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Abstract

Large language models (LLMs) have show001
their remarkable ability in various natural lan-002
guage tasks. However, there are concerns that003
LLMs are possible to be used improperly or004
even illegally. To prevent the malicious usage005
of LLMs, detecting LLM-generated text be-006
comes crucial in the deployment of LLM appli-007
cations. Watermarking is an effective strategy008
to detect the LLM-generated content by encod-009
ing a pre-defined secret watermark to facilitate010
the detection process. However, the majority of011
existing watermark methods leverage the sim-012
ple hashes of precedent tokens to partition vo-013
cabulary. Such watermarks can be easily elimi-014
nated by paraphrase and, correspondingly, the015
detection effectiveness will be greatly compro-016
mised. Thus, to enhance the robustness against017
paraphrase, we propose a semantics-based wa-018
termark framework, SemaMark. It leverages019
the semantics as an alternative to simple hashes020
of tokens since the semantic meaning of the021
sentences will be likely preserved under para-022
phrase and the watermark can remain robust.023
Comprehensive experiments are conducted to024
demonstrate the effectiveness and robustness025
of SemaMark under different paraphrases.026

1 Introduction027

Large language models (LLMs) have shown their028

great ability in various natural language processing029

(NLP) tasks like Question Answering (QA) (Lu030

et al., 2022), reasoning tasks (Wei et al., 2022;031

Creswell et al., 2022) and code development (Xu032

et al., 2022). However, tremendous concerns have033

been raised that LLMs are possible to be used im-034

properly and illegally. For example, indistinguish-035

able fake news are easy to be fabricated (Kreps036

et al., 2022; Zellers et al., 2019) by language037

models, which, when disseminated, could insti-038

gate widespread panic. Similarly, in the com-039

mercial sphere, convincingly generated reviews040

can manipulate consumer perceptions, leading to041

unethical business competition (Salminen et al., 042

2022). Therefore, detecting LLM-generated text 043

has become crucial in the real-world applications 044

of LLMs. 045

Among diverse methods to detect LLM- 046

generated texts, the watermark strategies have 047

demonstrated outstanding precision (Kirchenbauer 048

et al., 2023a). It is proposed to encode a secret 049

watermark into the generated texts, such that we 050

can tell whether a text is generated by detecting this 051

watermark. One representative strategy (Kirchen- 052

bauer et al., 2023a; Yoo et al., 2023) is to encode 053

the watermark based on the “partition of vocab- 054

ulary”. In detail, given a language model, these 055

methods devise a mapping from precedent tokens 056

to a particular partition of the vocabulary by a par- 057

tition function for the consequent token. The par- 058

tition function leverages the hashes of the input 059

as the seed of a random generator to split the vo- 060

cabulary to a green list and a red list. During the 061

text generation phase, the consequent token has 062

an increased probability to be sampled from the 063

green list. In this way, the watermark is encoded 064

through the matching between the precedent tokens 065

and the vocabulary partition for the consequent to- 066

ken. The detection is also facilitated by detecting 067

this matching in generated contents. However, re- 068

cent works (Krishna et al., 2023; Kaddour et al., 069

2023) reveal that this watermark may be easily 070

eliminated by sentence paraphrasing. Individ- 071

uals seeking to improperly utilize LLMs without 072

being detected can paraphrase the generated con- 073

tents, like altering the order and the choices of the 074

words, and only retain the general meaning of the 075

text to achieve their malicious goals like faking 076

news. These paraphrases will change the seed of 077

the partition function, i.e. the token hashes, and 078

as we show in the Section 4.4, the partition func- 079

tion is sensitive to small changes. Consequently, 080

the matching between the precedent tokens and the 081

green list will be disrupted, and the detection ef- 082
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fectiveness of the watermark can be dramatically083

