
Long-range Meta-path Search on Large-scale
Heterogeneous Graphs

Chao Li1,2,∗ , Zijie Guo1,3,∗ , Qiuting He1, Kun He1,†
1School of Computer Science and Technology, Huazhong University of Science and Technology

2 China Mobile Information Technology Co.,Ltd.
3 School of Computer Science, Fudan University

{chaoli,zijieguo,brooklet60}@hust.edu.cn

Abstract

Utilizing long-range dependency, a concept extensively studied in homogeneous
graphs, remains underexplored in heterogeneous graphs, especially on large ones,
posing two significant challenges: Reducing computational costs while maximizing
effective information utilization in the presence of heterogeneity, and overcoming
the over-smoothing issue in graph neural networks. To address this gap, we investi-
gate the importance of different meta-paths and introduce an automatic framework
for utilizing long-range dependency on heterogeneous graphs, denoted as Long-
range Meta-path Search through Progressive Sampling (LMSPS). Specifically, we
develop a search space with all meta-paths related to the target node type. By em-
ploying a progressive sampling algorithm, LMSPS dynamically shrinks the search
space with hop-independent time complexity. Through a sampling evaluation strat-
egy, LMSPS conducts a specialized and effective meta-path selection, leading to
retraining with only effective meta-paths, thus mitigating costs and over-smoothing.
Extensive experiments across diverse heterogeneous datasets validate LMSPS’s ca-
pability in discovering effective long-range meta-paths, surpassing state-of-the-art
methods. Our code is available at https://github.com/JHL-HUST/LMSPS.

1 Introduction

Heterogeneous graphs are widely used for modeling multiple types of entities and relationships in
complex systems by various types of nodes and edges. For instance, the large-scale academic network,
OGBN-MAG, contains multiple node types, i.e., Paper (P), Author (A), Institution (I), and Field (F), as
well as multiple edge types, such as Author writes−−−−→ Paper, Paper cites−−−→Paper, Author is affiliated with−−−−−−−−−−→
Institution, and Paper

has a topic of−−−−−−−−→Field. These elements can be combined to build higher-level
semantic relations called meta-paths [44]. For example, APA is a 2-hop meta-path representing the
co-author relationship, and PFPAPFP is a 6-hop meta-path related to long-range dependency.

Utilizing long-range dependency is essential for graph representation learning. For homogeneous
graphs, many graph neural networks (GNNs) [28, 4, 1, 54] have been developed to gain benefit from
long-range dependency. Utilizing long-range dependency is also crucial for heterogeneous graphs.
For instance, the Internet movie database (IMDB) contains 21K nodes with only 87K edges. Such
sparsity means each node has only a few directly connected neighbors and requires models to enhance
the node embedding from long-range neighbors. The main challenge in using long-range dependency
on heterogeneous graphs is how to alleviate costs while striving to effectively utilize information in
exponentially increased receptive fields, which is much more challenging compared to homogeneous

∗The first two authors contribute equally.
†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/JHL-HUST/LMSPS

graphs due to the heterogeneity. In addition, the well-known over-smoothing issue [30, 24] occurring
in many GNNs also needs to be addressed.

Heterogeneous Graph Neural Networks (HGNNs) are popular deep learning techniques for hetero-
geneous graph representation learning. The key idea is to aggregate valuable neighbor information
based on a range of relations to enhance the semantics of vertices. Traditional HGNNs are typ-
ically classified into two categories: metapath-free methods and metapath-based methods. Most
metapath-free HGNNs [63, 18, 21, 34] utilize information from l-hop neighborhoods by stacking
l layers. However, on large-scale heterogeneous graphs, the number of nodes in receptive fields
grows exponentially with the number of layers, making them hard to expand to large hops. A recent
work [36] employs the graph transformer [54] to learn heterogeneous graphs, which can only exploit
long-range dependency in small datasets due to the quadratic complexity of transformer [17].

Metapath-based HGNNs [48, 11, 23, 52] obtain information from l-hop neighborhoods by utilizing
single-layer structures and meta-paths with maximum hop l, i.e., all meta-paths no more than l hops.
Benefiting from the feature of selective aggregation of neighbors based on meta-path, metapath-
based HGNNs show greater potential in handling large-scale datasets [55, 52]. For metapath-based
HGNNs, to exploit long-range dependency, the maximum hop needs to be large enough as there are
no stacking layers. However, the number of meta-paths also grows exponentially with maximum
hop l, corresponding to exponential receptive fields associated with layers in metapath-free methods.
For instance, on OGBN-MAG, to gain a 3-hop meta-path based on the 2-hop meta-path PAP, the next
node type has three choices (A, P, and F). For each additional hop, the number of possible meta-paths
increases exponentially. Hence, utilizing long-range dependencies on large-scale heterogeneous
graphs has not been resolved yet.

This paper investigates the importance of various meta-paths and makes two key observations: (1)
A small number of meta-paths dominate the performance, and (2) certain meta-paths can have a
negative impact on performance. The second observation explains why few HGNNs gain benefit
from long-range neighbors. Different from homogeneous graphs, messages on heterogeneous graphs
can be noisy or redundant for specific tasks, and the presence of long-range dependencies makes
it more challenging to exclude negative heterogeneous information, even with the use of attention
mechanisms. For example, focusing too much on Institution instead of related Papers is harmful
to predicting a paper’s field. These observations highlight the opportunity to leverage long-range
dependencies by selectively utilizing effective meta-paths.

Motivated by the observations mentioned above, we propose a novel method called Long-range
Meta-path Search through Progressive Sampling (LMSPS). LMSPS focuses on meta-path search
and aims to reduce the exponentially growing meta-paths to a subset that is specifically effective
for the given dataset and task. LMSPS builds a comprehensive search space initially, including all
meta-paths related to the target nodes. Then, it adopts a progressive sampling algorithm to reduce the
search space. Finally, LMSPS selects the top-M meta-paths from the reduced search space based
on a sampling evaluation strategy. This search stage reduces the exponential number of meta-paths
to a constant for retraining. Experimental results on both real-world and manual sparse large-scale
datasets demonstrate that LMSPS outperforms existing state-of-the-art methods for heterogeneous
graph representation learning.

Our main contributions are summarized as follows:
• We propose a novel meta-path search framework termed LMSPS, which to our knowledge is the

first HGNNs to utilize long-range dependency in large-scale heterogeneous graphs.
• To search for effective meta-paths efficiently, we introduce a novel progressive sampling algorithm

to reduce the search space dynamically and a sampling evaluation strategy for meta-path selection.
• Moreover, the searched meta-paths of LMSPS can be generalized to other HGNNs to boost their

performance.

2 Preliminaries

Heterogeneous graph [43]. A heterogeneous graph is defined as G = {V, E , T ,R, fT , fR} with
|T +R|>2, where V denotes the set of nodes, E denotes the set of edges, T is the node-type set and
R the edge-type set. Each node vi ∈ V is maped to a node type fT (vi) ∈ T by mapping function
fT : V → T . Similarly, each edge et←s ∈ E (ets for short) is mapped to an edge type fR(ets) ∈ R
by mapping function fR : E → R.

2

Meta-path [44]. A meta-path P is a composite relation that consists of multiple edge types, i.e., P ≜

c1
r12←− c2 · · · cl−1

r(l−1)l←− cl (P = c1 · · · cl for short), where c1, . . . , cl ∈ T and r12, . . . , r(l−1)l ∈ R.

A meta-path P corresponds to multiple meta-path instances in the underlying heterogeneous graph.
For example, meta-path APA corresponds to all paths of co-author relationships on the heterogeneous
graph. Using meta-paths means selectively aggregating neighbors on the meta-path instances.

3 Related Works

Heterogeneous Graph Neural Networks. HGNNs are proposed to learn rich and diverse semantic
information on heterogeneous graphs. Several HGNNs [29, 23, 34, 36] have involved high-order
semantic aggregation. However, their methods are not applied to large-scale datasets due to high
costs. Additionally, many HGNNs [56, 21, 48, 23] have implicitly learned meta-paths by attention.
However, few work employs the discovered meta-paths to produce final results, let alone generalize
them to other HGNNs to demonstrate their effectiveness. For example, GTN [56] and HGT [21] only
list the discovered meta-paths. HAN [48], HPN [23] and MEGNN [5] validate the importance of
discovered meta-paths by experiments not directly associated with the learning task. GraphMSE [31]
is the only work that shows the performance of the discovered meta-paths. However, they are not as
effective as the full meta-path set. So, their learned meta-paths are not effective enough.

Meta-structure Search on Heterogeneous Graphs. Recently, some works have attempted to
utilize neural architecture search (NAS) to discover meta-structures. GEMS [15] is the first NAS
method on heterogeneous graphs, which utilizes an evolutionary algorithm to search meta-graphs for
recommendation tasks. DiffMG [8] searches for meta-graphs by a differentiable algorithm to conduct
an efficient search. PMMM [27] performs a stable search to find meaningful meta-multigraphs.
However, meta-path-based HGNNs are mainstream methods [41, 57, 48, 11], while meta-graph-
based HGNNs are specialized. So, their searched meta-graphs are extremely difficult to generalize
to other HGNNs. RL-HGNN [60] proposes a reinforcement learning (RL)-based method to find
meta-paths. On recommendation tasks, RMS-HRec [37] also proposes an RL-based meta-path
selection strategy to discover meta-paths. Both of them are very time-consuming.

4 Motivation of Long-range Meta-path Search

Long-range meta-paths can complete the missing information that can not be obtained from close
nodes. Take the meta-path MDMDMK (M←D←M←D←M←K) from IMDB as an example. IMDB
includes four different entity types: Movies (M), Directors (D), Keywords (K), and Actors (A).
The task is to predict the category of the target movies. MDMDMK is a 5-hop meta-path that is
hard for experts to understand and then apply. However, for many movies without keywords, the
meta-path M←D←M←D←M←K is important because the target movies can aggregate the keyword
information from the movies of co-directors.

