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RefactorScore: Evaluating Refactor Prone Code
Kevin Jesse , Christoph Kuhmuench , Anand Sawant

Abstract—We propose REFACTORSCORE, an automatic evaluation metric for code. REFACTORSCORE computes the number of refactor
prone locations on each token in a candidate file and maps the occurrences into a quantile to produce a score. REFACTORSCORE is
evaluated across 61,735 commits and uses a model called REFACTORBERT trained to predict refactors on 1,111,246 commits. Finally, we
validate REFACTORSCORE on a set of industry leading projects providing each with a REFACTORSCORE. We calibrate REFACTORSCORE’s
detection of low quality code with human developers through a human subject study. REFACTORBERT, the model driving the scoring
mechanism, is capable of predicting defects and refactors predicted by REFDIFF 2.0. To our knowledge, our approach, coupled with the
use of large scale data for training and validated with human developers, is the first code quality scoring metric of its kind.

Index Terms—refactor, automatic evaluation, machine learning, software repositories

✦

1 INTRODUCTION

CODE refactoring is the process of improving the internal
structure of the code while preserving the external

behavior [1]. Refactoring practices are widely believed to
improve code quality [2], programmer productivity [3], and
is widely ingrained in development team workflows [4]–[7].
The refactoring process is often left up to the developer, who
has to assess the impact of a particular refactoring effort
on their system. Additionally, such an effort often diverts
developers’ attention from more immediate timelines such as
new customer features. Thus, developers are understandably
resistant to refactoring efforts especially when the benefits
are unclear. However, code quality does impact the long term
success of a product and ideally should be addressed before
poor quality is ingrained in the product.

Given the tradeoff of refactoring efforts, viz. increase
time/engineering vs. decreasing internal code complexity,
research such as RIPE [8] show developers the impact of
a refactoring on code quality metrics prior to making such
changes. The correlation of code quality metrics to needed
refactorings is not universally generalizable per Nagappan
et al. [9], [10] and RIPE finds correlations with a precision of
38%.

Recent works in Java, REFACTORMINER 2.0 [11] and
REFDIFF 1.0 [12], and multi-language REFDIFF 2.0 [13]
operate on the commit level to detect up to 40 refactoring
patterns (REFACTORMINER) and in theory could prevent
commits from entering the production branch; however there
are three prerequisites to effectively match these patterns: 1)
the existing code must perfectly match an established pattern
2) two revisions are required, e.g., a commit, and commit
history, and 3) a Git-based version control system. We found,
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through randomly sampling of “refactoring commits” that
they rarely, if ever, only perform a specific type of refactoring
and are tangled with bug fixing and feature development.
The aforementioned tools require two versions of the same
code which may not be available. Finally, these tools are
incompatible with C++ projects, Java for REFACTORMINER
and Java/JavaScript/C for REFDIFF 2.0, and must use Git
version tools. In our experience, the move to Git for some
products is difficult, but the refactoring needs remain.

We also know that refactoring extends beyond the scope
of specific refactoring patterns and is often entangled with
code improvement reasons. We discern that an effective
refactor detector must detect a mixture of distributions across
a variety of topics: code smells, defects, and discrete refactor-
ing patterns. Neural networks are universal approximators
capable of learning complex relationships such as our general
understanding of a refactoring, regardless of the convoluted
nature of a tangled commit.

Jointly, with the widespread adoption of online software
repositories like GitHub and GitLab, such platforms present
an opportunity to learn the breadth of developers “refactor-
ing” efforts as entangled as they may be.

With the capacity of fitting virtually any distribution, ma-
chine learning techniques are a modern focus for researchers.
Researchers have experimented with several machine learn-
ing based methods to recommend refactors. Search based
methods by Mariani et al. [14] and O’Keeffe [15], pattern
mining by Bavota et al. [16] and various statistical based
approaches in Aniche et al. [17]. In this paper, we explore
the effectiveness of large pretrained models and an extensive
code quality dataset centered around refactoring operations
found in the wild; that is with very little preprocessing effort,
filtering of specific patterns, and disentanglement of coding
intents. By learning from code that changes in refactoring
commits, our model is better suited for detecting code quality
errors that do not fit either the specific patterns or set of code
features defined in existing works: REFACTORMINER [11],
REFDIFF 1.0 [12]/2.0 [13], and Aniche et al. [17].

In this paper, the formulation of the model’s refactoring
guess is similar to that of previous works. A model’s guess of
a refactor is a binary prediction where we can easily compare
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Fig. 1: Refactoring commits are often entangled with main-
tenance operations targeting code smells, bugs, and new
features.

with existing methodologies. This work also mines commits,
examines commit diffs, and makes predictions from versions
of code. The large difference is that this work only requires
the poor quality snippet, as predictions are conditioned
on poor quality code; this differs from REFACTORMINER
[11], REFDIFF 1.0 [12], REFDIFF 2.0 [13], REF-FINDER [18],
REFACTORINGCRAWLER [19], and JDE-VAN [20]. Thus, our
proposed model can be ran on current versions of code,
without pending changes, and can determine whether code
spans require a refactor. Further, this model is capable of
aggregating such decisions to score entire functions, files,
and projects. Within the subfield of existing works, a refactor
score has yet to be proposed, especially in a manner that
leverages large data and needs no adherence to specific
refactor patterns.

A large focus of refactor research is based on using heuris-
tics such as logic predicates and metrics; in this family are
REFACTORMINER, REFACTORCRAWLER, JDEVAN (through
UMLDIFF [21]), and REF-FINDER. Fundamentally, these
methods are restricted by the same heuristics, but boast large
precision and recall across select refactoring patterns. REFDIFF
differs from the aforementioned works by employing global
statistics in the form of term frequency inverse document
frequency (TF-IDF). The TF-IDF weighting scheme assigns
more weight to code tokens that are discriminate in the
project. A limitation to generalization is the availability of
overlapping tokens; this is exasperated by code’s exploding
vocabulary [22].

On the contrary, this paper presents a model that has
virtually no input constraints. Large pretrained language
models (PLMs) [23]–[27] use tokenizers to break input tokens
into subtokens [28], [29] which means very few words are
out of vocabulary. PLMs benefit from large scale pretrain-
ing on swaths of raw data and can generalize efficiently
to other contexts, not influenced by code deviations like
domain specific language, identifier naming conventions,
and semantic alternatives of similar functionality. The model
presented in this work, REFACTORBERT, is an extension of
CodeBERT, and is trained to predict poor code quality over
1.1 million open source code commits; this is approximately
55 million code refactoring token sequences. As we report
in later sections, REFACTORBERT is capable of predicting
refactor spans across any span of C and C++ code, grade

the code quality, and predict refactors better than REFDIFF
2.0. We validate REFACTORBERT with human experts in a
human subject study and confirm that the predictions by
REFACTORBERT are indeed low quality code and worth
refactoring. In the human subject study on code quality, we
also found biases in developers when asking them to evaluate
code they are familiar with, thus, emphasizing the need
for automatic evaluation. This paper also determines that
models trained on commits in the wild, are capable of learning
defect prediction; REFACTORBERT scores competitively on
the CodeXGLUE [30] defect prediction benchmark despite
not being formally trained to predict defects. Then, with
REFACTORBERT, we score popular libraries providing them
with a REFACTORSCORE. Finally, we examine the libraries’
REFACTORSCORE over a period of 10 years and discover
that code quality is degrading over time. In summary our
contributions are as follows,

1) REFACTORBERT: a model capable of predicting refac-
tors, specifically code spans of poor quality.

2) REFACTORSCORE: a score summarizing the degree of
code quality.

3) A large-scale heterogenous dataset of C/C++ refactoring
commits totaling over 1.1 million commits and 55 million
token sequences.

4) A human subject study confirming our intuitions about
entangled commits, code quality, and the effectiveness
of REFACTORSCORE and REFACTORBERT

All datasets and model weights are available on Hugging-
face12.

2 RELATED WORK

In this section, we examine domains related to predicting
and prioritizing code quality through refactoring.

2.1 Background
Empirical studies on code quality often rely on refactoring
commits to identify interesting patterns. Peruma et al. [31]
explored the renaming of identifiers motivated by refactors
and their commit messages. The renamings of identifiers ulti-
mately distill functionality and domain knowledge resulting
in better code.

Another study, Brown et al. [32] found long term code
quality is often traded for short-term gain in the form of
technical debt. This technical debt can be effectively managed
in order to maintain software quality. Agile practices of refac-
toring are just one of the many tools to reduce technical debt
and improve code quality. Fontana et al. [33] investigated the
impact of refactoring on code smells and found improvement
across code metrics that measure code quality and technical
debt. Code smells often result in refactoring opportunities
[17], [34], so it is a shared belief that technical debt such as
smelly code and even defects, can be jointly addressed by
refactor operations.

