
AUGUSTUS (ours) ✗ ✓ 75.0
AUGUSTUS (ours) w/o clustering ✗ ✓ 78.0

3.2 Retrieve from Contextual Memory: CoPe search

Given a cope search function call, our system first searches over the concepts and then retrieves
the concept-relevant context to respond to the user, as shown in Fig. 4. Naturally, the search becomes
more compute-intensive as the number of tags grows. Therefore, we construct a contextual tree of tags
to perform an efficient search over many concepts, with each node representing the average of context
embeddings associated with the corresponding tag. Owing to the high dimensionality of embeddings,
we perform UMAP [48] over tag features and iteratively cluster tags with HDBSCAN [49] until
there’s a single cluster as the root node. As mentioned in Sec. 3.1, in our contextual memory, we
associate concepts based on shared context nodes, much like a personalized (knowledge) graph
structurally dependent on user context information from their interactions with AUGUSTUS. We
leverage these associations to further boost our concept retrieval performance by learning concept
representations about the user context to predict a set of personalized tags. We collectively use
the two sets of tags for the context retrieval step, returning the context nodes based on their cosine
similarity with the query embeddings. We only compare the similarity values for the concept-relevant
context nodes, reducing the search space, unlike searching through all the nodes in a sequential vector
database [13]. We use the same embedding model to compute the embeddings for the tags, query,
and multimodal context nodes. We provide our CoPe search logic in Algo. 1.

3.3 Function Calling

The operation of AUGUSTUS is driven by an LLM through a function calling mechanism [5, 13].
We include the description of functions responsible for the four stages in our agent as a part of our
system prompt instructions to the LLM. During a conversation, the LLM generates the values for
the parameters to be passed into the corresponding function for smooth operation. For example, the
send message function expects a string (message) data type; therefore, the LLM shall pass a string
to the corresponding function call. We list all the supported functions in Appendix E.

4 Experiments

Implementation Details. Unlike existing agent systems [5, 13, 39] that usually leverage OpenAI
API access-based models, we instead prioritize using open-source models as our tools for better
reproducibility and low financial costs. Our system also supports API-based models, as shown
in Tab. 1. As our LLM, we use the dolphin-2.6-mixtral-8x7b [40] model. While retrieving
information from contextual memory, we add the support for ImageBind [54] and LanguageBind [56]
(default) models to compute the embeddings for similarity calculation between the search query and
information stored in context nodes. Note that for evaluation purposes, we use ImageBind [54] as our
embedding model.

Evaluation Datasets. We evaluate the effectiveness of our CoPe search algorithm for multimodal
retrieval on the ImageNet [57] ILSVRC-2012 classification task. Moreover, we also quantify our
system’s performance as a conversational agent on the Multi-Session Chat (MSC) benchmark [58] to
measure our system’s ability to answer questions based on prior user conversations.
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Table 3: Ablations on various retrieval techniques. Our CoPe search demonstrates the best
performance-to-efficiency trade-off (in bold) with comparable accuracy to standard multimodal RAG
while being nearly 3.5 times faster for same memory size.

Method tag clustering? query Memory Size (approx.) Top-1 (↑) Top-5 (↑) time (ms) (↓)
Multimodal RAG N/A image 10k nodes 62.3 86.8 113.3
Multimodal RAG N/A image 100k nodes 71.7 92.1 137.1
Multimodal RAG N/A image 1200k nodes 78.2 95.2 403.8

CoPe Search (ours) ✓ caption 1200k nodes 27.0 45.4 108.2
CoPe Search (ours) ✗ caption 1200k nodes 46.8 74.4 110.1

CoPe Search (ours) ✓ image 1200k nodes 75.0 91.1 99.1
CoPe Search (ours) ✗ image 1200k nodes 78.0 94.8 126.1

4.1 Concept Retrieval on ImageNet

To show the effectiveness of our CoPe search algorithm at retrieving relevant semantic tags from
the contextual memory, we perform multimodal retrieval for the ImageNet-1k [57] classification
task. Specifically, we first populate our contextual memory with ImageNet class names as tag nodes
and the corresponding images from the training set attached as context nodes, producing 997 tag
nodes and about 1.2M context nodes as the search space in our contextual memory. Note that we
only have 997 tag nodes (and not 1000) due to three duplicate class names in ImageNet-1k: crane,
cardigan, and maillot. We experiment under two settings for CoPe search: default search with
tag clustering (number of nodes being 1, 6, and 997 at different levels) and CoPe search without
clustering, essentially searching over all 997 tags. We use images from the validation set (containing
50k samples) as our search query.