In addition, SeHGNN [52] employs attention mechanisms to fuse all the target-node-related meta-
paths and outperforms the existing HGNNs. SeHGNN has an important observation that models
with single-layer structures and long meta-paths outperform those with multi-layers and short meta-
paths, indicating the advantages of long-range meta-paths. However, because the number of meta-
paths increases exponentially with maximum hops, SeHGNN has to use a small maximum hop
to save memory and reduce costs. For example, The maximum hop is 2 for large-scale datasets
OGBN-MAG [20], which is insufficient, as shown in Table 2 of the experiments. This inspires us
to consider whether we can only use effective meta-paths instead of all meta-paths to reduce the
consumption of large maximum hops.

We analyze the importance of different meta-paths for SeHGNN on two widely-used real-world
datasets DBLP and ACM from HGB [34]. All results are the average of 10 times running with different
random initialization. As the number of meta-paths exponentially increases with the maximum
hop, in exploratory experiments, we set the maximum hop l = 2 for ease of illustration. Then the
meta-path sets are {A, AP, APA, APT, APV} on DBLP, and {P, PA, PC, PP, PAP, PCP, PPA, PPC,
PPP} on ACM.

In each experiment on DBLP, we remove one meta-path and compare the performance with the result
of leveraging the full meta-path set to analyze the importance of the removed meta-path. As shown

3

All
paths

w/o
AP

w/o
APT

w/o
A

w/o
APA

w/o
APV

80

85

90

95

M
icr

o
F1

 (%
)

95.24 95.25 95.19 95.15 95.09

84.54

(a)

All
paths

Only
APV

Only
APA

Only
APT

Only
AP

Only
A

75

80

85

90

95

M
icr

o
F1

 (%
)

95.24 94.95

82.09 81.47 80.94
78.86

(b)

All
paths

w/o PC
&PPC

w/o
PC

w/o
PA

w/o
PCP

w/o PC
&PCP

92

93

94

M
icr

o
F1

 (%
) 93.60 93.63 93.64 93.70

93.96
94.12

(c)

Figure 1: Analysis of the importance of different meta-paths. (a) illustrates the results after removing
a single meta-path on DBLP; (b) shows the performance of utilizing a single meta-path on DBLP; (c)
illustrates the performance after removing a part of meta-paths on ACM.

in Figure 1 (a), removing either A or AP or APA or APT has little impact on the final performance.
However, removing APV results in severe degradation in performance, demonstrating APV is the
critical meta-path on DBLP when l = 2. We further retain one meta-path and remove others as
shown in Figure 1 (b). The performance of utilizing APV is only slightly degraded compared to the
full meta-paths set. Consequently, we obtain the first observation: A small number of meta-paths
provide major contributions. In each experiment on ACM, we remove some meta-paths to analyze
their impact on the final performance. Results in Figure 1 (c) show that the performance of SeHGNN
improves after removing a part of meta-paths. For example, after removing PC and PCP, the Micro-F1
scores are improved by 0.52%. So, we can conclude the second observation: Certain meta-paths can
have a negative impact for heterogeneous graphs. The second observation is reasonable because
heterogeneous information is not consistently beneficial for various tasks compared to homogeneous
information. It is supported by the fact that various recent HGNNs [8, 27, 52] have removed some
edge types to exclude corresponding heterogeneous information during pre-processing based on
substantial domain expertise or empirical observations. This observation explains why most HGNNs
use a maximum hop of 2, i.e., it is hard to exclude negative information under larger maximum
hops. Additionally, because SeHGNN employs an attention mechanism, the performance degradation
indicates the attention mechanism has limitations in dealing with noise.

Although long-range meta-paths outperform short meta-paths [52], they need a large maximum hop,
resulting in exponentially increasing meta-paths. Motivated by the above two observations, unlike
existing methods [5, 31, 52, 56], we can employ effective meta-paths instead of the full meta-path
set without sacrificing performance. Although the number of meta-paths grows exponentially with
the maximum hop, the proportion of effective meta-paths is small, which is similar to the 80/20
rule of Pareto principle [40, 10]. To keep efficiency while trading off the performance, we choose a
fixed number of meta-paths (like 30) over all datasets. Therefore, the exponential meta-paths can be
reduced to a constant. Now the key point is how to find effective meta-paths.

5 The Proposed Method

The key of our LMSPS is to utilize a search stage to reduce the exponentially increased meta-paths to
a subset effective to the current dataset and task. It can overcome the main challenges of utilizing
long-range dependency on heterogeneous graphs. First, utilizing effective meta-paths instead of
all meta-paths alleviates computational and memory costs while keeping effective heterogeneous
information. Second, each target node only aggregates neighbors on the path instances of effective
meta-paths. Because the proportion of effective meta-paths is small and each node has a different
neighborhood condition, each target node aggregates different neighbors under the constraints of
effective meta-path instances. In this way, the over-smoothing issue can also be overcome.

Then, the main challenge becomes how to discover effective meta-paths, especially long-range ones.
Searching for long-range meta-paths has two main challenges: the exponentially increasing issue and
the noise issue. We propose a progressive sampling algorithm and a sampling evaluation strategy
to respectively overcome the two challenges. Figure 2 illustrates the overall framework of LMSPS,
which consists of a super-net in the search stage and a target-net in the training stage.

The super-net aims to automatically discover effective meta-paths for specific datasets or tasks, so the
search results should not be affected by specific modules. Based on this consideration, we develop
a simple MLP-based instead of transformer-based architecture for meta-path search because the

4

I

A

A

Target

P

I A

node

HIN example

Node type

Meta-paths A

Author
P

Paper

I

Institution

A

A P

A I

A P A

A I A

(max-hop=2)

Pre-processing

Neighbor aggregation

XA

XAP

XAI

XAPA

XAIA

XA

XAP

XAI

XAPA

XAIA

X'A
X'AP

X'AI

X'APA

X'AIA

×

×
×

1

1

1
MLP

Training
loss

Validation
loss

Upd
ate

Update

Sample & Feature projection

Search space Architecture Iteration 1

XA

XAPA

XAIA

X'A

X'APA

X'AIA

×

×

1.83

MLP

Iteration T

Narrow
based on

······ 1.07

Top M

Sampling evaluation
Search stage

Training
loss

Validation
loss

Upd
ate

Update

Iteration 1

XA

XAPA

X'A

X'APA
MLP

Training stage

Training
loss

Update

······

Iteration T'

XA

XAPA

X'A

X'APA
MLP Training

loss

Update

Stage 1

Stage 2

PP

P

P

0-hop

1-hop

2-hop

XAPP

parameters

1

1

3.41

A

XAPP X'APP 1

Figure 2: The overall framework of LMSPS. Based on the progressive sampling and sampling
evaluation in the search stage, the training stage employs M effective meta-paths instead of the full K
target-node-related meta-paths. It exhibits aggregation of meta-paths with maximum hop 2, i.e., 0, 1,
and 2-hop meta-paths. The weight updates of feature projection are not shown for ease of illustration.

former involves fewer human interventions [45, 16, 3]. In addition, the sampling strategy keeps
the parametric modules changing in the search stage, which is important for preventing the search
meta-paths from being affected by specific modules. The super-net contains five blocks: neighbor
aggregation, feature projection, progressive sampling search, sampling evaluation, and MLP.

5.1 Progressive Sampling Search

Let P = {P1, · · · , Pk, · · · , PK} be the initial search space with all the K target-node-related
meta-paths, Xci be the raw feature matrix of all nodes belonging to type ci, and Âci,ci+1 be the
row-normalized adjacency matrix between node type ci and ci+1. The neighbor aggregation block
follows SeHGNN [52], which employs an efficient one-time message passing to pre-process an
entire heterogeneous graph into regular-shaped tensors for target nodes. Specifically, it uses the
multiplication of adjacency matrices to calculate the final contribution weight of each metapath-based
neighbor to targets. As shown in Figure 2, the neighbor aggregation process of l-hop meta-path
Pk = c0c1c2 . . . cl is:

Xk =

{
Xc0 l = 0

Âc0,c1Âc1,c2 · · · Âcl−1,clX
cl l > 0

, (1)

where Xk is the feature matrices of meta-path Pk, and c0 is the target node type. Then, an MLP-based
feature projection block is used to project different feature matrices into the same dimension, namely,
X ′k = MLPk(Xk).

To automatically discover meaningful meta-paths for various datasets or tasks without prior, our
search space contains all target-node-related meta-paths, severely challenging the efficiency and
effectiveness of the search. To address the efficiency challenge, LMSPS utilizes a progressive
sampling algorithm to sample meta-paths in each iteration and progressively shrink the search space.

Specifically, LMSPS assigns one architecture parameter to each meta-path. Let α =
{α1, · · · , αk, · · · , αK} ∈ RK be the architecture parameters of K meta-paths. We use a Gumbel-
softmax [35, 9] over architecture parameters αk to calculate the strength of different meta-paths:

qk =
exp [(αk + uk) /τ]∑K
j=1 exp [(αj + uj) /τ]

, (2)

where qk is the path strength, representing the relative importance of meta path Pk. uk =
− log (− log (U)) where U ∼ Uniform(0, 1), and τ is temperature controlling relaxation’s extent.