compromised.084

In this paper, we propose to leverage the seman-085

tic meaning of precedent token sequences as the086

seed for partition function, instead of simple hashes087

of precedent tokens, since the core semantic mean-088

ing is expected to be maintained after paraphrase.089

To achieve this goal, one key obstacle is how to090

capture the semantics when applying them for the091

partition function to watermark the generated texts.092

It is a common practice to quantify the semantics093

via embeddings (Reimers and Gurevych, 2019; Gao094

et al., 2021; Li et al., 2020; Giorgi et al., 2021). Em-095

beddings indeed can represent consistent semantics096

after paraphrase. Since the embeddings are high-097

dimensional vectors in the continuous space, they098

often present some minor changes after paraphrase.099

Although the main semantics are preserved, these100

minor changes can lead to a substantial difference101

in the partition of vocabulary because the random102

generator in the partition function is sensitive to103

the change of the seed, as shown in Section 4.4.104

To overcome the above challenge, i.e., to make105

the quantified semantics invariant and make the wa-106

termark robust under paraphrase, we propose a new107

watermark method, SemaMark, which discretizes108

the continuous embedding space. Intuitively, the109

discretization can coarsen the representation of the110

embeddings which could tolerate the potential mi-111

nor changes caused by paraphrase. By proper dis-112

cretization, the paraphrased semantics could stay113

in the same discrete section with a high probability114

and the discretized quantified semantics will likely115

remain the same even after paraphrase. Therefore,116

the partition results will not change. However, di-117

rectly converting the high-dimensional embedding118

space into discrete is intricate and challenging. For119

example, discretizing each dimension will lead to a120

large amount of discrete values which is exponen-121

tial to the number of dimensions. Thus, the minor122

changes by paraphrase can still cause the change123

of discrete values because the number of discrete124

values are too dense and each discrete value can125

tolerate only small changes. Therefore, the mi-126

nor changes of high-dimensional embeddings can127

have a strong impact on the partition function. To128

address this problem, SemaMark first uses a Multi-129

Layer Perception (MLP) to condense the contin-130

uous high-dimensional embeddings into normal-131

ized vectors in 2D space. The vectors are located132

on a unit circle named Normalized Embedding133

Ring (NE-Ring). Then the condensed NE-Ring is134

equally divided into various sections, transforming 135

the continuous space into distinct discrete values, 136

i.e., “semantic values”. Based on the discretiza- 137

tion, SemaMark further introduces two strategies 138

to advance the watermark’s concealment and to 139

improve the robustness under paraphrase. First, 140

SemaMark leverages the uniformity (Wang and 141

Isola, 2020) of Contrastive Learning(CL) (Chen 142

et al., 2020) to strength the MLP and mitigate the 143

problem that the semantics are unevenly concen- 144

trating on some discrete sections on NE-Ring. The 145

unevenly distribution will cause the final discrete 146

semantic values overly monotonous. It raises the 147

concern that the watermark might be cracked by 148

counting token frequency (Zhao et al., 2023). Sec- 149

ond, SemaMark utilizes an offset detection method 150

to further enhance the robustness at the boundary of 151

different discrete sections whose semantic values 152

are possibly vulnerable to paraphrase. Comprehen- 153

sive experiments are conducted to demonstrate the 154

effectiveness and robustness of SemaMark under 155

different paraphrases. 156

2 Related works 157

LLM-generated detection. As the development 158

of LLMs, various LLM-generated detection tools 159

have also been proposed. Learning-based meth- 160

ods train a classification model to detect the dif- 161

ference between human-written text and machine- 162

generated text like Guo et al. (2023); Wang et al. 163

(2023); Li et al. (2023). Other works do not rely on 164

the classification model, but try to use the property 165

of the LLM to test whether a given text is generated 166

by LLMs. For example, DetectGPT (Mitchell et al., 167

2023) assumes that the generated text will have 168

high likelihood. GPT-who (Venkatraman et al., 169

2023) uses UID-based features to model the unique 170

statistical signature of each LLM and human author 171

for accurate authorship attribution. These methods 172

do not interact the generation process of LLMs and 173

thus have to explore unknown features of LLMs 174

for detection. Instead, watermarks can change the 175

model with a small but pre-defined rule which ac- 176

celerates the detection process effectively. 177

Watermark. The distinction between watermark 178

and other methods is that watermark can proac- 179

tively change the generation to insert a concealed 180

watermark into the generated text. This gives 181

clear difference between watermerked and non- 182

watermarked texts. Watermark shifts the text using 183

a small but pre-defined rule to make the detection 184
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Figure 1: The watermarking process of SemaMark

much more effective. The partition of the vocabu-185

lary for each token is a representative watermark186

method (Kirchenbauer et al., 2023a; Yoo et al.,187

2023; Kirchenbauer et al., 2023b). In each auto-188

regressive step of generating one token, the method189

uses the previous tokens’ hashes, to select a part190

of the vocabulary as “green” at a ratio of γ. Subse-191

quently, they elevate the likelihood of the tokens by192

boosting the logits of the softmax by δ. Through193

this approach, at each token position, the probabil-194

ity of this matching between the seed and green195

tokens tends to increase.196

For a sentence with L tokens, it is viewed as a197

sample set of size L. Each token is one sample198

from the vocabulary. A non-watermarked sentence199

is expected to have γL tokens showing this match,200

while the watermarked sentence is expected to have201

more. The watermark detection is approached as202

a z-test with null hypothesis that the text is non-203

watermarke. If the z-statistic is large, i.e. it is204

significantly different from the null hypothesis, the205

null hypothesis can be rejected and the text can be206

predicted as watermarked:207

z =
(G− γL)√
Lγ(1− γ)

