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1KAUST, 2Sony AI
kai.yi@kaust.edu.sa, nidham.gazagnadou@sony.com
peter.richtarik@kaust.edu.sa, lingjuan.lv@sony.com

ABSTRACT

The interest in federated learning has surged in recent research due to its unique
ability to train a global model using privacy-secured information held locally on
each client. This paper pays particular attention to the issue of client-side model
heterogeneity, a pervasive challenge in the practical implementation of FL that
escalates its complexity. Assuming a scenario where each client possesses varied
memory storage, processing capabilities and network bandwidth - a phenomenon
referred to as system heterogeneity - there is a pressing need to customize a unique
model for each client. In response to this, we present an effective and adaptable
federated framework FedP3, representing Federated Personalized and Privacy-
friendly network Pruning, tailored for model heterogeneity scenarios. Our pro-
posed methodology can incorporate and adapt well-established techniques to its
specific instances. We offer a theoretical interpretation of FedP3 and its locally
differential-private variant, DP-FedP3, and theoretically validate their efficiencies.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017; Konečnỳ et al., 2016) has emerged as a signif-
icant machine learning paradigm wherein multiple clients perform computations on their private
data locally and subsequently communicate their findings to a remote server. Standard FL can be
articulated as an optimization problem, specifically the Empirical Risk Minimization (ERM) given
by

min
W∈Rd

f(W ) :=
1

n

n∑
i=1

fi(W ) , (1)

where W represents the shared global network parameters, fi denotes the local objective for client
i, and n is the total number of clients.

Distinguishing it from conventional distributed learning, FL predominantly addresses heterogeneity
stemming from both data and model aspects. Data heterogeneity characterizes the fact that the local
data distribution across clients can vary widely. Such variation is rooted in real-world scenarios
where clients or users exhibit marked differences in their data, reflective of the variety of sensors or
software Jiang et al. (2020), of users’ unique preferences, etc. Li et al. (2020a). Recent works Zhao
et al. (2018) showed how detrimental the non-iidness of the local data could be on the training of
a FL model. This phenomenon known as client-drift, is intensively studied to develop methods
limiting its impact on the performance (Karimireddy et al., 2020; Gao et al., 2022b; Mendieta et al.,
2022).

Furthermore, given disparities among clients in device resources, e.g., energy consumption, compu-
tational capacities, memory storage or network bandwidths, model heterogeneity becomes a pivotal
consideration. To avoid restricting the global model’s architecture to the largest that is compatible
with all clients, recent methods aim at reducing its size differently for each client to extract the ut-
most of their capacities. This can be referred to as constraint-based local model personalization (Gao
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et al., 2022a). In such a context, clients often train a pruned version of the global model (Jiang et al.,
2022b; Diao et al., 2021) before transmitting it to the server for aggregation (Li et al., 2021). A con-
temporary and influential offshoot of this is Independent Subnetwork Training (IST) (Yuan et al.,
2022). It hinges on the concept that each client trains a subset of the main server-side model, sub-
sequently forwarding the pruned model to the server. Such an approach significantly trims local
computational burdens in FL (Dun et al., 2023).

Our research, while aligning with the IST premise, brings to light some key distinctions. A signif-
icant observation from our study is the potential privacy implications of continuously sending the
complete model back to the server. Presently, even pruned networks tend to preserve the overarching
structure of the global model. In this paper, we present an innovative approach to privacy-friendly
pruning. Our method involves transmitting only select segments of the global model back to the
server. This technique effectively conceals the true structure of the global model, thus achieving
a delicate balance between utility and confidentiality. As highlighted in Zeiler & Fergus (2014),
different layers within networks demonstrate varied capacities for representation and semantic in-
terpretation. The challenge of securely transferring knowledge from client to server, particularly
amidst notable model heterogeneity, is an area that has not been thoroughly explored. It’s pertinent
to acknowledge that the concept of gradient pruning as a means of preserving privacy was initially
popularized by the foundational work of Zhu et al. (2019). Following this, studies such as Huang
et al. (2020) have further investigated the efficacy of DNN pruning in maintaining privacy.

Besides, large language models (LLMs) have garnered significant attention and have been applied to
a plethora of real-world scenarios (Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023)
recently. However, the parameter count of modern LLMs often reaches the billion scale, making it
challenging to utilize user or client information and communicate within a FL framework. We aim
to explore the feasibility of training a more compact local model and transmitting only a subset of
the global network parameters to the server, while still achieving commendable performance.

From a formulation standpoint, our goal is to optimize the following objective, thereby crafting a
global model under conditions of model heterogeneity:

min
W1,...,Wn∈Rd

f(W ) := h (f1(W1), f2(W2), . . . , fn(Wn)) , (2)

where Wi denotes the model downloaded from client i to the server, which can differ as we
allow global pruning or other sparsification strategies. The global model W is a function of
{W1,W2, . . . ,Wn}, fi the local objective for client i and n the total number of clients. Func-
tion h is the aggregation mapping from the clients to the server. In conventional FL, it’s assumed
that function h is the average and all W1 = . . .Wn = W , which means the full global model is
downloaded from the server to every client. When maintaining a global model W , this gives us
f(x) := 1

n

∑n
i=1 fi(W ), which aligns with the standard empirical risk minimization (ERM).

In this paper, we introduce an efficient and adaptable federated network pruning framework tai-
lored to address model heterogeneity. The main contributions of our framework, denoted as FedP3
(Federated Personalized and Privacy-friendly network Pruning) algorithm, are:

• Versatile Framework: Our framework allows personalization based on each client’s
unique constraints (computational, memory, and communication).

• Dual-Pruning Method: Incorporates both global (server to client) and local (client-
specific) pruning strategies for enhanced efficiency.

• Privacy-Friendly Approach: Ensures privacy-friendly to each client by limiting the data
shared with the server to only select layers post-local training.

• Managing Heterogeneity: Effectively tackles data and model diversity, supporting non-
iid data distributions and various client-model architectures.

• Theoretical Interpretation: Provides a comprehensive analysis of global pruning and
personalized model aggregation. Discusses convergence theories, communication costs,
and the advantages over existing methodologies.

• Local Differential-Privacy Algorithm: Introduces LDP-FedP3, a novel local differential
privacy algorithm. Outlines privacy guarantees, utility, and communication efficiency.
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Algorithm 1 FedP3

1: Input: Client i has data Xi for i ∈ [n], the number of local updates K, the number of com-
munication rounds T , initial model weights Wt = {W 0

t ,W
1
t , . . . ,W

L
t } on the server for t = 0

2: Server specifies the server pruning mechanism Pi, the client pruning mechanism Qi, and the set
of layers to train Li ⊆ [L] for each client i ∈ [n]

3: for t = 0, 1, . . . , T − 1 do
4: Server samples a subset of participating clients Ct ⊂ [n]
5: Server sends the layer weights W l

t for l ∈ Li to client i ∈ Ct for training
6: Server sends the pruned weights Pi ⊙W l

t for l /∈ Li to client i ∈ Ct
7: for each client i ∈ Ct in parallel do
8: Initialize W l

t,0 = W l
t for all l ∈ [Li] and W l

t,0 = Pi ⊙W l
t for all l /∈ [Li]

9: for k = 0, 1, . . . ,K − 1 do
10: Compute Wt,k+1 ← LocalUpdate(Wt,k, Xi, Li, Qi, k),

where Wt,k := {W 0
t,k,W

1
t,k, . . . ,W

L
t,k}

11: end for
12: Send ∪l∈Li

W l
t,K to the server

13: end for
14: Server aggregates Wt+1 = Aggregation(∪i∈[n] ∪l∈Li W

l
t,K)

15: end for
16: Output: WT

2 APPROACH

We focus on the training of neural networks within the FL paradigm. Consider a global model

W := {W 0,W 1, . . . ,WL,W out} ,

where W 0 represents the weights of the input layer, W out the weights of the final output layer, and L
the number of hidden layers. Each W l, for all l ∈ L := {0, 1, . . . , L}, denotes the model parameters
for layer l. We distribute the complete dataset X across n clients following a specific distribution,
which can be non-iid. Each client then conducts local training on its local data denoted by Xi.

Algorithmic overview. In Algorithm 1, we introduce the details of our proposed general frame-
work called Federated Personalized and Privacy-friendly network Pruning (FedP3). For every client
i ∈ [n], we assign predefined pruning mechanisms Pi and Qi, determined by the client’s computa-
tional capacity and network bandwidth (see Line 2). Here, Pi denotes the maximum capacity of a
pruned global model W sent to client i, signifying server-client global pruning. On the other hand,
Qi stands for the local pruning mechanism, enhancing both the speed of local computation and the
robustness (allowing more dynamics) of local network training.

In Line 4, we opt for partial client participation by selecting a subset of clients Ct from the total
pool [n]. Unlike the independent subnetwork training approach, Lines 5–6 employ a personalized
server-client pruning strategy. This aligns with the concept of collaborative training. Under this
approach, we envision each client learning a subset of layers, sticking to smaller neural network
architectures of the global model. Due to the efficient and privacy-friendly communication, such a
method is not only practical but also paves a promising path for future research in FL-type training
and large language models.

The server chooses a layer subset Li for client i and dispatches the pruned weights, conditioned by
Pi, for the remaining layers. Local training spans K steps (Lines 8–12), detailed in Algorithm 2. To
uphold a privacy-friendly framework, only weights ∪l∈Li

W l
t,K necessary for training of each client

i are transmitted to the server (Line 12). The server concludes by aggregating the weights received
from every client to forge the updated model Wt+1, as described in Algorithm 3. We also provide
an intuitive pipeline in Figure 1.

Local update. Our proposed framework, FedP3, incorporates dynamic network pruning. In ad-
dition to personalized task assignments for each client i, our local update mechanism supports
diverse pruning strategies. Although efficient pruning strategies in FL remain an active research
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Figure 1: Pipeline illustration of our proposed framework FedP3.

