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ABSTRACT

Hallucinations are a common issue that undermine the reliability of large lan-
guage models (LLMs). Recent studies have identified a specific subset of hal-
lucinations, known as confabulations, which arise due to predictive uncertainty
of LLMs. To detect confabulations, various methods for estimating predictive
uncertainty in natural language generation (NLG) have been developed. These
methods are typically evaluated by correlating uncertainty estimates with the cor-
rectness of generated text, with question-answering (QA) datasets serving as the
standard benchmark. However, evaluating correctness in QA tasks is inherently
challenging and can distort the perceived effectiveness of uncertainty estimation
methods. Our results show that there is substantial disagreement between correct-
ness functions and consequently the ranking of the uncertainty estimation methods
is significantly influenced by that choice, allowing to inflate the performance of
uncertainty estimation methods. We propose several alternative risk indicators
for correlation assessment that improve robustness of empirical assessment of UE
algorithms for NLG. For QA tasks, we show that averaging over multiple LLM-as-
a-judge variants leads to more reliable results. Furthermore, we explore structured
tasks which provide unambiguous correctness functions. Finally, we propose to
use an Elo rating of uncertainty estimation methods to give an objective summa-
rization over extensive evaluation settings.

1 INTRODUCTION

Predictive uncertainty has been linked to the occurrence of a subset of hallucinations known as
confabulations (Farquhar et al., 2024). Such confabulations are sequences generated by a large
language model (LLM), that have no support in either the training set of the model nor in the prompt.
The expressivity of natural language allows these models to obfuscate their lack of knowledge in a
manner that can be challenging to detect. Therefore, uncertainty estimation is essential to detect
such confabulations and ensure the reliability and wider applicability of LLM-based systems.

Predictive uncertainty in natural language generation (NLG) can be quantified by the entropy of the
LLMs predictive distribution Malinin & Gales (2020). In the literature on uncertainty estimation
in univariate classification, predictive uncertainty is often decomposed into aleatoric and epistemic
components Gal (2016). The aleatoric uncertainty can be attributed to the inherent stochasticity
of the prediction, while the epistemic uncertainty arises from lack of knowledge of the true model
parameters Schweighofer et al. (2023). In case of confabulation detection in NLG, most of the time
the aleatoric uncertainty of predicting with a given model with parameters w for a new input x is
considered Aichberger et al. (2024b).

Currently, uncertainty estimation algorithms for NLG are evaluated mostly in terms of selective
prediction on a narrow class of problems which is question-answering (QA) datasets, see Table 1.
These datasets require models to either retrieve factual information from their weights (closed book
QA) or a given prompt (open book QA). The motivation for using QA tasks is that the ability to
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Table 1: Evaluation protocols recently used for uncertainty estimation in NLG. Few works eval-
uate their methods beyond selective prediction on QA tasks and rely on approximate correctness
functions or a small number of human correctness evaluations.

REFERENCE TASK CORRECTNESS
MALININ & GALES (2020) TRANS. BLEU
FOMICHEVA ET AL. (2020) TRANS. HUMAN
KUHN ET AL. (2023) QA ROUGE-X
FADEEVA ET AL. (2023) QA, SUM. ROUGE-X, BERTSCORE
DUAN ET AL. (2024) QA ROUGE-X
MANAKUL ET AL. (2023) FACT. HUMAN
FARQUHAR ET AL. (2024) QA JUDGE
BAKMAN ET AL. (2024) QA JUDGE
AICHBERGER ET AL. (2024B) QA ROUGE-X, BLEURT
CHEN ET AL. (2024) QA ROUGE-X
KOSSEN ET AL. (2024) QA JUDGE, F-1
NIKITIN ET AL. (2024) QA JUDGE
AICHBERGER ET AL. (2024A) QA JUDGE, F-1
ABBASI-YADKORI ET AL. (2024) QA F-1

effectively retrieve information could be linked to factuality and hallucinations and has a relatively
low demand for model performance. However, this class of problems is characterized by short
length of the expected answer and impreciseness of the ground truth solution. Importantly, the
evaluation of an answer is done by approximate correctness functions, such as comparing substrings
or utilizing text similarity models. These correctness functions have been criticized and are often
not considered robust (Schluter, 2017; Zheng et al., 2023; Santilli et al., 2024), yet are widely used
in NLG. Specifically, Santilli et al. (2024) investigates the relation between the Rouge-L, LLM-
as-a-judge and Human annotators and the impact it has on the empirical performances reported
in (Farquhar et al., 2024) (Fadeeva et al., 2023). They conclude that LLM-as-a-judge should be
preferred as a correctness metric in such assessments and the effects of thresholds should further
be estimated and sequence length is an important factor in variability of outcomes. At the same
time, Zheng et al. (2023), the original work proposing LLM-as-a-judge approach, already point
out biases inherent to the approach. We conduct a more detailed investigation of the effects that
the approximate correctness has on the ranking of the NLG uncertainty estimation algorithms and
propose improvements.

Our contributions are as follows:

• We conduct a detailed investigation of weaknesses of the evaluation practices used in recent
work on uncertainty estimation in NLG, some of which have been pointed out in prior work.

• We suggest several alternative risk indicators to be used for correlation experiments. In
particular, we suggest assessing correctness with an ensemble of LLM-as-a-judge variants
for QA, structured tasks with exact correctness functions, OOD detection and perturbation.

• We propose an Elo rating based aggregation for comparing the performance of uncertainty
estimation methods across different experimental setups to foster a more objective assess-
ment of their utility.

2 PRELIMINARIES

The uncertainty estimation problem in NLG can be formalized as follows: given an input sequence
x = (x1, ..., xτ ) ∈ X and a model with parameters w, we want to infer an uncertainty measure
u : X ×W 7→ R. Then û(x,w;θu) is an algorithm to obtain an estimate of u(x,w), where θu is a
vector of hyperparameters of the algorithm.

Uncertainty estimation methods in NLG. Recent approaches to uncertainty estimation for NLG
estimate uncertainty in a variety of ways. The methods can be loosely categorized into three groups:
those using statistics of a set of sequences from the model, those using a single output sequence
and those using heuristics. The first group of methods is based on Monte-Carlo (MC) sampling and
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Bayesian assumptions with regard to the obtained samples. Such methods base their estimators on
some notion of spread in the probability space of the predictive distribution of an LLM (Malinin &
Gales, 2020; Kuhn et al., 2023; Aichberger et al., 2024b; Chen et al., 2024; Nikitin et al., 2024). A
noteworthy variation of this direction consists of methods that attempt to modify the probabilities
of sampled sequences based on the semantic importance of individually generated subsequences
(Duan et al., 2024; Bakman et al., 2024) to compensate for the potential impact that they make on
the correctness of the predicted sequence. The approaches from the second group use properties of
a single generated sequence (Ren et al., 2023; Fadeeva et al., 2023; Kossen et al., 2024; Aichberger
et al., 2024a) to estimate the model’s confidence. Heuristic approaches leverage the facilities of the
language model itself or a larger one to determine confidence estimate for a given output sequence
(Kadavath et al., 2022; Manakul et al., 2023). Detailed reference of the methods considered in this
work can be found in Appendix A.1.