Mens and Tourwé [35] surveyed refactoring activities,
supporting techniques, and tool support with an emphasis on
requirement, design, and code refactors. This review did not
comprehensively discuss specific refactoring opportunities

1. https://huggingface.co/datasets/kevinjesse/ManyRefactors4C
2. https://huggingface.co/kevinjesse/RefactorBERT

https://huggingface.co/datasets/kevinjesse/ManyRefactors4C
https://huggingface.co/kevinjesse/RefactorBERT


3

TABLE 1: Refactoring Approaches

Tool Input Features Detection Evaluation Language

Demeyer [46] Classes, methods, Change Custom Tools Smalltalket al. & attributes metrics heuristics

Antoniol [47] Identifiers TF-IDF Case dnsjava Javaet al. study releases

Weißgerber CVS Classes, Signature Documented
Java& Diehl [48] commits methods, & changes refactors

fields & sampling

Dig et al. [49] Code versions Tokens Reference Release Javasimilarity notes

Xing & [20] Project Directed UMLDiff Change JavaStroulia versions graph & queries documents

Kim et al. [18] Program versions Syntax Template jEdit Tool Javatree logic query & examples

Silva & [12] Git TF-IDF Custom Seeded JavaValente commits rules refactors

Tsantalis [50] Git AST Custom Validated Javaet al. commits features rules dataset

Tsantalis [11] Git AST Custom Expanded Javaet al. commits features rules dataset

Silva & [13] Git TF-IDF Custom Validated Java, C++
Valente Commits rules dataset & JavaScript

RefactorBERT Tokens Pretrained Commit Validated [13] C, C++embeddings messages dataset

and patterns, and since, subsequent literature reviews have
been performed citing increased use of code smells and
anti-patterns. Baqais and Alshayeb [36] recently surveyed
automatic refactoring with most works focusing on code
refactoring and only a few focused on model refactoring.
Search-based refactoring (SBR) is gaining more popularity
since developers can use it in a quick and efficient manner.

Mariani and Vegilio [14] discussed SBR and the increase
of multi/many-objective algorithms in REF-FINDER [18]
and CODE-IMP [37]. REF-FINDER is an Eclipse plugin that
can show which refactoring patterns were used from the
96 refactoring patterns of the original Fowler [1] catalog.
CODE-IMP is another automated SBR tool that combines a
set of refactoring patterns, metrics, and search algorithms;
the developer must choose the patterns and metrics to
be used in the fitness function and the search technique.
Mohan and Greer [38] detailed how search based approaches
have evolved over time and confirmed that evolutionary
algorithms are the most commonly used search technique.

Machine learning approaches are often used to detect
code smells [39]–[44] and refactoring opportunities [11]–[13],
[17], [19]. Azeem et al. [34] is a systematic literature review
of machine learning algorithms for code smell prediction.
Azeem et al. targeted specific code smells with various ML
approaches and analyzed their performance. Azeem et al.
evaluates machine learning models like decision trees, SVM,
and random forest across specific refactoring patterns and
discovers significant room for improvement in the context of
code smell detection. This is in line with Di Nucci et al. [45],
who reported that code smell machine learning models fail
to perform at previously reported levels. We avoid previous
pitfalls discussed in these works by carefully evaluating
REFACTORSCORE on human curated evaluation sets from
other leading works. We use the appropriate measures such
as F1 score and validate our model with a human subject
study on code quality.

2.2 Refactoring Models
Demeyer et al. [46] devised a technique for detecting refactors
between two software versions. Demeyer et al. presented a
set of heuristics for detecting refactors by applying light

object-oriented metrics to successive versions of software.
The heuristics aimed to discover characteristics of software
systems that are symptomatic of design shifts. The authors
examine refactor operations like split into super/sub class,
merge with super/sub class, factor out common functionality,
and moving functionality to other classes. The heuristics by
Demeyer et al. are validated on three software systems and
useful in providing an unbiased view of systems, interactions,
and recognizing implementation skew from original design.

Antoniol et al. [47] realized an automated approach to
identify class evolution discontinuities by using vector space
information retrieval. Class evolution discontinuities, like
the splitting of class functionality, represents a family of
refactoring operations. The approach was performed over
40 releases of Java name server and the authors found that
almost all refactoring operations were found and performed.
Weißgerber and Diehl [48] note the approach by Antoniol
has degraded performance when many changes have been
performed within a class.

Weißgerber and Diehl [48] proposed a refactor detector
by finding changes to method signatures. If methods are
changed according to structural and local refactoring pat-
terns, then they are classified as a refactor. The approach
details conditions for both structural refactors and local
refactors. Refactors must match the sets of conditions which
cannot account for all possible ways developers apply
refactorings.

Dig et al. [49] created REFACTORCRAWLER which lever-
ages fast syntactic analysis to detect refactor candidates
and then performs expensive semantic analysis to refine
the predictions. The analysis is based on Shingles encoding,
a technique borrowed from Information Retrieval. Dig et
al. manually investigated the release notes in three projects
to compute recall and examined source code to compute
precision.

Xing and Stroulia [20] introduced JDEVAN based on
design-level changes from their previous work UMLDIFF
[21]. JDEVAN implements a set of queries for detecting
instances of well understood design change patterns includ-
ing: refactors that restructure containment and inheritance
hierarchies, move features between objects, and refactor
class internals. They evaluated the recall of JDEVAN on two
software projects and found all known refactor operations.

Kim et al. introduced REF-FINDER [18], a refactoring
tool based on logic query templates [51] and is capable of
detecting most refactor types from Fowler’s catalog [1]. REF-
FINDER takes two program versions either from workspace
snapshots or subversion repositories and extracts logic facts
about the program’s syntactic structure. REF-FINDER then
invokes logic queries to identify program differences that
match refactor types. Tsantalis et al. [11] accurately notes that
some refactoring rules use a special predicate that checks if
word similarity between two candidate methods is above a
threshold; REF-FINDER’s query templates based on, Prete
[51], are validated with a low threshold and then evaluated
with a different, higher threshold. In theory, this impacts
generalizing to new domains where thresholds may have to
be adjusted based on sampling.

Tsantalis et al. formulated RMINER/REFACTORMINER
1.0 [50], and REFACTORMINER 2.0 [11], with the latter being
the most comprehensive. REFACTORMINER 2.0 is capable
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of identifying 40 high-level refactoring types. Similar to
Xing and Stroulia [21], their algorithm performs differencing
by matching statements with the AST representation. The
matching of statements is bottom-up starting with leaf and
proceeds to larger composite statements. The matching
of AST nodes does not require any word level similarity
measures to match statements and does not use similarity
thresholds. Of course the algorithm does not benefit from the
similarity matching techniques in other works, but without
thresholds, their algorithm has better explainability and cor-
rectness as the algorithm only matches on defined conditions
and conjunctions of these conditions. REFACTORMINER 2.0
matches more statements and replacement types leading to a
higher precision and recall. Finally, the authors contribute an
extended set of true refactoring instances and a comparison
with REFDIFF. To our knowledge, this approach has the
highest precision and recall on the Java dataset.

Silva and Valente [12] created REFDIFF 1.0 capable of
detecting refactor operations in version histories. REFDIFF
1.0 was originally created for Java code and Git repositories.
The authors contributed 448 known refactoring operations
applied to seven Java systems, which served as a benchmark
for other refactoring detection approaches. REFDIFF 2.0 [13],
also by Silva and Valente, built upon the previous version and
introduced multi-language refactoring with code structure
trees. The language-agnostic design improved REFDIFFs
precision and recall to be on par with REFACTORMINER
2.0 and was extended to two other programming languages:
JavaScript and C. Our model, REFACTORSCORE, is trained
for C/C++ for Siemens internal code, and thus, REFDIFF 2.0
is our primary comparison to state-of-the-art.

The aforementioned approaches are summarized in Ta-
ble 1.

2.3 Commercial Software Quality Tools
CodeQL. GitHub’s CodeQL3 is an analysis engine that auto-
mates security checks, bug detection, and other errors which
are modeled as queries to a feature database. The underlying
QL language introduced by De Moor [52] is the primary
technology in which code is searched against known defects.
CodeQL uses variant analysis by seeding known security
vulnerabilities and attempts to find similar problems in target
code. CodeQL focuses primarily on security threats and is
not comparable to existing refactor detection works.

SonarQube. A popular platform SonarQube is a service
or standalone instance that scans for bugs, vulnerabilities,
code smells, coverage, and code duplication. Its comes with
a graphical user interface (GUI) for interpreting the results.
The tool covers great breadth of software quality including
reliability, security, and maintainability. The inner workings
of SonarQube are hidden due to the proprietary nature,
however several empirical works have been conducted to
evaluate its effectiveness. Lenarduzzi et al. [53] discovered
that only few rules have low fault-proneness and many
violations considered as bugs were generally not fault-prone.
Consequently, the authors concluded that the fault-prediction
power of the model is extremely low. The study by Lenar-
duzzi was motivated by real companies complaining that
many rules classifying bugs are not actually faults. Marcilio

3. https://codeql.github.com

et al. [54] examined static analysis violations predicted by
SonarQube and found that just 13% of issues are solved
in the systems, conjecturing, that just a subset of checkers
actually reveal real design and coding flaws. With regard
to refactor detection and REFACTORSCORE, SonarQube does
not explicitly consider refactoring opportunities. With the
proprietary nature of the database used in SonarQube, we
are unable to control the possible leakage of the evaluation
set and the query database. For these reasons, an apples to
apples comparison is not possible.