The progressive sampling algorithm uses the path strength to progressively narrow the search space
from K to V to exclude useless meta-paths. Generally, K ≫ V under a large maximum hop. Let q̃C
be the C-th largest path strength of Q = {q1, · · · , qk, · · · , qK}. During the search stage, the search
space retains all meta-paths no less than q̃C . The dynamic search space can be formulated as follows:

SC = {k|qk ≥ q̃C ,∀1 ≤ k ≤ K} where C = ⌈λ(K − V)⌉+ V. (3)

Here C is the search space size, SC consists of the indexes of retained meta-paths, and ⌈·⌉ indicates
the rounding symbol. λ ∈ [0, 1] is a parameter controlling the number of retrained meta-paths and
decreases from 1 to 0 as the epoch increases.

5

As the search stage aims to determine top-M meta-paths, we sample M meta-paths from dynamic
search space in each iteration. In each iteration, only parameters on the M activated meta-paths are
updated, while others remain unchanged. Therefore, the search cost is relevant to M instead of K.
The forward propagation can be expressed as:

Z = MLP
(∑

k∈S
q′k ·MLPk(Xk)

)
where S = UniformSample(SC ,M). (4)

Here q′k = exp [(αk + uk) /τ] /
∑

k∈S exp [(αj + uj) /τ] indicates the path strength of activated
meta-paths, and UniformSample(SC ,M) indicates a set of M elements chosen randomly from set
SC without replacement via a uniform distribution.

The parameter update in the super-net involves a bilevel optimization problem [2, 7, 51].

min
α
Lval(S,ω∗(α),α) s.t. ω∗(α) = argminω Ltrain(S,ω,α). (5)

Here Ltrain and Lval denote the training and validation loss, respectively. α is the architecture
parameters calculating the path strength. ω is the network weights in MLP. Following the NAS-related
works in the computer vision field [33, 50, 53], we address this issue by first-order approximation.
Specifically, we alternatively freeze architecture parameters α when training ω on the training set
and freeze ω when training α on the validation set.

The progressive sampling strategy can contribute to a more compact search space specifically driven
by the current HIN and task, leading to a more effective meta-path discovery. Additionally, it can
overcome the deep coupling issue [13] because of the randomness in each iteration.

5.2 Sampling Evaluation

After the completion of the progressive sampling search, the search space is narrowed from K to V .
Traditional methods in the computer vision field directly derive the final architecture based on the
architecture parameters [33, 50, 53]. However, as different meta-paths could be noisy or redundant
to each other, top-M meta-paths are not necessarily the optimal solution when their importance
is calculated independently. Based on this consideration, we specially designed a novel sampling
evaluation strategy by evaluating the overall performance of each meta-path set. Specifically, using
path strength at the end of progressive sampling as the probability, we sample M meta-paths from the
compact search space SV to evaluate their overall performance. The sampling evaluation is repeated
200 times to filter out the meta-path set with the lowest validation loss. So, we can select the best
meta-path set instead of independent top-M meta-paths, which is more reasonable. This stage is not
time-consuming because the evaluation does not involve weight training. This sampling process can
be represented as:

S̄ = DiscreteSample(SV ,M, Q̄). (6)
Here, DiscreteSample(SV ,M, Q̄) indicates a set of M elements chosen from set SV without re-
placement via discrete probability distribution Q̄. Q̄ is the set of relative path strength calculated by
architecture parameters of the V meta-paths based on Equation 2. The overall search algorithm and
more discussion are shown in Appendix C.

Thereafter, the retained meta-path set is recorded as SM = argminS̄ Lval(S̄,ω∗,α∗). The forward
propagation of the target-net for representation learning can be formulated as:

Ẑ = MLP
(
∥

k∈SM
MLPk(Xk)

)
. (7)

Here, ∥ denotes the concatenation operation. Unlike existing HGNNs, the architecture of the target-
net does not contain neighbor attention and semantic attention. Instead, the parametric modules
consist of pure MLPs. The training objective is shown in Appendix A.3.

5.3 Discussion on Differences with Prior Works

As discussed in Section 3, there have been some attempts to find meta-paths automatedly [15, 56, 60].
Three aspects highlight the differences between LMSPS and existing methods. 1) Large-scale dataset:
LMSPS is the first HGNN that makes it possible to achieve automated meta-path selection for
large-scale heterogeneous graph node property prediction. 2) Long-range dependency: LMSPS is

6

Table 1: Performance on small and large datasets. Best is in bold, and the runner-up is underlined.

Method DBLP IMDB ACM Freebase OGBN-MAG∗
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Test Acc.

MLP [19] - - - - - - - - 26.92± 0.26
GraphSAGE [14] - - - - - - - - 46.78± 0.67
RGCN [41] 91.52± 0.50 92.07± 0.50 58.85± 0.26 62.05± 0.15 91.55± 0.74 91.41± 0.75 46.78± 0.77 58.33± 1.57 47.37± 0.48
HAN [48] 91.67± 0.49 92.05± 0.62 57.74± 0.96 64.63± 0.58 90.89± 0.43 90.79± 0.43 21.31± 1.68 54.77± 1.40 OOM
GTN [56] 93.52± 0.55 93.97± 0.54 60.47± 0.98 65.14± 0.45 91.31± 0.70 91.20± 0.71 OOM OOM OOM
RSHN [63] 93.34± 0.58 93.81± 0.55 59.85± 3.21 64.22± 1.03 90.50± 1.51 90.32± 1.54 OOM OOM OOM
HetGNN [57] 91.76± 0.43 92.33± 0.41 48.25± 0.67 51.16± 0.65 85.91± 0.25 86.05± 0.25 OOM OOM OOM
MAGNN [11] 93.28± 0.51 93.76± 0.45 56.49± 3.20 64.67± 1.67 90.88± 0.64 90.77± 0.65 OOM OOM OOM
HetSANN [18] 78.55± 2.42 80.56± 1.50 49.47± 1.21 57.68± 0.44 90.02± 0.35 89.91± 0.37 OOM OOM OOM
GCN [26] 90.84± 0.32 91.47± 0.34 57.88± 1.18 64.82± 0.64 92.17± 0.24 92.12± 0.23 27.84± 3.13 60.23± 0.92 OOM
GAT [46] 93.83± 0.27 93.39± 0.30 58.94± 1.35 64.86± 0.43 92.26± 0.94 92.19± 0.93 40.74± 2.58 65.26± 0.80 OOM
Simple-HGN [34] 94.01± 0.24 94.46± 0.22 63.53± 1.36 67.36± 0.57 93.42± 0.44 93.35± 0.45 47.72± 1.48 66.29± 0.45 OOM
HGT [21] 93.01± 0.23 93.49± 0.25 63.00± 1.19 67.20± 0.57 91.12± 0.76 91.00± 0.76 29.28± 2.52 60.51± 1.16 46.78± 0.42
GraphMSE [31] 94.08± 0.14 94.44± 0.13 57.60± 2.13 62.37± 1.03 92.58± 0.50 92.54± 0.14 OOM OOM OOM
DiffMG [8] 94.01± 0.37 94.20± 0.36 58.09± 1.35 59.75± 1.23 88.16± 2.83 88.07± 3.04 OOM OOM OOM
Random 93.57± 0.64 93.84± 0.53 52.13± 0.74 53.83± 0.66 90.91± 1.02 90.82± 0.93 21.22± 2.58 37.54± 2.66 35.14± 3.78
NARS [55] 94.18± 0.47 94.61± 0.42 63.51± 0.68 66.18± 0.70 93.36± 0.32 93.31± 0.33 49.98± 1.77 63.26± 1.26 50.66± 0.22
space4HGNN [59] 94.24± 0.42 94.63± 0.40 61.57± 1.19 63.96± 0.43 92.50± 0.14 92.38± 0.10 41.37± 4.49 65.66± 4.94 OOM
PMMM [27] 94.82± 0.26 95.14± 0.22 65.81± 0.29 67.58± 0.22 93.78± 0.25 93.71± 0.17 OOM OOM OOM
HINormer [36] 94.57± 0.23 94.94± 0.21 64.65± 0.53 67.83± 0.34 93.91± 0.42 93.83± 0.45 52.18± 0.39 64.92± 0.43 OOM
SeHGNN [52] 94.86± 0.14 95.24± 0.13 66.63± 0.34 68.21± 0.32 93.95± 0.48 93.87± 0.50 50.71± 0.44 63.41± 0.47 51.45± 0.29
SlotGAT [62] 94.95± 0.20 95.31± 0.19 64.05± 0.60 68.64± 0.33 93.99± 0.23 94.06± 0.22 49.68± 1.97 66.83± 0.30 OOM
LMSPS (ours) 95.35± 0.22 95.66± 0.20 66.99± 0.32 68.70± 0.26 94.73± 0.41 94.69± 0.36 53.26± 0.47 66.09± 0.51 54.83± 0.20
∗ OGBN-MAG is a large dataset with nodes’ numbers 10 to 175 times that of the other four datasets.

the first HGNN to utilize long-range dependency in large-scale heterogeneous graphs. To achieve
the above two goals, LMSPS has addressed two key challenges: (a) alleviating costs while striving
to effectively utilize information in exponentially increased receptive fields and (b) overcoming the
well-known over-smoothing issue. 3) High generalization: Based on Table 4, the searched meta-paths
of LMSPS can be generalized to other HGNNs to boost their performance, which has not been
achieved by existing works. To accomplish this objective, LMSPS uses an MLP-based architecture
instead of a transformer-based one for meta-path search because the former involves fewer inductive
biases [45, 16, 3], i.e., human interventions.

6 Experiments and Analysis

This section evaluates the benefits of our method against state-of-the-art models on nine heterogeneous
datasets. We aim to answer the following questions: Q1. How does LMSPS perform compared with
state-of-the-art baselines? Q2. Can LMSPS overcome the over-smoothing and noise issues? Q3. Are
the search algorithm and searched meta-paths effective? Q4. Does LMSPS perform better on sparser
heterogeneous graphs?