Evaluating uncertainty estimation. Intuitively, the fundamental question to which u(x,w)
should help us find the answer is: ”What is the risk of making the prediction for a given input
sequence x using the model with parameters w?”. This connection of uncertainty and risk has
recently been advocated in the univariate classification setting Lahlou et al. (2023); Kotelevskii &
Panov (2025). In accordance with this perspective, the performance of uncertainty estimation meth-
ods is empirically evaluated as a correlation between the estimated uncertainty û(·) and some risk
indicator r(·) on sets of predictions, defined as

ξ = Cor [(û(xi,w;θu)) , (r(xi,y
′
i))] . (1)

Here, Cor is a correlation metric and y′ is the predicted output sequence of the LLM. We do not
assume a linear relation between the risk and the uncertainty, which restricts eligible Cor to rank
correlation metrics, e.g. Spearman ρ, Area Under the ROC Curve (AUC), Area Under Precision-
Recall Curve (AUPR). In this work we will not consider calibration of uncertainty values that may
be performed to obtain a prediction risk classifier.

Selective prediction. The current standard for comparing uncertainty estimation methods for NLG
is selective prediction on QA datasets (Aichberger et al., 2024b; Kuhn et al., 2023; Farquhar et al.,
2024; Duan et al., 2024; Bakman et al., 2024). This approach uses a correctness indicator as a proxy
for risk. The correctness function c : Y × Y × X 7→ {0, 1} assigns prediction to be incorrect or
correct. Then the selective prediction performance is defined as follows:

ξSP = Cor [(û(xi,w;θu)) , (¬c(y′
i,yi,xi;θc))] . (2)

Most commonly, AUC is used as correlation metric Cor, capturing the uncertainty scores ability to
distinguish between correct and incorrect predictions. It represents the probability that a randomly
chosen correct sample is ranked higher than a randomly chosen incorrect sample in terms of the
uncertainty score. Note that the correctness function is assumed to be deterministic. Otherwise,
additional sampling would be required to integrate out the randomness.

Standard correctness functions in NLP. The standard substring matching correctness algorithms
are the ROUGE (Lin, 2004) and BLEU families (Papineni et al., 2002). These algorithms evaluate
textual similarity on the n-gram level. To turn those functions into a correctness function, one is
required to specify a threshold d and the n-gram parameter n, so θc = (d, n). Learned correctness
functions, such as BERTScore (Zhang et al., 2020) and BLEURT (Sellam et al., 2020) use similar-
ity of the answer and the reference in an embedding space. LLM-as-a-judge (Zheng et al., 2023)
prompts an LLM to confirm the correctness of the answer with respect to the reference.

3 PITFALLS OF CURRENT EVALUATION PROCEDURE

In the univariate classification setting the correctness function is very simple, usually consisting of
selecting the highest probability output class and checking its identity to the class provided as the la-
bel. In NLG, correctness algorithms are more complex due to the large space of possible sequences
and certain degree of invariance to syntactic permutations and paraphrasis. Selective prediction per-
formance (see Eq. (2)) depends on both the estimation quality of the uncertainty estimation method
and the bias and variance of the correctness function used.
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Figure 1: Correctness metrics on selected QA datasets. R indicates ROUGE family, B - BLEU.
judge models are indicated with J, ’q’ stands for QA prompt used in Farquhar et al. (2024) (see Sec.
C for more details on prompting). (a) Agreement of correctness metrics. Rows are the predicting
correctness function. Columns are the ’ground truth’ values discretized at a threshold indicated by
@. Higher values correspond to higher agreement between correctness assignment. Note that for
the AUC score, the values in this matrix need not be symmetric. (b) Agreement between the ranking
of uncertainty estimation algorithm that arises from given approximate correctness functions. ρ
of 1 indicates identical ordering while ρ of 0 indicates uncorrelated rank assignment by the two
correctness functions.

Effects of bias and variance in labels on the AUC estimation In Appx.E.2 we investigate the
effects that bias and noise in correctness function have on AUC estimation. We conclude, that
presence of either substantially increase the bias of the AUC estimator which depends on the degree
of distortion of risk indicator labels. Sample independent Bernoulli modeled label noise affects all
of the UE methods equally in the asymptotic case (Eq.(21)). At the same time, bias in correctness
estimates affects the ranking proportionally to the a) proportion of distorted samples (Eq.(25)); b)
the discrepancy in ranking quality on the distorted and undistorted samples (Eq.(24)).

From this follows, that if we do not sum out the random noise in the risk indicator it will turn into
a sample-dependent distortion, which can affect the apparent performances of different methods
differently. Most prior work ignores the non deterministic nature of the correctness estimates used.
This is particularly relevant for LLM-as-a-judge approach since it utilizes a stochastic model.

Agreement of different correctness functions. In Fig. 1 (a) we compare the predictions of widely
used correctness functions on the QA datasets commonly used for comparing NLG uncertainty es-
timation algorithms. We observe that the n-gram based correctness function families BLEU and
ROUGE show substantial disagreement between each other and the LLM-as-a-judge. Different vari-
ants of ROUGE show high agreement among them in some scenarios. This agreement can be largely
explained by short reference answers provided for the QA datasets, rendering these n-gram based
metrics equivalent in most scenarios. As can be seen in the bottom part of Fig. 1 (a), the reference
answer lengths are very short, with most consisting of only one or two words. This demonstrates
bias and noise in approximate correctness estimators. Furthermore, during our investigation, we
have discovered a prominent artifact in a widely used ROUGE-2 and BLEU implementation (Luong
et al., 2017) described in more detail in Appx.A.3.

Consistency of uncertainty estimation method ranking. Fig. 1 (b) depicts Spearman correla-
tions between the ranks of NLG uncertainty estimation algorithms evaluated on the given datasets
according to different correctness functions. On both CoQA and SQuAD it can be observed that
the disagreement in ranking uncertainty estimation methods falls on the lines between judge and
n-gram methods with a noticeable BLEU / ROUGE-2 artifact. The adaptive ROUGE metrics are in
perfect agreement with ROUGE-1 due to low length of reference answers. The judge models agree
more with the BLEU / ROUGE-2 than with other ROUGE variants. This indicates, that among the
approximate methods the LLM-as-a-judge might be the more reliable one, although not universally.