Algorithm 2 LocalUpdate
1: Input: Wt,k, Xi, Li, Qi, k
2: Generate the step-wise local pruning ratio qi,k conditioned on Pi and Qi

3: Local training
(
∪l∈LiW

l
t,k

)
∪
(
∪l ̸∈Liqi,k ⊙ Pi ⊙W l

t

)
using local data Xi

4: Output: Wt,k+1

area (Horváth et al., 2021; Alam et al., 2022; Liao et al., 2023), we aim to determine if our frame-
work can accommodate various strategies and yield significant insights. In this context, we examine
different local update rules as described in Algorithm 2. We evaluate three distinct strategies: fixed
without pruning, uniform pruning, and uniform ordered dropout.

Assuming our current focus is on W l
t,k, where l /∈ Li, after procuring the pruned model conditioned

on Pi from the server, we denote the sparse model we obtain by Pi ⊙W l
t,0. Here:

• Fixed without pruning implies that we conduct multiple steps of the local update without
additional local pruning, resulting in Pi ⊙W l

t,K .

• Uniform pruning dictates that for every local iteration k, we randomly generate the proba-
bility qi,k and train the model qi,k ⊙ Pi ⊙W l

t,K .

• Uniform ordered dropout is inspired by Horváth et al. (2021). In essence, if Pi ⊙W l
t,0 ∈

Rd1×d2 (extendable to 4D convolutional weights; however, we reference 2D fully con-
nected layer weights here), we retain only the subset Pi ⊙W l

t,0[: qi,kd1, : qi,kd2] for train-
ing purposes. [: qi,kd1] represents we select the first qi,k × d1 elements from the total d1
elements.

Regardless of the chosen method, the locally deployed model is given by
(
∪l∈Li

W l
t,k

)
∪(

∪l ̸∈Li
qi,k ⊙ Pi ⊙W l

t,k

)
, as highlighted in Algorithm 2 Line 3.
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Algorithm 3 Aggregation

1: Input: ∪i∈[n] ∪l∈Li
W l

t,K
2: Simple Averaging:
3: W l

t+1 ← Avg
(
W l

t,K,i

)
for all nodes with l ∈ Li

4: Weighted Averaging:
5: Construct the aggregation weighting αi for each client i
6: W l

t+1 ← Avg
(
αiW

l
t,K,i

)
for all nodes with l ∈ Li

7: Attention Averaging:
8: Construct an attention mapping layer annoted by function h
9: W l

t+1 ← h
(
W l

t,K,i

)
for all nodes with l ∈ Li

10: Output: Wt+1

Layer-wise aggregation. Our Algorithm 1 distinctively deviates from existing methods in Line 12
as each client forwards only a portion of information to the server, thus prompting an investigation
into optimal aggregation techniques. In Algorithm 3 we evaluate three aggregation methodologies:

• Simple averaging computes the mean of all client contributions that include a specific layer
l. This option is presented in Line 3.

• Weighted averaging adopts a weighting scheme based on the number of layers client i is
designated to train. Specifically, the weight for aggregating W l

t,K,i from client i is given
by |Li|/

∑n
j=1 |Lj |, analogous to importance sampling. This option is presented in Line 5

• Attention-based averaging introduces an adaptive mechanism where an attention layer is
learned specifically for layer-wise aggregation. This option is presented in Line 9.

3 THEORETICAL ANALYSIS

Our work refines independent subnetwork training (IST) by adding personalization and layer-level
sampling, areas yet to be fully explored (see Appendix A.2 for related work). Drawing on the sketch-
based analysis from Shulgin & Richtárik (2023), we aim to thoroughly analyze FedP3, enhancing
the sketch-type design concept in both scope and depth.

Consider a global model denoted as w ∈ Rd. In Shulgin & Richtárik (2023), a sketch Cki ∈ Rd×d

represents submodel computations by weights permutations. We extend this idea to a more general
case encompassing both global pruning, denoted as P ∈ Rd×d, and personalized model aggrega-
tions, denoted as S ∈ Rd×d. Now we first present the formal definitions.
Definition 1 (Global Pruning Sketch P). Let a random subset S of [d] is a proper sampling such
that the probability cj := Prob(j ∈ S) > 0 for all j ∈ [d]. Then the biased diagonal sketch with S
is P := Diag(p1s, p

2
s, · · · , pds), where pjs = 1 if j ∈ S otherwise 0.

Unlike Shulgin & Richtárik (2023), we assume client-specific sampling with potential weight over-
lap. For simplicity, we consider all layers pruned from the server to the client, a more challenging
case than the partial pruning in FedP3 (Algorithm 1). The convergence analysis of this global prun-
ing sketch is in Appendix C.4.
Definition 2 (Personalized Model Aggregation Sketch S). Assume d ≥ n, d = sn, where s ≥ 1 is
an integer. Let π = (π1, · · · , πd) be a random permutation of the set [d]. The number of parameters
per layer nl, assume s can be divided by nl. Then, for all x ∈ Rd and each i ∈ [n], we define S as
S := n

∑si
j=s(i−1)+1 eπj

e⊤πj
.

Sketch S is based on the permutation compressor technique from Szlendak et al. (2021). Extending
this idea to scenarios where d is not divisible by n follows a similar approach as outlined in Szlendak
et al. (2021). To facilitate analysis, we apply a uniform parameter count nl across layers, preserving
layer heterogeneity. For layers with fewer parameters than dL, zero-padding ensures operational
consistency. This uniform distribution assumption maintains our findings’ generality and simplifies
the discussion. Our method assumes s divides dl, streamlining layer selection over individual ele-
ments. The variable v denotes the number of layers chosen per client, shaping a more analytically
conducive framework for FedP3, detailed in Algorithm 4 in the Appendix.
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Theorem 1 (Personalized Model Aggregation). Let Assumption 1 holds. Iterations K, choose step-
size γ ≤

{
1/Lmax, 1/

√
L̂LmaxK

}
. Denote ∆0 := f(w0)− f inf . Then for any K ≥ 1, the iterates wk

of FedP3 in Algorithm 4 satisfy

min
0≤k≤K−1

E
[∥∥∇f(wk)

∥∥2] ≤ 2(1 + L̄Lmaxγ
2)K

γK
∆0. (3)

We have achieved a total communication cost of O (d/ϵ2), marking a significant improvement over
unpruned methods. This enhancement is particularly crucial in FL for scalable deployments, es-
pecially with a large number of clients. Our approach demonstrates a reduction in communication
costs by a factor of O (n/ϵ). In the deterministic setting of unpruned methods, we compute the
exact gradient, in contrast to bounding the gradient as in Lemma 1. Remarkably, by applying the
smoothness-based bound condition (Lemma 1) to both FedP3 and the unpruned method, we achieve
a communication cost reduction by a factor of O(d/n) for free. This indicates that identifying a
tighter upper gradient bound could potentially lead to even more substantial theoretical improve-
ments in communication efficiency. A detailed analysis is available in Appendix C.2. We have
also presented an analysis of the locally differential-private variant of FedP3, termed LDP-FedP3, in
Theorem 2.

Theorem 2 (LDP-FedP3). Under Assumptions 1 and 2, with the use of Algorithm 5, consider the
number of samples per client to be m and the number of steps to be K. Let the local sampling
probability be q ≡ b/m. For constants c′ and c, and for any ϵ < c′q2K and δ ∈ (0, 1), LDP-FedP3

achieves (ϵ, δ)-LDP with σ2 = cKC2 log(1/ϵ)
m2ϵ2 .

Set K = max
{

mϵ
√
L∆0

C
√

cd log(1/δ)
, m2ϵ2

cd log(1/δ)

}
and γ = min

{
1
L ,

√
∆0cd log(1/δ)

Cmϵ
√
L

}
, we have:

1

K

K−1∑
k=0

E
[∥∥∇f(wt)

∥∥2] ≤ 2C
√
Lcd log(1/σ)

mϵ
= O

(
C
√
Ld log(1/δ)

mϵ

)
.

Consequently, the total communication cost is:

CLDP−FedP3 = O
(

mϵ
√
dL∆0

C
√
log(1/δ)

+
m2ϵ2

log(1/δ)

)
.

We establish the privacy guarantee and communication cost of LDP-FedP3. Our analysis aligns
with the communication complexity in Li et al. (2022) while providing a more precise convergence
bound. Further details and comparisons with existing work are discussed in Appendix C.3.

4 EXPERIMENTS

4.1 DATASETS AND SPLITTING TECHNIQUES

We utilize benchmark datasets CIFAR10/100 Krizhevsky et al. (2009), a subset of EMNIST la-
beled EMNIST-L Cohen et al. (2017), and FashionMNIST Xiao et al. (2017), maintaining standard
train/test splits as in McMahan et al. (2017) and Li et al. (2020b). While CIFAR100 has 100 labels,
the others have 10, with a consistent data split of 70% for training and 30% for testing. Details on
these splits are in Table 3 in the Appendix. For non-iid splits in these datasets, we employ class-wise
and Dirichlet non-iid strategies, detailed in Appendix B.2.

4.2 OPTIMAL LAYER OVERLAPPING AMONG CLIENTS

Datasets and Models Specifications. In this section, our objective is to develop a communication-
efficient architecture that also preserves accuracy. We conducted extensive experiments on recog-
nized datasets like CIFAR10/100 and FashionMNIST, using a neural network with two convolutional
layers (denoted as Conv) and four fully-connected layers (FC). For EMNIST-L, our model includes
four FC layers including the output layer. This approach simplifies the identification of optimal layer
overlaps among clients. We provide the details of network architectures in Appendix B.3.
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Figure 2: Comparative Analysis of Layer Overlap Strategies: The left figure presents a comparative
study of different overlapping layer configurations across four major datasets. On the right, we ex-
tend this comparison to include the state-of-the-art personalized FL method, FedCR. In this context,
S1 refers to a class-wise non-iid distribution, while S2 indicates a Dirichlet non-iid distribution.