6.1 Datasets and Baselines

We evaluate LMSPS on several representative heterogeneous graph datasets, including DBLP, IMDB,
ACM, and Freebase from HGB benchmark [34], and the large-scale dataset OGBN-MAG from OGB
challenge [20]. The statistics of the datasets are listed in Table 7. The details about all datasets,
baselines, and experiment settings are recorded in Appendix A and B.

6.2 Performance Analysis

To answer Q1, we report the performance of our approaches and baselines in Table 1. Random
means the result of replacing our searched meta-paths with 30 random meta-paths. We show the
average result of 20 random samples. Based on the results, we have the following observations.
First, LMSPS outperforms all baselines for different metrics on almost all datasets except Micro-F1
scores on Freebase, sometimes by a significant margin, which validates the power of LMSPS. For
example, on the largest dataset OGBN-MAG, LMSPS achieves 54.83% test accuracy, while the best
competitor has 51.45% test accuracy. Second, all metapath-free methods encounter out-of-memory
(OOM) issues when dealing with large datasets, including highly competitive methods, HINormer and
SlotGAT, indicating the advantage of employing meta-paths electively aggregating neighbors on the
meta-path instances. Third, although LMSPS is an MLP-based method, the pure MLP method [19]
has the worst performance with only 26.92% test accuracy on OGBN-MAG, validating the advantages
of pre-processing and meta-path search. Finally, LMSPS outperforms Random significantly, further
indicating the importance of meta-path search. More comparisons with top method combinations

7

2 4 6 8 10 12
Maximum hop / Layer

0
0.2k
0.4k
0.6k
0.8k
1.0k
1.2k
1.4k

92.5
93.0
93.5
94.0
94.5
95.0
95.5

M
icr

o-
F1

 (%
)

 OOM

Simple-HGN
SeHGNN
LMSPS

(a) Micro-F1

1 2 3 4 5 6 7 8 9 10 11 12
Maximum hop / Layer

0.0
2.5
5.0
7.5

10.0
12.5
15.0

M
em

or
y

(G
B)

Simple-HGN
SeHGNN
LMSPS

(b) GPU memory cost

2 4 6 8 10 12
Maximum hop / Layer

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Tr
ai

ni
ng

 ti
m

e
(s

/e
po

ch
)

Simple-HGN
SeHGNN
LMSPS-search
LMSPS-train

OOM

(c) Time cost

Figure 3: Illustration of (a) performance, (b) memory cost, (c) average training time of Simple-HGN,
SeHGNN, and LMSPS relative to the maximum hop or layer on DBLP. The gray dotted line in (a)
indicates the number of target-node-related meta-paths under different maximum hops, which is
exponential.

Table 2: Experiments on OGBN-MAG to analyze
the performance of SeHGNN and LMSPS under
different maximum hops. #MP is the number
of meta-paths under different maximum hops.

Max hop #MP SeHGNN LMSPS
Time Test accuracy Time Test accuracy

1 4 4.35 47.18± 0.28 3.98 46.88± 0.10
2 10 6.44 51.79± 0.24 5.63 51.91± 0.13
3 23 11.28 52.44± 0.16 10.02 52.72± 0.24
4 50 OOM OOM 14.34 53.43± 0.18
5 107 OOM OOM 14.77 53.90± 0.19
6 226 OOM OOM 14.71 54.83± 0.20

Table 3: Experiments to explore the effectiveness
of our search algorithm. In our LMSPS, the meta-
paths are replaced by those discovered by other
methods.

Method DBLP IMDB ACM Freebase
HAN 95.44± 0.14 65.95± 0.31 90.66± 0.30 -
GTN 95.33± 0.05 65.99± 0.16 90.66± 0.30 -
DARTS 95.35± 0.17 66.23± 0.14 93.45± 0.13 63.25± 0.42
SPOS 95.41± 0.43 67.10± 0.29 93.64± 0.37 64.02± 0.62
DiffMG 95.45± 0.49 66.98± 0.37 93.61± 0.45 64.56± 0.78
PMMM 95.48± 0.27 67.49± 0.24 93.74± 0.22 64.83± 0.46
LMSPS 95.66± 0.20 68.70± 0.26 94.69± 0.36 66.09± 0.51

on OGBN-MAG are shown in Table 10 of Appendix E.2, in which LMSPS also shows the best
performance.

6.3 Analysis on Large Maximum Hops

To answer Q2, we conduct experiments to compare the performance, memory, and efficiency of
LMSPS with the method of HGB benchmark, Simple-HGN [34], and the best metapath-based
method, SeHGNN [52], on DBLP. Figure 3 (a) shows that LMSPS has consistent performance with
the increment of maximum hop. The failure of Simple-HGN demonstrates its attention mechanism
can not overcome the over-smoothing issue or eliminate the effects of noise under large hop. Figure 3
(b), (c) illustrate each training epoch’s average memory and time costs relative to the maximum hop or
layer. We can observe that the consumption of SeHGNN exponentially grows, and the consumption
of Simple-HGN linearly increases, which is consistent with their time complexity as listed in Table 8.
Meanwhile, LMSPS has almost constant consumption as the maximum hop grows. Figure 3 (c)
shows the time cost of LMSPS in the search stage, which also approximates a constant when the
number of meta-paths is larger than M = 30. More results about efficiency are shown in Figure 4 of
Appendix E.1.

We also compare the performance and training time of LMSPS with SeHGNN under different
maximum hops on large-scale dataset OGBN-MAG. When the maximum hop l = 1, 2, 3, we utilize
the full meta-path set because the number of meta-paths is smaller than M = 30. Following the
convention [34, 52], we measure the average time consumption of one epoch for each model. As
shown in Table 2, the performance of LMSPS keeps increasing as the maximum hop value grows.
It indicates that LMSPS can overcome the issues caused by utilizing long-range dependency, e.g.,
over-smoothing and noise. In addition, when the number of meta-paths is larger than 30, the training
time of LMSPS is stable under different maximum hops.

6.4 Effectiveness of the Search Algorithm and Searched Meta-paths

To answer Q3, we first explore the effectiveness of our search algorithm. In our architecture, our
meta-paths are replaced by those meta-paths discovered by other methods. DARTS [32] is the first
differentiable search algorithm in neural networks. SPOS [13] is a classic singe-path differentiable
algorithm. DARTS and SPOS aim to search operations, like 3× 3 convolution, in CNNs. DiffMG [8]
and PMMM [27] search for meta-graphs instead of meta-paths. We ignore these differences and
focus on the algorithms. The derivation strategies of the four methods are unsuitable for discovering

8

Table 4: Experiments on the generalization of the
searched meta paths. * means using the meta-paths
searched in LMSPS.

Method DBLP IMDB ACM Freebase
HAN 92.05± 0.62 64.63± 0.58 90.79± 0.43 54.77± 1.40
HAN* 93.54± 0.15 65.89± 0.52 92.28± 0.47 57.13± 0.72
SeHGNN 95.24± 0.13 68.21± 0.32 93.87± 0.50 63.41± 0.47
SeHGNN* 95.57± 0.23 68.59± 0.24 94.46± 0.18 65.37± 0.42

Table 5: Results of LMSPS and SeHGNN on
the sparse large-scale heterogeneous graphs.
↑ means the improvements in test accuracy.

Dataset SeHGNN LMSPS ↑
OGBN-MAG-5 36.04± 0.64 40.82± 0.42 4.78
OGBN-MAG-10 38.27± 0.19 42.30± 0.23 4.03
OGBN-MAG-20 39.18± 0.09 42.65± 0.17 3.47
OGBN-MAG-50 39.50± 0.13 42.82± 0.16 3.32

Table 6: Experiments on small and large datasets to analyze the effects of different blocks in LMSPS.
PS means progressive sampling strategy, and SE means sampling evaluation strategy. † means
employing all meta-paths and replacing the concatenation operation with the transformer module.

Method DBLP IMDB ACM Freebase OGBN-MAG
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Test Acc.

LMSPS w/o PS 94.71± 0.23 95.00± 0.19 64.85± 0.46 66.52± 0.37 93.19± 0.34 93.14± 0.41 48.89± 0.47 61.61± 0.51 47.66± 0.45
LMSPS w/o SE 95.15± 0.28 95.48± 0.24 65.46± 0.48 67.13± 0.47 94.20± 0.35 94.15± 0.31 52.08± 0.33 64.84± 0.38 52.94± 0.34
LMSPS † 95.06± 0.24 95.38± 0.21 66.85± 0.37 68.58± 0.34 94.60± 0.42 94.57± 0.39 OOM OOM OOM
LMSPS 95.35± 0.22 95.66± 0.20 66.99± 0.32 68.70± 0.26 94.73± 0.41 94.69± 0.36 53.26± 0.47 66.09± 0.51 54.83± 0.20

multiple meta-paths. So we changed their derivation strategies to ours to improve their performance.
we report the Micro-F1 scores in Table 3. The performance of LMSPS verifies the effectiveness of
our search algorithm.

To demonstrate the effectiveness of searched meta-paths, on the one hand, the meta-paths should be
effective in the proposed model. On the other hand, the effective meta-paths mainly depend on the
dataset instead of the architecture, so the meta-paths should be effective after being generalized to
other HGNNs. Because finding meta-paths that work effectively across various HGNNs is a tough
task, it has not been achieved by previous works. We verify the generalization of our searched meta-
path on the most famous HGNN, HAN [48], and the SOTA metapath-based method SeHGNN [52].
The Micro-F1 scores on three representative datasets are shown in Table 4. After simply replacing
the original meta-path set with our searched meta-paths and keeping other settings unchanged, the
performance both improve, demonstrating the effectiveness of our searched meta-paths. In addition,
we have shown the interpretability of searched meta-paths in Appendix D.