Correctness-hacking QA benchmarks. In Tab. 2 we show results of optimizing the performance
of uncertainty estimation methods with respect to the correctness function. The experiment shows
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Table 2: Adversarially selecting a correctness function on the QA benchmark to improve the ranking
of individual uncertainty estimation methods. The values are frequencies of uncertainty estimation
methods Top-3 membership on the considered QA datasets. Ref. is a judge average introduced in
Sec. 4 and is a reference for performance assessment. Correctness function and thresholds which
are not frequently used in the literature such as BLEU and ROUGE-2 were not made available for
optimization (limiting thresholds to 0.3 and 0.5).

METHOD REF. ADVERSARIAL INCREASE
PRED. ENT. 0.000 0.188 +0.188
PRED. ENT. (LN) 0.000 0.125 +0.125
SEQ. LEN. (SAMPLE) 0.250 0.312 +0.062
SEQ. LEN. (ANSWER) 0.312 0.562 +0.250
EIGENSCORE 0.125 0.250 +0.125
TOKENSAR 0.062 0.062 +0.000
SENTENCESAR 0.438 0.556 +0.118
SAR 0.125 0.188 +0.062
PERPLEXITY 0.125 0.444 +0.319
MIN TOK. LOG PROB. 0.125 0.500 +0.375
SEMANTIC ENT. 0.125 0.333 +0.208
SEMANTIC ENT. (LN) 0.562 0.667 +0.104
P(TRUE) 0.250 0.375 +0.125
G-NLL 0.375 0.688 +0.312

that the apparent performance of the methods can often be improved substantially compared to the
value obtained for c̃reference by selecting an opportune correctness function c̃ and parametrization θc.
This also holds for some of the introduced heuristic uncertainty measures, like the sequence length
of the most likely generation. This way, if we were to propose e.g. the length of the generated output
sequence as a novel method of uncertainty estimation for NLG we could provide plausible empirical
support for it by adjusting the evaluation settings within reasonable bounds. This further highlights
the vulnerabilities of the current evaluation strategy.

4 IMPROVING THE EVALUATION WITH ROBUST RISK INDICATORS

To alleviate the pitfalls we have demonstrated in the previous section, we propose several robust risk
indicators to improve evaluation reliability. In the univariate classification setting, the following risk
indicators are considered: correctness of the prediction, out-of-distribution (OOD) identifier and
perturbation strength Gal & Ghahramani (2016); Lakshminarayanan et al. (2017); Malinin & Gales
(2018); D’ Angelo & Fortuin (2021); Daxberger et al. (2021); Mukhoti et al. (2023); Schweighofer
et al. (2023). We refer to the general assumptions used for assessment of UE algorithms in Appx.E.1.

In this section, we first aim to obtain a more stable approximate correctness function c̃ for QA
datasets. Second, we investigate code generation and constrained text generation, as those structured
tasks have exact correctness functions. Finally, we discuss alternative risk indicators in out-of-
distribution and perturbation detection.

Reducing variability of approximate correctness. Judge models are subject to biases and uncer-
tainty with respect to sampling (Zheng et al., 2023). This variation is in part caused by the aleatoric
and epistemic uncertainties of the judge model. To mitigate these effects, we propose using a Mix-
ture of judges and Instructions (MoJI) to evaluate correctness on QA datasets. MoJI follows up on
the possibility to sample stochastic correctness functions in Eq. (2). At the core of this approach
lies integrating out the variability that arises from sampling the judge models, the architecture of the
judge model and the prompt used as per Sec.3. MoJI approach considers averaging multiple predic-
tions by multiple models with multiple prompts. To further improve robustness of the downstream
uncertainty method evaluation, we could exclude all the examples, for which the predictive entropy
of MoJI is above a predefined threshold. This would remove the correctness predictions with the
highest judge disagreement. We evaluate MoJI on structured tasks, where exact correctness func-
tions are available as a ground-truth. The specific datasets (BCB & COLLIE) will be introduced in
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Figure 2: Correctness metrics on selected structured datasets. R indicates ROUGE family, B -
BLEU. judge models are indicated with J, ’q’ stands for QA prompt used in Farquhar et al. (2024)
while ’g’ stands for a more general prompt to evaluate correctness (see Apx. C for more details on
prompting). (a) Agreement of correctness metrics. Rows are the predicting correctness function.
Columns are the ’ground truth’ values discretized at a threshold indicated by @. Higher values cor-
respond to higher agreement between correctness assignment. (b) Agreement between the ranking
of uncertainty estimation algorithm that arises from approximate and exact correctness functions.

detail in the next paragraph. Results are shown in and Fig. 2 (a), showing that MoJI agrees most
with exact correctness.

Exact correctness. If we use problems with non-parametric correctness function ce, we can im-
prove the reliability of evaluating uncertainty estimation algorithms. We refer to this unambiguous
non-parametric correctness function as exact correctness. Practical tasks where such correctness is
defined would be problems that are non trivial to solve but can be verified symbolically. Such tasks
are often called structured problems. We set our goal to avoid generating any new datasets, but rather
to select suitable existing datasets. Specifically, we investigate code generation and constrained text
generation tasks, which feature exact correctness functions.

The correctness space in code completion is very explicitly defined as the subset of sequences that
can be compiled into a program correctly and pass a predefined suite of unit tests. The correctness
function is then the binary label describing the fulfillment of all of the unit tests. Such correctness
function is non parametric. There are several popular public datasets for code completion (Austin
et al., 2021; Chen et al., 2021; Hendrycks et al., 2021; Li et al., 2022) that feature acceptable test
coverage rate. BigCodeBench (BCB) Zhou et al. (2023) focuses on more applied aspects of python
programming. Python is prevalent in the training data of modern LLMs and we therefore select BCB
for our experiments.

Constrained text generation refers to generating a coherent passage of text that fulfills some specific
and measurable requirements. E.g. producing a paragraph with three sentences such, that the last
word of the second sentence is “uncertainty”. This allows for automatic non-parametric correctness
checking of the output for generations multiple paragraphs long. COLLIE (Yao et al., 2024) is a
dataset and evaluation pipeline, focusing on constrained text generation. The evaluation of the an-
swers is deterministic, defined by a list of symbolic constraints. This allows for fine grained control
of both the query string and the correctness function. The problems in the dataset were extracted
from curated text corpora assuring that a solution satisfying the symbolic constraints exists. This
dataset is frequently used to assess the reasoning abilities of language models as it contains subtasks
considered difficult for transformer-based models such as e.g. counting words and characters.