Layer Overlapping Analysis. Figure 2 presents a comparison of different layer overlapping
strategies. For Optional Pruning Uniformly with selection of 2 layers (OPU2) represents the se-
lection of two uniformly chosen layers from the entire network for training, while OPU3 involves 3
such layers. LowerB denotes the scenario where only one layer’s parameters are trained per client,
serving as a potential lower bound benchmark. All clients participate in training the final FC layer
(denoted as FFC). “S1” and “S2” signify class-wise and Dirichlet data distributions, respectively.
For example, FedAvg-S1 shows the performance of FedAvg under a class-wise non-iid setting.
Given that a few layers are randomly assigned for each client to train, we assess the communica-
tion cost on average. In CIFAR10/100 and FashionMNIST training, by design, we obtain a 20%
communication reduction for OPU3, 40% for OPU2, and 60% for LowerB. Remarkably, OPU3
shows comparable performance to FedAvg, with only 80% of the parameters communicated. Com-
putational results in the Appendix B.5 (Figure 6) elucidate the outcomes of randomly sampling a
single layer (LowerB). Particularly in CIFAR10, clients training on FC2+FFC layers face commu-
nication costs more than 10,815 times higher than those training on Conv1+FFC layers, indicating
significant model heterogeneity.

Beyond validating FedAvg, we compare with the state-of-the-art personalized FL method
FedCR Zhang et al. (2023) (details in Appendix B.4), as shown on the right of Figure 2. Our
method (FedCR-OPU3), despite 20% lower communication costs, achieves promising performance
with only a 2.56% drop on S1 and a 3.20% drop on S2 across four datasets. Additionally, Figure 2
highlights the performance differences between the two non-iid data distribution strategies, S1 and
S2. The average performance gap across LowerB, OPU2, and OPU3 is 3.55%. This minimal reduc-
tion in performance across all datasets underscores the robustness and stability of our FedP3 pruning
strategy in diverse data distributions within FL.

Larger Network Verifications. Our assessment extends beyond shallow networks to the more
complex ResNet18 model He et al. (2016), tested with CIFAR10 and CIFAR100 datasets. Figure
3 illustrates the ResNet18 architecture, composed of four blocks, each containing four layers with
skip connections, plus an input and an output layer, totaling 18 layers. A key focus of our study is
to evaluate the efficiency of training this heterogeneous model using only a partial set of its layers.
We performed layer ablations in blocks 2 and 3 (B2 and B3), as shown in Figure 1. The notation
-B2-B3(full) indicates complete random pruning of B2 or B3, with the remaining structure sent
to the server. -B2(part) refers to pruning the first or last two layers in B2. We default the global
pruning ratio from server to client at 0.9, implying that the locally deployed model is approximately
10% smaller than the global model. Results in Figure 1 demonstrate that dropping random layers
from ResNet18 does not significantly impact performance, sometimes even enhancing it. Com-
pared with Full, -B2(part) and -B3(part) achieved a 6.25% reduction in communication
costs with only a 1.03% average decrease in performance. Compared to the standard FedAvg without
pruning, this is a 16.63% reduction, showcasing the efficiency of our FedP3 method. Remarkably,
-B3(part) even surpassed the Full model in performance. Additionally, -B2-B3(full) re-
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Figure 3: ResNet18 architecture.

Method CIFAR10 CIFAR100
Full 73.25 63.33
-B2-B3 (full) 65.68 58.26
-B2 (part) 72.09 61.11
-B3 (part) 73.47 62.39

Table 1: Performance of ResNet18 under class-
wise non-iid conditions. The global pruning ra-
tio from server to client is maintained at 0.9 for
all baseline comparisons by default.
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Figure 4: Comparative Analysis of Server to Client Global Pruning Strategies: The left portion
displays Top-1 accuracy across four major datasets and two distinct non-IID distributions, varying
with different global pruning rates. On the right, we quantitatively assess the trade-off between
model size and accuracy.

sulted in a 12.5% average reduction in communication costs (21.25% less compared to unpruned
FedAvg), with just a 6.32% performance drop on CIFAR10 and CIFAR100. These results demon-
strate the potential of FedP3 for effective learning in LLMs.

4.3 KEY ABLATION STUDIES

Our framework, detailed in Algorithm 1, critically depends on the choice of pruning strategies. The
FedP3 algorithm integrates both server-to-client global pruning and client-specific local pruning.
Global pruning aims to minimize the size of the model deployed locally, while local pruning focuses
on efficient training and enhanced robustness.

4.3.1 EXPLORING SERVER TO CLIENT GLOBAL PRUNING STRATEGIES

We investigate various global pruning ratios and their impacts, as shown in the left part of Figure 4.
A global pruning rate of 0.9 implies the local model has 10% fewer parameters than the global
model. When comparing unpruned (rate 1.0) scenarios, we note an average performance drop of
5.32% when reducing the rate to 0.9, 12.86% to 0.7, and a significant 27.76% to 0.5 across four
major datasets and two data distributions. The performance decline is more pronounced at a 0.5
pruning ratio, indicating substantial compromises in performance for halving the model parameters.

In the right part of Figure 4, we evaluate the trade-off between model size and accuracy. Assuming
the total global model parameters as N and accuracy as Acc, the global pruning ratio as r, we weigh
the local model parameters against accuracy using a factor α := N/Acc > 0, where the x-axis
represents Acc+α/r. A higher α indicates a focus on reducing parameter numbers for large global
models, accepting some performance loss. This becomes increasingly advantageous with higher α
values, suggesting a promising area for future exploration, especially with larger-scale models.

4.3.2 EXPLORING CLIENT-WISE LOCAL PRUNING STRATEGIES

Next, we are interested in exploring the influence of different local pruning strategies. Building
upon our initial analysis, we investigate scenarios where our framework permits varying levels of
local network pruning ratios. Noteworthy implementations in this domain resemble FjORD (Horváth
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Table 2: Comparison of different network local pruning strategies. Global pruning ratio p is 0.9.

Strategies CIFAR10 CIFAR100 EMNIST-L FashionMNIST
Fixed 67.65 / 61.17 65.41 / 57.38 88.75 / 86.33 81.75 / 84.27
Uniform (p = 0.9) 65.51 / 60.10 64.33 / 58.20 85.14 / 84.29 78.81 / 77.24
Ordered Dropout (p = 0.9) 61.73 / 58.82 61.11 / 53.28 82.54 / 80.18 75.45 / 73.27
Uniform (p = 0.7) 60.78 / 56.41 60.35 / 54.88 77.39 / 75.82 72.66 / 70.37
Ordered Dropout (p = 0.7) 58.90 / 53.38 59.72 / 50.03 72.19 / 70.30 70.21 / 67.58

et al., 2021), FedRolex (Alam et al., 2022), and Flado (Liao et al., 2023). Given that the only par-
tially open-source code available is from FjORD, we employ their layer-wise approach to network
sparsity. The subsequent comparisons and their outcomes are presented in Table2. The details of
different pruning strategies, including Fixed, Uniform and Ordered Dropout are presented
in the above Approach section. ”Fixed”, ”Uniform”, ”Ordered Dropout” represents Fixed without
pruning, Uniform pruning, and Uniform order dropout in the Approach section, respectively. From
the results in Table. 2, we can see the difference between Uniform and Ordered Dropout
strategies will be smaller with small global pruning ratio p from 0.9 to 0.7. Besides, in our experi-
ments, Ordered Dropout is no better than the simple Uniform strategy for local pruning.

4.3.3 EXPLORING ADAPTIVE MODEL AGGREGATION STRATEGIES

In this section, we explore a range of weighting strategies, including both simple and advanced
averaging methods, primarily focusing on the CIFAR10/100 datasets. We assign clients with 1 −
3 layers (OPU1-2-3) or 2 − 3 layers (OPU2-3) randomly. In Algorithm 3, we implement two
aggregation approaches: simple and weighted aggregation.
Let Ll denote the set of clients involved in training the l-th layer,
where l ∈ L. The server’s received weights for layer l from client
i are represented as W l

t,K,i. The general form of model aggregation
is thus defined as:

W l
t+1 =

Ll∑
j=1

αiW
l
t,K,i.

If αi is initialized as 1/|Ll|, this constitutes simple mean aver-
aging. Considering Ni as the total number of layers for client i
and n as the total number of clients, if αi = Ni/

∑n
j=1 Nj , this

method is termed weighted averaging. The underlying idea is
that clients with more comprehensive network information should
have greater weight in parameter contribution. A more flexible ap-
proach is attention averaging, where αi is learnable, encom-
passing simple and weighted averaging as specific cases.

CIFAR10 CIFAR100
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Figure 5: Comparison of
various model aggregation
strategies. p = 0.9.

Future research may delve into a broader range of aggregation strategies. Our findings, shown in
Figure 5, include S123-S1 for the OPU1-2-3 method with simple aggregation in class-wise non-
iid distributions, and W23-S2 for OPU2-3 with weighted aggregation in Dirichlet non-iid. The
data illustrates that weighted averaging relatively improves over simple averaging by 1.01% on
CIFAR10 and 1.05% on CIFAR100. Furthermore, OPU-2-3 consistently surpasses OPU1-2-3 by
1.89%, empirically validating our hypotheses.

5 CONCLUSION

In this paper, we introduce FedP3, a nuanced solution designed to tackle both data and model het-
erogeneities while prioritizing privacy. We have precisely defined the concepts of personalization,
privacy, and pruning as central to our analysis. The efficacy of each component is rigorously vali-
dated through comprehensive proofs and extensive experimental evaluations.
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A EXTENDED RELATED WORK

A.1 FEDERATED NETWORK PRUNING

We introduce two distinct types of network pruning within our study: 1) global pruning, which
extends from server to client, and 2) local pruning, where each client’s network is pruned based on
its own specific data. In our setting, we assume federated pruning is the scenario with both possible
global and local pruning. Federated network pruning, a closely related field, pursues the objective
of identifying the optimal or near-optimal pruned neural network at each communication from the
server to the clients, as documented in works of Jiang et al. (2022a) and Huang et al. (2022), for
example.

During the initial phase of global pruning, (Jiang et al., 2022a) isolates a single potent and reliable
client to initiate model pruning. The subsequent stage of local pruning incorporates all clients,
advancing the adaptive pruning process. This process involves not only parameter removal but
also the reintroduction of parameters, complemented by the standard FedAvg (McMahan et al.,
2017). However, the need for substantial local memory to record the updated relevance measures
of all parameters in the full-scale model poses a challenge. As a solution to this problem, Huang
et al. (2022) proposes an adaptive batch normalization and progressive pruning modules that utilize
sparse local computation. Yet, these methods overlook explicit considerations for constraints related
to client-side computational resources and communication bandwidth.