, (1)208

where G is the number of tokens showing the209

matching between seed and the green list. Yoo et al.210

(2023) further expand this watermark of green and211

red list to more lists for multi-bit encoding.212

3 Method213

In this section, we introduce the detailed design214

of SemaMark. We first present how to use the215

semantic information as the seed for watermark216

methods that are based on random partition of vo-217

cabulary in Section 3.1. Then in Section 3.2 and218

Section 3.3, we introduce the CL training scheme 219

and the smoothed detection method for further im- 220

proving the robustness, respectively. 221

3.1 The framework of SemaMark 222

As aforementioned, the existing watermark meth- 223

ods based on partition of vocabulary are susceptible 224

to paraphrase. Paraphrase can easily change the 225

previous tokens and disrupt the matching between 226

tokens and the partition of vocabulary, without sig- 227

nificantly affecting the semantic meaning. Thus, 228

SemaMark uses the invariant semantics for water- 229

marking by discretizing the embedding space to 230

accommodate the minor perturbation of semantics 231

and provide a stable mapping between semantics 232

and vocabulary partition for the consequent token. 233

However, discretization in a high-dimension 234

space is intricate and non-trivial. Therefore, we 235

first reduce the high-dimensional embedding space 236

onto the 2D NE-Ring and then discretize via NE- 237

Ring. The whole watermarking process is shown 238

in Figure 1. SemaMark first reduces the dimen- 239

sion of the embedding space to obtain the discrete 240

semantic values by two steps, i.e., weighted embed- 241

ding pooling and discretizing by NE-Ring, and then 242

uses the semantic value to partition the vocabulary. 243

The logits of green list is shifted to increase the 244

probability of matching between semantics and the 245

consequent token for watermarking the LLM, f . In 246

the following, we introduce more details about the 247

two steps to obtain a stable semantic value. 248

S1: weighted embedding pooling. To enhance 249

the robustness, we aggregate the semantics of pre- 250

vious m tokens by the weighted mean pooling func- 251

tion P (·) before dimension reduction, instead of 252

using only one preceding token’s embedding. In 253

the ablation studies of Section 4.4, we show that 254
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the method has the best performance when m is255