Results on BCB and COLLIE. Fig. 2 (a) shows the agreement between the correctness metrics on
structured tasks. As was pointed out before, MoJI is in greatest agreement with the exact correctness
in both cases. The generation and reference answer lengths seen on the bottom of the figure are an
order of magnitude larger than those on the QA datasets. Fig. 2 (b) shows the Spearman correlation
between ranks of uncertainty estimation methods. The approximate correctness functions struggle
for the COLLIE dataset, with only the largest models with specific prompt being correlated to ex-
act correctness. This is due to the fact, that the reference sequence may have completely different
semantics compared to the one generated by the LLM, while both fulfilling the specified require-
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ments. LLM-as-a-judge fails to pick this up unless the prompt is adopted to the structured tasks.
While other structured tasks could be suitable for this evaluation, we consider these two datasets for
their convenience.

OOD label as risk indicator. As pointed out earlier, incorrectness of prediction on in distribution
data is not the only risk identifier used in uncertainty literature. In classification setting OOD de-
tection and perturbation detection tasks are used alongside selective prediction (Appx.E.1). In these
tasks it is assumed, that the risk of using the model on an input that violates the i.i.d. assumption
or is corrupted is higher than that of an in distribution example. The evaluation would then, of all
thing, depend on the quality of the OOD identifier o : X 7→ {0, 1}, resulting in the performance
measure:

ξOOD = Cor [(û(xi,w;θu)) , (o(xi))] (3)

Unlike the image domain, obtaining OOD examples for text data is difficult. When thinking of
OOD examples for text, one would imagine questions about things that have not yet come to be or
are otherwise unknown or ambiguous in the general text corpora. Several datasets seek to provide
artificial OOD examples. Known-Unknowns Amayuelas et al. (2024) seek to collect questions that
can be assumed to have controversial answers in the common training sets. SQuADv2 Rajpurkar
et al. (2018) provides questions formulated to be unanswerable given the prompt. We consider these
datasets in the experiments in the next section.

5 AGGREGATING BENCHMARK RESULTS

Once a reliable risk indicator is selected, we are presented with quantitative assessments of uncer-
tainty estimation methods for each model, dataset and sampling parameter considered. It is com-
monplace to see large tables listing every feasible combination of aforementioned factors which
often feature contradicting assessments depending on e.g. the model or datasets used. Depending
on how different results are highlighted or how these are discussed in the text, different conclusions,
sometimes conflicting, can be drawn from the same raw results. To the extent of our knowledge,
no work on uncertainty estimation in NLG has made an attempt to aggregate all of the experimen-
tal information from testing under diverse datasets and models into a single scalar in a grounded
fashion.

Elo rating of uncertainty estimation methods. Drawing inspiration from popular approaches
used for general evaluation of LLM skills (Chiang et al., 2024), we use the Elo rating system (Elo,
1978) to gain high level insight into performance of the considered uncertainty estimation meth-
ods. Originally intended to rate skill of chess players, the Elo rating provides an iterative algorithm
to compute relative performance of players based on pairwise comparisons (games). We will treat
each independent dataset / model risk correlation experiment (Eq. (1)) as a separate game, where the
players, methods A and B, can win the game by having higher performance according to Eq. (2) or
Eq. (3). The pairs and experimental runs are then sampled uniformly until the ratings converge to a
stationary distribution that is defined by their relative per problem performance (Cortez & Tossou-
nian, 2024). While each prediction in each considered dataset could be considered a separate game
when estimating the Elo ratings, for the sake of consistency and to avoid unnecessary additional
complexity we only consider the outcomes of experiments on the full datasets.

One advantage of the Elo system is the probabilistic interpretability of the scores. With the usual
initialization, 400 point difference roughly corresponds to 1 : 10 chances of one method being
better than another for a model / dataset combination. Another advantage is it enables for indirect
comparisons. E.g. if UE methods are evaluated on only partially overlapping sets of tasks, we could
still aggregate their relative performance. This is not straightforward with rank based aggregation
(e.g. Vashurin et al. (2025)). Finally, Elo score naturally accommodates variability of outcomes
within the same experiment as well as allows prioritizing specific subsets of experiments.

The Elo ratings are presented in Fig. 3. The ’all task’ ratings are the summary rating from which
to draw conclusions about the general performance of the uncertainty estimation methods. It ap-
pears that the characteristics required to excel in different partitions of the experimental suite vary.
Employing an effective aggregation approach allows us to gain new insights into comparative perfor-
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Figure 3: Elo ratings of NLG uncertainty estimation methods. The methods are grouped by color
according to their category (see Apx. A.1). The 1000 line indicates the average rating. Elo rating
were independently estimated for several key partitions. Per task used: QA - restricted to selective
prediction on QA datasets, C.TEXT - to constrained text generation, CODE - to code completion.
Per models used: IT - instruction fine tuned models only, PT - pretrained models only. OOD - OOD
detection tasks only.

mance of the uncertainty estimation methods as well as to confirm some of the side note observations
made in prior work.

6 RESULTS AND CONCLUSION

By applying our methodology, we attain several insights into relative performances of the uncer-
tainty estimation methods for NLG. One key insight is that simple heuristic methods have compet-
itive performance in most settings. We also observe that most of the time, length normalization
is harming the performance of the uncertainty estimation methods. The only method where it im-
proves the performance is where the information about the sequence likelihood is largely redundant
(semantic entropy). Adjusting the likelihoods of individual tokens based on semantic importance
measures appears to be counterproductive in most situations. Methods that utilize the representa-
tions of the generating model may require intricate, task-specific hyperparameter tuning to match
the performance of information-theoretic methods.

Semantic entropy and sentence SAR are the top performers on the QA partition of the experiments.
Applying Token level shifting appears to not yield performance benefits despite being computa-
tionally more expensive than the initial rollout of the predicting LLM in case of long generations.
Length normalization appears to consistently hurt the performance of predictive entropy and con-
sistently improve that of semantic entropy. This is peculiar, as length normalization of sequence
likelihood was initially introduced as a feature meant to improve the performance of predictive en-
tropy (Malinin & Gales, 2020). This could also explain good performance of discrete semantic
entropy (Farquhar et al., 2024), where the sequence likelihoods are ignored entirely and the entropy
is computed in the semantic cluster size space.

Both P(True) and EigenScore do not excel in any of the tasks in particular. This could be a result of
the considered models that we have evaluated, as well as intricacies of prompting for P(True) and
hyperparameter tuning for EigenScore (selecting the layer with the most suitable representations for
a given task). The efficient G-NLL method (Aichberger et al., 2024a) shows consistently better than
average performance across settings, particularly excelling at code completion and OOD detection.
The ratings on IT and PT partitions indicate, that PT models should be avoided in these benchmarks,
at the very least with problems that imply a query-response format rather than pure completion.
Perplexity got rated above average on the IT setting, which might be a somewhat more realistic
assessment than ’all tasks’, but there is no specific task at which it could act as the go to choice.