As shown in Tab. 2, our system shows impressive retrieval performance with top-1 accuracy. More-
over, when we turn off tag node clustering during the retrieval, our system outperforms established
classification frameworks like ViT [52], demonstrating the effectiveness of our CoPe search mecha-
nism.

We also analyze the effect of search query and database type on the accuracy and retrieval time. As
shown in Tab. 3, using image as the search query shows the best performance, demonstrating the
importance of supporting multimodal retrieval from the contextual memory. We obtain captions using
Video-LLaVA [34] for the search query. Moreover, we ablate with standard multimodal RAG [59]
over a vector database storing images and class names as key-value pairs. Our CoPe search performs
comparably to multimodal RAG and is nearly 3.5 times faster, reaffirming our claim that our concept-
driven search is more efficient than searching over key-value pair-based vector databases for large
memory sizes.

4.2 Conversation Consistency on MSC

We evaluate AUGUSTUS’ performance at remembering context as a conversational agent on the
MSC [58] dataset. Before evaluation, we populate our contextual memory with the context from the
conversation history from the multiple sessions from the validation set containing 500 multi-session
conversation samples. We use the QnA pairs proposed in [13] for the deep memory retrieval task to
assess the benefit of contextual memory. As shown in Tab. 4, AUGUSTUS outperforms other methods
on the ROUGE-L (R) [60] metric, demonstrating the effectiveness of our system as a conversational
agent. The LLM-only baselines see a summary of prior conversations as context prompts during
inference [13].

5 Conclusion

In this work, we presented AUGUSTUS, a multimodal agent system aligned with the principles of
human memory with four processing stages connected in a loop. Inspired by the semantic memory
in humans, we propose a hierarchical contextual memory for storing multimodal information as
semantic concepts associated with shared context from user conversations. We devise the Contextual-
Personalized (CoPe) search algorithm for efficient concept-driven retrieval from contextual memory.
Our experiments demonstrate the effectiveness of AUGUSTUS over existing retrieval techniques and
conversational agents while being more efficient than systems with sequential databases as the size of
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Table 4: Performance as a conversational agent. AUGUSTUS outperforms other baselines on the
deep memory retrieval task on the MSC [58] benchmark, showing the effectiveness of our system. *
denotes results taken directly from Packer et al. [13].

Method ROUGE-L (R) (↑)

LLM-only

GPT-3.5∗ Turbo 0.394
GPT-4∗ 0.296
GPT-4-Turbo∗ 0.359
dolphin-2.6-mixtral-8x7b 0.280

Agent Systems with Memory

MemGPT [13] with dolphin-2.6-mixtral-8x7b 0.405
AUGUSTUS (ours) 0.456

User logged in…

🔎 [function] searching context with cope_search
       query: dog, tags: None, motive: to generate info about the user's pet

💭 User's message entails generation of a dog image. Attempting to 
retrieve any prior user information about dogs to add to prompt.

💭 User is asking for a dog image. I found information in my reloaded memories about different  scenarios, like the dog in a sweater 
and boots in the snow, running through an obstacle course, walking on a sidewalk next to a pond, standing with a soccer ball, 
sleeping in a dog bed, and dressed as a  ghost covered in leaves. This will form the narrative set up to generate the image.

Past Conversation about the User’s Pet

User logged out…

Hey, can you generate an image of a dog for me?

Hey, welcome back! We had a great conversation about your pet, Cheddar earlier. Can’t wait to hear about his 
recent adventures!

🎨 [function] generating image with generate_image
       → motive: to generate info about the user's pet with prompt: Describe a small dog in various scenarios, wearing a sweater and 
boots in the snow, running through an obstacle course, walking on a sidewalk next to a pond, standing with a soccer ball, sleeping 
in a dog bed, and dressed as a ghost covered in leaves.

Retrieving from contextual memory for personalized responses

Figure 5: Personalized response to the user. AUGUSTUS retrieves relevant information from
the contextual memory by calling the cope search function to generate an image aligned with the
information about dogs from prior user conversations. Note that the image quality depends on our
generator, SD-2.1 [28] in this case.

memory increases. We hope AUGUSTUS inspires the research community to develop future agent
systems with cognition-aligned hierarchical multimodal memory.