Our primary attention gravitates towards designing distinct local pruning methods, such as (Horváth
et al., 2021), (Alam et al., 2022), and (Liao et al., 2023). Instead of learning the optimal or subop-
timal pruned local network, each client attempts to identify the optimal adaptive sparsity method.
The work of Horváth et al. (2021) has been groundbreaking, as they introduced Ordered Dropout to
navigate this issue, achieving commendable results. It’s noteworthy that our overarching framework
is compatible with these methods, facilitating straightforward integration of diverse local pruning
methods. There are other noticeable methods, such as (Diao et al., 2021), which focuses on re-
ducing the size of each layer in neural networks. In contrast, our approach contemplates a more
comprehensive layer-wise selection and emphasizes neuron-oriented sparsity.

As of our current knowledge, no existing literature directly aligns with our approach, despite its
practicality and generality. Even the standard literature regarding federated network pruning appears
to be rather constrained.

A.2 SUBNETWORK TRAINING

Our research aligns with the rising interest in Independent Subnetwork Training (IST), a technique
that partitions a neural network into smaller components. Each component is trained in a distributed
parallel manner, and the results are subsequently aggregated to update the weights of the entire
model. The decoupling in IST enables each subnetwork to operate autonomously, using fewer pa-
rameters than the complete model. This not only diminishes the computational cost on individual
nodes but also expedites synchronization.

This approach was introduced by Yuan et al. (2022) for networks with fully connected layers and was
later extended to ResNets Dun et al. (2022) and Graph architectures Wolfe et al. (2023). Empirical
evaluations have consistently posited IST as an attractive strategy, proficiently melding data and
model parallelism to train expansive models even with restricted computational resources.

Further theoretical insights into IST for overparameterized single hidden layer neural networks with
ReLU activations were presented by Liao & Kyrillidis (2022). Concurrently, Shulgin & Richtárik
(2023) revisited IST, exploring it through the lens of sketch-type compression.

While acknowledging the adaptation of IST to FL using asynchronous distributed dropout tech-
niques Dun et al. (2023), our approach diverges significantly from prior works. We advocate that
clients should not relay the entirety of their subnetworks to the central server—both to curb exces-
sive networking costs and to safeguard privacy. Moreover, our model envisions each client akin to
an assembly line component: each specializes in a fraction of the complete neural network, guided
by its intrinsic resources and computational prowess.
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In Section A.1 and A.2, we compared our study with pivotal existing research, focusing on federated
network pruning and subnetwork training. Responding to reviewer feedback, we have broadened
the scope of our related work section to include a more extensive comparison with other significant
studies.

A.3 MODEL HETEROGENEITY

Model heterogeneity denotes the variation in local models trained across diverse clients, as high-
lighted in previous research (Kairouz et al., 2021; Ye et al., 2023). A seminal work by Smith et al.
(2017) extended the well-known COCOA method (Jaggi et al., 2014; Ma et al., 2015), incorporat-
ing system heterogeneity by randomly selecting the number of local iterations or mini-batch sizes.
However, this approach did not account for variations in client-specific model architectures or sizes.
Knowledge distillation has emerged as a prominent strategy for addressing model heterogeneity in
Federated Learning (FL). Li & Wang (2019) demonstrated training local models with distinct archi-
tectures through knowledge distillation, but their method assumes access to a large public dataset
for each client, a premise not typically found in current FL scenarios. Additionally, their approach,
which shares model outputs, contrasts with our method of sharing pruned local models. Building on
this concept, Lin et al. (2020) proposed local parameter fusion based on model prototypes, fusing
outputs of clients with similar architectures and employing ensemble training on additional unla-
beled datasets. Tan et al. (2022) introduced an approach where clients transmit the mean values of
embedding vectors for specific classes, enabling the server to aggregate and redistribute global pro-
totypes to minimize the local-global prototype distance. He et al. (2021) developed FedNAS, where
clients collaboratively train a global model by searching for optimal architectures, but this requires
transmitting both full network weights and additional architecture parameters. Our method diverges
from these approaches by transmitting only weights from a subset of neural network layers from
client to server.

B EXPERIMENTAL DETAILS

B.1 STATISTICS OF DATASETS

We provide the statistics of our adopted datasets in Table. 3.

Dataset # data # train per client # test per client

EMNIST-L (Cohen et al., 2017) 48K+8K 392 168
FashionMNIST (Xiao et al., 2017) 60K+10K 490 210
CIFAR10 (Krizhevsky et al., 2009) 50K+10K 420 180

CIFAR100 (Krizhevsky et al., 2009) 50K+10K 420 180

Table 3: Dataset statistics, with data uniformly divided among 100 clients by default.

B.2 DATA DISTRIBUTIONS

We emulated non-iid data distribution among clients using both class-wise and Dirichlet non-iid
scenarios.

• Class-wise: we designate fixed classes directly to every client, ensuring uniform data vol-
ume per class. As specifics, EMNIST-L, FashionMNIST, and CIFAR10 assign 5 classes
per client, while CIFAR100 allocates 15 classes for each client.

• Dirichlet: following an approach similar to FedCR (Zhang et al., 2023), we use a Dirichlet
distribution over dataset labels to create a heterogeneous dataset. Each client is assigned a
vector (based on the Dirichlet distribution) that corresponds to class preferences, dictating
how labels–and consequently images–are selected without repetition. This method contin-
ues until every data point is allocated to a client. The Dirichlet factor indicates the level
of data non-iidness. With a Dirichlet parameter of 0.5, about 80% of the samples for each
client on EMNIST-L, FashionMNIST, and CIFAR10 are concentrated in four classes. For
CIFAR100, the parameter is set to 0.3.
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B.3 NETWORK ARCHITECTURES

Our primary experiments utilize four widely recognized datasets, with detailed descriptions provided
in the Experiments section. For the CIFAR10/100 and FashionMNIST experiments, we opt for
CNNs comprising two convolutional layers and four fully-connected layers as our standard network
architecture. In contrast, for the EMNIST-L experiments, we employ a four-layer MLP architecture.
The specifics of these architectures are outlined in Table 4. Additionally, the default ResNet18
network architecture is selected for our layer-overlapping experiments.

Layer Type Size # of Params.
Conv + ReLu 5× 5× 64 4,864 / 1,664

Max Pool 2× 2 0
Conv + ReLu 5× 5× 64 102, 464

Max Pool 2× 2 0
FC + ReLu 1600× 1024 1,638,400
FC + ReLu 1024× 1024 1,048,576
FC + ReLu 1024× 10/100 10,240 / 102,400

Layer Type Size # of Params.
FC + ReLu 784× 1024 802,816
FC + ReLu 1024× 1024 1,048,576
FC + ReLu 1024× 1024 1,048,576

FC 1024× 10 10,240

Table 4: The left figure depicts the neural network architecture employed for the CIFAR10/100 and
FashionMNIST experiments. Conversely, the right figure illustrates the default MLP (Multi-Layer
Perceptron) architecture used specifically for the EMNIST-L experiments.

B.4 TRAINING DETAILS

Our experiments were conducted on NVIDIA A100 or V100 GPUs, depending on their availability
in our cluster. The framework was implemented in PyTorch 1.4.0 and torchvision 0.5.0 within a
Python 3.8 environment. Our initial code, based on FedCR Zhang et al. (2023), was refined to
include hyper-parameter fine-tuning. A significant modification was the use of an MLP network
with four FC layers for EMNIST-L performance evaluation. We standardized the experiments to
500 epochs with a local training batch size of 48. The number of local updates was set at 10 to
assess final performance. For the learning rate, we conducted a grid search, exploring a range from
10−5 to 0.1, with a fivefold increase at each step. In adapting FedCR, we used their default settings
and fine-tuned the β parameter across values 0.0001, 0.0005, 0.001, 0.005, 0.01 for all datasets.

B.5 QUANTITATIVE ANALYSIS OF REDUCED PARAMETERS

We provide a quantitative analysis of parameter reduction across four datasets, as shown in Fig-
ure 6. The x-axis represents different global pruning ratios, and the y-axis indicates the number
of parameters. For simplicity, we consider a scenario where, aside from the final fully-connected
layer, each client trains only one additional layer, akin to the LowerB method used in our earlier
experiments. For instance, the label FC refers to a condition where only FC2 and the final layer are
fully trained, with other layers being pruned during server-to-client transfer and dropped in server
communication.

With a constant global pruning ratio, the left part of the figure shows the total number of parame-
ters in the locally deployed model post server-to-client pruning, while the right part illustrates the
communication cost for each scenario. The numbers atop each bar indicate the relative differences
between the largest and smallest elements under various conditions. Across all datasets, we note
that higher global pruning ratios result in progressively smaller deployed models. For example, at a
0.5 global pruning ratio, the model size for clients training the Conv1 layer is 57.93% smaller than
those training FC2. Moreover, there is a significant disparity in communication costs among clients.
The ratios of communication costs are 10815 for CIFAR10, 1522.91 for CIFAR100, 13749.46 for
FashionMNIST, and 30.23 for EMNIST-L.
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Figure 6: The number of parameters across multiple layers, varying according to different global
pruning ratios, spans across four distinct datasets. For each global pruning ratio, the left side of the
bar graph shows the total number of parameters in the model after server-to-client pruning when
deployed locally. Conversely, the right side details the communication cost associated with each
scenario. Atop each bar, we indicate the relative ratio between the layers with the largest and smallest
number of parameters, i.e., value = (largest−smallest)/smallest. For (d), since the size of parameters
of FC2 and FC3 are the same, we omit plotting FC3 to avoid overlapping.
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Algorithm 4 FedP3 theoretical framework

1: Parameters: learning rate γ > 0, number of iterations K, sequence of global pruning sketches(
Pk

1 , . . . ,P
k
n

)
k≤K

, aggregation sketches
(
Sk
1 , . . . ,S

k
n

)
k≤K

; initial model w0 ∈ Rd

2: for k = 0, 1, · · · ,K do
3: Conduct global pruning Pk

iw
k for i ∈ [n] and broadcast to all computing nodes

4: for i = 1, . . . , n in parallel do
5: Compute local (stochastic) gradient w.r.t. personalized model: Pk

i∇fi(Pk
iw

k)
6: Take (maybe multiple) gradient descent step uk

i = Pk
iw

k − γPk
i∇fi(Pk

iw
k)

7: Send vki = Sk
i u

k
i to the server

8: end for
9: Aggregate received subset of layers: wk+1 = 1

n

∑n
i=1 v

k
i

10: end for

C EXTENDED THEORETICAL ANALYSIS

C.1 ANALYSIS OF THE GENERAL FEDP3 THEORETICAL FRAMEWORK

We introduce the theoretical foundation of FedP3, detailed in Algorithm 4. Line 3 demonstrates
the global pruning process, employing a biased sketch over randomized sketches Pi for each client
i ∈ [n], as defined in Definition 1. The procedure from Lines 4 to 8 details the local training methods,
though we exclude further local pruning for brevity. Notably, our framework could potentially
integrate various local pruning techniques, an aspect that merits future exploration.