neither too big nor too small. For the token se-256

quence {ti:i+m−1} starting at position i, we use257

their semantics to generate the token in the m258

position, ti+m. We denote their embeddings as259

{ei:i+m−1}. {ei:i+m−1} can be easily obtained260

from the LLM, f , that we want to watermark. In-261

tuitively, in {ti:i+m−1}, the embeddings of tokens262

far from ti+m contain semantic information that263

is more distant from ti+m than the closer ones. It264

means that the embeddings of far tokens may be265

less robust because the distant connection is more266

possible to change after paraphrase. Thus, for pool-267

ing, P (·) aims to assign a smaller weight to the268

token far from ti+m and a larger weight to the to-269

ken closer to ti+m as:270

P ({ei+1:i+m}) =
K∑
j=1

j + K
2

wsum
ei+j ,271

where wsum = K2+K/2 is the sum of all weights.272

We denote the weighted output P ({ei:i+m−1}) ∈273

Rd as ePi,m for short. By pooling, more semantics274

are used for a seed, which enhance the robustness275

under paraphrase.276

S2: discretizing by NE-Ring. After aggregating277

the embeddings by weighted pooling, SemaMark278

uses MLP gθ to transform ePi,m to a normalized279

vector in 2D embedding space. The normalized280

vectors locate on a unit circle in the 2D space,281

which is named as Normalized Embedding Ring282

(NE-Ring). The discretization function, D(·), dis-283

cretizes NE-Ring by equally segmenting into differ-284

ent sections. It takes the polar angle ϕ of gθ(ePi,m)285

as input and outputs the discretized semantic val-286

ues a ∈ [K], where [K] := {1, 2, ...,K}. D(·) is287

defined as288

D(ϕ) =

⌊
ϕ
K

2π

⌋
289

It first maps the input from [0, 2π) to [0,K), and290

then discretizes all the values in [i, i+ 1) to i, for291

∀i ∈ [K − 1]. Even though there could be sub-292

tle changes in semantics by paraphrase, the para-293

phrased ã will likely locate in the discrete section294

[i, i + 1). Some tokens may still have a ̸= ã if295

the normalized vector is close to the boundary of296

[i, i+ 1). Therefore, in Section 3.3, we introduce297

an offset detection to strengthen the tolerance for298

this mismatch and correct some unstable cases.299

With the two steps, we can get a stable discrete300

semantic value as the seed for the partition function301

to partition the vocabulary for the consequent token. 302

Following Kirchenbauer et al. (2023a), the vocab- 303

ulary is partitioned into green and red lists. We 304

increase the logits of the tokens in the green list by 305

δ and recalculate the probability distribution based 306

on the shifted logits. For each token to generate, we 307

increase the possibility of the green list based on 308

its previous m tokens’ semantics. Thus, all the gen- 309

erated tokens will be likely to have this matching 310

between the semantics and the consequent green 311

token. By detecting the matching, we can discrimi- 312

nate whether a text is watermarked or not and then 313

detect the LLM-generated contents effectively. Be- 314

sides, SemaMark proposes two strategies to reduce 315

the risk of being cracked by Contrastive Learning 316

and further increase the robustness by the offset 317

detection in the following sections. 318

3.2 Training gθ by Contrastive Learning 319

The MLP is expected to produce a uniform dis- 320

tribution of gθ(ePi,m) on NE-Ring. If different 321

semantics unevenly distributed on NE-Ring, the 322

resulting discrete semantic values will be overly 323

monotonous and the green list is more changeless. 324

Consequently, the green list might be revealed by 325

counting the token frequency, which compromises 326

the concealment of watermark and leads to the risk 327

of being cracked. Ideally, SemaMark should gener- 328

ate a wider variety of semantic values for different 329

sentences, while each semantic value is robust and 330

stable if its corresponding sentence is paraphrased. 331

To achieve this goal, we propose to use Contrastive 332

Learning to train MLP since Contrastive Learning 333

has the property of uniformity that the data will be 334

evenly distributed in the whole feature space (Wang 335

and Isola, 2020). The uniform distribution can help 336

the normalized vectors cover all the semantic val- 337

ues. As a result, NE-Ring can generate a wider 338

variety of semantic values to prevent the watermark 339

from being cracked. 340

In Contrastive Learning, we first input the sen- 341

tences into the model f to get a batch of sequences 342

of m tokens and their pooling embeddings ePi,m , 343

denoted as {ej}, where j ∈ [B] and B is the batch 344

size. To compose a contrastive loss, we construct 345

the positive and negative pairs by a soft augmenta- 346

tion: 347

ej+B = e+j = ej + ϵ, 348

where ϵ ∼ N (0, σ2) is a Gaussian noise. The 349

soft augmentation can simplify the construction 350
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of positive samples. With this soft augmentation,351

we can assign the samples sharing similar embed-352

dings from the same sequence as positive pairs353

and samples from different sequences as negative354

pairs. This is consistent with our intuition that the355

paraphrased semantic embeddings will not change356

significantly and can remain robust. Then the con-357

trastive loss is358

Lj = − log
exp

(
sim

(
gθ(ej), gθ(e

+
j )

)
/τ

)∑
k ̸=j,k∈[2B] exp (sim (gθ(ej), gθ(ek)) /τ)