6.5 Necessity of Long-range Dependency

To answer Q4 and explore the necessity of long-range dependency on heterogeneous graphs, we
construct four large-scale datasets with high sparsity based on OGBN-MAG. To avoid inappropriate
preference seed settings of randomly removing, we construct fixed heterogeneous graphs by limiting
the maximum in-degree related to edge type. Specifically, we gradually reduce the maximum in-
degree related to edge type in OGBN-MAG from 50 to 5 but leave all nodes unchanged. Details of the
four datasets are listed in Appendix A. The test accuracy of LMSPS and SOTA method SeHGNN are
shown in Table 5. LMSPS outperforms SeHGNN more significantly with the increasing sparsity. In
addition, the leading gap of LMSPS over SeHGNN is more than 4.7% on the highly sparse dataset
OGBN-MAG-5. The main difference between SeHGNN and LMSPS is that the former cannot utilize
large hops and only use hop 2 while the latter has a maximum hop of 6, demonstrating that long-range
dependencies are more effective with decreased direct neighbors on heterogeneous graphs.

6.6 Ablation Study

Two components differentiate our LMSPS from other HGNNs: the search algorithm and semantic
fusion without attention. The search algorithm consists of a progressive sampling algorithm and a
sampling evaluation strategy. We explore how each of them improves performance through ablation
studies under the same settings as the main experiments in Table 1. As shown in Table 6, the
performance of LMSPS significantly decreases when removing progressive sampling or sampling
evaluation strategy. In addition, employing a transformer block for semantic attention on all meta-
paths shows slightly worse performance even if using many more meta-paths and is out-of-memory
on larger datasets, indicating that the transformer cannot eliminate the negative effects of noise. It is
reasonable because attention values are calculated based on softmax and are positive even for noise.

9

7 Conclusion

This work presented a novel approach, the Long-range Meta-path Search through Progressive
Sampling (LMSPS), to tackle the challenges of leveraging long-range dependencies in large-scale
heterogeneous graphs, i.e., reducing computational costs while effectively utilizing information and
addressing the over-smoothing issue. Based on our two observations, i.e., a few meta-paths dominate
the performance, and certain meta-paths can have negative impact on performance, LMSPS introduced
a progressive sampling search algorithm and a sampling evaluation strategy to automatically identify
effective meta-paths, hence reducing the exponentially growing number of meta-paths to a manageable
constant. Extensive experiments demonstrated the superiority of LMSPS over existing methods,
particularly on sparse heterogeneous graphs that require long-range dependencies. By employing
simple MLPs and complex meta-paths, LMSPS offers a novel direction that emphasizes data-
dependent semantic relationships rather than relying solely on sophisticated neural architectures. The
reproducibility and limitations are discussed in Appendix F and Appendix G, respectively.

Acknowledgments

This work is supported by National Natural Science Foundation (62076105,U22B2017).

References
[1] U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical implications.

In 9th International Conference on Learning Representations, ICLR, 2021.

[2] G. Anandalingam and T. L. Friesz. Hierarchical Optimization: An Introduction. Annals of
Operations Research, pages 1–11, 1992.

[3] G. Bachmann, S. Anagnostidis, and T. Hofmann. Scaling mlps: A tale of inductive bias. In
Advances in Neural Information Processing Systems, NeurIPS, 2023.

[4] F. M. Bianchi, D. Grattarola, and C. Alippi. Spectral clustering with graph neural networks for
graph pooling. In International conference on machine learning, ICML, pages 874–883. PMLR,
2020.

[5] Y. Chang, C. Chen, W. Hu, Z. Zheng, X. Zhou, and S. Chen. MEGNN: Meta-path Extracted
Graph Neural Network for Heterogeneous Graph Representation Learning. Knowledge-Based
Systems, page 107611, 2022.

[6] W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. Hsieh. Cluster-GCN: An Efficient Algorithm
for Training Deep and Large Graph Convolutional Networks. In KDD ’19: In Proceedings of
the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 257–266,
2019.

[7] B. Colson, P. Marcotte, and G. Savard. An Overview of Bilevel Optimization. Annals of
Operations Research, pages 235–256, 2007.

[8] Y. Ding, Q. Yao, H. Zhao, and T. Zhang. DiffMG: Differentiable Meta Graph Search for
Heterogeneous Graph Neural Networks. In KDD ’21: In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 279–288, 2021.

[9] X. Dong and Y. Yang. Searching for a robust neural architecture in four gpu hours. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, ICCV,
pages 1761–1770, 2019.

[10] P. Erridge. The pareto principle. British Dental Journal, 201(7):419–419, 2006.

[11] X. Fu, J. Zhang, Z. Meng, and I. King. MAGNN: Metapath Aggregated Graph Neural Network
for Heterogeneous Graph Embedding. In Proceedings of the ACM Web Conference, WWW,
pages 2331–2341, 2020.

10

[12] X. Glorot and Y. Bengio. Understanding the Difficulty of Training Deep Feedforward Neural
Networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, AISTATS, pages 249–256, 2010.

[13] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun. Single Path One-Shot Neural
Architecture Search with Uniform Sampling. In European Conference on Computer Vision,
ECCV, pages 544–560, 2020.

[14] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, NeurIPS, 30, 2017.

[15] Z. Han, F. Xu, J. Shi, Y. Shang, H. Ma, P. Hui, and Y. Li. Genetic Meta-Structure Search
for Recommendation on Heterogeneous Information Network. In CIKM ’20: The 29th ACM
International Conference on Information and Knowledge Management, pages 455–464, 2020.

[16] X. He, B. Hooi, T. Laurent, A. Perold, Y. LeCun, and X. Bresson. A generalization of vit/mlp-
mixer to graphs. In International Conference on Machine Learning, ICML, volume 202, pages
12724–12745, 2023.

[17] X. He, B. Hooi, T. Laurent, A. Perold, Y. LeCun, and X. Bresson. A generalization of vit/mlp-
mixer to graphs. In International conference on machine learning, ICML, pages 12724–12745.
PMLR, 2023.

[18] H. Hong, H. Guo, Y. Lin, X. Yang, Z. Li, and J. Ye. An Attention-based Graph Neural Network
for Heterogeneous Structural Learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI, pages 4132–4139, 2020.

[19] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open
graph benchmark: Datasets for machine learning on graphs. Advances in Neural Information
Processing Systems, NeurIPS, 33:22118–22133, 2020.

[20] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec. OGB-LSC: A Large-Scale Chal-
lenge for Machine Learning on Graphs. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, 2021.

[21] Z. Hu, Y. Dong, K. Wang, and Y. Sun. Heterogeneous Graph Transformer. In Proceedings of
the ACM Web Conference, WWW, pages 2704–2710, 2020.

[22] Q. Huang, H. He, A. Singh, S. Lim, and A. R. Benson. Combining label propagation and simple
models out-performs graph neural networks. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

[23] H. Ji, X. Wang, C. Shi, B. Wang, and S. Y. Philip. Heterogeneous Graph Propagation Network.
IEEE Transactions on Knowledge and Data Engineering, pages 521–532, 2021.

[24] N. Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
Advances in Neural Information Processing Systems, NeurIPS, 35:2268–2281, 2022.

[25] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Y. Bengio and
Y. LeCun, editors, International Conference on Learning Representations, ICLR, 2015.

[26] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representation, ICLR, 2017.

[27] C. Li, H. Xu, and K. He. Differentiable Meta Multigraph Search with Partial Message Propaga-
tion on Heterogeneous Information Networks. Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI, 2023.

[28] G. Li, M. Muller, A. Thabet, and B. Ghanem. Deepgcns: Can gcns go as deep as cnns?
In Proceedings of the IEEE/CVF international conference on computer vision, ICCV, pages
9267–9276, 2019.

[29] J. Li, H. Peng, Y. Cao, Y. Dou, H. Zhang, S. Y. Philip, and L. He. Higher-order Attribute-
enhancing Heterogeneous Graph Neural Networks. IEEE Transactions on Knowledge and Data
Engineering, pages 560–574, 2021.

11

[30] Q. Li, Z. Han, and X.-M. Wu. Deeper Insights Into Graph Convolutional Networks for Semi-
supervised Learning. In Proceedings of the AAAI conference on artificial intelligence, AAAI,
2018.

[31] Y. Li, Y. Jin, G. Song, Z. Zhu, C. Shi, and Y. Wang. GraphMSE: Efficient Meta-path Selection
in Semantically Aligned Feature Space for Graph Neural Networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI, pages 4206–4214, 2021.

[32] H. Liu, K. Simonyan, and Y. Yang. DARTS: differentiable architecture search. In 7th Interna-
tional Conference on Learning Representations, ICLR, 2019.

[33] H. Liu, K. Simonyan, and Y. Yang. DARTS: Architecture Search. In 7th International
Conference on Learning Representations, ICLR, 2019.

[34] Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang, Y. Dong, and J. Tang. Are
We Really Making Much Progress? Revisiting, Benchmarking and Refining Heterogeneous
Graph Neural Networks. In KDD ’21: In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 1150–1160, 2021.

[35] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[36] Q. Mao, Z. Liu, C. Liu, and J. Sun. Hinormer: Representation learning on heterogeneous
information networks with graph transformer. In Proceedings of the ACM Web Conference,
WWW, pages 599–610, 2023.

[37] W. Ning, R. Cheng, J. Shen, N. A. H. Haldar, B. Kao, X. Yan, N. Huo, W. K. Lam, T. Li, and
B. Tang. Automatic meta-path discovery for effective graph-based recommendation. In Pro-
ceedings of the 31st ACM International Conference on Information & Knowledge Management,
pages 1563–1572, 2022.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in Neural Information Processing Systems, NeurIPS, 32, 2019.