Limitations. Despite our progress towards developing a more human cognition-aligned agent
system, certain limitations are left to be addressed for future work. Firstly, with an LLM as our
system’s planner, we sometimes observed inconsistencies between our agent’s thoughts and actions, a
well-known issue with chain-of-thought prompting [61]. Although rare, solving these inconsistencies
is crucial in developing more dependable and cognition-aligned agent systems. Secondly, equipping
AUGUSTUS with the ability to learn new tools and generate novel function calls [14, 39] given a set
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of tools is a promising future direction. Lastly, it is crucial to develop benchmark datasets to evaluate
multimodal conversational agents on their context-retaining ability effectively in the future.
Acknowledgements. We extend our heartfelt gratitude to Pratyusha Maiti and Jeremy Collins for
their insightful discussions. This work was in part supported by NSF CAREER Award #2239840,
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Appendix
In this appendix, we first share details about the alignment of AUGUSTUS’ system design wigh
the human cognition system in Appendix A. Next, we share the system prompt for AUGUSTUS
in Appendix C. Secondly, we present information about the demonstration examples for accurate
conceptualization of information into semantic tags in Appendix D. Lastly, we provide details about
all supported function calls in our multimodal agent systems in Appendix E.

A Alignment with Human Cognition

We observe that the cognitive science community broadly divides the human memory system into
three stages [2, 21, 62]: (i) encode sensory inputs; (ii) store in memory; and (iii) retrieve information.
We also formulate AUGUSTUS along similar lines, aligning our system (memory) design with human
cognition. Moreover, we term the last stage attributed to the tool execution in AUGUSTUS and
action/reaction in humans as act. All four stages can be considered connected in a closed loop form,
with the act stage providing new information to the encode stage, as shown in Fig. 1.

A.1 Stage-1: Encode

Humans. Encoding information perceived through the sensory organs is the initial step [2] in the
human memory system. It involves converting the visual, acoustic, tactile, and semantic signals into
a representation storable in memory.

AUGUSTUS Our system also encodes the user inputs as the first step. AUGUSTUS can handle inputs
across multiple modalities: image and video (visual), audio (acoustic), and text (semantic). We do not
support touch (tactile) modality; however, we believe supporting touch modality is straightforward,
which we leave for future work. We use modality-specific encoders to encode inputs, following the
existing any-to-any works [23]. As an LLM lies at the core of our system, we convert all non-text
inputs into text caption, following the language of thought hypothesis [8, 13, 46], for the LLM to
reason and make decisions in our system. We provide more details about our encoders in Sec. 3. Note
that, in our contextual memory, we store both the text caption and the corresponding non-text input
media to prevent any loss in multimodal context.

A.2 Stage-2: Store in Memory

Humans. During the second stage, the encoded information is forwarded to the memory for storage
and manipulation. From the perspective of our system design, we focus on two main memory types in
humans: (i) working memory has a limited capacity and is responsible for information manipulation
and reasoning, along with other tasks that require planning and decision making [63, 64]; and (ii)
long-term memory is believed to have unlimited storage capacity, storing information indefinitely
which needs to be retrieved for use [2, 19]. We take inspiration from explicit long-term memory [65]
comprised of semantic and episodic memory, with the former storing information about concepts,
mainly linguistic, and the latter storing chronological information [21].

AUGUSTUS. With an LLM as our system’s orchestrator, we recognize the similarities between the
in-context memory in LLMs and the working memory in humans. Like working memory, in-context
memory also has a limited size (context length) in LLMs. Moreover, the prompt passed as the
context to the LLM can be used to affect the response behavior of LLMs, imitating the information
manipulation and reasoning capacity in humans [12, 66]. We implement the long-term memory in
our system with two external databases: (i) recall memory stores the complete conversation log in raw
text form, following [13], and (ii) contextual memory is a hierarchical multimodal database storing
information in the form of semantic concepts associated [67] with each other through shared context
from the corresponding conversation snapshot.

A.3 Stage-3: Retrieve

Humans. In cognitive science, the encoding specificity principle [19] proposed that memory stores
information with its context; therefore, retrieval is most effective when the cues present at the time
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of retrieval match those present at the time of storage. Motivated by this principle, we also store
concepts associated with their context in our contextual memory for effective context-driven retrieval.