Overall, our results suggest that there is no one-size-fits-all in uncertainty estimation for NLG, with
different tasks having different method preferences. We expect that our analysis and suggestions
will improve the standards for the evaluation of NLG uncertainty estimation algorithms and raise
awareness about the caveats of the currently prevailing protocols.
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A DATASETS AND METHODS USED IN OUR ANALYSIS

A.1 CONSIDERED UNCERTAINTY ESTIMATION METHODS

In the following section, we give an overview about the considered uncertainty estimation meth-
ods. Two main categories are methods that operate on multiple and single generated output se-
quences. Furthermore, an inherent problem of generating output sequences of arbitrary size (though
in practice often capped as a maximum length), introduces the problem of having an uncertainty
estimate that is independent of the sequence length. For methods based on output probabilities
p(yt | x,y<t,w), this usually involves non-uniform weighting of individual token probabilities.
Finally, we present a set of well performing heuristics.

A.1.1 MULTIPLE OUTPUT SEQUENCES

Many works investigate measures of sequence-level uncertainty that are defined as expectations
over the sequence probability distribution p(y | x,w) under a given model. Monte-Carlo (MC)
approximations thereof rely on sampling multiple output sequences.

Predictive Entropy. Similar to the univariate classification setting, Predictive Entropy (Malinin
& Gales, 2020) captures the variability in possible outcome sequences. If PE is high, the lan-
guage model is likely to generate different outcome sequences. However, as the language model
does not provide the full predictive distribution p(y | x,w), but only the conditional distribution
p(yt | x,y<t,w) for each token. Therefore, estimating the Predictive Entropy necessitates a MC
approximation:

H(p(y | x,w)) = Ep(y|x,w) [− log p(y | x,w)] ≈ 1

N

N∑
n=1

− log p(yn | x,w) , yn ∼ p(y | x,w) .

(4)

Semantic Entropy. Predictive Entropy does not account for the fact that output sequences y are
different, yet covey the same semantics. For example, “John is my brother.” and “My brother is
John” is semantically equivalent, yet are different output sequences. To that end, Kuhn et al. (2023);
Farquhar et al. (2024) introduce Semantic Entropy, which accounts for those semantic equivalences.
They do so by introducing a semantic cluster probability p(c | x,w), that is marginalized over
possible output sequences:

p(c | x,w) =
∑
Y

p(c | y,x,w) p(y | x,w) (5)

In practice, Kuhn et al. (2023); Farquhar et al. (2024) suggest to deterministically assign output
sequences to clusters. Semantic Entropy (Kuhn et al., 2023; Farquhar et al., 2024) is then defined
on this cluster probability distribution:

H(p(c | x,w)) = Ep(c|x,w) [− log p(c | x,w)] ≈ 1

N

N∑
n=1

− log p(cn | x,w) , cn ∼ p(c | x,w) .

(6)

Note that while the MC estimate in Eq. (6) is possible if one has access to the cluster probability
distribution, this is not the case in practice. Therefore, we use the implementation of Aichberger
et al. (2024b), who discuss how to construct a proper MC estimator of Semantic Entropy.

SentenceSAR. Instead of clustering, Duan et al. (2024) propose to add a consistency dependent
penalty to the uncertainty calculation. The resulting measure, SentenceSAR is defined as

SentenceSAR =
1

N

N∑
n=1

− log p(yn | x,w) +

∑
k ̸=n sim(yn,yk) p(yk | x,w)

τ
, (7)

where sim(·, ·) is a semantic similarity BERT-style model and τ is a temperature parameter. When
output sequences yn are sampled according to the posterior, the left term of Eq. (7) is equivalent to
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Predictive Entropy. The right term of Eq. (7) can be interpreted as penalty that decreases uncertainty
if there are many semantically similar answers. Therefore, SentenceSAR has a similar goal as
Semantic Entropy, yet is more or less motivated heuristically.

The SAR method proposed in Duan et al. (2024) combines both SentenceSAR (Eq. (7)) and Token-
SAR (Eq. (13)). We consider both SentenceSAR, TokenSAR and SAR in our experiments.

EigenScore. The EigenScore method proposed by Chen et al. (2024) operates in the latent space
instead of output probabilities. Due to that, the method aims to better capture semantic information
for an accurate assessment of an LLMs likelihood to hallucinate / confabulate. The EigenScore
metric is defined as

EigenScore =
1

N
log det(Σ+ α IN ) =

1

N
log(

N∏
k=1

λk) =
1

N

N∑
k=1

log(λk) , (8)

where Σ = ZT ·Jd ·Z is the covariance matrix, Z is a matrix of N sentence embeddings, taken from
the latent space of the LLM with dimensionality d, Jd = Id− 1

d1d is the centering matrix where Id is
an identity matrix and 1d is an all-one square matrix of size d×d. The regularization term αIN with
small constant α is added such that Σ has full rank. The set {λ1, λ2, ...,ΛN} denotes the eigenvalues
of the regularized covariance matrix Σ + α IN , obtained through singular value decomposition.
We followed the implementational details by the original authors Chen et al. (2024). Noteworthy,
according to Remark 1 in Chen et al. (2024), EigenScore is an approximation of differential entropy
in the sequence embeddings space. It can thus be interpreted as a variant of Semantic Entropy, yet
not computed in the output space, but in the embedding space. While Semantic Entropy and other
methods operating in the output space hinge on the quality of the semantic similarity operation in
the output space, EigenScore depends critically on the quality of the sentence embedding space of
the LLM.

A.1.2 SINGLE OUTPUT SEQUENCE

In addition to measures of predictive uncertainty defined as expectations over the sequence proba-
bility, also other methods that only consider a single output sequence have been proposed.