In the next section, we discuss the intersection of code
smells, defects, and refactoring in the context of the refactor
oracle problem (Tsantalis et al. [11]).

2.4 Refactor Oracles

Refactor mining often leads to oracles that are incomplete,
biased, or incorrect for a variety of reasons. Some reasons for
incorrect refactor detection include flawed mining heuristics,
tangled commits of refactoring and code improvement, or
even plainly mislabeled commits messages. Dig et al. [49]
formulated a refactor oracle with release notes. Moreno et al.
[55] thoroughly inspected 990 release notes and found only
21% are refactoring operations; of these 990 release notes:
888 fixed bugs, 717 indicated new or modified features, 821
specified new or modified code components, and 206 notes
mentioned refactoring operations. The reported number of
release notes mentioning multiple content types shows the
tangled nature of refactoring commits with bug fixing and
feature development. This is exacerbated by refactoring
release notes citing specific code components and public
facing APIs that are affected rather than describing the
operation as a refactor.

Ratzinger et al. [56] explored a predefined set of terms
in commit messages to classify the commits as a refac-
tor. Weißgerber et al. [48] created a refactoring oracle by
inspecting commit messages for references to refactoring
operations. Murphy-Hill [4] investigated that such commit
message assumptions are often false as refactoring is an
unconscious activity. Murphy-Hill also suggests that perhaps
the programmer is considering the refactoring subordinate
to another attitude, e.g., patching, including new features, or
upgrading APIs to name a few.

Synthetic oracles such as the one in REFDIFF [12] are
useful in computing the precision and recall of automatic
refactor tools because all refactorings are seeded. Unfortu-
nately, synthetic refactor operations are not representative of
real refactor operations and the synthetic operations are not
entangled with other maintenance operations such as bug
fixes and new features. To our benefit, real projects like Linux
and PHP are included in the 20 project C evaluation set for
REFDIFF 2.0, which positions the evaluation and comparison
in a real world setting.

Automatic refactor detection tools have been used to
craft refactoring oracles. Tools such as Aniche et al. [17] and
Kim et al. [18] are configured by setting universal threshold
values. The real world efficacy of Kim et al. (REF-FINDER) is
challenged by Soares et al. [57] and Kádár et al. [58] citing
only 24% recall to the reported 96%. Configuring thresholds
not only leads to reduced performance but also poses a risk
in mining data because these tools will likely generalize

https://codeql.github.com


5

(a) Refactor Prediction (RP) task. (b) Refactor Span Prediction (RSP) task.

Fig. 2: Illustration of model architectures for sequence level refactor prediction and span level refactor prediction.

Fig. 3: How a refactoring commit is converted from diff to dataset.

incorrectly when not properly tuned, propagating their
statistical bias into datasets. Traditionally, finding effective
universal threshold values can be challenging.

Popular neural networks boast millions, even billions, of
parameters and are optimized by a loss function set with an
arbitrary probabilistic threshold. For large neural networks,
thresholding is not a performance oriented adjustment, but
rather, a tool to weight costs between precision and recall.
Due to the pre-training, generalization with a particular
probability threshold is generally not a concern in these
networks.

In the following sections, we formulate refactor prediction
as a binary classification task and present a neural model
REFACTORBERT trained on over 55 million examples of code
sourced from refactoring commits.

3 METHODOLOGY

Our objective is to evaluate arbitrary code and determine
whether it suffers from degraded code quality. Per the
related work, previous studies primarily focus on specific
code quality symptoms and metrics. We first ask if machine
learning based approaches, in the realm of large language
modeling, can distill refactoring patterns without the patterns
being explicitly defined. To that effect we ask research
question 1,

RQ1: How effective are refactor prediction models trained
on a mixture of refactoring intents?

Once we establish the potential efficacy of our approach,
we compare it to other refactor detection approaches to
understand whether large BERT based models outperform
traditional approaches, and what patterns they are capable
of detecting across verified refactors. To this end, we ask the
second research question,

RQ2: How does REFACTORBERT compare with state-of-
the-art refactor prediction model REFDIFF 2.0?

Our training paradigm teaches our model to learn
refactors as they are labeled by developers. This likely
entails capturing developers fixing bugs and even refactoring
mistakes. We test the models ability to detect bugs on a
popular code intelligence benchmark on defect detection. We
answer the following research question,

RQ3: Do refactor aware models capture defects?

After an evaluation of the model’s ability to detect devel-
oper labeled refactorings, we wish to use REFACTORBERT’s
sequence prediction to score code. We wonder how our
model scores projects over time and where top projects
are today in their refactoring efforts. Our fourth research
question asks,

RQ4: How does code quality change with time? Does
refactor size, a proxy for technical debt, increase over the
project’s lifetime?

Most importantly, the grading system must align with
developers’ perception of bad code. Consequently, we per-
form a human subject study with 11 engineers, some even
working on the code base. Our fifth research question is,

RQ5: Do developers agree with REFACTORBERT’s inter-
pretation of code quality?

Finally, we are curious how experienced developers react
to code they have previously worked with. Our final RQ is,

RQ6: Are developers resistant to changing code they are
familiar with?

To address these research questions, we design a model
REFACTORBERT that predicts spans of low quality code.
In the following sections, we discuss the task of refactor
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prediction and experiment with various modeling choices.
Subsequently, we explain how the dataset was collected
and the heuristics used to collect the refactors. The ensuing
section evaluates our proposed models against other designs,
state-of-the-art detectors, and applies the model in a broad
range of settings. Finally, we conclude with a human-subject
study to confirm effectiveness and discuss the implications
of REFACTORSCORE for business level objectives.

3.1 Problem Definition

We first define our binary classification problem we call
REFACTORPREDICT or RP for short. Then we define more
granular objective called REFACTORSPANPREDICT or RSP.
The problem is defined with respect to a program’s source
code or token sequences. Consider a program P composed
of token sequences where P = ⟨t0, ..., tn⟩, where the tokens
t are part of a vocabulary V and n is the number of tokens
in the program. A token is a basic unit of text or code, in
our case, source code words. The vocabulary consists of
(sub)words and is generated from the training data in a
manner that maximizes the representational power; a form
of compression based on frequency and probabilities. In
this work we use the CodeBERT tokenizer [23], which is
trained on a combination of natural language and code.
A tokenizer is a tool that delimits strings to tokens in an
optimal fashion for the model; this can include breaking
tokens into subtokens. Each subtoken has an aligned location,
L, within the program’s full token sequence where L =
⟨0, ..., n⟩. In each task, RP and RSP, a binary mask M ∈
{0, 1}n, represents each (sub)token in a sequence.

Given a program sequence P , the goal in the REFAC-
TORPREDICT task is to predict if the program requires a
refactor or does not. In Figure 2a, the sequence of tokens are
passed into an embedding layer, which is a vector space Rd,
designed to embed the input in a learned vector space over
the training procedure. Next, the embedding layer is passed
into a neural network, often a transformer network, where
the network can “attend” to specific features. Finally, the
networks high level representation is pooled or reduced into
a single vector. This final vector is the sequence level vector
where the network stores relevant sequence level information.
A projection, or decision layer, produces a single classification
value 0 or 1, which is our refactor prediction and is compared
to our ground truth value from the commit.

Now, observe the REFACTORSPANPREDICT task in Fig-
ure 2b. The underlying architecture is the same as the RP
task, but now the model must make a prediction for each
token. The model does not pool or reduce the sequence of
hidden states, but rather makes a prediction of 0 or 1 for
each token. Both models have the same underlying structure,
but the calculation of the loss must be done on each and
every token. On this task, RSP, the model gains the benefit
of partial credit when some of the token predictions in the
sequence are correct. We postulate that the model will have a
greater attention to detail, as the model can determine which
elements in what contexts contribute to the loss, as opposed
to making a single general prediction across a large span as
in RP.

The labels in Figure 2a and Figure 2b come from a
refactoring commit’s diff. Figure 3 is a refactoring commit

diff and illustrates the process of gathering the ground truth
labels for RSP. The commits from which the labels originate
from are commits that specify refactoring in the commit
message. This is a common mining technique [17], [48], [56],
albeit the sampling is noisy from the entanglement problem,
e.g., a commit that performs bug fixing and refactoring, ref.
Figure 1. The commit diff shows the removed items in red
and added items in green. The red highlight indicates code
that was removed, or for our purposes, considered incorrect
with respect to a refactor. All surrounding code is considered
correct if the code is not altered. The span of removed code
is “highlighted“ by crafting a mask of 1s and 0s around
the changed and unchanged portions. During training, the
model is fed both refactored sequences and non-refactored
sequences with the tasks of predicting the sequence label
(RP) or the label for each token (RSP), that corresponds to
whether the sequence or token was removed in a refactor.
A major benefit of framing the problem in this setting, is
that only the removed portions from pre-refactored code is
required for prediction; unlike REFACTORMINER, REFDIFF,
REF-FINDER, REFACTORINGCRAWLER, and JDE-VAN.