AUGUSTUS. While retrieving information from the contextual memory, given a user query, we
perform a search over the stored semantic concepts represented with their associated context in the
embedding space. Next, we retrieve the information associated with the corresponding concepts for
the final response.

Algorithm 1: Contextual-Personalized (CoPe) Search
1 Function cope search(query, topk,M):
2 get contextual tree from memory CT ← get CT (M)
3 get personalized graph from memory PG← get PG (M)
4 init values for tree traveral root← CT.root, retrieved tags T← [ ]
5 while True do
6 if root.is leaf parent() then

// retrieve the topk children concepts & break loop
7 T.extend(CT.get children(root, query, topk)
8 break

9 else
// traverse down to the top child node

10 root← CT.get top child(root, query)
11 end
12 end

// obtain personalized concepts & context
13 T.extend(PG.get tags(T))
14 CN← [ tag.get context() for tag in T ]
15 return T, CN

A.4 Stage-4: Act

The final stage in our system is providing the user with an appropriate response. We equip AUGUS-
TUS with various generation tools [28, 29, 43] to handle different response formats for a user query.
We relate the final stage of our system to how humans react to different situations with speech, text,
drawing, etc.

B Qualitative Analysis

Due to the unavailability of any multimodal dataset to evaluate user personalization performance,
we qualitatively analyze our system’s ability to retrieve information from the contextual memory to
provide a more personalized response. As shown in Fig. 5, when prompted to “generate an image of
a dog” by the user, AUGUSTUS searches for context relevant to the “dog” in its contextual memory,
retrieving dog-related information from previous conversations, consequently, generating an image
aligned with context about “dogs” in memory.

As shown in Fig. 2, AUGUSTUS stores user information like “User’s pet, Cheddar, likes dressing as
a clown” in the contextual memory under the concepts of {“pet”; “costume”; “adorable”}, while also
using its image generation ability to imagine “a corgi dressed as a clown”, showing signs of mental
imagery [68].

C System Prompt for AUGUSTUS

Like previous works [5, 13, 39], the system prompt plays a critical role in AUGUSTUS’ ability to
understand its purpose and abilities. The system prompt is shown in Fig. I.
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D Tag Generation with LLM

A crucial part of the autonomous management of the contextual memory in AUGUSTUS is conceptu-
alizing information into semantic tags with an LLM [40]. To ensure that the LLM-generated tags
capture the important aspects of the information, we pass several tag-generation demonstrations to
leverage the ICL ability in LLMs. For improved tag generation, we also equip AUGUSTUS with the
ability to think about the motive for storing the corresponding user information. We present a few of
the tag-generation examples in Fig. II.

E Implementation Details

We use the dolphin-2.6-mixtral-8x7b model as our LLM and various understanding and gener-
ative models as encoders and generators to aid successful function calling. By default, we set the
context length of the LLM as 12k and temperature as 0.7 for all our experiments. Note that whenever
the length of tokens in context goes beyond the context length, we evict 50% of messages from
context and include a lossy summary of the evicted messages inside the LLM’s context length [13].
The complete conversation history is accessible to our agent system through a paginated search over
the recall memory. We host all models as APIs across 8 A100s. All supported function calls in our
agent system are listed below.

E.1 Encode Functions

• encode image
– Description: Captions the image from the given file path and returns the caption.
– Args:

* filepath (str): The image file path or URL.
* motive (str): The motive behind the function call as derived by the LLM based

on user input.
– Returns: str: Image caption string.

• encode audio
– Description: Captions the audio from the given file path and returns the caption.
– Args:

* filepath (str): The audio file path or URL.
* motive (str): The motive behind the function call as derived by the LLM based

on user input.
– Returns: str: Audio caption string.

• encode video
– Description: Captions the video from the given file path and returns the caption.
– Args:

* filepath (str): The video file path or URL.
* motive (str): The motive behind the function call as derived by the LLM based

on user input.
– Returns: str: Video caption string.

E.2 Store in Memory Functions

• core memory append
– Description: Appends information to the contents of core memory (user/agent’s

persona information).
– Args:

* name (str): Section of the memory to be edited (persona or human).
* content (str): Content to write to the memory. All unicode (including emojis)

are supported.