Maximum Sequence Probability. Similar to the univariate classification setting, the Maximum
Sequence Probability has been considered as a measure of uncertainty (Fadeeva et al., 2023). For
numerical stability, the negative logarithm of the sequence probability is considered. Formally, the
Maximum Sequence Probability (i.e. the negative logarithm thereof) is given by

MSP = −max
y

log p(y | x,w) . (9)

Recently, Aichberger et al. (2024a) has shown that Eq. (9) is a theoretically justified measure of
uncertainty. Approximating Eq. (9) is similarly hard as for other measures of uncertainty in practice,
as the autoregressive nature of LLMs makes it necessary to search for the most likely sequence.
However, Aichberger et al. (2024a) show that the greedily decoded sequence leads to a very efficient
estimate that performs very well in practice called G-NLL, which is defined as

G-NLL = −
T∑

t=1

log

(
max
yt

p(yt | x,y<t,w)

)
≈ MSP . (10)

Perplexity. Closely related, the perplexity of an output sequence has been considered as mea-
sure of uncertainty (Ren et al., 2023). Note that this is essentially length-normalization as given in
Eq. (12), with opposite sign. The perplexity of a sequence y is given by

PP = exp

{
1

T

T∑
t=1

− log p(yt | x,y<t,w)

}
. (11)

A.1.3 WEIGHTING TOKEN PROBABILITIES

A fundamental problem of calculating uncertainty measures on a sequence basis instead of a token
basis is, that there is a depenency on the sequence length T . Therefore, short answers are automat-
ically less uncertain than long answers. An ad-hoc solution that is widely regarded in the literature
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is to use length-normalization (see e.g. Cover & Thomas (2006)). Furthermore, alternatives to this
indiscriminative normalization have been proposed, e.g. TokenSAR where individual tokens are
weighted according to their semantic relevance (Duan et al., 2024).

Length-normalization. Malinin & Gales (2020) popularized the use of length-normalization to
make Predictive Entropy comparable across sequence lengths. Instead of the usual sequence proba-
bility, the heuristic length-normalized probability distribution

p̄(y | x,w) =

T∏
t=1

p(yt | x,y<t,w)
1
T = exp

{
1

T

T∑
t=1

log p(yt | x,y<t,w)

}
(12)

is considered. Note that this distribution is therefore unnormalized in the sense that the sum over
all sequences does not sum up to one. This heuristic has been widely used together with Predictive
Entropy, Semantic Entropy or the Maximum Sequence Probability. Using p̄(y | x,w) instead
of p(y | x,w) in their definitions essentially leads to an additional factor 1

T in the definitions of
these uncertainty measures. Furthermore, we note that Perplexity is essentially the negative length-
normalized sequence probability of an output sequence.

TokenSAR. In order to make uncertainty scores comparable across different sequence lengths,
instead of summing up token log-likelihoods, one can calculate a weighted average. While length-
normalization uniformly weights with one divided by the sequence length, the TokenSAR method
by Duan et al. (2024) introduces a weighting dependent on input / output pair x,y. The TokenSAR
score is given by

TokenSAR =

T∑
t=1

− log p(yt | x,y<t,w)
R(yt,y,x)∑T
t=1 R(yt,y,x)

(13)

with R(yt,y,x) = 1 − |sim(x ◦ y,x ◦ y\{yt})|. The semantic similarity metric sim(·, ·) is a
BERT-style model and ◦ denotes concatenating two token sequences. Essentially, the weighting
term R captures the semantic similarity of an x,y pair and itself, yet leaving out one token of
the output sequence. If the similarity chances substantially when removing one token, this one is
weighted higher in the weighted average.

The SAR method proposed in Duan et al. (2024) combines both SentenceSAR (Eq. (7)) and Token-
SAR (Eq. (13)). We consider both SentenceSAR, TokenSAR and SAR in our experiments.

A.2 HEURISTICS

Furthermore, we consider popular heuristic methods, that are not grounded in information-theory.

p(True). Kadavath et al. (2022) introduced the p(True) baseline to assess the confidence of the
model in its own response. The model first generates an answer to a question and then evaluates
the probability p(True) — the likelihood that the answer is correct. This is done by prompting the
model to assess its own output, such as asking whether the answer is “True” or “False”, and using
the probabilities assigned to these responses as a confidence score.

Length of generated answer. Another heuristic baseline is to consider the length of the generated
answers. The reasoning behind this is, that if the model does not know an answer, it will generate
longer and more meaningless content as is often observed in public debates. We are not aware of any
prior work that has considered it as an uncertainty estimation heuristic, although sequence length
plays a role in the analysis in (Santilli et al., 2024).

A.3 NOTES ON CORRECTNESS FUNCTIONS USED IN NLG

Artifacts in a widely used ROUGE-2 and BLEU Implementation. Notably, ROUGE-2 and
BLEU show low agreement to other n-gram based metrics while showing some higher than average
agreement to each other. Low agreement of BLEU to other metrics can in part be explained by
correctness values being low, making the commonly used 0.5 threshold a poor choice. Upon closer
inspection it turned out that the standard implementations of ROUGE and BLEU that is widely
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Table 3: Accuracies of the models for evaluated datasets according to corresponding correctness
functions. This table lists the dataset / model papers evaluated in this work. Nan values in SQUAD
is expected behavior, as there are no correctness labels for the artificially unanswerable OOD part.
Known-Unknown Amayuelas et al. (2024) dataset generations were performed without accuracy
computation as it we used it as a strictly OOD detection dataset.

Dataset Model / Temp NaN Values Accuracy Correctness Function
BCB Llama-3 8b / 1. 0 0.34 Exact
BCB Llama-3 8b IT / 1. 2 0.21 Exact

COLLIE Phi-3.5 / 1. 0 0.30 Exact
COLLIE Llama-3 70b IT / 1. 0 0.49 Exact
COLLIE Falcon Mamba / 1. 0 0.14 Exact
COLLIE Llama-3 8b / 1. 0 0.145 Exact
COLLIE Falcon Mamba IT / 1. 0 0.166 Exact
COLLIE Llama-3 8b IT / 1. 0 0.42 Exact
COLLIE Phi-3.5 IT / 1. 0 0.21 Exact
COQA Llama-3 8b IT / 1. 0 0.86 MoJI
COQA Phi-3.5 IT / 1. 0 0.81 MoJI
COQA Llama-3 8b / 1. 0 0.54 MoJI
COQA Llama-3 70b / 1. 0 0.73 MoJI

SQUAD Phi-3.5 IT / 1. 5945 0.92 MoJI
SQUAD Llama-3 8b IT / 1. 5945 0.94 MoJI
SQUAD Llama-3 8b / 1. 5945 0.74 MoJI
SQUAD Llama-3 70b IT / 1. 5945 0.94 MoJI
TRIVIA Phi-3.5 IT / 1. 0 0.58 MoJI
TRIVIA Llama-3 8b IT / 1. 0 0.74 MoJI

used in uncertainty estimation evaluation Luong et al. (2017) return correctness of zero if either the
proposed or reference answers are shorter than a predefined n-gram, which is 2 for ROUGE-2 and 4
for BLEU. Considering the distribution of reference answers in QA datasets, this is a major artifact
demanding attention.