,359

where sim(·) is cosine similarity and τ is the tem-360

perature. By Contrastive Learning, the output of361

reduced semantic embeddings can be evenly dis-362

tributed in all of the space on NE-Ring, and cover363

all the discrete sections to improve the robustness364

of SemaMark.365

3.3 Q-offset detection366

Figure 2: Q-offset detection vs. existing detection

Existing detection methods check the matching be-367

tween partition seed and the consequent tokens in368

a one-to-one manner as shown in Figure 2(a). The369

detection method first recalculates the seed for each370

token position and gets the partition of the green371

list, and then checks whether the consequent token372

is in the partitioned green list token by token. In373

SemaMark, this strategy can be effective when the374

text is not paraphrased. However, after paraphrase,375

this detection could be suboptimal because the se-376

mantic values of some sequences which are close377

to the boundaries of the discrete section [i, i + 1)378

might change as shown in Figure 2(b). This is be-379

cause the window of m tokens will slide token by380

token during the auto-regressive generation process,381

and the semantic change will also accumulate when382

the window is sliding. The semantic values closed383

to the boundary usually happen when the change 384

accumulates to some extent. This change of bound- 385

ary semantic values will lead to some mismatch 386

and reduce the accuracy like t̃5 in Figure 2(b). 387

To mitigate the influence of this error, we pro- 388

pose Q-offset detection. As shown in Figure 2(c), 389

we offset the discrete seed by q tokens to detect the 390

matching between semantics and the consequent 391

tokens, where q ∈ {−Q,−(Q− 1), ..., 0, 1, ..., Q} 392

and the sign of q indicates the direction of the off- 393

set. We choose the maximal z-statistic in differ- 394

ent q as the Q-offset score. However, Q-offset 395

detection will also increase the Q-offset score of 396

non-watermark text, which indicates that the de- 397

tected green word fraction γ of non-watermark text 398

is higher. The γ in Eq. (1) is possibly inaccurate. 399

Thus during generation, we set γ to a fixed value, 400

while in detection process, we treat γ as a hyper- 401

parameter and use a validation set to determine its 402

value in practice. In Section 4.4, we discuss the 403

ablation studies of Q-offset and γ and show that 404

Q-offset can impressively improve the detection 405

performance with robustness. 406

4 Experiment 407

In this section, we conduct experiments to demon- 408

strate the robustness of SemaMark. In Section 4.2, 409

we demonstrate that its robustness is better than the 410

baseline methods. In Section 4.3, we show that our 411

watermark has almost no influence on the quality 412

of generated texts. In Section 4.4, we use ablation 413

studies to demonstrate the effectiveness of partition 414

function and Q-offset detection, and show the sen- 415

sitivity of the partition function. In Section 4.5 we 416

visualize the distribution of NE-Ring and provide 417

analysis on the feature distribution of Contractive 418

Learning. 419

4.1 Experiment setups 420

Backbone models and datasets. We test our 421

method by watermarking two models, OPT-2.7B 422

and OPT-6.7B (Zhang et al., 2022) which are re- 423

ferred to as the backbone models in following sec- 424

tions. For dataset, we use the news-like subset of 425

C4 (Raffel et al., 2020), which covers a variety of 426

topics. From the news-like subset of C4, we extract 427

a training set, a validation set and a test set. For 428

each sample, we use the first half of text as prompt 429

to generate watermark sentences. More details can 430

be found in Appendix A. 431

Baseline methods. We compare our method 432
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Paraphrase
ROC-AUC F1 with best threshold

LeftHash SelfHash EXP-Edit ours LeftHash SelfHash EXP-Edit ours

OPT-2.7B

No paraphrase 0.9913 0.9886 0.9799 0.9948 0.9921 0.9861 0.9708 0.9905
Translation 0.9091 0.8147 0.8749 0.9692 0.8456 0.7622 0.8157 0.9330
Dipper 0.9878 0.9728 0.9736 0.9911 0.9727 0.9400 0.9620 0.9701
GPT-3.5 0.9028 0.7908 0.9392 0.9406 0.8358 0.7378 0.8852 0.8902

OPT-6.7B

No paraphrase 0.9918 0.9930 0.9784 0.9949 0.9911 0.9863 0.9705 0.9858
Translation 0.8807 0.8098 0.8625 0.9308 0.8129 0.7468 0.8013 0.8882
Dipper 0.9904 0.9747 0.9728 0.9871 0.9786 0.9432 0.9620 0.9821
GPT-3.5 0.8990 0.7909 0.8996 0.9377 0.8300 0.7367 0.8354 0.8766

Table 1: Watermark detection results under three paraphrases. (The best performance under paraphrase is bolded.)