Our approach uniquely compresses both the weights wk and their gradients ∇fi(Pk
iw

k). For
the sake of clarity, we assume in Line 5 that each client i calculates the pruned full gradient
Pk

i∇fi(Pk
iw

k), a concept that could be expanded to encompass stochastic gradient computations.

In alignment with Line 6, our subsequent theoretical analysis presumes that each client performs
a single-step gradient descent. This assumption stems from observations that local steps have not
demonstrated theoretical efficiency gains in heterogeneous environments until very recent studies,
such as Mishchenko et al. (2022) and its extensions like Malinovsky et al. (2022); Yi et al. (2023),
which required extra control variables not always viable in settings with limited resources.

Diverging from the method in Shulgin & Richtárik (2023), our model involves explicitly sending a
selected subset of layers vki from each client i to the server. The aggregation of these layer subsets
is meticulously described in Line 9.

Our expanded theoretical analysis is structured as follows: Section C.2 focuses on analyzing the
convergence rate of our innovative model aggregation method. In Section C.3, we introduce LDP-
FedP3, a novel differential-private variant of FedP3, and discuss its communication complexity in
a local differential privacy setting. Section C.4 then delves into the analysis of global pruning, as
detailed in Algorithm 4.

C.2 MODEL AGGREGATION ANALYSIS

In this section, our objective is to examine the potential advantages of model aggregation and
to present the convergence analysis of our proposed FedP3. Our subsequent analysis adheres to
the standard nonconvex optimization framework, with the goal of identifying an ϵ-stationary point
where:

E
[
∥∇f(w)∥2

]
≤ ϵ, (4)

Here, E[·] represents the expectation over the inherent randomness in w ∈ Rd. Moving forward, our
analysis will focus primarily on the convergence rate of our innovative model aggregation strategy.
To begin, we establish the smoothness assumption for each local client’s model.

Assumption 1 (Smoothness). There exists some Li ≥ 0, such that for all i ∈ [n], the function fi is
Li-smooth, i.e.,

∥∇fi(x)−∇fi(y)∥ ≤ Li ∥x− y∥ , ∀x, y ∈ Rd.
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This smoothness assumption is very standard for the convergence analysis (Nesterov, 2003; Ghadimi
& Lan, 2013; Mishchenko et al., 2022; Malinovsky et al., 2022; Li & Li, 2022; Yi et al., 2023). The
smoothness of function f is L̄ = 1

n

∑n
i=1 Li, we denote Lmax := maxi∈n Li.

We demonstrate the convergence of our proposed FedP3, with a detailed proof presented in Sec-
tion D.1. Here, we restate Theorem 1 for clarity:
Theorem 1 (Personalized Model Aggregation). Let Assumption 1 holds. Iterations K, choose step-
size γ ≤

{
1/Lmax, 1/

√
L̂LmaxK

}
. Denote ∆0 := f(w0)− f inf . Then for any K ≥ 1, the iterates wk

of FedP3 in Algorithm 4 satisfy

min
0≤k≤K−1

E
[∥∥∇f(wk)

∥∥2] ≤ 2(1 + L̄Lmaxγ
2)K

γK
∆0. (3)

Next, we interpret the results. Utilizing the inequality 1 + w ≤ exp(w) and assuming γ ≤
1√

L̄LmaxK
, we derive the following:

(1 + L̄Lmaxγ
2)K ≤ exp(L̄Lmaxγ

2K) ≤ exp(1) ≤ 3.

Incorporating this into the equation from Theorem 1, we ascertain:

min
0≤k≤K−1

E
[∥∥∇f(wk)

∥∥2] ≤ 6

γK
∆0.

To ensure the right-hand side of the above equation is less than ϵ, the condition becomes:
6∆0

γK
≤ ϵ⇒ K ≥ 6∆0

γϵ
.

Given γ ≤ 1√
L̄LmaxK

, it follows that K ≥ 36(∆0)
2

L̄Lmaxϵ2
= O

(
1
ϵ2

)
.

Considering the communication cost per iteration is n × v = n × d
n = d, the total communication

cost is:

CFedP3 = O
(

d

ϵ2

)
.

We compare this performance with an algorithm lacking our specific model aggregation design,
namely Distributed Gradient Descent (DGD). When DGD satisfies Assumption 4 with A = C =
0, B = 1 as per Theorem 5, the total iteration complexity to achieve an ϵ-stationary point is O

(
1
ϵ

)
.

Given that the communication cost per iteration is nd, the total communication cost for DGD is:

CDGD = O
(
nd

ϵ

)
.

We observe that the communication cost of FedP3 is more efficient than DGD by a factor ofO(n/ϵ).
This is particularly advantageous in practical Federated Learning (FL) scenarios, where a large
number of clients are distributed, highlighting the suitability of our method for such environments.
This efficiency also opens avenues for further exploration in large language models.

Although we have demonstrated provable advantages in communication costs for large client num-
bers, we anticipate that our method’s performance exceeds our current theoretical predictions. This
expectation is based on the comparison of FedP3 and DGD under Lemma 1. For DGD, with param-
eters A = L̄, B = C = 0, the iteration complexity aligns with O( 1

ϵ2 ), leading to a communication
cost of:

C ′
DGD = O

(
nd

ϵ2

)
.

This indicates a significant reduction in communication costs by a factor of n without additional
requirements. It implies that if we could establish a tighter bound on ∥∇fi(w)∥2, beyond the scope
of Lemma 1, our theoretical results could be further enhanced.
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Algorithm 5 Differential-Private FedP3 (LDP-FedP3)

1: Parameters: learning rate γ > 0, number of iterations K, sequence of aggregation sketches(
Sk
1 , . . . ,S

k
n

)
k≤K

, perturbation variance σ2, minibatch size b

2: for k = 0, 1, 2 . . . do
3: Server broadcasts wk to all clients
4: for each client i = 1, . . . , n in parallel do
5: Sample a random minibatch Ib with size b from lcoal dataset Di

6: Compute local stochastic gradient gki = 1
b

∑
j∈Ib
∇fi,j(wk)

7: Take (maybe multiple) gradient descent step uk
i = wk − γgki

8: Gaussian perturbation to achieve LDP: ũk
i = uk

i + ζki , where ζki ∼ N (0, σ2I)
9: Send vki = Sk

i ũ
k
i to the server

10: end for
11: Server aggregates received subset of layers: wk+1 = 1

n

∑n
i=1 v

k
i

12: end for

C.3 DIFFERENTIAL-PRIVATE FEDP3 ANALYSIS

The integration of gradient pruning as a privacy preservation method was first brought to prominence
by Zhu et al. (2019). Further studies, such as Huang et al. (2020), have delved into the effectiveness
of DNN pruning in protecting privacy.

In our setting, we ensure that our training process focuses on extracting partial features without rely-
ing on all layers to memorize local training data. This is achieved by transmitting only a select subset
of layers from the client to the server in each iteration. By transmitting fewer layers—effectively
implementing greater pruning from clients to the server—we enhance the privacy-friendliness of our
framework.

This section aims to provide a theoretical exploration of the ”privacy-friendly” aspect of our work.
Specifically, we introduce a differential-private version of our method, LDP-FedP3, and discuss its
privacy guarantees, utility, and communication cost, supported by substantial evidence and rigorous
proof.

Local differential privacy is crucial in our context. We aim not only to train machine learning models
with reduced communication bits but also to preserve each client’s local privacy, an essential element
in FL applications. Following the principles of local differential privacy (LDP) as outlined in works
like Andrés et al. (2013); Chatzikokolakis et al. (2013); Zhao et al. (2020); Li et al. (2022), we
define two datasets D and D′ as neighbors if they differ by just one entry. We provide the following
definition for LDP:

Definition 3. A randomized algorithm A : D → F , where D is the dataset domain and F the
domain of possible outcomes, is (ϵ, δ)-locally differentially private for client i if, for all neighboring
datasets Di, D

′
i ∈ D on client i and for all events S ∈ F within the range of A, it holds that:

PrA(Di) ∈ S ≤ eϵPrA(D′
i) ∈ S + δ.

This LDP definition (Definition 3) closely resembles the original concept of (ϵ, δ)-DP (Dwork et al.,
2014; 2006), but in the FL context, it emphasizes each client’s responsibility to safeguard its privacy.
This is done by locally encoding and processing sensitive data, followed by transmitting the encoded
information to the server, without any coordination or information sharing among clients.

Similar to our previous analysis of FedP3, we base our discussion here on the smoothness assump-
tion outlined in Assumption 1. For simplicity, and because our primary focus in this section is on
privacy concerns, we assume uniform smoothness across all clients, i.e., Li ≡ L.