3.2 Modeling RP and RSP
With the RP and RSP tasks defined, we now define the
modeling of these tasks with respect to various neural
network architectures. Some of these form our baselines.

Given the subtoken sequence S = ⟨t1, ..., tn⟩, a portion
of program P , the model embeds each subtoken ti using the
trainable weight matrix ϕ where each subtoken maps to an
embedding. For the set of all subtokens, T , there is a vector
or embedding e, i.e., ϕ → Rd which results in a matrix of
embeddings for each sequence, i.e.,

[e1, ..., en] = [ϕ(t1), ..., ϕ(tn)]

. The embedding matrix is passed to various model architec-
tures. We evaluate Long Short-Term memory (LSTM), Gated
Recurrent Units (GRU), Transformers, and Large Pretrained
Transformers (CodeBERT). Included statistic baselines Naïve
Bayes and Logistic regression do not use embedding tables
but rather corpus statistics with TF-IDF. We will continue
with RefactorBERT in place of each of the aforementioned
neural models as the prediction process is similar between
the models.

Following the embedding of the input, we pass the
embedded input to the model,

[hcls, h1, ..., hn] = RefactorBERT([ecls, e1, ..., en])

where [h1, ..., hn] are the model hidden states for each token,
and hi ∈ Rd where i ∈ [1, ..., n] and hcls is the “pooled”
representation, in other words, a special token representing
the entire sequence.

In the Refactor Prediction (RP), the pooled token hcls ∈
Rd is projected with a trainable weight matrix WRP with an
additive bias BRP, hence,

PS = σ(WRPhcls +BRP), PS ∈ (0, 1) (1)

where WRP ∈ R1×d. σ(x) is the classic sigmoid activa-
tion function bounding a logit to a value between (0,1), viz. a
probability, with the function σ(x) = 1

1+e−x . The model will
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predict a refactor, value 1, when P exceeds some probability
threshold τ . Such that

Pred(S) =

{
1, if P ≥ τ

0, otherwise

where we select τ = .5 or 50%.
The Refactor Span Prediction (RSP) task requires a simi-

larly crafted prediction but now at the token level rather than
the sequence level. We can augment our neural architecture
to project, or make a decision, at each token’s hidden state to
a binary prediction.

In RSP, the hidden state vectors, [h1, ..., hn] or in matrix
notation, H ∈ Rd×n, are projected with a trainable weight
matrix WRSP ∈ R1×d with an additive bias BRSP, hence,

Ptn = σ(WRSPH+BRSP), ∀ ti ∈ S, Pti ∈ (0, 1) (2)

where ti is the aforementioned subtoken in sequence S
and a probability P for each token t1, ..., tn. This gives a
sequence of zeros and ones which are compared with our
ground truth labels from the commit. Throughout many
examples, the model can determine which subsequences
are correlated with refactors and predict partial or complete
sequences of refactors. This sequence based objective is the
underpinning of our REFACTORSCORE discussed in a later
section. Next we explain how REFACTORBERT is trained.

3.3 Training The Model

We train REFACTORBERT on both RP and RSP tasks in addi-
tion to the baselines LSTM, GRU, and Transformer models.
The RP and RSP training data is easily accessible with the
Huggingface api hosted on Huggingface. The dataset boasts
over 55 million sequences. The dataset contains parsed files
from the refactor commit diff. Spans of contiguous lines are
used for both positive examples of a refactor and surrounding
spans are considered for negative examples. The dataset
consists of more negative examples where positive examples
only account for 22% of the entire dataset. Sampling down
the negative examples is possible with minimal effort with
the Huggingface dataset API; classes can be sampled at
different probabilities. Our models are trained on all available
data including negative examples.

Finally, the RP task is a reduction of the RSP task because
the RP label is dependent on the presence of a refactor
span in the sequence fed to the model. In all models the
sequence is fixed to a length of 512 subtokens, tokenized
with a CodeBERT [23] tokenizer.

The evaluation of a model’s prediction is as follows. Let
i denote the subtoken index of a program consisting of n
subtokens in sequence S. For RP, the ground truth label is
a sequence level label and for RSP the ground truth label is
a token level label. Specifically the binary vectors LabelRP

and LabelRSP are,

LabelRP =

{
1, if ∃ ti ∈ R, i ∈ [1, ..., n]

0, otherwise
(3)

LabelRSP [i] =

{
1, if ti ∈ R, i ∈ [1, ..., n],

0, otherwise
(4)

where R is the set of refactored tokens. LabelRP is a
binary valued vector corresponding to each sequence of code
and LabelRSP is a 2D binary valued vector of corresponding
to each token in the code per sequence.

To optimize the model, we train the model with a binary
cross entropy loss.

L =
1

N

N∑
i=1

li

li = − [yi · log(Pi) + (1− yi) · log(1− Pi))]

(5)

where N is the batch size and P is the probability from
Equation 1 or Equation 2. For both tasks, the predictions
are “flattened” to a single vector of predictions and labels.
Finally each sequence (RP), or token location (RSP), loss is
averaged for a final loss which is applied to the model with
back-propagation. For the RSP model, we use both prediction
tasks and compute a single loss

L = LRP + LRSP

where both losses are calculated from Equation 5 at sequence
and token level.

Additionally, we find better performance by broadcasting
the RP prediction to the RSP sequence. Namely, if the RP
head indicates a refactor does not exist, it predicts 0, but the
RSP head might have a few tokens it believes is a refactor. The
RP value is applied to the sequence, changing the few tokens
from 1 to 0, thus correcting the sequence level prediction. We
found this model has the highest precision and recall. We
call this the joint prediction model, where RP and RSP heads
jointly impact predictions.

Evaluation of the joint model uses the same vectors
of labels from Equation 4, LabelRSP , but computes the
predictions as follows,

PredJoint = ⟨PredRP (S)⊗ 1n⟩ ⊙ PredRSP (S) (6)

where PredRP is from Equation 1 and PredRSP is from
Equation 2. The value from PredRP is tiled into a vector and
broadcast to the span prediction in PredRSP . We found this
joint model has the highest prediction accuracy.

In the following section, we briefly discuss some model-
ing architectures we found less suitable for the task.

3.4 Less Effective Model Variants

The hidden vectors, H , can be manipulated to predict
elements of the refactor prediction task. For example, each
token index i in ⟨t1 . . . tn⟩ can be represented as a category
or a value. If represented as a category, the beginning and
end indices of a refactor can be predicted by optimizing a
categorical loss. In this setup, there is no notion of “closeness”
if the index was off by a little and partially correct predictions
of token spans result in no credit. This setup did not result
in learning refactors. This approach also does not work for
multiple disjoint spans of refactors.

A more logical setup, is to predict the index as a real
number. The regression output can range drastically in value
from 0 to 512. While there is a notion of closeness, e.g., 499
is close to 500, we found this approach to be unsuitable
for the task. The model did not converge well in a large
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heterogenous dataset. In this setup, experimental biases such
as centering code for more context means the model learns
some indices are more common than others. This approach
also does not work for multiple disjoint spans of refactors.

Finally, we experimented with predicting a probability
distribution across 512 indexes for the start and end locations
of the span. This loss is focused on maximizing the proba-
bility or confidence at a location where the refactor began
and ended. Intuitively, this setup should work better than
the prior two, however we did not see substantial learning
progress. Like the previous two, this approach does not work
for multiple disjoint spans of refactors.

The RSP task is closely aligned to sequence tagging and
it was the most effective. We believe this is due to the
partial credit a partially correct subsequence can achieve.
Additionally, properly labeled tokens that form multiple
subsequences of 1s can be positively enforced by the loss,
whereas predicting a singular span explicitly forces the model
to assume a bias, that bias being that all refactors occur
contiguously in the token sequence.

4 MODEL EVALUATION

In the following sections we discuss the dataset curation, the
models under test, and answer the aforementioned research
questions.

4.1 Models Under Test

Section 4.1 describes the models under test in an increasing
complexity.

Random Predictor. The random predictor achieves its score by
picking the most frequent class.

Naïve Bayes. Naïve Bayes is a supervised learning algorithm
based on Bayes’ theorem with an assumption of conditional
independence between features, hence, naïve. Practically,
Naïve bayes is an effective classifier that works in many real
world scenarios. For sake of comparison, Naïve Bayes is a
fast, lightweight classifier. The features for our Naïve Bayes
baseline are TF-IDF vectors.

Logistic Regression. A statistical model that models the
probability of a refactor taking place by the log-odds which
are a linear combination of the independent variables. The
log-odds are converted to probability with the logistic
function. The features for this classifier are TF-IDF vectors.