with three baselines LeftHash, SelfHash (Kirchen-433

bauer et al., 2023b) and EXP-Edit (Kuditipudi434

et al., 2023). LeftHash and SelfHash are two meth-435

ods based on the partition of vocabulary using the436

hashes of tokens. EXP-Edit uses a private sequence437

to encode the watermark by changing the proba-438

bility distribution of the sequence of tokens. More439

details on the implementation can be found in Ap-440

pendix A.441

Paraphrase setups. We use three representa-442

tive methods to paraphrase the watermarked text,443

round-trip translation (Tiedemann and Thottingal,444

2020), Dipper (Krishna et al., 2023) and GPT-3.5.445

For round-trip translation, we first translate from446

English to another language and then transform447

back to English, such that some words and expres-448

sions will be changed because the translation is not449

an one-to-one mapping. For Dipper, we follow the450

parameter setting in Kirchenbauer et al. (2023b).451

For GPT-3.5, we use the prompt in Kirchenbauer452

et al. (2023b) to query GPT-3.5 for paraphrase.453

Evaluation metrics and hyper-parameters.454

We use F1 score with best threshold and ROC-455

AUC to measure the performance of the watermark456

detection. All the metrics are calculated based on457

at least 500 watermarked samples and 500 non-458

watermark samples. The length of watermarked459

samples before paraphrase and non-watermark sam-460

ples is 200 ± 25. In generation, we set γ = 1/4461

for LeftHash, SelfHash and SemaMark. In detec-462

tion, we set γ = 1/3 and δ = 2 based on the463

validation set in Section 4.4(b). In SemaMark, we464

set m = 15, Q = 15, K = 5 for OPT-2.7B and465

K = 4 for OPT-6.7B.466

4.2 Main Results467

In this subsection, we demonstrate the robustness468

of the proposed SemaMark under paraphrase by469

comparing it with three baseline methods on two470

backbone models. We first generate watermarked471

texts and use three paraphrase methods to remove 472

the watermarks. The detection performance of both 473

texts with and without paraphrase is reported in Ta- 474

ble 1. As we can see, before paraphrase, all the 475

watermarked methods have good detection perfor- 476

mance. After paraphrase, SemaMark has the best 477

detection performance most of the time across all 478

the backbone models and all the paraphrase meth- 479

ods, which suggests that our method is more robust 480

against paraphrase. 481

In detail, by round-trip translation, the para- 482

phrase reduces the detection ability of baseline 483

methods effectively, while the watermark of Se- 484

maMark is robust. Under round-trip translation, 485

the best ROC-AUC of baselines is 0.9091 on OPT- 486

2.7B and 0.8807 on OPT-6.7B, respectively. But 487

ROC-AUC of SemaMark is 0.9692 and 0.9308, 488

which is at least 0.05 higher than all the baseline 489

methods. Similarly, under paraphrase of GPT-3.5, 490

SemaMark is better than all the baselines. The best 491

baseline performance under GPT-3.5 is 0.9392 in 492

ROC-AUC on OPT-2.7B and 0.8990 in ROC-AUC 493

on opt-6.7B, but SemaMark has higher AUC-ROC 494

of 0.9406 and 0.9377. For Dipper, we note that all 495

methods are robust to Dipper since it does not sig- 496

nificantly reduce the detection performance. How- 497

ever, SemaMark is still one of the most robust. On 498

OPT-2.7B, it performs best in ROC-AUC, while 499

on OPT-6.7B, it has the best F1 score. From Ta- 500

ble 1, the results show an obvious improvement of 501

SemaMark in robustness. This implies that using 502

semantics as the seed for the partition function is 503

effective under paraphrase. 504

4.3 Text Quality 505

Watermark should not compromise the generation 506

quality of LLMs. In this subsection, we com- 507

pare the text quality by calculating perplexity and 508

demonstrate that our watermark has almost no influ- 509

ence on the generated quality. Perplexity measures 510
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(a) OPT-2.7B (b) OPT-6.7B

Figure 3: Text quality (perplexity)