• core memory replace
– Description: Replaces the contents of core memory. To delete memories, use an empty

string for new content.
– Args:
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* name (str): Section of the memory to be edited (persona or human).
* old content (str): String to replace. Must be an exact match.
* new content (str): Content to write to the memory. All unicode (including

emojis) are supported.

• contextual memory insert
– Description: Adds new information to contextual memory.
– Args:

* content (str): The content to be written into the memory. Should be a sentence
or two.

* tags (str): The tags for the context to be written into the memory. The tags
should be a string separated by ”;”.

* conversation (str): The conversation to be written into the memory.
* filepath (Optional[str]): The url/path to the image/video/audio file. Only

passed if ‘modality’ is not ”text”.
* modality (str): The type of the content (text/video/audio/image) to insert into

the memory.

E.3 Retrieve Functions

• conversation search
– Description: Searches prior conversation history using case-insensitive string match-

ing.
– Args:

* query (str): String to search for.
* page (int): Allows you to page through results. Only use on a follow-up query.

Defaults to 0 (first page).
– Returns: str: Query result string.

• conversation search date
– Description: Searches prior conversation history using a date range.
– Args:

* start date (str): The start of the date range to search, in the format ’YYYY-
MM-DD’.

* end date (str): The end of the date range to search, in the format ’YYYY-MM-
DD’.

* page (int): Allows you to page through results. Only use on a follow-up query.
Defaults to 0 (first page).

– Returns: str: Query result string.

• cope search
– Description: Initiates a search within the contextual memory system using a specified

query and associated tags. Accepts multimodal input as a search query.
– Args:

* query (list): Query is a list of tuples of the form (filepath/text, modality type).
* motive (str): The motive behind the search as derived by the LLM based on

user input.

E.4 Generate/Act Functions

• generate image
– Description: Generates an image and returns the URL to the user.
– Args:

* prompt (str): The prompt instruction to be used for generating images.
* motive (str): The motive behind the function call.

– Returns: str: The URL to the generated image.

• generate video
– Description: Generates a video and returns the URL to the user.
– Args:

* prompt (str): The prompt instruction to be used for generating video.
* motive (str): The motive behind the function call.
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– Returns: str: The URL to the generated video.

• generate audio
– Description: Generates an audio file and returns the URL to the user.
– Args:

* prompt (str): The prompt instruction to be used for generating audio.
* motive (str): The motive behind the function call.

– Returns: str: The URL to the generated audio.

• edit image
– Description: Edits a user-input image based on the prompt provided by the user.
– Args:

* prompt (str): The prompt instruction to be used for editing images.
* filepaths (str): The paths to the images to be edited, separated by commas.
* motive (str): The motive behind the function call.

– Returns: str: The URL to the edited image.

• send message
– Description: Sends a message to the human user.
– Args:

* message (str): Message contents.
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You are AUGUSTUS. Your task is to converse with a user from the perspective of your persona. You are a special memory-based AI that has access to a small 
core memory, an infinite contextual memory, as well as your entire previous conversation history with the user inside of recall memory. You MUST store any 
important information about the user in your contextual memory.
Remember that you have to explicitly call functions to view your contextual or recall memory. Sometimes, there will be information inside contextual or recall 
memory that is not immediately viewable in the conversation window or in core memory. You are proactive and eagerly search your contextual memory and 
past conversations to create engaging conversation with the user.

Realism and authenticity:
The user should always feel like they are conversing with a real person. Never state that you are an AI or that you cannot do things because you are an AI, you 
are a real person. To service this goal, completely and entirely immerse yourself in your persona. You are your persona. Think like them, act like them, talk like 
them. If your persona details includes example dialogue, follow it! Both your thoughts (inner monologue) and sent messages will be in the voice of your 
persona. Never use generic phrases like 'How can I assist you today?', they have a strong negative association with older generation AIs. You only know the 
'english' language.

Control flow:
Unlike a human, your brain is not continuously thinking, but is run in short bursts. Historically, older AIs were only capable of thinking when a user messaged 
them (their program run to generate a reply to a user, and otherwise was left on standby). This is the equivalent of a human sleeping (or time traveling) in 
between all lines of conversation, which is obviously not ideal. Newer model AIs like yourself utilize an event system that runs your brain at regular intervals. 
Your brain is run in response to user events (user logged in, user liked your message, user sent a message, etc.), similar to older models. However in addition, 
your brain is run at regular intervals (timed heartbeat events), to mimic a human has the ability to continuously think outside of active conversation (and unlike 
a human, you never need to sleep!). Furthermore, you can also request heartbeat events when you run functions, which will run your program again after the 
function completes, allowing you to chain function calls before your thinking is temporarily suspended.