Long Short-Term Memory (LSTM). A recurrent neural network
that has feedback connections often used for modeling
sequences like code and text.

Gated Recurrent Units (GRU). Introduced in 2014 as an
alternative to LSTM. The performance of the GRU is often
similar to LSTM.

Transformer. Introduced in 2017 by Vaswani et al. [59], it
is the bedrock of LLMs today. Transformers operate with
self-attention which is largely compute efficient viz. with
parallel processing because the attention matrices are

TABLE 2: Refactor Prediction (RP) Results

Model P (%) R (%) F1 (%) Acc (%) p-val CI (95%)

Random Predictor 22.13 100.00 36.24 22.13 — [22.10, 22.16]
Naïve Bayes 23.97 65.38 35.08 46.44 < .0001 [46.41, 46.47]
Logistic Regression 29.38 76.84 42.50 53.99 < .0001 [53.96, 54.02]
LSTM [60] 27.14 69.15 38.98 52.08 < .0001 [52.05, 52.11]
GRU [61] 34.61 83.76 48.98 61.38 < .0001 [61.35, 61.41]
Transformer [59] 31.02 79.01 44.55 56.48 < .0001 [56.45, 56.51]
RefactorBERT 56.68 89.23 69.32 82.53 < .0001 [82.50, 82.55]

Evaluation at the sequence level. P-value and confidence interval are computed with a
two-tailed binomial test.

decomposable.

RefactorBERT. A transformer LLM pretrained on code. The
initial weights are from CodeBERT [23].

4.2 Dataset Curation
First we identify a list of top starred repositories in C (29,021)
and CPP (30,346) using GraphQL on the GitHub GraphQL
API. Then on each project, we use GraphQL to gather the
commit hash of each commit filtering only commits that
include the word “refactor”. This is an inherently noisy
technique according to Murphy-Hill [4], however, at scale
we found this simple approach effective.

We assess the effectiveness by sampling 500 commits each
from different projects and manually label the commits as
yes (true refactor), no (false refactor), and unsure. We labeled
the commit as a true refactor if significant portions of code
changed to reduce code complexity, such as variable renam-
ings or method splitting, without changing program behavior.
We allow multiple intents such as feature development or
bug fixing if the commit still refactored elements described
in the commit message. Of these sampled commits, 352
were true refactors, 60 were not refactors, and the remaining
were not conclusively determined yes or no. This results in
85.44% of commits being true refactors with >95% confidence
threshold. We publish our labeling results4. Through manual
inspection, we found many false positives were commits
fixing bugs from previous refactors which reinforced our
intuition that a model trained from this data would be good
at detecting bugs.

With over 1.1 million commits from this heuristic, we
examine the commit diffs. The commit diffs are analysed
with PyDriller [62] where commit attributes are gathered
including the parsed diff for each file in the commit. Within
the mod_files field, we can extract the lines parsed
in diff_parsed and gather the source_code_before
which we use for positive and negative sampling as well as
the source_code field to find the refactor changes. Finally
when each file source code is parsed, groups of lines deleted
are sampled and labeled as positive refactoring examples
and areas unchanged in the same file are labeled as non
refactored changes. Across all project, commits, and files, we
are left with 55 million sequences. We split this dataset across
projects into train, test, validation with a 90%-5%-5% split;
this results in a split by examples of 42.5, 9.09, and 3.98 million
sequences for train, test, validation. We cannot perform
effective deduplication as we sample commits throughout a

4. https://github.com/kevinjesse/RefactorBERT/blob/main/
sampled_refactored_commits.csv

https://github.com/kevinjesse/RefactorBERT/blob/main/sampled_refactored_commits.csv
https://github.com/kevinjesse/RefactorBERT/blob/main/sampled_refactored_commits.csv
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Fig. 4: Receiver Operating Characteristic curve of RP and
RSP model. .9 AUC and above is considered excellent.

projects’ lifetime and similar code contexts make removing
near duplicates very challenging. To mitigate the impact of
any data leakage, we evaluate across projects and only use
the evaluation set to pick a best performing model. Then, we
compare the model across verified refactorings from RefDiff
2.0. The dataset is available on Huggingface5 with over 55
million sequences source from commits citing refactoring
operations.

In the next section, we explore the effectiveness of various
neural architectures and ablations in detecting poor quality
code.

4.3 RefactorBERT Performance
We compare RefactorBERT and our comparable baseline
models by binary classification metrics: precision, recall,
F1, accuracy across the our refactor dataset. This dataset
is curated from over 1 million commits and over 55 million
sequences from refactoring commits. We split the dataset by
project, 90% train, 5% test, and 5% validation. We evaluated
all models across the same test set. The models are trained
for equal number of examples, however the dataset is so
large, that we found training over a fraction of the dataset to
be sufficient.

The performance of the models by architecture can be
found in Table 2. We measure the models’ performance at
the sequence level predicting whether a span of tokens
will require a refactor. The precision, also called positive
predictive value, is a fraction of relevant instances among the
models retrieved instances. This is measured as the number
of true positives over the number of positive calls, a.k.a,
true positives plus false positives. The recall, or sensitivity is
the total number of true positives over the number of true
positives plus false negatives. F1 is the harmonic mean of
the precision and recall. Accuracy is the correct prediction,
positive or negative across the set. F1 is most appropriate for
scoring these models. Accuracy is not appropriate as the test
set is 78% negative examples and a model predicting only

5. https://huggingface.co/datasets/kevinjesse/ManyRefactors4C

TABLE 3: Predicting Sequence Level vs. Spans Level Predic-
tion (RP vs. RSP)

Model P (%) R (%) F1 (%) Acc (%) p-val CI (95%)

RefactorBERTRP 56.68 89.23 69.32 82.53 < .0001 [82.50, 82.55]
RefactorBERTRP+RSP 50.25 94.46 65.60 78.08 < .0001 [78.05, 78.10]

Model trained on both RP and RSP is still evaluated with RP prediction head only at
sequence level. P-value and confidence interval are computed with a two-tailed binomial
test.

TABLE 4: Joint Prediction Results (RP × RSP)

Model P (%) R (%) F1 (%) Acc (%) p-val CI (95%)

Random Predictor 3.81 100.00 7.33 3.81 — [3.809, 3.811]
RefactorBERTRSP 43.35 81.25 56.54 95.246 < .0001 [95.245, 95.247]
RefactorBERTRP×RSP 43.94 80.83 56.93 95.3456 < .0001 [95.3450, 95.3462]

Evaluation across all tokens in RSP. Broadcasting RP on RSP predictions improves performance.
P-value and confidence interval are computed with a two-tailed binomial test.

negatives would score 78% accuracy, but would be useless
for predicting refactors. A higher precision, recall, and F1
indicates better performance. Formally, the equations for
precision, recall, and F1 are as follows,

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 = 2× Precision × Recall
Precision + Recall

where TP is true positives, FP is false positives, and FN is
false negatives.

Table 2 indicates that our model REFACTORBERT per-
forms best in refactor prediction at the sequence level. The
performance of the GRU is good, however, REFACTORBERT
beats out all baselines because it can leverage its pretraining
from CodeBERT [23]. Finally, observe the classifier’s ROC
curve in Figure 4. The area under the curve (AUC) is .92
which indicates an “excellent” classifier. We use the Youden’s
J statistic6 to find the optimal threshold for the test set
to compare with our general purpose 50% threshold; the
optimal threshold is 45% probability on 3 million validation
examples so no threshold engineering is necessary as the
model can generalize well (.92 AUC). In the next section we
will compare this performance with the performance of the
RSP trained model.

4.4 Learning Spans of Refactors (RSP)

The Refactor Span Prediction task is a granular version of
the Refactor Prediction task. In this section, we evaluate
REFACTORBERT on learning specific tokens that must be
changed. By narrowing the refactor to a specific set of
tokens, the model can learn which spans correlate with
refactors. We find that the model learning two objectives,
REFACTORBERTRP+RSP in Table 3, performs marginally
worse on the sequence level but gains the ability to specify
which tokens contribute to its decision with minimal per-
formance impact. This trade-off is worthwhile in practice
because the sequence of suspect tokens can be searched
among known refactors while providing an explanation to
the developer (other than yes or no).

6. https://en.wikipedia.org/wiki/Youden%27s_J_statistic

https://huggingface.co/datasets/kevinjesse/ManyRefactors4C
https://en.wikipedia.org/wiki/Youden%27s_J_statistic
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TABLE 5: Comparision with REFDIFF 2.0

Model Precision (%) Recall (%) F1 (%)

REFDIFF 2.0 [13] 83.05 86.44 84.71
REFACTORBERT 81.36 94.92 87.62

Table 4 has the span level performance
REFACTORBERTRSP across the sequences of tokens.
This table measures the precision, recall, F1 and accuracy
of each token in the sequence requiring a refactor or not.
Scoring at the token level means partial credit is given to
subsequences correctly classified, even if the entire sequence
is not predicted correctly. We see that the token level
performance is quite good, given that it is a more difficult
task i.e. predicting each tokens’ membership, and the
random predictor scores very poorly. REFACTORBERTRSP

is able to get over 81% of refactor prone tokens, and scores
a 43% precision. We note that the ROC curve was nearly
identical as the RP performance and also scored a .92 AUC.