the likelihood that a sentence is generated by one511

model. Lower perplexity means the watermarked512

text is more predictable. In other words, it is more513

consistent with the reasoning of the given model.514

In Figure 3, we use OPT-6.7B with no watermark515

to get perplexity for all the watermarked methods.516

All the results in Figure 3 are calculated without517

paraphrase, because the generation quality of text518

is not related to paraphrase. From Figure 3a on519

OPT-2.7B, we can see that our watermark, Left-520

Hash and SelfHash have almost no influence on the521

generation quality. They has perplexity at around 6522

which is similar as the generated text without water-523

mark. Instead, EXP-Edit has much higher perplex-524

ity, which means that EXP-Edit changes the gener-525

ated text in an aggressive way and much reduces526

the generation quality after watermarking. This is527

probably because EXP-Edit adjusts the logits on528

the whole vocabulary. From Figure 3b, we can529

draw similar conclusions for OPT-6.7B. EXP-Exit530

also increases the perplexity by around 10, while531

the average perplexity of LeftHash, SelfHash and532

ours is around 1 higher than the non-watermarked533

generated text. In summary, our SemaMark can534

keep the quality and robustness simultaneously.535

4.4 Ablation Study536

In this subsection, we study the influence of the537

length of the sequence we use for generating one538

semantic value and the sensitivity of the partition539

function.540

a) Length of previous sequence tokens, m541

In the first step of SemaMark, i.e., weighted em-542

bedding pooling, we use the semantic of the pre-543

vious m tokens to get the more stable embedding.544

But if the length of the sequence is too long, it will545

also hurt the robustness. In Figure 4, we test water-546

mark on OPT-2.7B with different m and draw the547

ROC-AUC. The results show that before m = 15,548

ROC-AUC is in the trend of increase as the m549

Figure 4: ROC-AUC and m

(a) ROC-AUC and offset Q (b) ROC-AUC and γ

Figure 5: Text quality (perplexity)

changes. But when m > 15, ROC-AUC becomes 550

fluctuating. It is possibly because that the distant 551

tokens will include more change after paraphrase 552

as we mentioned in Section 3.1. Another possi- 553

ble reason is that in the beginning of generation 554

for the first m tokens, the number of previous to- 555

kens is smaller than m and NE-Ring can only use 556

the embeddings of limited tokens for prediction, 557

which may be unstable. Thus, too long or too short 558

sequence will hurt the robustness of SemaMark 559

against paraphrase. In our experiments, we choose 560

m = 15 for all the settings. 561

b) Q-offset detection 562

In this subsection, we show that the effectiveness 563

of the proposed Q-offset detection. In Figure 5a, 564

we demonstrate the change of ROC-AUC of Se- 565

maMark with different Q in offset detection un- 566

der three different paraphrases. Q-offset detection 567

searches the highest z-statistics from −Q to Q as 568

the Q-offset score. From Figure 5a, we can see 569

that when Q increases, ROC-AUC first increases 570

and decreases after Q is around 15. When Q < 15, 571

the offset can help correct the errors of semantic 572

values close to the boundary. Compared with de- 573

tection without offset, i.e. Q = 0, ROC-AUC of 574

SemaMark is much better, which means that the 575

offset can help to solve the errors of semantic val- 576

ues around the boundaries that are more vulnerable 577

to paraphrases. When Q > 15, the correction of 578

this error is limited, because the offset will also 579

increase the Q-offset score of negative samples as 580

it also searches the highest z-statistics of negative 581

samples. On the other hand, the computation cost 582
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will also increase if Q is too large because it has to583