Our analysis also relies on the bounded gradient assumption, which is a common consideration in
differential privacy analyses:

Assumption 2 (Bounded gradient). There exists some constant C ≥ 0, such that for all clients
i ∈ [n] and for any x ∈ Rd, the gradient norm satisfies ∥∇fi(x)∥ ≤ C.
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Table 5: Comparison of communication complexity in LDP Algorithms for nonconvex problems
across distributed settings with n nodes.

Algorithm Privacy Communication Complexity

Q-DPSGD-1 (Ding et al., 2021) (ϵ, δ)-LDP (1+n/(mσ̃2))m2ϵ2

d log(1/δ)

LDP SVRG/SPIDER (Lowy et al., 2023) (ϵ, δ)-LDP n3/2mϵ
√
d√

log(1/δ)

SDM-DSGD (Zhang et al., 2020) (ϵ, δ)-LDP n7/2mϵ
√
d

(1+ω)3/2
√

log(1/δ)
+ nm2ϵ2

(1+ω) log(1/δ)

CDP-SGD (Li et al., 2022) (ϵ, δ)-LDP n3/2mϵ
√
d

(1+ω)3/2
√

log(1/δ)
+ nm2ϵ2

(1+ω) log(1/δ)

LDP-FedP3 (Ours) (ϵ, δ)-LDP mϵ
√
d√

log(1/δ)
+ m2ϵ2

log(1/δ)

This bounded gradient assumption aligns with standard practices in differential privacy analysis, as
evidenced in works such as (Bassily et al., 2014; Wang et al., 2017; Iyengar et al., 2019; Feldman
et al., 2020; Li et al., 2022).

We introduce a locally differentially private version of FedP3, termed LDP-FedP3, with detailed al-
gorithmic steps provided in Algorithm 5. This variant differs from FedP3 in Algorithm 4 primarily
by incorporating the Gaussian mechanism, as per Abadi et al. (2016), to ensure local differential pri-
vacy (as implemented in Line 8 of Algorithm 5). Another distinction is the allowance for minibatch
sampling per client in LDP-FedP3. Given that our primary focus in this section is on privacy, we
set aside the global pruning aspect for now, considering it orthogonal to our current analysis and not
central on our privacy considerations. In Theorem 2, we encapsulate the following theorem:
Theorem 2 (LDP-FedP3). Under Assumptions 1 and 2, with the use of Algorithm 5, consider the
number of samples per client to be m and the number of steps to be K. Let the local sampling
probability be q ≡ b/m. For constants c′ and c, and for any ϵ < c′q2K and δ ∈ (0, 1), LDP-FedP3

achieves (ϵ, δ)-LDP with σ2 = cKC2 log(1/ϵ)
m2ϵ2 .

Set K = max
{

mϵ
√
L∆0

C
√

cd log(1/δ)
, m2ϵ2

cd log(1/δ)

}
and γ = min

{
1
L ,

√
∆0cd log(1/δ)

Cmϵ
√
L

}
, we have:

1

K

K−1∑
k=0

E
[∥∥∇f(wt)

∥∥2] ≤ 2C
√
Lcd log(1/σ)

mϵ
= O

(
C
√
Ld log(1/δ)

mϵ

)
.

Consequently, the total communication cost is:

CLDP−FedP3 = O
(

mϵ
√
dL∆0

C
√
log(1/δ)

+
m2ϵ2

log(1/δ)

)
.

In Section D.2, we provide the proof for our analysis. This section primarily focuses on analyzing
and comparing our results with existing literature. Our proof pertains to local differentially-private
Stochastic Gradient Descent (SGD). We note that Li et al. (2022) offered a proof for CDP-SGD using
a specific set of compressors. However, our chosen compressor does not fall into that category, as
discussed more comprehensively in Szlendak et al. (2021). Considering the Rand-t compressor with
t = d/n, it’s established that:

E
[
∥Rt(w)− w∥2

]
≤ ω ∥w∥2 , where ω =

d

t
− 1 = n− 1.

Setting the same K and γ and applying Theorem 1 from Li et al. (2022), we obtain:

1

K

K−1∑
k=0

E
[∥∥∇f(wt)

∥∥2] ≤ 5C
√
Lcd log(1/σ)

mϵ
= O

(
C
√
Ld log(1/δ)

mϵ

)
,
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which aligns with our theoretical analysis. Interestingly, we observe that our bound is tighter by a
factor of 2/5, indicating a more efficient performance in our approach.

We also compare our proposed LDP-FedP3 with other existing algorithms in Algorithm 5. An
intriguing finding is that our method’s efficiency does not linearly increase with a higher number
of clients, denoted as n. Notably, our communication complexity remains independent of n. This
implies that in practical scenarios with a large n, our communication costs will not escalate. We
then focus on methods with a similar structure, namely, SDM-DSGD and CDP-SGD. For these, the
communication cost comprises two components. Considering a specific case, Rand-t, where t is
deliberately set to d/n, we derive ω = d/t− 1 = n− 1. This results in a communication complexity
on par with CDP-SGD, but significantly more efficient than SDM-DSGD. Moreover, it’s important to
note that the compressor in LDP-FedP3 differs from that in CDP-SGD. Our analysis introduces new
perspectives and achieves comparable communication complexity to other well-established results.

C.4 GLOBAL PRUNING ANALYSIS

Our methodology relates to independent subnetwork training (IST) but introduces distinctive fea-
tures such as personalization and explicit layer-level sampling for aggregation. IST, although con-
ceptually simple, remains underexplored with only limited studies like Liao & Kyrillidis (2022),
which provides theoretical insights for overparameterized single hidden layer neural networks with
ReLU activations, and Shulgin & Richtárik (2023), which revisits IST from the perspective of
sketch-type compression. In this section, we delve into the nuances of global pruning as applied
in Algorithm 4.

For our analysis here, centered on global pruning, we simplify by assuming that all personalized
model aggregation sketches Si are identical matrices, that is, Si = I. This simplification, how-
ever, does not trivialize the analysis as the pruning of both gradients and weights complicates the
convergence analysis. Additionally, we adhere to the design of the global pruning sketch P as per
Definition 1, which results in a biased estimation, i.e., E[Piw] ̸= w. Unbiased estimators, such as
Rand-t that operates over coordinates, are more commonly studied and offer several advantages
in theoretical analysis.

For Rand-t, consider a random subset S of [d] representing a proper sampling with probability
cj := Prob(j ∈ S) > 0 for every j ∈ [d]. Rt := Diag(r1s , r

2
s , · · · , rds), where rjs = 1/cj if j ∈ S

and 0 otherwise. In contrast to our case, the value on each selected coordinate in Rand-t is scaled
by the probability pi, equivalent to |S|/d. However, the implications of using a biased estimator like
ours are not as well understood.

Our theoretical focus is on Federated Learning (FL) in the context of empirical risk minimization,
formulated in (1) within quadratic problem frameworks. This setting involves symmetric matrices
Li, as defined in the following equation:

f(w) =
1

n

n∑
i=1

fi(w), where fi(w) ≡
1

2
w⊤Liw − w⊤bi. (5)

While Equation 5 simplifies the loss function, the quadratic problem paradigm is extensively used
in neural network analysis (Zhang et al., 2019; Zhu et al., 2022; Shulgin & Richtárik, 2023). Its in-
herent complexity provides valuable insights into complex optimization algorithms (Arjevani et al.,
2020; Cunha et al., 2022; Goujaud et al., 2022), thereby serving as a robust model for both theoretical
examination and practical applications. In this framework, f(x) is L-smooth, and∇f(x) = Lx−b,
where L = 1

n

∑n
i=1 Li, and b := 1

n

∑n
i=1 bi.

At this juncture, we introduce a fundamental assumption commonly applied in the theoretical anal-
ysis of coordinate descent-type methods.

Assumption 3 (Matrix Smoothness). Consider a differentiable function f : Rd → R. We say
that f is L-smooth if there exists a positive semi-definite matrix L ∈ Rd×d satisfying the following
condition for all x, h ∈ Rd:

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Lh, h⟩. (6)
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The classical L-smoothness condition, where L = L · I, is a particular case of Equation equation 6.
The concept of matrix smoothness has been pivotal in the development of gradient sparsification
methods, particularly in scenarios optimizing under communication constraints, as shown in Sa-
faryan et al. (2021); Wang et al. (2022). We then present our main theory under the interpolation
regime for a quadratic problem (5) with bi ≡ 0, as detailed in Theorem 3.

We first provide the theoretical analysis of biased global pruning as implemented in Algorithm 5.
To the best of our knowledge, biased gradient estimators have rarely been explored in theoretical
analysis. However, our approach of intrinsic submodel training or global pruning is inherently
biased. Shulgin & Richtárik (2023) proposed using the Perm-K (Szlendak et al., 2021) as the global
pruning sketch. Unlike their approach, which assumes a pruning connection among clients, our
method considers the biased Rand-K compressor over coordinates.
Theorem 3 (Global pruning). In the interpolation regime for a quadratic problem (5) with L ≻ 0

and bi ≡ 0, let L
k
:= 1

n

∑n
i=1 P

k
i LPk

i . Assume that W := 1
2E[P

k LB
k
+Pk B

k
L] ⪰ 0 and

there exists a constant θ > 0 such that E[Bk
LB

k
] ⪯ θW. Also, assume f(Pkwk) ≤ (1 +

γ2h)f(wk) − f inf for some h > 0. Fixing the number of iterations K and choosing the step size

γ ∈ min

{√
log 2
hK , 1

θ

}
, the iterates satisfy:

E
[
∥∇f(wk)∥2

L
−1

WL
−1

]
≤ 4∆0

γK
,

where ∆0 = f(w0)− f inf .

By employing the definition of γ, we demonstrate that the iteration complexity is O(1/ϵ2). Com-
pared with the analysis in Shulgin & Richtárik (2023), we allow personalization and do not constrain
the global pruning per client to be dependent on other clients. Global pruning is essentially a biased
estimator over the global model weights, a concept not widely understood. Our theorem provides
insightful perspectives on the convergence of global pruning.

Our theory could also extend to the general case by applying the rescaling trick from Section 3.2 in
Shulgin & Richtárik (2023). This conversion of the biased estimator to an unbiased one leads to a
general convergence theory. However, this is impractical for realistic global pruning analysis, as it
involves pruning the global model without altering each weight’s scale. Given that IST and biased
gradient estimators are relatively new in theoretical analysis, we hope our analysis could provide
some insights.