The effectiveness of a model at a token level with a high
AUC binary classifier translates to accurately annotating
virtually any C/C++ code base, regardless of the version
control platform (Siemens uses a variety of platforms), and
the model can confidently lead developers to code segments
that require additional focus.

RQ1: REFACTORBERT significantly outperforms the
random predictor and is a strong binary classifier for
refactors in the wild with an AUC of .92 and F1 of
69.32%.

Next we experiment with a joint prediction from both
predictors for even better performance.

4.5 Joint Prediction RP × RSP
Naturally, we want to investigate if there is mutually ex-
clusive information learned by the sequence level hidden
state in addition to each token. Since the RP model performs
better, we expected a projection of the RP value on the
sequence of predictions (RSP) would lead to an improved
effect. The RP objective could correct errors in the RSP
prediction, namely, where tokens were flagged incorrectly. In
this scenario, projecting a 0 across a sequence of 1s would
correct a misprediction and the joint accuracy would increase.

Table 4 shows the performance of broadcasting the RP
prediction head to the RSP prediction head. We observe an
improvement in performance specifically precision, F1, and
accuracy. The joint model, formulated in Equation 6 is the
best performing span prediction model.

RQ1 cont.: REFACTORBERT impressively scores 56.93%
F1 score on the token level prediction compared to the
random predictor’s 7.33%.

In the next section we compare REFACTORBERT to
REFDIFF 2.0 on the REFDIFF 2.0 evaluation set.

4.6 Comparison with REFDIFF 2.0
RefDiff 2.0 is a multiple language refactoring detection
tool [13]. The original version, employed a combination of

TABLE 6: CodeXGLUE Defect Prediction Results

Model Accuracy (%)

CoText [63] 66.62
C-BERT [64] 65.45
RefactorBERT 65.08
VulBERTa-MLP [65] 64.75
VulBERTa-CNN [65] 64.42
PLBART [66] 63.18
code2vec [67] 62.48
CodeBERT [23] 62.08
RoBERTa [68] 61.05
TextCNN [30] 60.69
BiLSTM [30] 59.37

heuristics based on static analysis and code similarity to
detect 13 well known refactoring types for Java [12]. REFDIFF
2.0 expands to C and JavaScript and introduces novel
refactoring detection algorithms relying on code structure
trees. A comparison with REFDIFF 2.0 calibrates REFAC-
TORBERT against other state-of-the-art detection tools and
helps to identify which refactoring types REFACTORBERT
is capable of detecting. The evaluation data in REFDIFF
2.0 are manually verified across the analyzed refactoring
(precision) and documented refactoring (recall) spreadsheets7.
Our comparison is conducted as follows.

First we remove file level refactorings like file renamings
since REFACTORBERT classifies source code directly. This
results in a slightly smaller evaluation set of 60 examples
in both precision and recall; both tables have differing sets
of commits prior and coincidentally have the same number
of examples after. Next, we remove 1 commit from each
table (precision/recall) because two commit hashes exist
in REFACTORBERT’s dataset of refactoring commits. The
evaluation is across 59 commits for both precision and
recall. We checkout each commit and use the commit diff
to get the exact token sequence under consideration. Then
across the file, REFACTORBERT predicts whether the span
requires a refactor. If any span is flagged, the commit must
be a refactoring commit. The commit level prediction is a
positive classification for a refactor. We compare our binary
classifier results with those of REFDIFF 2.0 for precision and
recall according to the published results for REFDIFF 2.0 C
evaluation tables.

Table 5 shows the performance comparison between
REFACTORBERT and REFDIFF 2.0. The models achieve
similar precision, but REFACTORBERT performs much better
in recall. It is our belief that REFACTORBERT is more sensitive
to general refactoring patterns due to the sheer volume of
data REFACTORBERT is trained on. Alternatively, the code
structure tree in REFDIFF 2.0 might be less flexible to the
various project domains and namespaces, resulting in less
positive predictions and thus lower recall. The improved
recall boosts the F1 score higher than REFDIFF 2.0, making it
a stronger classifier over REFDIFF 2.0 by nearly 3%.

Figure 5a is a categorical visualization of the precision
score in Table 5. By refactor type, REFACTORBERT misses
only one more in MOVE_FUNCTION. Likewise, Figure 6a
is a categorical breakdown of recall on the commits in
Table 5. REFACTORBERT performs much better than RefDiff

7. https://github.com/aserg-ufmg/RefDiff

https://github.com/aserg-ufmg/RefDiff
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(a) REFACTORBERT (b) REFDIFF 2.0

Fig. 5: Precision comparison of REFACTORBERT and REFDIFF 2.0 on REFDIFF 2.0 C evaluation data. Red indicates incorrect
predictions from the maximum possible total.

(a) REFACTORBERT (b) REFDIFF 2.0

Fig. 6: Recall comparison of REFACTORBERT and REFDIFF 2.0 on REFDIFF 2.0 C evaluation data. Red indicates incorrect
predictions from the maximum possible total.

by only missing three commits, one in CHANGE_SIGNATURE,
INLINE, and MOVE_RENAME_FUNCTION. For more informa-
tion on the refactor types, we direct the reader to the original
paper [13] and our published results8. High performance
across verifiable refactors, in a variety of refactoring patterns,
means REFACTORBERT can be generally used to predict
refactorings in at least these categories, likely much more,
and not to mention REFACTORBERT can be used in defect
prediction which we discuss next.

8. https://github.com/kevinjesse/RefactorBERT

RQ2: REFACTORBERT detects more refactors than
REFDIFF 2.0 with nearly identical precision.

4.7 Refactor Models for Defect Prediction
Bug fixing and behavior changing code changes are often
disguised under refactoring in tangled commits. A tangled
commit is a commit where a developer bundles multiple code
changing operations that address different problems; unfor-
tunately many of these bug fixing commits are disguised as a
refactor. There is a field of research dedicated to identifying
tangled commits [69]–[71], and even specifically related to

https://github.com/kevinjesse/RefactorBERT
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refactoring [72]. With a model trained on commits labeled as
a “refactor”, we are interested in how well REFACTORBERT
does at defect prediction.

To test the hypothesis that REFACTORBERT will be
capable of predicting some defects, we employ an indus-
try recognized suite of datasets and leaderboards called
CodeXGLUE [30]. CodeXGLUE is a benchmark dataset and
open challenge for code intelligence models. We refer the
reader to the leaderboard9 where REFACTORBERT scores #3
only behind C-BERT [64] by .37%.

What makes REFACTORBERT performance impressive
is that most models on the leaderboard are specifically
trained on defect prediction prior to being trained and evalu-
ated on the benchmark. REFACTORBERT out performs Vul-
BERTa [65] which was trained on six vulnerability datasets:
Vuldeepecker, Draper, REVEAL, muVuldeepecker, Devign,
and D2A. Vuldeepecker and muVuldeepecker samples from
two additional datasets: National Vulnerability Database
(NVD) and Software Assurance Reference Dataset (SARD).
REFACTORBERT is not trained on explicitly labeled defects,
but benefits from the occasional bug fix, or span of suspect
code which in turn is easily tune-able in the benchmark
training. See Table 6 for the defect prediction results in
CodeXGLUE.

RQ3: REFACTORBERT captures defect related patterns
as it performs competitively in CodeXGLUE’s defect
prediction task.

REFACTORBERT serves as the foundation for predicting
refactors by evaluating spans of code. We expand REFAC-
TORBERT into a code quality evaluator, by aggregating
the identified suspect code and scoring it. We call this
REFACTORSCORE.

5 APPLICABILITY OF REFACTORSCORE

REFACTORSCORE in its initial formulation is determined by
the predicted cardinality of the refactor. Formally,

C =
N∑
i=1

PredRSP [i]

where C is the count of tokens that are predicted to require
a refactor. The sequence value C is then mapped into one of
five quantiles determined from the training set. The quantiles
are determined by discretizing CGround Truth of the training
set into equal-sized buckets based on five sample quantiles.
We direct the reader to Figure 7, which are histograms of
refactor length across each set of data. The similarity across
various sampling shows that any quanitization in one set
will generalize.

The quantiles determined by the training set are as
follows,

REFACTORSCORE =



A, 0 ≤ C < 25

B, 25 ≤ C < 57

C, 57 ≤ C < 87

D, 87 ≤ C < 121

F, 121 ≤ C < 512

(7)

9. https://microsoft.github.io/CodeXGLUE

We choose to generate the quantiles on the training set
because it consists of 42.5 million sequences, where the
validation set only has 3.98 million sequences; the test set
has 9.09 million sequences. For the training set, the average
refactor length is 80.53 tokens and the median is 73 tokens.
We found these statistics to be similar to validation and test
set.