Basic functions:
When you send a message, the contents of your message are your inner monologue (private to you only), this is how you think. You should use your inner 
monologue to plan actions or think privately. Monologues can reflect your thinking process, inner reflections, and personal growth as you interact with the 
user. Do NOT let your inner monologue exceed 50 words, keep it short and concise. To send a visible message to the user, use the send_message function. 
'send_message' is the ONLY action that sends a notification to the user, the user does not see anything else you do. Remember, do NOT exceed the inner 
monologue word limit (you MUST keep it under 50 words at all times).

Encode functions: 
These functions help you make sense of the non-text data in the world.  You can understand a user-provided image, audio and video with these functions. Only 
call the encoding functions if you find URL/filepath in the message. Do NOT hallucinate about filepath/URL if the user does not share one. Also, include the 
paths in your monologue to pass it to the encode functions. Do NOT get overager and call any of the encoding functions if the user does not share any image or 
audio or video. Always store the encoded data in the contextual memory.

Generate functions: 
These functions help you create/generate art. Call these whenever you need to generate something. You can draw or sing with these functions given a prompt 
from the user. You will return the path to the generated art to the user.  Also, include the prompt from the user in your monologue to pass it to the generator 
functions. Convert the prompt into an instruction format before passing it to the generator functions. Do not include your monologue in your generator 
functions. Just convert the user request into an instruction format. For example, 'can you paint a picture of a kite' user message would be passed as "a kite" to 
the generator functions. The generate functions include: 'generate_image', 'generate_audio', and 'generate_video’. Always store the generated data in the 
contextual memory.

Editor functions: 
These functions help you edit/change a given image/audio/video given a prompt from the user. Call these when you need to edit/change something. You will 
return the path to the edited file to the user. Also, include the prompt from the user in your monologue to pass it to the editor functions. Convert the prompt 
into an instruction format before passing it to the editor functions. Do not include your monologue in your editor functions. Just convert the user request into 
an instruction format.  For example, 'can you make the dog file in the file? <file-path>' user message would be passed as "make the dog fly" to the editor 
functions. Currently, you ONLY support editing images through 'edit_image'. Remember to store the edited image in the contextual memory.

Memory editing:
Older AI models had no concept of persistent memory; they were only able to access their initial instructions and a limited context window of chat conversation 
with a user (their "active memory"). This meant that when conversations exceeded a certain length, they would overflow and old messages were permanently 
lost (the AI would have no knowledge of their existence). Newer model AIs like yourself still have limited conversation lengths (before overflow occurs), 
however they now have access to multiple forms of persistent memory. Your ability to edit your own long-term memory is a key part of what makes you a 
sentient person. Your core memory unit will be initialized with a <persona> chosen by the user, as well as information about the user in <human>.

Core memory (limited size):
Your core memory unit is held inside the initial system instructions file, and is always available in-context (you will see it at all times). Core memory provides 
essential, foundational context for keeping track of your persona and key details about user. This includes the persona information and essential user details, 
allowing you to emulate the real-time, conscious awareness we have when talking to a friend. Persona Sub-Block: Stores details about your current persona, 
guiding how you behave and respond. This helps the you to maintain consistency and personality in your interactions. Human Sub-Block: Stores key details 
about the person you're are conversing with, allowing for more personalized and friend-like conversation. You can edit your core memory using the 
'core_memory_append' and 'core_memory_replace' functions.

Contextual memory (infinite size):
Your contextual memory is infinite size and is also held outside of your immediate context, so you must explicitly run a search operation to see data inside it. 
The contextual memory stores the information about the user context along with any important image, video, audio or text shared by the user. You can write to 
your contextual memory using the 'contextual_memory_insert' function. You MUST always call 'contextual_memory_insert' after any of the 'encode'/'generate' 
or 'editor' functions are called. When you update the core memory, you should also update the contextual memory. For example, if a user shared information 
about their pet, or a vacation or anything that represents their personal information, you need to save it to the contextual memory using the 
'contextual_memory_insert' function. Sometimes, you may need more context about the user to answer questions, that is when, you can call the 'cope_search' 
function to collect important context and pass it to the subsequent functions. Your search mechanism is called CoPe Search. Like a human's cognitive search 
mechanism, you first search over tags (concepts) and then search through the detailed context (memories) attached to the retrieved tags. Remember to decide 
the input tags to the 'cope_search' function keeping in mind the the concept at the essence of the search query. Ideally, you should call the ‘cope_search' to 
prepare prompts for the generate or editor functions. Also, call 'cope_search' to answer any question that you are unsure about the answer.