D MISSING PROOFS

D.1 PROOF OF THEOREM 1

Building on the smoothness assumption of Li outlined in Assumption 1, the following lemma is
established:
Lemma 1. Given that a function fi satisfies Assumption 1 for each i ∈ [n], then for any w ∈ Rd, it
holds that

∥∇fi(w)∥2 ≤ 2Li(fi(w)− f inf). (7)

Proof. Consider w′ = w − 1
Li
∇fi(w). By applying the Li-smoothness condition of f as per

Assumption 1, we obtain

fi(w
′) ≤ fi(w) + ⟨∇fi(w), w′ − w⟩+ Li

2
∥∇fi(w)∥2.

Taking into account that f inf ≤ fi(w
′), it follows that

f inf ≤ fi(w
′)

≤ fi(w)−
1

Li
∥∇fi(w)∥2 +

1

2Li
∥∇fi(w)∥2

= fi(w)−
1

2Li
∥∇fi(w)∥2.
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Rearranging the terms yields the claimed result.

Since in this section, we are primarily interested in exploring the convergence of our novel model
aggregation design, we set Pk

i ≡ I for all i ∈ [n] and k ∈ [K]. Our analysis focuses on exploring
the characteristics of S, which leads to the following theorem.

By the definition of model aggregation sketches in Definition 2, we have 1
n

∑n
i=1 Si = I. Thus, the

next iterate can be represented as

wk+1 =
1

n

n∑
i=1

Sk
i (w

k − γ∇fi(wk))

=
1

n

n∑
i=1

Sk
iw

k − γ
1

n

n∑
i=1

Sk
i∇fi(wk)︸ ︷︷ ︸
gk

(8)

= wk − γgk.

Bounding gk is a crucial part of our analysis. To align with existing works on non-convex opti-
mization, numerous critical assumptions are considered. Extended reading on this can be found
in Khaled & Richtárik (2020). Here, we choose the weakest assumption among all those listed in
Khaled & Richtárik (2020).

Assumption 4 (ABC Assumption). For the second moment of the stochastic gradient, it holds that

E
[
∥g(w)∥2

]
≤ 2A(f(w)− f inf) +B∥∇f(w)∥2 + C, (9)

for certain constants A,B,C ≥ 0 and for all w ∈ Rd.

Note that in order to accommodate heterogeneous settings, we assume a localized version of As-
sumption 4. Specifically, each gki ≡ Sk

i∇fi(wk) is bounded for some constants Ai, Bi, Ci ≥ 0 and
all wk ∈ Rd.

Lemma 2. The gk defined in Eqn. 8 satisfies Assumption 4 with A = Lmax, B = C = 0.

Proof. The proof is as follows:

Ek

[
∥gk∥2

]
= Ek

[
∥ 1
n

n∑
i=1

Si∇fi(wk)∥2
]

=
1

n

n∑
i=1

∥∇fi(wk)∥2

≤ 1

n

n∑
i=1

2Li(fi(w
k)− f inf) (10)

≤ 2Lmax(f(w
k)− f inf),

where Equation 10 follows from Lemma 1.

We also recognize certain characteristics of the unbiasedness and upper bound of model aggregation
sketches, as elaborated in Theorem 4.

Theorem 4 (Unbiasedness and Upper Bound of Model Aggregation Sketches). For any vector w ∈
Rd, the model aggregation sketch Si, for each i ∈ [n], is unbiased, meaning E[Siw] = w. Moreover,
for any set of vectors y1, y2, . . . , yn ∈ Rd, the following inequality is satisfied:

E

∥∥∥∥∥ 1n
n∑

i=1

Siyi

∥∥∥∥∥
2
 ≤ 1

n

n∑
i=1

∥yi∥2 .
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Proof. Consider a vector x ∈ Rd, where xi denotes the i-th element of x. We first establish the
unbiasedness of the model aggregation sketch (Definition 1):

E[Six] = n

qi∑
j=q(i−1)+1

E[xπj
eπj

] = n

 qi∑
j=q(i−1)+1

1

d

d∑
i=1

xiei

 =
nq

d
x = x. (11)

Next, we examine the second moment:

E
[
∥Six∥2

]
= n2

qi∑
j=q(i−1)+1

1

d

d∑
i=1

∥xi∥2 = n2 q

d
∥x∥2 = n ∥x∥2 .

For all vectors y1, y2, . . . , yn ∈ Rd, the following inequality holds:

E

∥∥∥∥∥ 1n
n∑

i=1

Siyi

∥∥∥∥∥
2
 =

1

n2

n∑
i=1

E [∥Siyi∥] +
∑
i̸=j

E [⟨Siyi,Sjyj⟩] =
1

n2

n∑
i=1

E [∥Siyi∥] =
1

n

n∑
i=1

∥yi∥2 .

(12)

Integrating Equation 11 with Equation 12, we also deduce:

E

∥∥∥∥∥ 1n
n∑

i=1

Siyi −
1

n

n∑
i=1

yi

∥∥∥∥∥
2
 ≤ 1

n

n∑
i=1

∥yi∥2 −
∥∥∥∥∥ 1n

n∑
i=1

yi

∥∥∥∥∥
2

. (13)

We now proceed to prove the main theorem of model aggregation, as presented in Theorem 1. This
theorem is restated below for convenience:

Theorem 1 (Personalized Model Aggregation). Let Assumption 1 holds. Iterations K, choose step-
size γ ≤

{
1/Lmax, 1/

√
L̂LmaxK

}
. Denote ∆0 := f(w0)− f inf . Then for any K ≥ 1, the iterates wk

of FedP3 in Algorithm 4 satisfy

min
0≤k≤K−1

E
[∥∥∇f(wk)

∥∥2] ≤ 2(1 + L̄Lmaxγ
2)K

γK
∆0. (3)

Our proof draws inspiration from the analysis in Theorem 2 of Khaled & Richtárik (2020) and is
reformulated as follows:

Theorem 5 (Theorem 2 in Khaled & Richtárik (2020)). Under the assumptions that Assumption 1
and 4 are satisfied, let us choose a step size γ > 0 such that γ ≤ 1

L̄B
. Define ∆ ≡ f(w0) − f inf .

Then, it holds that

min
0≤k≤K−1

E
[
∥∇f(wk)∥2

]
≤ L̄Cγ +

2(1 + L̄γ2A)K

γK
∆.

Careful control of the step size is crucial to prevent potential blow-up of the term and to ensure
convergence to an ϵ-stationary point. Our theory can be seen as a special case with A = Lmax, B =
0, C = 0, as established in Lemma 2. Thus, we conclude our proof.

D.2 PROOF OF THEOREM 2

To establish the convergence of the proposed method, we begin by presenting a crucial lemma
which describes the mean and variance of the stochastic gradient. Consider the stochastic gradient
gki = 1

b

∑
j∈Ib
∇fi,j(wk) as outlined in Line 6 of Algorithm 5.
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Lemma 3 (Lemma 9 in Li et al. (2022)). Given Assumption 2, for any client i, the stochastic
gradient estimator gki is an unbiased estimator, that is,

Ek

1
b

∑
j∈Ib

∇fi,j(wk)

 = ∇fi(wk),

where Ek denotes the expectation conditioned on all history up to round k. Letting q = b
m , the

following inequality holds:

Ek


∥∥∥∥∥∥1b

∑
j∈Ib

∇fi,j(wk)−∇fi(wk)

∥∥∥∥∥∥
2
 ≤ (1− q)C2

b
.

Considering the definition of Ski , we observe that 1
n

∑n
i=1 Ski = I. According to Algorithm 5, the

next iteration wk+1 of the global model is given by:

wk+1 =
1

n

n∑
i=1

Ski
(
wk − γgki + ζki

)
= wk − 1

n

n∑
i=1

Ski (γgki − ζki )︸ ︷︷ ︸
Gk

.

Employing the smoothness Assumption 1 and taking expectations, we derive:

Ek[f(w
k+1)] ≤ f(wk)− Ek

〈
∇f(wk), Gk

〉
+

L

2
Ek

∥∥Gk
∥∥2 . (14)

Given that ζki ∼ N (0, σ2I), we have Ek[ζ
k
i ] = 0. Consequently, we can analyze Ek⟨∇f(wk), Gk⟩

as follows:

Ek⟨∇f(wk), Gk⟩ = Ek

〈
∇f(wk),

1

n

n∑
i=1

Ski (γgki − ζki )

〉
(11)
= Ek

〈
∇f(wk),

1

n

n∑
i=1

(γgki − ζki )

〉

= Ek

〈
∇f(wk), γ

1

n

n∑
i=1

gki

〉
(3)
= γ

∥∥∇f(wk)
∥∥2 . (15)

To bound the last term Ek

∥∥Gk
∥∥2 in Equation 14, we proceed as follows:

28



Published as a conference paper at ICLR 2024

Ek

∥∥Gk
∥∥2 = Ek

∥∥∥∥∥∥∥
1

n

n∑
i=1

Ski (γgki − ζki︸ ︷︷ ︸
Mk

i

)

∥∥∥∥∥∥∥
2

(12)

≤ 1

n

n∑
i=1

Ek

∥∥Mk
i

∥∥2
=

1

n

n∑
i=1

Ek

∥∥γgki − ζki
∥∥2

=
1

n

n∑
i=1

Ek

∥∥γgki ∥∥2 + dσ2

= γ2 1

n

n∑
i=1

Ek

∥∥gki −∇fi(wk) +∇fi(wk)
∥∥2 + dσ2

≤ 1

n

n∑
i=1

γ2
∥∥∇fi(wk)

∥∥2 + γ2 1

n

n∑
i=1

Ek

∥∥gki −∇fi(wk)
∥∥2 + dσ2

(3,2)

≤ γ2C2 +
γ2(1− q)C2

b
+ dσ2. (16)

Incorporating Equations 16 and 15 into Equation 14, we obtain the following inequality for the
expected function value at the next iteration:

Ek[f(w
k+1)] ≤ f(wk)− γ

∥∥∇f(wk)
∥∥2 + L

2

(
γ2C2 +

γ2(1− q)C2

b
+ dσ2

)
. (17)

Before proceeding further, it is pertinent to consider the privacy guarantees of FedP3, which are
based on the analysis of SoteriaFL as presented in Theorem 2 of Li et al. (2022). We reformulate
this theorem as follows:
Theorem 6 (Theorem 2 in Li et al. (2022)). Assume each client possesses m data points. Under
Assumption 3 in Li et al. (2022) and given two bounding constants CA and CB for the decomposed
gradient estimator, there exist constants c and c′. For any ϵ < c′ b

2T
m2 and δ ∈ (0, 1), SoteriaFL

satisfies (ϵ, δ)-Local Differential Privacy (LDP) if we choose

σ2
p =

c
(
C2

A/4 + C2
B

)
K log(1/δ)

m2ϵ2
.