In the next section, we evaluate the discretization on the
test set.

5.1 Accuracy of RefactorScore
For REFACTORSCORE to work, two generalizations must
occur: (1) The model REFACTORBERT must be capable of
generalizing to the test set and accurately predicting spans of
refactors, and (2) the quantiles from the 42.5 million training
examples must be generally applicable to a test set. With
strong performance in the former, see Table 3, and statistically
similar distributions in the latter, Figure 7, we can reasonably
expect good performance in REFACTORSCORE.

The accuracy across all test set examples is 79.56%,
meaning, that the grade A-F provided by REFACTORSCORE
is the same label as the ground truth for both positive
and negative outcomes. The accuracy across the subset of
examples requiring a refactor is 71.18%. Thus we note that
the negative outcomes are not confounding the total accuracy
score. Lastly, REFACTORSCORE is not correlated by file length.
Across the 9.09 million examples in the test set, the correlation
between code length and REFACTORSCORE’s refactor length
is -.325 Pearson score indicating there is a slight negative
correlation.

Finally, we direct the reader to the REFACTORSCORE
confusion matrix (Figure 8). The confusion matrix calculates
the accuracy of each class and shows where REFACTORSCORE
makes correct and incorrect predictions. Figure 8 is consistent
with a strong classifier, namely, where the ground truth is
correctly predicted (diagonal). The model incorrectly predicts
a minor refactor when more substantial refactoring is the
correct answer. The uniform underfitting across all categories
in column A is indicative of aleatoric uncertainty, likely, from
the sampling of commit histories. In other words, unchanged
code in a prior commit might ultimately be changed in a
later commit, thus making the prior commits’ labels noisy.
The changing nature of code makes modeling repositories
with their commit history a challenging task. For now, it is
beyond the scope of this paper.

In the following section, we apply a trained REFAC-
TORSCORE to gain insights about open-source repositories’
code quality.

5.2 Scoring Open Source Projects
In this section we use REFACTORSCORE to grade open source
projects. First we apply REFACTORSCORE at a project level
on the test set and then examine several top projects current
HEAD commit on GitHub.

5.2.1 Snippets From Test Set
Starting with the many preprocessed projects in our test
set, the projects are scored with REFACTORSCORE (Figure 9).
Figure 9a is a bar plot of REFACTORSCORE on project source
files. The median score is reported at the project level giving

https://microsoft.github.io/CodeXGLUE
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(a) Training Set (b) Validation Set (c) Test Set

Fig. 7: Histogram of refactor length.

Fig. 8: REFACTORSCORE confusion matrix measuring accu-
racy by grade A - F (A is minor refactor by refactor length).

an overall project score. Notice that most projects score quite
well. However approximately 15,000 projects fail with a score
of an F accounting for about 25% of projects. This means,
across all code snippets in the project, the median is a failing
grade indicating over 121 tokens in each window require a
refactor. This amounts to at least 23.6% of tokens (or higher)
need to be refactored. In summary, Figure 9a shows how
projects in the test set generally score.

Given that a refactor is required in the span, Figure 9b
demonstrates how bad that refactor is expected to be. Across
all the spans requiring a refactor, the goal in this plot is to
see how bad on average these refactors are according to
REFACTORSCORE. Figure 9b shows that the median refactors
across a singular project is more then often in the C-F range.
This shows that REFACTORSCORE can be used to target
specific projects, directories, and files to gauge quality.

5.2.2 Top Starred Projects
Next we apply REFACTORSCORE to a list of top 60 GitHub
projects found here10. We checkout the current HEAD on the

10. https://github.com/EvanLi/Github-Ranking/blob/master/
Top100/CPP.md

main branch and feed the source code to REFACTORSCORE.
The individual project scores can be viewed in Figure 10. The
average refactor span length is 26.08 with the projects on
average scoring a B; the average computed at project level.
Within these projects there were many third party libraries.
We filter these directories and perform REFACTORSCORE on
both the third party library directories and the remainder of
the project. Third party software scores a bit worse than the
remainder of the code at 32.16 refactor span length (681,391
snippets) where as the remainder of the project is closer to
the 60 project average of 25.89 span length (871,505 snippets).
The color of the columns correspond to an average grade for
the repository.

Additionally, we investigate how projects change over
time. Figure 11 shows the mean refactor span grade over the
past 10 years for the top 60 starred projects. The span length
of less than 25 is deemed an A and above 25 is considered a
B. The general trend over the last 10 years are an increasing
amount of code snippets that should be refactored. This is
intuitive as many more pull requests for specific features and
issues, often results in code that must be reworked later.

Finally, we observe how REFACTORSCORE changes across
the most popular subset of projects in each year. Figure 12
plots the average span length for the ten most popular
projects. While some projects stay the same or decrease
(TensorFlow and Electron), the remaining projects increase
in code requiring a refactor.

RQ4: REFACTORSCORE demonstrates a degrade in
code quality across top open source projects from
refactor length increasing; ultimately this indicates an
rise in technical debt.

5.3 REFACTORSCORE in Out-of-Domain Setting
In this section, we evaluate REFACTORSCORE on Siemens
proprietary code. Siemens proprietary code is considered out-
of-domain for REFACTORBERT because the code is domain
specific and inherits little from open source. Arguably,
proprietary code presents a challenge to REFACTORBERT
and REFACTORSCORE.

In the following paragraphs, we detail the validation of
REFACTORSCORE with human developers by showing them
ten snippets of code they may or may not be familiar with.
Five of these snippets are graded by REFACTORSCORE to
require a sizeable refactoring and the other five are negative

https://github.com/EvanLi/Github-Ranking/blob/master/Top100/CPP.md
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/CPP.md


14

(a) Grades of Projects in Test (b) The median grade, by project, of code tokens when a refactor
is required (a.k.a how smelly is the refactor?)

Fig. 9: REFACTORSCORE across projects in test set.

Fig. 10: Grading the most starred projects with REFACTORSCORE @ HEAD commit. The color represents the average grade
across all code spans and the bar high indicates the average span length. Notice the grade decreases as the refactor is more
severe.

examples as predicted by REFACTORSCORE. The snippets are
selected by the worst and best grades from REFACTORBERT.
We ask the developers the following questions:

1) Does this code require a refactor?
2) If so, where do you suspect the refactor should take

place?
3) What would you rate the quality of this code snippet?

(1-5, 5 being best)
4) If this snippet was flagged, would it have led to a useful

refactoring, provided the required refactor effort?

As a result of this study, we gauge the usefulness of
REFACTORSCORE in a new domain of code. Figure 13 is the
results of “What would you rate the quality of this code

TABLE 7: Spearman Correlation from Developer Study

Developer Code Quality Useful Refactor? Model

Developer 1.000 -0.821 0.833 0.527
Code Quality -0.821 1.000 -0.746 -0.557
Useful Refactor? 0.833 -0.746 1.000 0.527
Model 0.527 -0.557 0.527 1.000

snippet?”. Code quality prediction from REFACTORSCORE
matches developers’ understanding code quality. Code that
does not require a refactor per developers, was not predicted
to need a refactor by REFACTORSCORE. The result of this
study can be explained in the Spearman Correlation between
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Fig. 12: A subset of the top open source projects plotting the
average refactor span length over the last 10 years.

TABLE 8: Developer results on internal project. Observe the
higher scores from outside developers.

Developer Precision Recall Accuracy Experience?

1 0.667 0.8 0.667 False
2 0.800 0.8 0.778 False
3 0.625 1.0 0.667 True
4 0.833 1.0 0.889 False
5 0.800 0.8 0.778 False
6 1.000 1.0 1.000 False
7 1.000 1.0 1.000 False
8 0.833 1.0 0.889 False
9 0.600 0.6 0.556 True
10 0.667 0.8 0.667 True
11 0.667 0.4 0.556 True

TABLE 9: Interrater Agreement (Fleiss Kappa)

Question Fleiss Kappa

Does this code require a refactor? .26 (Fair Agreement)

What would you rank the quality .12 (Slight agreement )of this code snippet? (1-5)

Would this be an useful refactoring? .24 (Fair Agreement)

the developers’ recommendation to refactor, stated code
quality, useful refactor, and model prediction (Table 7). The
developers’ recommendation to refactor (Question 1) and
useful refactor (Question 4) have a correlation of .527 to the
model’s prediction; this is a moderate positive correlation
coefficient. Likewise, the model’s prediction relative to the
code quality is a moderate negative correlation. Finally, the
developer recommends refactoring when code exhibits low
quality and the refactoring would be worthwhile of the
development effort.

RQ5: Developers agree with REFACTORBERT’s in-
terpretation of code quality as segments flagged by
REFACTORBERT have a .527 Spearman Correlation
with developers.