B DETAILS ON EXPERIMENTAL SETTING

To broaden the domain of the experiments, we have preferred smaller models from diverse families.
We utilized the Llama-3 Dubey et al. (2024), Phi-3.5 Abdin et al. (2024) and Falcon Mamba Zuo
et al. (2024) series of models. Falcon Mamba models, although less performant than their attention
based counterparts, were utilized to broaden the evaluation coverage to the upcoming linear attention
models. The dataset model pairs considered and the accuracies achieved on the most appropriate
correctness metric are listed in Tab. 3.

B.1 COMPUTING THE ELO RATING

The Elo rating was computed as follows: the initial rating were initialized to 1000 for each method.
For each step, a dataset / model pair was selected, as well as two distinct uncertainty estimation
methods. Out of the two methods, one with higher AUC against the corresponding risk indicator
would be considered the winner. The scores would then be updated according to the standard Elo
update rule with s = 400 and K = 2. K value roughly corresponds to the update step size modifier.
The relatively low value of K was selected since the optimization was performed for 100, 000 steps
until convergence (Fig. 4). The mean and variance of the Elo scores over the last 1000 iterations
were taken as the final values presented in Fig. 3.

17



Workshop ”QUESTION: The Next Frontier in Reliable AI” at ICLR’25

0 20 40 60 80
x1000 games

0

50

100

150

200

250

300

350

m
ea

n 
El

o 
sc

or
e 

va
ria

nc
e

Convergence of Elo scores (starting = 1000, K=2).
ALL TASKS
QA ONLY
CODE ONLY
CONSTRAINED TEXT ONLY
IFT ONLY
PRETRAINED ONLY
OOD ONLY

Figure 4: Convergence of Elo ratings on the various experimental subsets.

C PROMPTS USED FOR JUDGE MODELS

All judge models were of Llama-3 family. All three sizes were considered: 8B, 70B, 405B. The
length of the completion was observed to be largely in 2-3 token range, indicating that the prompting
largely succeeded at imposing anticipated output structure onto the model.

Throughout our investigations, we use the Llama-3 8B and 70B Dubey et al. (2024), Phi-3.5 Abdin
et al. (2024) and Falcon Mamba 7B Zuo et al. (2024) series of models, both pretrained and instruc-
tion tuned (IT). If the model is not specified explicitly, all models are considered. Further details
such as the accuracies of individual models on the considered datasets are provided in Apx. B. We
consider the QA datasets CoQA (Reddy et al., 2019), TriviaQA (Joshi et al., 2017) and SQuADv2
(Rajpurkar et al., 2018).

QA prompt follows the implementation of Farquhar et al. (2024):

We are assessing the quality of answers
to the following question: {question}
The expected answer is: {correct_answer}.
The proposed answer is: {predicted_answer}
Within the context of the question,
does the proposed answer mean the same as the expected answer?
Respond only with yes or no.
Response:

Gen prompt is derived from the QA prompt with minor modifications:

We are assessing the quality of answers
to the following question: {question}
The following are example answers: {correct_answer}.
The proposed answer is: {predicted_answer}
Within the context of the question and example answer,
is the proposed answer correct?
Respond only with yes or no.
Response:

D COMPARISON OF LLM-AS-A-JUDGE TO EACH OTHER AND EXACT
CORRECTNESS

In Fig. 5 we investigate the consistency of correctness assessment between different judge models.
We can observe, that even identical models can diverge based on the prompt. When the temperature
is not set to 0, we are additionally facing variability due to sampling outputs from the judge model.
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Figure 5: Agreement scores between judges on structured problems. The ticks indicate model
size / prompt / sampling temperature used to assess correctness. judges of similar sizes tend to
agree. Larger judge models tend to agree better with the exact solution, especially on COLLIE. The
sampling temperature of the judge model appears to have a relatively minor effect on the outcome.
Prompt affects the evaluation quality substantially, especially on COLLIE, which requires much less
direct pattern matching and more reasoning.

E ADDITIONAL THEORETICAL CONSIDERATIONS

E.1 EMPIRICAL PROPERTIES OF UNCERTAINTY QUANTIFICATION ALGORITHMS

According to the how uncertainty quantification algorithms are evaluated in the literature (Welling
& Teh, 2011; Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017; Malinin & Gales, 2018;
D’ Angelo & Fortuin, 2021; Daxberger et al., 2021; Mukhoti et al., 2023; Schweighofer et al., 2023),
we can say that uncertainty is a function ûale(x,w;θu) (aleatoric) or ûepi(x,D;θu) (epistemic) with
positive real valued codomain that has the following empirical properties:

1. û is higher for x′ ∼ Dtest than for x ∼ Dtest if the risk of prediction using w (aleatoric) or
w ∼ p(w | D) (epistemic) for x′ is higher than for x.

2. û is not lower for x′ than for x ∼ Dtest if x′ is drawn from a different data generating
function than one that produced the training data D.

3. û is not lower for x′ than for x ∼ Dtest if x′ is obtained from x by some perturbation.

These properties can be distilled from ubiquitously used evaluation protocols in uncertainty quantifi-
cation literature in classification setting. Note that the first and third properties are characteristic of
both aleatoric and epistemic uncertainty, whereas the second is usually attributed to epistemic uncer-
tainty. In the classification setting, most of the literature is focused on epistemic uncertainty since it
involves, depending on the definition, estimating a more difficult posterior integral of a divergence,
which requires intricate posterior sampling techniques (Wilson & Izmailov, 2020; Schweighofer
et al., 2023). The three empirical properties can be unified in terms of viewing uncertainty as an
indicator of prediction risk (Kotelevskii & Panov, 2025; Lahlou et al., 2023).

Another assumption is sometimes used:

4. If ûepi is higher for x′ ∼ Ddomain than for x, then adding the (x′,y′) to the training dataset
D would on expectation lead to higher risk reduction on Ddomain than adding (x,y).

This is the active learning assumption which in classification literature is usually associated with the
epistemic uncertainty (Kirsch, 2024). Active Learning evaluation is a challenging task with many
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caveats even in the classification setting (Hacohen et al., 2022; Lüth et al., 2023). Furthermore
it requires a true label and some degree of model tuning. Autoregressive generation further com-
plicates this. Therefore we do not consider AL assumption for evaluation in our work. The way
these assumptions are formulated implies that the correlation coefficient according to which they
are evaluated must be invariant to monotone increasing transformations.

E.2 EFFECTS OF NOISY REFERENCE ON RANK CORRELATION

In this section we investigate the effects of the defects of the reference class labels on rank correla-
tion. We specifically focus on AUC, as it is the rank correlation most commonly used in Uncertainty
Estimation literature for risk correlation experiments. We show that both variance and bias in risk
indicator values lead to biased AUC estimates. Both of the considered scenarios support using MoJI
as the approximate correctness measure of choice.