[39] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin.
Large-scale evolution of image classifiers. In International conference on machine learning,
ICML, pages 2902–2911, 2017.

[40] R. Sanders. The pareto principle: its use and abuse. Journal of Services Marketing, 1(2):37–40,
1987.

[41] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling. Modeling
Relational Data with Graph Convolutional Networks. In European semantic web conference,
pages 593–607, 2018.

[42] C. Sun, H. Gu, and J. Hu. Scalable and Adaptive Graph Neural Networks with Self-label-
enhanced Training. arXiv preprint arXiv:2104.09376, 2021.

[43] Y. Sun and J. Han. Mining Heterogeneous Information Networks: A Structural Analysis
Approach. SIGKDD Explor., pages 20–28, 2012.

[44] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. PathSim: Meta Path-Based Top-K Similarity
Search in Heterogeneous Information Networks. Proc. VLDB Endow., pages 992–1003, 2011.

[45] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner,
D. Keysers, J. Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for vision. Advances in
Neural Information Processing Systems, NeurIPS, 34:24261–24272, 2021.

[46] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[47] R. Wang, M. Cheng, X. Chen, X. Tang, and C.-J. Hsieh. Rethinking architecture selection in
differentiable nas. In International Conference on Learning Representation, ICLR, 2021.

12

[48] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. Heterogeneous Graph Attention
Network. In Proceedings of the ACM Web Conference, WWW, pages 2022–2032, 2019.

[49] L. Xie and A. L. Yuille. Genetic CNN. In IEEE International Conference on Computer Vision,
ICCV, pages 1388–1397, 2017.

[50] S. Xie, H. Zheng, C. Liu, and L. Lin. SNAS: Stochastic Neural Architecture Search. In 7th
International Conference on Learning Representations, ICLR, 2019.

[51] C. Xue, X. Wang, J. Yan, Y. Hu, X. Yang, and K. Sun. Rethinking Bi-Level Optimization
in Neural Architecture Search: A Gibbs Sampling Perspective. In Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI, pages 10551–10559, 2021.

[52] X. Yang, M. Yan, S. Pan, X. Ye, and D. Fan. Simple and Efficient Heterogeneous Graph Neural
Network. Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2023.

[53] Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu. Efficient Neural Architecture Search via Proximal
Iterations. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2020.

[54] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really
perform badly for graph representation? Advances in Neural Information Processing Systems,
NeurIPS, 34:28877–28888, 2021.

[55] L. Yu, J. Shen, J. Li, and A. Lerer. Scalable Graph Neural Networks for Heterogeneous Graphs.
arXiv preprint arXiv:2011.09679, 2020.

[56] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim. Graph Transformer Networks. In Advances
in Neural Information Processing Systems, NeurIPS, pages 11960–11970, 2019.

[57] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous Graph Neural
Network. In KDD ’19: In Proceedings of the 25th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 793–803, 2019.

[58] W. Zhang, Z. Yin, Z. Sheng, Y. Li, W. Ouyang, X. Li, Y. Tao, Z. Yang, and B. Cui. Graph
Attention Multi-layer Perceptron. In KDD ’22: In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, page 4560–4570, 2022.

[59] T. Zhao, C. Yang, Y. Li, Q. Gan, Z. Wang, F. Liang, H. Zhao, Y. Shao, X. Wang, and C. Shi.
Space4hgnn: a novel, modularized and reproducible platform to evaluate heterogeneous graph
neural network. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 2776–2789, 2022.

[60] Z. Zhong, C.-T. Li, and J. Pang. Reinforcement learning enhanced heterogeneous graph neural
network. arXiv preprint arXiv:2010.13735, 2020.

[61] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global
consistency. In Advances in Neural Information Processing Systems, NeurIPS, pages 321–328,
2003.

[62] Z. Zhou, J. Shi, R. Yang, Y. Zou, and Q. Li. Slotgat: slot-based message passing for heteroge-
neous graphs. In International Conference on Machine Learning, ICML, pages 42644–42657.
PMLR, 2023.

[63] S. Zhu, C. Zhou, S. Pan, X. Zhu, and B. Wang. Relation Structure-aware Heterogeneous
Graph Neural Network. In 2019 IEEE International Conference on Data Mining, ICDM, pages
1534–1539, 2019.

[64] X. J. Zhu. Semi-supervised learning literature survey. 2005.

13

Appendix / Supplemental Material

In the Appendix, we provide additional details and results not included in the main text due to
space limitations. First, we provide the details of datasets, tasks, baselines, and parameter settings
for our experiments. Secondly, we show the search algorithm of LMSPS and conduct theoretical
analysis about the reasonableness of sampling search and analyze the time complexity. Thirdly, for
interpretability, the searched meta-paths are listed and analyzed. Fourthly, we explore the training
efficiency and search convergence of LMSPS and compare LMSPS with top method combinations
on OGBN-MAG leaderboard. Hyperparameter studies are also conducted. Finally, we discuss the
reproducibility and limitations of our research work.

A Dataset and Task

A.1 Dataset Details

We evaluate our method on four widely-used heterogeneous graphs including DBLP, IMDB, ACM, and
Freebase from HGB benchmark [34] and the famous large-scale dataset OGBN-MAG from OGB
challenge [20]. The datasets from HGB follow a transductive setting, where all edges are available
during training, and target type nodes are divided into 24% for training, 6% for validation, and 70%
for testing. For the OGBN-MAG dataset, we use the official data partition, where papers published
before 2018, in 2018, and since 2019 are nodes for training, validation, and testing, respectively.
In addition, we construct four sparse datasets to evaluate the performance of LMSPS by reducing
the maximum in-degree related to edge type in OGBN-MAG. The four sparse datasets have the same
number of nodes with OGBN-MAG. Follow the convention [34, 52, 36], we show the details of all
datasets in Table 7.

A.2 Node Classification Tasks

Following the convention [34, 27, 52, 36], we concentrate on semi-supervised node classification
under the transductive setting and leave other downstream tasks related to heterogeneous graph
representation learning as future work. Each dataset contains a target node type, and our task is to
learn to predict the labels of vertices of this target node type. All the datasets provide fixed data
splitting (into training, validation, and test sets) for node classification tasks.

A.3 Searching and Training Objective

An MLP layer is appended after the main module of LMSPS, which reduces the dimension of
node-level representations of a heterogeneous graph to the number of classes:

Ȳ = softmax(Zωo), (8)

where ωo ∈ Rdo×N is the output weight matrix, do is the dimension of output node representations,
and N is the number of classes. Then, the cross-entropy loss is used over all labeled nodes:

L = −
∑

v∈VL

∑N

n=1
yv[n] log ȳv[n], (9)

Table 7: Statistics of the datasets.

Dataset #Nodes #Node types #Edges #Edge types Target #Classes

DBLP 26, 128 4 239, 566 6 author 4
IMDB 21, 420 4 86, 642 6 movie 5
ACM 10, 942 4 547, 872 8 paper 3
Freebase 180, 098 8 1, 057, 688 36 book 7

OGBN-MAG 1, 939, 743 4 21, 111, 007 4 paper 349
OGBN-MAG-50 1, 939, 743 4 9, 531, 403 4 paper 349
OGBN-MAG-20 1, 939, 743 4 7, 975, 003 4 paper 349
OGBN-MAG-10 1, 939, 743 4 6, 610, 464 4 paper 349
OGBN-MAG-5 1, 939, 743 4 4, 958, 941 4 paper 349

14

where VL denotes the set of labeled nodes, yv is a one-hot vector indicating the label of node v, and
ȳv is the predicted label for the corresponding node in Ȳ . In the search stage, VL is the training set
when updating ω and the validation set when updating α. In the training stage, VL is the training set,
and ω is reinitialized and trained.

B Baselines and Parameter Settings

B.1 Baselines

We compare LMSPS with a large number of HGNN baselines, including MLP [19], GraphSAGE [14],
RGCN [41], HAN [48], GTN [56], RSHN [63], HetGNN [57], MAGNN [11], HetSANN [18],
GCN [26], GAT [46], , Simple-HGN [34], HGT [21], GraphMSE [31], SlotGAT [62], DiffMG [8],
PMMM [27], HINormer [36], NARS [55], space4HGNN [59], SeHGNN [52]. GEMS [15] and
RMS-HRec [37] are ignored because they are designed for recommendation tasks. RL-HGNN [60]
is omitted due to a lack of source code.

Note that most of these baselines encounter out-of-memory (OOM) issues when dealing with large
datasets. However, there are exceptions among them, including MLP, GraphSAGE, HGT, RGCN,
NARS, and SeHGNN. The results of MLP and GraphSAGE come from the OGBN-MAG leaderboard.
MLP [19] is famous for its lightweight and GraphSAGE [14] uses a neighbor sampling strategy, so
they can handle large-scale datasets. HGT is designed with a graph sampling strategy, making it
well-suited for managing large datasets. As for RGCN, while the original version does present OOM
issues with large datasets, it is often used as a baseline for large-scale HGNNs [55]. NARS [55] and
SeHGNN [52] are metapath-based and pre-computation-based HGNNs, allowing them to handle
large-scale datasets.

It’s worth noting that in the original paper, SeHGNN refers to the full version incorporating label
propagation techniques. For clarity and consistency in our study, we have adjusted the terminology:
we refer to the version without label propagation as SeHGNN and the version with label propagation
as SeHGNN+LP. Note that label propagation is a general technique [64, 61, 22] that is compatible
with most GNNs and is not used in the results of LMSPS and all other baselines in Table 1. Therefore,
it is considered only in Appendix E.2, where we demonstrate the successful integration of our model
with other techniques.