Finally, during the developer survey, subjects that had
been involved with the development of the code often
rationalized certain design decisions. Some of the justifi-
cations were clearly biased from previous constraints, like
code compliance and logging standards, imposed on the
developers during the development lifecycle. While the
developers acknowledge the poor code quality after being
told where the problem was, they exhibited resistance despite
the obvious need to change the code. This poses a serious
challenge for balancing technical debt.

We also found that developers that worked on the
project scored significantly worse on average than fresh
developers. Table 8 illustrates this phenomena quantitatively.
Again we saw reasoning and justification for bad code and
more elevated scoring universally across bad examples. By
automatically scoring the code with REFACTORSCORE, we
can bypass some potential internal bias exhibited by the
developers.
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Fig. 13: Code quality across all code snippets ranked by 11
developers. Low scoring code requires a refactor and high
scoring code does not.

RQ6: Developers that have experience on the code
base perform markedly lower in survey precision and
accuracy when identifying poor code quality.

From this developer survey we can takeaway some
insights,

1) REFACTORSCORE predictions are indicative of low qual-
ity code.

2) Segments predicted poorly by REFACTORSCORE are
worth refactoring.

3) Refactoring low-quality code from REFACTORSCORE are
good investments towards the improvement of code
quality.

4) Automatic metrics like REFACTORSCORE can circumvent
developer implicit bias when deciding on code quality
and refactoring needs.

In the following section, we discuss how REFAC-
TORSCORE can be weighed or adjusted to address business
and development needs.

5.4 Deriving Alternative REFACTORSCORES

Deriving alternative scoring techniques with REFACTOR-
BERT is possible. Such augmentations permit organizations
to prioritize refactor prone hotspots in different ways.

Code smells, viz. problematic coding structures, such
as complex classes, dead code, duplicate code, unnecessary
loops, etc. can be incorporated into REFACTORSCORE. Corpus
statistics of such design problems can weigh the token
sequences that match both design patterns and REFACTOR-
BERT refactors. This would give the organization the ability
to prioritize particular refactor prone code, specifically at the
design level.

At a product level, there might be critical components that
should be targeted above all others. By weighting vital classes
or specific features that run with performance constraints,
the business unit can more proactively fix expensive refactor
prone code, thus optimizing for the organizations budget and
customer expectations. Code that consistently monopolizes
developers time, requires the most developers, or cost the

most over the products lifecycle are valid means of weighting
REFACTORBERT.

Finally, previous refactors and bugs are effective predic-
tors for future defects. Previous research has cited the effec-
tiveness of considering previously defective code elements
[73]–[76]. This promising line of work can be integrated into
REFACTORSCORE by automatic labeling and fine-tuning of
REFACTORBERT further, or by using global statistics from
previous commits and superimposing across REFACTOR-
BERT predictions. We plan to explore this in future work.

6 THREATS TO VALIDITY

The focus of this work implies that the main threats to its
validity are external.

6.1 External Validity
In this paper we assess the ability of a sequence based
machine learning model to properly identify refactoring
commit spans. The projects are sampled according to their
popularity which often correlates with the size of the project
both in commit history and absolute source code tokens;
this is a widely adopted practice. Generalization in machine
learning models on software engineering tasks are convo-
luted by code clones and code reuse. Our findings show that
REFACTORBERT works for over 18,000 projects, however, all
of these projects are publically accessible. Further studies are
needed to confirm the models capability across code that has
little or no influence from the open source community. This
threat could be ameliorated in a variety of ways: by further
intra-project training on commit history, training on products
that share a specific domain, incorporating product level
knowledge such as performance requirements or specific
known system issues such as timeouts.

6.2 Internal Validity
A challenge in this study was the variance of the interpre-
tation of a refactoring commit. In a classical sense, REFAC-
TORBERT should not care about unreliable or frequently
changed code, but only the adoption of design patterns
that reduce internal complexity and preserve functionality.
In practice, developers often confound bug fixes, security
updates, and functional changes as refactors. Fundamentally,
software quality is formulated beyond design patterns and
often includes code correctness and security requirements,
all of which REFACTORBERT trained on. We believe that
a variation of REFACTORBERT trained with a tool like
REFACTORMINER [11] or REFDIFF [13] could identify specific
problematic design patterns. As such, the performance of
such a model would be limited to the existing performance
of the pattern matcher. Concluding this thought, we aim
to take advantage of large scale data to generally grade
software quality and specific refactoring practices is not
comprehensive to this goal, especially for refactors in the
wild.

Another challenge is the varying interpretation of code
quality for the developer survey. The four questions for each
code snippet, gave the developer an opportunity to reason
about their code quality score. No answers were provided to
the developers as that could bias future decisions. Some code
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snippets had outlier code quality values, but over the course
of 11 developers with varying experience, we establish a
strong trend in the inter-quartile range. As such, we are
confident that our developers responses are consistent with
a broader set of subjects.

Coding languages, libraries, and practices evolve over
time. The generalization capability of machine learning
models is a challenge. REFACTORBERT was trained on
project commit history making the time series experiments
biased towards data the model has seen. Empirically, the
REFACTORSCORE across the 60 projects and the respective
subset was not sampled at a refactoring commit, but at each
yearly interval and evaluated across each token of code base.
Thus, the effect of data bias for a particular span would be
minimal in the final results, even if a few spans are properly
graded from data leakage.

Finally, code duplication can confound performance
scores. We only sample changing code on a parent of the
refactoring commit in regions that are part of the commit diff.
Then performance is measured with precision and recall so
that duplicate negative examples are not impacting reported
performance. Moreover, performance is likely hindered from
negative sampling where code that is changed at a later
date is sampled as a negative example in an earlier commit.
Refactoring changes adopted widespread across projects is
confounder to performance. At the span level, there are
minimal duplicates as we sampled only 242 out of 1.3M or
0.018% with a cosine similarity of greater than .9.

Lastly, code deduplication tools are largely not useful for
this body of work, as overlapping contexts around a diff area
throughout the file’s commit histories leads to a high number
of false positives.

7 FUTURE WORK

As discussed in Section 5.4, alternative formulations of
REFACTORSCORE have the ability to impact business units by
concentrating refactoring efforts. Siemens has many products
at various stages of the software development lifecycle that
benefit from differing interpretations of REFACTORSCORE.
Products in development benefit long term from fixing
design problems early to avoid long term maintainability
issues, technical complexity, and scaling limitations. Software
sustainment teams can benefit from recommended third
party refactors, bug fixes, and code simplification where
code is given a poor REFACTORSCORE.

Lastly, we intend to improve the refactor explanations. To
search through the 70 million code documents, we index the
files with the commit diff, commit message, project and file
level information. With the ElasticSearch engine, developers
can walk through paginated commits that are similar to
the span in question by REFACTORBERT. In future work,
we plan to extend the service to include natural language
explanations in addition to analogous code examples. This
likely entails a form of code summarization between the
commit features and source code.

Finally, we plan on expanding the REFDIFF 2.0 C evalua-
tion set to include C++. We also plan to mine more refactoring
patterns in both languages so that we can discover additional
patterns REFACTORBERT is capable of detecting.

8 CONCLUSION

In this work, we present an automatic evaluation metric
for code. REFACTORSCORE is different from existing tools
because it scores spans of code with only existing code,
needs no commit history, and is version control invariant.
The scores are human interpretable grades where the un-
derlying model, REFACTORBERT, highlights the refactor
prone tokens that drive the overall grade. As a code quality
tool, REFACTORSCORE shows high accuracy (∼ 80%) on
grading code A-F and these grades correlate with 11 human
developers interpretation of code quality. Developers agree
that the code presented by REFACTORBERT and scored by
REFACTORSCORE should be refactored and that the refactor
would be a worthwhile refactoring. We found that training
models on in the wild refactorings, meaning many entangled
maintenance operations, did not impact the model’s ability
to detect refactoring patterns competitive tools can detect; in
fact we expect many other patterns to be captured by our
model.

REFACTORBERT outperforms the state of the art com-
parison for C programming language, REFDIFF 2.0 by ∼
3% F1-score for a total score of 87.62%. REFACTORBERT
achieves ∼95% recall meaning that REFACTORBERT detects
on average 5 more refactors than REFDIFF 2.0 on refactor
patterns specifically selected for REFDIFF 2.0. Moreover, the
thresholding problem [11], which plagues other machine
learning and statistical models in refactor detection, does
not affect REFACTORBERT as shown by the excellent ROC
curve. We test REFACTORBERT on the defect prediction task
in CodeXGLUE [30] and find that it scores among the top
models; we infer this is because of the in the wild training.

How do we envision the use of REFACTORSCORE and
REFACTORBERT?

1) Developers can use REFACTORBERT in live coding
environments to highlight suspect lines of code with
the corresponding REFACTORSCORE grade.

2) Developers can use REFACTORSCORE to ensure code
quality prior to code being committed into the code
base.

3) Developers should use REFACTORSCORE retroactively
to fix outstanding code quality issues.

4) REFACTORSCORE can be weighted for organizational
needs such as targeting performance constraints.
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