search more possible q. In practice, we set Q = 15584

in all the experiments, which can effectively reduce585

the influence of the errors of semantic values at the586

boundaries.587

Since the Q-offset detection searches the highest588

green word fraction, the fraction of green list word589

of non-watermarked text will be higher than the590

γ that we used to randomly select the green list.591

Thus, it is not accurate to use the original γ for592

z-statistics. We treat γ as a hyper-parameter and593

use a validation set to select its value. As shown594

in Figure 5b, the detection performance of Sema-595

Mark under paraphrases of Dipper and GPT-3.5596

will reach the highest when γ is around 1/3, while597

it will continue to increase under paraphrase. In598

practice, we set γ = 1/3 for Q-offset detection.599

c) Sensitivity of partition function.600

As we mentioned, the partition function is sensi-601

tive to any change of the input because it only uses602

the input as the seed of the random generator. To603

validate its sensitivity to continuous embeddings,604

we adopt the embedding vector as the input to show605

that, with tiny change of the embeddings, the parti-606

tion of vocabulary can be very different. We pro-607

pose a hash method based on md5sum (Deepaku-608

mara et al., 2001) to adopt the partition function609

by transforming the continuous embeddings to an610

integral seed. We use 1000 sequences to test the611

sensitivity. For each sequence embedding, we first612

get a green list from the partition function. Then613

we change one dimension of the embedding by614

only 1e-5 to get a new partition result. The over-615

lapping of the green list before and after changing616

is 24.99% on the average of 1000 sequences. It is617

consistent with γ we use to watermark, because the618

random partition with the changed embedding is619

independent from the original one. It means the620

partition function is sensitive to any small change621

in its input. Instead, after we use NE-Ring to dis-622

cretize the embeddings, the overlapping of green623

list after changing embeddings by 1e-5 is 100%,624

which means the discretization can effectively han-625

dle this change. In practice, SemaMark can provide626

the tolerance that is much larger than 1e-5, which627

makes the watermark more robust under paraphrase.628

With the improvement of Q-offset, the detection of629

SemaMark is more robust and effective.630

4.5 Distribution on NE-Ring based on CL631

In this subsection, we demonstrate that Contrastive632

Learning can help evenly distribute the semantics633

(a) NE-Ring (b) Distribution on ϕ

Figure 6: Visualization of NE-Ring

on the NE-Ring. The even distribution can help the 634

sequences reach all possible semantic values and 635

provide more diverse semantic values to prevent the 636

watermark from being cracked by counting token 637

frequency. In Figure 6a, we use Gaussian density 638

estimation (Chen, 2017) to get the distribution of 639

the semantics on the NE-Ring before discretiza- 640

tion. We use different colors to show the density. 641

The NE-Ring in Figure 6a shows that, the distribu- 642

tion is uniform. All the density is between 0.052 643

and 0.054. We further plot the density based on 644

the polar angle ϕ in Figure 6b where the density 645

has almost no change on all the polar angle from 646

0 to 2π. This implies that the training based on 647

Contrastive Learning can ensure the semantics will 648

reach all possible discrete values. It can prevent 649

the case where the discrete values will gather in 650

some discrete sections and produce monotonous 651

vocabulary partitions. As a result, it can protect the 652

watermark from being cracked by counting token 653

frequency. 654

5 Conclusion 655

In this paper, we use the semantic information for 656

watermarking to enhance the robustness against 657

paraphrase. The existing watermark methods use 658

the matching between the previous tokens and the 659

partition vocabulary. This matching can be easily 660

broken by paraphrase. However, we construct the 661

mapping between the semantics and the vocabu- 662

lary. In this way, the semantics will stay stable 663

under paraphrase and the robustness of watermark 664

can be enhanced. To make use of semantics, we 665

propose SemaMark to discretize the embedding 666

space on NE-Ring and propose a training method 667

based on CL. In addition, we use Q-offset detec- 668

tion to further advance the robustness by increasing 669

the tolerance of the semantic values close to the 670

discrete boundary. In experiments, we demonstrate 671

our method can perform much better compared 672

with baseline methods under paraphrase while hav- 673

ing little influence on the generation quality. 674
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6 Limitations675

In some cases, the customers may rely on some676

API-based LLMs and do not have the access to677

the embeddings and the permission to modify the678

logits during generation. Although our watermark679

method can effectively detect the LLM-generated680

content and increase the detection success rate un-681

der paraphrase, it is not applicable for black-box682

LLMs. The second weakness of our method is that683

the NE-Ring is dependent on the semantic embed-684

ding of LLMs. For each LLM, we need to train a685

specialized EN-Ring, which might be inflexible if686

we want to produce a general model for NE-Ring or687

fine-tune the LLMs. Despite the weaknesses, our688

method is successful in the problem of robustness689

under paraphrase. In the future work, we will con-690

tinue to extent our method into black-box LLMs691

and a universal model that does not require cus-692

tomized training for various specific LLMs.693

Potential risk. Our discussion about the robust-694

ness might provide motivation for the attackers695

to find other methods like adaptive attack. Al-696

though we provide robustness under paraphrase,697

if the unauthorized people propose possible attack698

method focusing on the green-list based watermark699

from other perspectives, the detection rate for LLM-700

generated texts are still possible to be reduced.701
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A More details on experimental settings865

All the baseline models, backbone models and866

datasets we use are open source and available867

for academic purpose. For backbone models,868

we use the open-sourced model from Hugging-869

face1. The implementation is based on Pytorch2870

framework and also depend on packages includ-871

ing NLTK (Bird et al., 2009) and Numpy (Har-872

ris et al., 2020). For baseline methods, we use873

the released official code from the authors. For874

paraphrase models, we use OPUS-MT translation875

model and Dipper on Huggingface repository3, and876

API of ChatGPT4.877

1https://huggingface.co/facebook/opt-2.7b
2https://pytorch.org/
3https://huggingface.co/Helsinki-NLP/opus-mt-en-zh and

https://huggingface.co/kalpeshk2011/dipper-paraphraser-xxl
4https://chat.openai.com/chat
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