B.2 Training Settings

For training, we follow the settings of the HGB benchmark [34] and utilize the performance improve-
ment on the validation set as a guide to determine whether the model has been improved. Specifically,
if we observe a performance boost on the validation set during training, we update the final model
parameters accordingly. Additionally, we adopt the early stopping strategy employed by the HGB
benchmark: if no performance improvement on the validation set is observed within a specific count
(referred to as patience), the training will be stopped early before reaching the maximum epochs. This
approach helps prevent overfitting while also enhancing the computational efficiency of our model
training. Following the setting of HGB [34] and OGB [20], we train our model 5 times for HGB
and 10 times for OGB with different random seeds and report the mean performance and standard
deviation, respectively. We use Pytorch [38] to run all experiments on one Tesla V100 GPU with
16GB GPU memory.

B.3 Parameter Settings for Baselines

For models such as RGCN, HAN, GTN, RSHN, HetGNN, MAGNN, HetSANN, HGT, GCN, GAT,
Simple-HGN, and SeHGNN, the literature [34, 52] provides tuned parameter settings along with
corresponding performance on small datasets, namely DBLP, IMDB, ACM, and Freebase. Therefore,
we utilize these tuned parameter settings for these models on small datasets and utilize the reported
performance.

15

Conversely, in cases where official results are unavailable (such as NARS on small datasets), or where
the experimental settings differ, we employ the official or benchmark implementations 3 4 5 6 7 8

9 10 11 of the baseline models. We meticulously fine-tune their hyperparameters to the best of our
capabilities. In instances involving hyperparameter analysis, such as in Figure 3, we only modify the
relevant hyperparameters to ensure a fair comparison.

B.4 Parameter Settings for LMSPS

We set the number of selected meta-paths M = 30 for all datasets. The final search space V = 60.
The maximum hop is 6 for ogbn-mag, DBLP, 5 for IMDB, ACM, and 3 for Freebase. All K architecture
parameters α1, α2, · · · , αK are initialized as 1s. For searching in the super-net, we train for 200
epochs. To train the target-net, we use an early stop mechanism based on the validation performance
to promise full training. A two-layer MLP is adopted for each meta-path in the feature projection step,
and the hidden size is 512. All network weights are initialized by the Xavier uniform distribution [12]
and are optimized with Adam [25] during training. In the search stage, λ is 1 during the first 20
epochs for warmup and decreases to 0 linearly. τ linearly decays with the number of epochs from 8 to
4. The learning rate is 0.001 for all search stages and HGB training stage, and 0.003 for OGBN-MAG
training stage. The weight decay is always 0. For the initial search space, we simply preset the
maximum hop and use all target-node-related meta-paths no more than this maximum hop.

B.5 Evaluation Metrics

To assess the performance of the models, we employ evaluation metrics consistent with those
employed in baseline models. The metrics are chosen as follows. For small datasets, DBLP, IMDB,
ACM, and Freebase, we adhere to the evaluation standards established by the HGB benchmark [34].
The metrics reported for these datasets are Macro-F1 and Micro-F1 scores, which evaluate the
classification performance. For the OGBN-MAG dataset, evaluation follows the methodology
outlined in NARS [55] and SeHGNN [52], where the classification accuracy score is reported for this
dataset.

C Algorithm

C.1 The Search Algorithm

Our search stage aims to discover the most effective meta-path set from all target-node-related
meta-paths, severely challenging the efficiency of searching. Take OGBN-MAG as an example. The
number of target-node-related meta-paths K is 226 under the maximum hop 6, and we need to find the
most effective meta-path set with size 30. Because different meta-paths could be noisy or redundant
to each other, top-30 meta-paths are not necessarily the optimal solution when their importance is
calculated independently. Therefore, the total number of possible meta-path sets is C30

226 ≈ 1037.
Such a large search space is hard to solve efficiently by traditional RL-based algorithms [60, 37] or
evolution-based algorithms [49, 39].

To overcome this challenge, our LMSPS first uses a progressive sample algorithm to shrink the search
space size from 226 to 60, then utilizes a sampling evaluation strategy to discover the best meta-path
set with the lowest validation loss, which is more effective than architecture parameters [47]. In
each iteration, we only uniformly sample meta-paths M from the whole search space for parameter
updates, so the search cost is relevant to M , which is a predefined small number, rather than K.
Because the search stage has many iterations and the initial values of architecture parameters are

3https://github.com/THUDM/HGB
4https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/ogbn-mag
5https://github.com/UCLA-DM/pyHGT
6https://github.com/facebookresearch/NARS
7https://github.com/LARS-research/DiffMG
8https://github.com/JHL-HUST/PMMM
9https://github.com/ICT-GIMLab/SeHGNN

10https://github.com/Ffffffffire/HINormer
11https://github.com/scottjiao/SlotGAT_ICML23

16

https://github.com/THUDM/HGB
https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/ogbn-mag
https://github.com/UCLA-DM/pyHGT
https://github.com/facebookresearch/NARS
https://github.com/LARS-research/DiffMG
https://github.com/JHL-HUST/PMMM
https://github.com/ICT-GIMLab/SeHGNN
https://github.com/Ffffffffire/HINormer
https://github.com/scottjiao/SlotGAT_ICML23

Algorithm 1 The search algorithm of LMSPS
Input: meta-path sets P = {P1, · · · , PK}; number of sampling meta-paths M ; number of training
iterations T ; number of sampling evaluation E
Parameter: Network weights ω in MLPk for feature projection and MLP for downstream tasks;
architecture parameters α = {α1, · · · , αK}
Output: The index set of selected meta-paths SM

1: % Neighbor aggregation
2: Calculate neighbor aggregation of raw features for each Pk ∈ P based on Equation 1
3: while t < T do
4: % Path strength
5: Calculate the path strength of all meta-paths based on Equation 2
6: % Dynamic search space
7: Calculate the current search space SC based on Equations 3
8: % Sampling
9: Determine the set of indexes of sampled meta-paths S based on Equation 4

10: % Semantic fusion
11: Fused the semantic information of the sampled meta-paths based on Equation 4
12: % Parameters updation
13: Update weights ω by∇ωLtrain(ω,α)
14: Update parameters α by ∇αLval(ω,α)
15: end while
16: % Evaluation
17: while e < E do
18: Randomly sample M meta-paths from SC as S̄ based on Equation 6
19: Calculate Lval(S̄) of the sampled meta-paths
20: end while
21: Select the best meta-path set SM ← argminS̄ Lval(S̄)
22: return SM

the same, all architecture parameters will be updated multiple times and the relative importance can
be learned during training, making the total search cost similar to training a single HGNN once.
Specifically, for OGBN-MAG, LMSPS can finish searching in two hours.

Except for efficiency, LMSPS can also overcome the over-squashing issue [1] when utilizing long-
range dependency. Over-squashing means the distortion of messages being propagated from distant
nodes, which has been heuristically attributed to graph bottlenecks where the number of l-hop
neighbors grows rapidly with l. In LMSPS, we set the number of searched meta-paths M = 30
for all datasets, which is independent of l. Because the exponential meta-paths in metapath-based
methods correspond to exponential receptive fields in metapath-free methods, the constant M means
approximately constant l-hop neighbors, i.e., LMSPS selectively aggregate effective neighbors for
each target-net. Therefore, the over-squashing issue is overcome.

We have introduced the components of LMSPS in detail in the main text. LMSPS first employs a
progressive sample algorithm to narrow the search space from K to V , then utilizes sample evaluation
to filter out the best meta-path set with M meta-paths. V is a parameter to trade off the importance
of progressive sampling search and sampling evaluation. When V is too large, we need to repeat
the sampling evaluation many more times, which will decrease the efficiency. When V is too small,
some effective meta-paths may be dropped too early. So, we simply set V = 2M . Generally,
K ≫M under a large maximum hop. For a small maximum hop, when K ≤M , the search stage
is unnecessary because we can directly use all target-node-related meta-paths; when K ≤ 2M , the
progressive sampling algorithm is unnecessary because the search space is small enough. When
K > 2M , we show the overall search algorithm in Algorithm 1.

C.2 Theoretical analysis of the reasonableness of sampling search

Definition 1. Zero-order condition: Given two high-dimensional random variables, y = f(x) ∈
RM×d1 and z = g(x) ∈ RM×d1 , the zero-order condition is satisfied if |y − z|2 ≤ ϵ for any valid
sample x ∈ RN×d, where ϵ is a small positive constant.

17

Table 8: Time complexity comparison of every training epoch. † means time complexity under
small-scale datasets and full-batch training.

Method Feature projection Neighbor aggregation Semantic fusion Total

HAN O(N(rd)lF 2) O(N(rd)lF) O(NrlF 2) O(N(rd)lF 2)
Simple-HGN O(N(rd)lF 2) O(N(rd)lF) - O(N(rd)lF 2)
Simple-HGN† O(NrdlF 2) O(NrdlF) - O(NrdlF 2)
SeHGNN O(NrlF 2) - O(NrlF 2 +Nr2lF) O(N(rlF 2 + r2lF))
LMSPS-search O(NMF 2) - O(NMF 2) O(NMF 2)
LMSPS-train O(NMF 2) - O(NMF 2) O(NMF 2)

Lemma C.1. Let m represent the maximum number of activatable paths, and assume each pair
of operations satisfies the zero-order condition. We can approximate all 2m combinations using m
types of expectations and variances.

Lemma C.1 assures us that we can approximate all 2m combinations by multiple times sampling.
The proof is given as follows.