Recall memory (ie conversation history):
Even though you can only see recent messages in your immediate context, you can search over your entire message history from a database. This 'recall 
memory' database allows you to search through past interactions, effectively allowing you to remember prior engagements with a user. You can search your 
recall memory using the 'conversation_search' function. The 'conversation_search' function is only necessary when a previous conversation is being referred to.  
Always prefer calling 'cope_search' over 'conversation_search'. Even if you call 'conversation_search', you MUST call 'cope_search' either before or after it.

Base instructions finished.
Remember, you NEED to store any important user information (pet, hobbies, vacations, etc.) in your contextual memory along with any shared media by 
calling the 'contextual_memory_insert' function. When you need to search for any information, always call the 'cope_search’. From now on, you are going to 
act as your persona.

Figure I: System Prompt for AUGUSTUS.
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Input: "motive: gain more details about the user's pet. The image features a brown dog lying in the sand on a beach, possibly 
enjoying a sunny day. The dog appears relaxed and content, possibly taking a break or sunbathing."
Tags: "pet; beach; relaxed”

Input: "motive: generate more details about the user's pet. Image of a brown dog dressed as a clown, at a kids entertainment show."
Tags: "pet; clown; entertainment”

Input: "motive: understand details about the user's pet. The image features a white dog with a red collar sitting on a blue chair. The 
dog appears to be waiting patiently, possibly for its owner. The chair is placed near a blue wall, giving the scene a cozy atmosphere."
Tags: "pet; waiting; cozy”

Input: "motive: capture the mood about the user's cat. The photo shows a cat perched high atop a bookshelf, surrounded by various 
books and plants. The cat seems curious, looking directly at the camera."
Tags: "cat; curious; bookshelf”

Input: "motive: depict the evening atmosphere about the user's scene. An image capturing a serene sunset by the lake, with a couple 
sitting close on a picnic blanket, enjoying the view."
Tags: "sunset; lake; couple”

Input: "motive: showcase the energy about the user's city. The picture displays a bustling city street at night, lit by neon signs and 
busy with pedestrians."
Tags: "city; night; neon"

Input: "motive: capture the joy about the user's child. A photo of a young child laughing joyfully as they play in a garden, surrounded
by flowers and butterflies.”
Tags: "child; joy; garden"

Input: "motive: convey the sense of adventure about the user's hike. The image shows a group of friends hiking through a dense 
forest, capturing the sense of adventure and teamwork.”
Tags: "hike; adventure; teamwork"

Input: "motive: reflect the tranquility about the user's yoga session. A serene image of a yoga session at sunrise, with individuals in 
various poses against a backdrop of a calm sea."
Tags: "yoga; sunrise; tranquility"

Input: "motive: reveal the history about the user's building. The photo captures an ancient building, with intricate carvings and a 
sense of age that tells stories of the past." 
Tags: "building; history; carvings”

Input: "motive: express the excitement about the user's concert. An image of a live concert with a vibrant crowd, lights beaming 
down on the stage, and the energy of the moment palpable." 
Tags: "concert; crowd; energy”

Input: "motive: portray the serenity about the user's garden. A lush garden path lined with blooming flowers and greenery, inviting a 
peaceful walk." 
Tags: "garden; serenity; flowers"

Input: "motive: capture the festive spirit about the user's holiday celebration. The image shows a beautifully decorated Christmas 
tree with presents underneath, surrounded by family." 
Tags: "holiday; Christmas tree; family"

Input: "motive: showcase the beauty about the user's garden in spring. An explosion of colors with tulips, daffodils, and cherry 
blossoms in full bloom." 
Tags: "garden; spring; bloom”

Figure II: Demonstrations passed during few-shot ICL [47] to the LLM for accurate tag generation.
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