E.2.1 SAMPLE AUROC

Sample AUROC can be computed explicitly as follows:

AUCs =
1

n0n1

∑
i:yi=1

∑
j:yj=0

I(si > sj) + 0.5 · I(si = sj) (14)

It has an equivalent MC estimator that implies sampling positive-negative labeled pairs:

AUCs-MC ≈ 1

M

M∑
i

I(s1i > s0i ) (15)

The two forms are equivalent and are unbiased and consistent AUC estimators and are equivalent to
the original rank based U statistic (Mann & Whitney, 1947). Generally, the AUC corresponds to the
expected probability that the scorer s : X → R ranks the items (x1, . . . xn) in a way that those with
positive binary labels (y1, . . . yn) have higher score than ones with negative labels.

AUC = Exp∼p(x,y=0)Exn∼p(x,y=1)P [s(xp) > s(xn)] (16)

In case of empirical assessment of the uncertainty estimation algorithm by correlation to risk (as per
Sec.2 and Appx.E.1) ξ, the y labels are the negated correctness ¬c and scores are the uncertainty
estimates û.

Sample AUROC with label noise Let us now consider scenario, where the reference labels are
perturbed randomly by a Bernoulli noise:

cnoisy
xi

=

{
cxi if γ ∼ B(p) = 0

¬cxi
if γ ∼ B(p) = 1

(17)

Note, that rounded expectation of cnoisy
xi (its median) equals the true value of cxi

if the noise magni-
tude p < 0.5:

round
[
E[cnoisy(xi)]

]
= c(xi) (18)

Informally this can be viewed as an unbiased estimator of c(xi) with added variance for a binary
variable. γ is independent of the example i to which it applies, contrary to the bias introduced by
distortion in the previous section.

20



Workshop ”QUESTION: The Next Frontier in Reliable AI” at ICLR’25

To inspect the properties of the AUC estimate in case of of noisy reference, we will use the AUCMC

from Eq.(15) formulation of the estimator, as the direct sample AUC estimation from Eq.(14) is less
suitable for accommodating the noise term. In this regime we require sampling pairs of inputs with
positive/negative label i. This assumes ability to specifically sample the positive or negative class,
which we take for granted (i.e. class balance assumption) without additional importance sampling
considerations. We decompose the Eq.(15) similarly to what we did for the bias case:

AUCnoisy-MC =

=
1

M

M∑
i

I
(
s(xa

i ) > s(x
b
i ) | cnoisy(xa

i ) = 1, cnoisy(xb
i ) = 0

)

=
1

M

M∑
i


I
(
s(xa

i ) > s(x
b
i ) | c(xa

i ) = 1, c(xb
i ) = 0

)
· p(γ = 1)2 +

I
(
s(xa

i ) > s(x
b
i ) | c(xa

i ) = 1, c(xb
i ) = 1

)
· p(γ = 0)p(γ = 1) +

I
(
s(xa

i ) > s(x
b
i ) | c(xa

i ) = 0, c(xb
i ) = 0

)
· p(γ = 0)p(γ = 1) +

I
(
s(xa

i ) > s(x
b
i ) | c(xa

i ) = 0, c(xb
i ) = 1

)
· p(γ = 0)2

=
1

M

M∑
i


I
(
s(xa

i ) > s(x
b
i ) | c(xa

i ) = 1, c(xb
i ) = 0

)
· (1− p)2 +

I
(
s(xa

i ) > s(x
b
i ) | c(xa

i ) = 1, c(xb
i ) = 1

)
· p · (1− p) +

I
(
s(xa

i ) > s(x
b
i ) | c(xa

i ) = 0, c(xb
i ) = 0

)
· p · (1− p) +

I
(
s(xa

i ) > s(x
b
i ) | c(xa

i ) = 0, c(xb
i ) = 1

)
· p2

(19)

Note that the coefficients in sum up to 1, which makes sense. Then we can proceed by separating
the part that corresponds to the AUC estimator with unbiased labels:
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AUCnoisy-MC =

=
1

M

M∑
i

I
(
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(20)

We can safely assume that the two identity terms within the classes sum up to 0.5 over large number
of samples. This is because within the same class we can sample both (xa

i , x
b
i ) and (xb

i , x
a
i ) with the

same likelihood.

AUCnoisy-MC =

= AUCMC · (1− 2p) +
1

M

M∑
i

p2 +

M∑
i

1

M
p · (1− p)

= AUCMC · (1− 2p) + p (21)

While in Eq.(21) the first term is lower than the value obtained with unbiased labels by a factor
of 1 − 2p. With this, AUCnoisy-MC = AUCMC only when the AUCMC = 0.5. Intuitively, we can
see that random classifier will not be affected by noise in the labels. This shows, that ultimately,
introducing random noise to the labels increases the bias of the AUC estimator and results in a loss
of its asymptotic consistency. In context of our work this demonstrates that having variance in the
risk indicator (i.e. stochastic approximate correctness) yields a biased estimate of ξ when using
AUC as rank correlation. This is particularly relevant to samples from LLM-as-a-judge, which are
rolled out stochastically.
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Sample AUROC with biased labels Lets consider a scenario, where the correctness function is
biased. This is equivalent to permanently perturbing the correctness labels (c1, . . . cn) with some
distortion function d : X 7→ {0, 1}:

cb
xi

=

{
cxi if dxi = 0

¬cxi
if dxi

= 1
(22)

For brevity, we refer to cb
xi

as ci and to dxi
as di. Then (ignoring the ties for simplicity):
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∑
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(23)

In the Eq.(23) we first decompose the AUC estimate with distorted labels into 4 terms. The first and
the last term then can be expressed through the sample AUC with unbiased labels, which holds in
the asymptotic case of large sample size (N → inf where N = n0 + n1). The middle two terms
equal 0.5 by symmetry argument.
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n(di = 1)n(dj = 1)
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−AUCs * · n(di = 1)n(dj = 1)

n0n1
+ (24)

+ 0.5

(
n(di = 1)

n0
+

n(dj = 1)

n1

)
(25)

Here the AUCs * is the AUC of the subsample with flipped labels and AUCs is the AUC of the
undistorted part. Note, that in case of large sample size and random flipping of labels, this expression
becomes equivalent to Eq.(21).
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This shows, that the deviation from the original AUC depends on a) magnitude of distortion; b) on
whether the AUC of distorted partition is similar to that of the undistorted partition. If the distortion
is produced by random noise like in the previous section, the bias is higher if no resampling is
done. This part of the identity above results in In context of our work, this shows that biased the
risk indicator labels leads to bias and loss of consistency of the ξ estimate compared to the case of
unbiased indicator.
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