In the absence of gradient shift consideration within SoteriaFL, the complexity of the gradient esti-
mator can be reduced. We simplify the analysis by substituting the two bounds CA and CB with a
single constant C. Following a similar setting, we derive the privacy guarantee for LDP-FedP3 as:

σ2 =
cC2K log(1/δ)

m2ϵ2
, (18)

which establishes that LDP-FedP3 is (ϵ, δ)-LDP compliant under the above condition.

Substituting σ from Equation 18 and telescoping over iterations k = 1, . . . ,K, we can demonstrate
the following convergence bound:

1

K

K∑
k=1

E
[∥∥∇f(wk)

∥∥2] ≤ f(w0)− f⋆

γK
+

L

2

[
γC2 +

γ(1− q)C2

b
+

cdC2T log(1/δ)

γm2ϵ2

]
≤ ∆0

γK
+

L

2

[
γ(b+ 1− q)

b
C2 +

cdC2K log(1/δ)

γm2ϵ2

]
≤ ∆0

γK
+

L

2

[
γC2 +

cdC2K log(1/δ)

γm2ϵ2

]
.
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To harmonize our analysis with existing works, such as CDP-SGD proposed by Li et al. (2022),
which compresses the gradient and performs aggregation on the server over the gradients instead of
directly on the weights, we reframe Algorithm 5 accordingly. The primary modification involves
defining Mk

i := γgki − γζki , where ζki is scaled by a factor of γ. This leads to the following
convergence result:

1

K

K∑
k=1

E
[∥∥∇f(wk)

∥∥2] ≤ ∆0

γK
+

γLC2

2

[
1 +

cdK log(1/δ)

m2ϵ2

]
. (19)

Optimal choices for K and γ that align with this convergence result can be defined as:

γK =
mϵ
√
∆0

C
√

Lcd log(1/δ)
, K ≥ m2ϵ2

cd log (1/δ)
. (20)

Adhering to the relationship established in Equation equation 20 and considering the stepsize con-
straint γ ≤ 1

L , we define:

K = max

{
mϵ
√
L∆0

C
√
cd log(1/δ)

,
m2ϵ2

cd log(1/δ)

}
,

γ = min

{
1

L
,

√
∆0cd log(1/δ)

Cmϵ
√
L

}
.

Substituting these into Equation 19, we obtain:

1

K

K∑
t=1

E
[∥∥∇f(xt)

∥∥2] ≤ ∆0

γK
+

γLC2

2

[
1 +

cdK log(1/δ)

m2ϵ2

]
≤ ∆0

γK
+

γLC2cdK log(1/δ)

m2ϵ2

=
∆0

γK
+

γKLC2cd log(1/δ)

m2ϵ2

≤ 2C
√
Lcd log(1/δ)

mϵ

= O
(
C
√
Ld log(1/δ)

mϵ

)
.

Neglecting the constant c, the total communication cost for LDP-FedP3 is computed as:

CLDP-FedP3 = n
d

n
K = dK

= max

{
mϵ
√
dL∆0

C
√
log(1/δ)

,
m2ϵ2

log(1/δ)

}

= O
(

mϵ
√
dL∆0

C
√
log(1/δ)

+
m2ϵ2

log(1/δ)

)
.

D.3 PROOF OF THEOREM 3

We consider the scenario where Pk
i acts as a biased random sparsifier, and Sk

i ≡ I. In this case, the
update rule is given by:

wk+1 =
1

n

n∑
i=1

(
Pk

iw
k − γPk

i∇fi(Pk
iw

k)
)
.
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Let w ∈ Rd and let S represent the selected number of coordinates from d. Then, Pi is defined as:

Pi = Diag(c1s, c
2
s, · · · , cds), where cjs =

{
1 if j ∈ S,

0 if j /∈ S.

Given that Pi ⪯ I, it follows that 1
n

∑n
i=1 Pi ⪯ I.

In the context where Pi is a biased sketch, we introduce Assumption 5:

Assumption 5. For any learning rate γ > 0, there exists a constant h > 0 such that, for any
P ∈ Rd×d, w ∈ Rd, we have:

f(Pw) ≤ (1 + γ2h)(f(w)− f inf).

Assumption 5 assumes the pruning sketch is bounded. Given that the function value should remain
finite, this assumption is reasonable and applicable.

In this section, for simplicity, we focus on the interpolation case where fi(x) = 1
2w

⊤Liw. The
extension to scenarios with bi ̸= 0 is left for future work. By leveraging the L-smoothness of
function f and the diagonal nature of Pi, we derive the following:

f(wk+1) := f

(
1

n

n∑
i=1

(Pk
iw

k − γPk
i∇fi(Pk

iw
k))

)

= f

 1

n

n∑
i=1

Pk
i︸ ︷︷ ︸

Pk

wk − γ
1

n

n∑
i=1

Pk
i Li P

k
i︸ ︷︷ ︸

B
k

wk


≤ f(Pkwk)− γ⟨∇f(Pkwk),B

k
wk⟩+ γ2

2

∥∥∥Bk
wk
∥∥∥2
L

(5)

≤ af(wk)− γ⟨LPkwk,B
k
wk⟩+ γ2

2

∥∥∥Bk
wk
∥∥∥2
L

= af(wk)− γ(wk)⊤Pk LB
k
wk +

γ2

2
(wk)⊤ B

k
LB

k
wk

(21)

Considering the conditional expectation and its linearity, along with the transformation properties of
symmetric matrices, we obtain:

w⊤ Lw =
1

2
w⊤

(
L+L

⊤)
w.

By defining W := 1
2E
[
Pk LB

k
+Pk B

k
L
]

and setting the stepsize γ to be less than or equal to
1
θ , we can derive the following:

31



Published as a conference paper at ICLR 2024

E
[
f(wk+1)|wk

]
≤ af(wk)− γ(wk)⊤E

[
Pk LB

k
]
wk +

γ2

2
(wk)⊤E

[
B

k
LB

k
]
wk

= af(wk)− γ(wk)⊤ Wwk +
γ2

2
(wk)⊤E

[
B

k
LB

k
]
wk

= af(wk)− γ(∇f(wk))⊤ L
−1

WL
−1∇f(wk) +

γ2

2
(∇f(wk))⊤ L

−1 E
[
B

k
LB

k
]
L
−1∇f(wk)

≤ af(wk)− γ(∇f(wk))⊤ L
−1

WL
−1∇f(wk) +

γ2

2
(∇f(wk))⊤ L

−1
θWL

−1∇f(wk)

= af(wk)− γ
∥∥∇f(wk)

∥∥2
L

−1
WL

−1 +
θγ2

2

∥∥∇f(wk)
∥∥2
L

−1
WL

−1

= af(wk)− γ(1− θγ/2)
∥∥∇f(wk)

∥∥2
L

−1
WL

−1

≤ af(wk)− γ

2

∥∥∇f(wk)
∥∥2
L

−1
WL

−1 .

(22)

Our subsequent analysis relies on the following useful lemma:
Lemma 4. Consider two sequences {Xk}k≥0 and {Yk}k≥0 of nonnegative real numbers satisfying,
for each k ≥ 0, the recursion

Xk+1 ≤ aXk − Yk + c,

where a > 1 and c ≥ 0 are constants. Let K ≥ 1 be fixed. For each k = 0, 1, . . . ,K − 1, define the
probabilities

pk :=
aK−(k+1)

SK
, where SK :=

K−1∑
k=0

aK−(k+1).

Define a random variable Y such that Y = Yk with probability pk. Then

E[Y ] ≤ aKX0 −XK

SK
+ c ≤ aK

SK
X0 + c.

Proof. We start by multiplying the inequality Yk ≤ aXk − Xk+1 + c by aK−(k+1) for each k,
yielding

aK−(k+1)Yk ≤ aK−kXk − aK−(k+1)Xk+1 + aK−(k+1)c.

Summing these inequalities for k = 0, 1, . . . ,K − 1, we observe that many terms cancel out in a
telescopic fashion, leading to

K−1∑
k=0

aK−(k+1)Yk ≤ aKX0 −XK +

K−1∑
k=0

aK−(k+1)c = aKX0 −XK + SKc.

Dividing both sides of this inequality by SK , we get
K−1∑
k=0

pkYk ≤
aKX0 −XK

SK
+ c,

where the left-hand side represents E[Y ].

Building upon Lemma 4 and employing the inequality 1 + x ≤ ex, which is valid for all x ≥ 0,
along with the fact that SK ≥ K, we can further refine the bound:

aK

SK
≤ (1 + (a− 1))K

K
≤ e(a−1)K

K
. (23)

To mitigate the exponential growth observed in Eqn 23, we choose a = 1 + γ2h for some h > 0.
Setting the step size as

γ ≤
√

log 2

hK
,
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ensures that γ2hK ≤ log 2, leading to

aK

SK

23
≤ e(a−1)K

K
≤ eγ

2hK

K
≤ 2

K
.

Incorporating Lemma 4 into Eqn 22 and assuming a step size γ ≤
√

log 2
hK for some h > 0, we

establish the following result:

E
[
∥∇f(wk)∥2

L
−1

WL
−1

]
≤ 4∆0

γK
. (24)
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