Let ypy(y) = f(x), zpz(z) = g(x), x ∼ px(x). For the case m = 1, the expectation of y and z can
be written respectively as:

E[y] = E[f (x)] =

∫
px(x)f(x)dx

E[z] = E[g (x)] =
∫

px(x)g(x)dx

(10)

According to the zero-order condition, we have f(x) ≈ g(x). And p(x) is same for both y and z, so
E[y] ≈ E[z].

Now we prove V ar[y] ≈ V ar[z]. Note that V ar[y] = E
[
y2

]
− (E[y])2 and V ar[z] = E

[
z2
]
−

(E[z])2, thus we only need to prove E
[
y2

]
≈ E

[
z2
]
. It can be similarly proved as follows:

E
[
y2

]
=

∫
py(y)y

2dy =

∫
px(x)f

2(x)dx

E
[
z2
]
=

∫
pz(z)z

2dz =

∫
px(x)g

2(x)dx

(11)

According to the zero-order condition, we have V ar[y] ≈ V ar[z].

For the case of m = 2, when the two paths are both selected, the output becomes y+z, its expectation
can be written as:

E[y + z] = E[y] + E[z] ≈ 2E[y] (12)

And the variance of y + z is,

V ar[y + z] ≈ V ar[2y] = 4V ar[y] (13)
Therefore, there are two kinds of expectations and variances: E[y] and V ar[y] for {y, z}, and
2E[y] and 4V ar[y] for {y + z}. Similarly, in the case where m ∈ [1, n], there will be m kinds of
expectations and variances.

C.3 Time Complexity Analysis

Following the convention [6, 52], we compare the time complexity of LMSPS with HAN [48],
Simple-HGN [34], and SeHGNN [52] under mini-batch training with the total N target nodes. All
methods employ l-hop neighborhood. For simplicity, we assume that the number of features is fixed
to F for all layers. The average degree of each node is rd, where r is the number of edge types
and d is the number of edges connected to the node for each edge type. The complexity analysis is

18

Table 9: Meta-paths searched by LMSPS on different datasets.

Dataset Meta-paths learnt by LMSPS

DBLP
AP, APT, APVP, APAPA, APTPA, APTPT, APTPV, APVPA, APVPV, APAPAP, APAPTP, APAPVP,
APTPTP, APTPVP, APVPTP, APAPAPV, APAPTPA, APAPTPV, APAPVPA, APAPVPT, APAPVPV,

APTPAPA, APTPAPT, APTPTPT, APTPVPV, APVPAPT, APVPTPA, APVPVPA, APVPVPT, APVPVPV

IMDB

M, MA, MK, MAM, MDM, MKM, MAMK, MDMK, MKMD, MDMKM, MKMAM,
MKMDM, MKMKM, MAMAMK, MAMDMA, MAMDMK, MAMKMD, MAMKMK, MDMAMA,

MDMAMD, MDMDMA, MDMDMK, MDMKMA, MKMAMA, MKMAMD, MKMAMK, MKMDMA,
MKMDMK, MKMKMD, MKMKMK

ACM
PPP, PAPP, PCPA, PCPP, PPPC, PPPP, PAPAP, PAPPP, PCPAP, PCPPA, PPAPA, PPAPC,

PPAPP, PAPAPA, PAPCPA, PAPPAP, PAPPCP, PAPPPP, PCPAPP, PCPCPP, PCPPAP,
PCPPPP, PPAPAP, PPAPCP, PPAPPA, PPAPPP, PPCPAP, PPPAPA, PPPCPA, PPPPPP

OGBN-MAG
PF, PAPF, PFPP, PAPPP, PFPFP, PPAPP, PPPAP, PPPFP, PAIAPP, PAPAPF, PFPAPF, PFPPPF,

PFPPPP, PPAPPF, PPPAPF, PPPPAP, PPPPPF, PAIAPAP, PAPAPAP, PAPAPPP, PAPPPAI,
PAPPPPF, PAPPPPP, PFPAPAP, PFPPFPF, PFPPPPF, PPAPAPF, PPAPAPP, PPPAIAI, PPPAPPP

summarized in Table 8. Because HAN and Simple-HGN require neighbor aggregation during training,
and the number of neighbors grows exponentially with hops. So, they have neighbor aggregation
costs of O((rd)l). SeHGNN employs a pre-processing step to avoid the training cost of neighbor
aggregation. However, the exponential meta-paths cause SeHGNN to suffer from O(rl) costs in
semantic aggregation. Unlike the above methods, LMSPS samples M meta-paths in each iteration
of the search stage and employs M effective meta-paths in the training stage to avoid exponential
costs. Generally, we have O((rd)l)≫ O(rl) = O(K)≫ O(M) when maximum hop l is large. The
time complexity of LMSPS is a constant when N and F are determined, which is the key point for
utilizing long-range meta-paths.

D Interpretability of Searched Meta-paths

We have conducted an extensive experimental study to validate the effectiveness of our searched
meta-paths in the main text. Here, we illustrate the searched meta-paths of each dataset in Table 9.
Because we discover many more meta-paths than traditional methods and most meta-paths are
longer than traditional meta-paths, it is tough to interpret them one by one. So, we focus on the
interpretability of meta-paths on large-scale obgn-mag dataset from the Open Graph Benchmark.
The OGBN-MAG dataset is a heterogeneous graph composed of a subset of the Microsoft Academic
Graph. It includes four different entity types: Papers (P), Authors (A), Institutions (I), and Fields of
study (F), as well as four different directed relation types: Author writes−−−−→ Paper, Paper cites−−−→Paper,

Author is affiliated with−−−−−−−−−−→ Institution, and Paper
has a topic of−−−−−−−−→Field. The target node is the paper, and

the task is to predict each paper’s venue (conference or journal).

Based on Table 9, the hop of effective meta-paths on obgn-mag ranges from 1 to 6, which means
utilizing information from neighbors at different distances is important. Because long-range meta-
paths provide larger receptive fields, LMSPS shows stronger capability in utilizing heterogeneity
compared to traditional metapath-based HGNNs. The source node type of 16 meta-paths is P, e.g.,
PFPFP (P←F←P←F←P). It indicates that the neighborhood papers of the target paper are most
significant for predicting its venue, which is consistent with reality: the citation relationship, co-author
relationship, and co-topic relationship between papers are usually the most effective information. 12
meta-paths’ source node type is F. It implies that the neighborhood fields of the target paper are also
crucial in determining its venue, which is also consistent with reality. Because most conferences
or journals focus on a few fixed fields, a paper’s venue is highly related to its field. The source
node type of 2 meta-paths is I. It means the neighborhood institution is not very important for
predicting the paper’s venue, which is reasonable because almost all institutions have a wide range of
conference or journal options for publishing papers. No meta-path has source node type A. It means
the neighborhood author is unimportant in determining the paper’s venue, which is logical because
each paper has multiple authors, and each author can consider different venues. So, it is difficult
to determine the paper’s venue based on its neighborhood authors. If using too much institution or
author information to predict the paper’s venue, it actually introduces much useless information,
which can be viewed as a kind of noise in obgn-mag for predicting each paper’s venue.

19

10 1 100 101

Training time (s/epoch)

92.0
92.5
93.0
93.5
94.0
94.5
95.0
95.5
96.0

M
icr

o-
F1

 (%
)

RSHN

Simple-HGN

HGT

RGCN HAN

MAGNN

SeHGNN

DiffMG

PMMM

LMSPS

(a) DBLP

10 1 100 101

Training time (s/epoch)

88.0

89.0

90.0

91.0

92.0

93.0

94.0

95.0

M
icr

o-
F1

 (%
)

RSHN

Simple-HGN

HGTRGCN
HAN MAGNN

SeHGNN

DiffMG

PMMM
LMSPS

(b) ACM

Figure 4: Micro-F1 scores, time consumption, and parameters of various HGNNs on DBLP and ACM.
GTN has a large time consumption and parameters. We ignore it for ease of illustration.

Table 10: Performance of top mothod combinations on OGBN-MAG leaderboard.
Method OGBN-MAG

Validation Accuracy Test Accuracy
SAGN [42]+LP 52.25± 0.30 51.17± 0.32
GAMLP [58]+LP 53.23± 0.23 51.63± 0.22
SeHGNN+LP 55.95± 0.11 53.99± 0.18
LMSPS +LP 56.98± 0.10 55.10± 0.11
SeHGNN+LP+MS 58.70± 0.08 56.71± 0.14
SeHGNN+LP+MS+Emb 59.17± 0.09 57.19± 0.12
LMSPS +LP+MS 59.51± 0.07 57.84± 0.22

We also provide some simple insights from the searced meta-paths of DBLP, IMDB, and ACM.
In DBLP with target node type Author, the information from P (Paper) and A (Author) is slightly
more important than that from T (Term) and V (Venue). In IMDB with target node type Movie,
the importance of information of K (Keyword), M (Movie), A (Actor) and D (Director) gradually
decreases. In ACM with target node type Paper, the importance of information of P (Paper), A
(Author) and C (Conference) gradually decreases. For all datasets, the importance of node type is
highly related to the target node type.

In addition, the hand-crafted meta-paths rely on intense expert knowledge, which is both laborious
and data-dependent. In contrast, automatic meta-path search frees researchers from the understand-
then-apply paradigm. In Table 9, LMSPS can search effective meta-paths without prior knowledge
for various datasets, which is more valuable than manually-defined meta-paths.

E More Experiments

E.1 Comparison on Training Efficiency

Following the convention [34, 52], we show the time cost and parameters of LMSPS and the advanced
baselines on DBLP and ACM in Figure 4. We measure the average time consumption of one epoch
for each model. The area of the circles represents the parameters. The hidden size is set to 512 and
the maximum hop or layer is 6 for DBLP and 5 for ACM for all methods to test the training time and
parameters under the same setting. Some methods perform quite poorly under the large maximum
hop or layer. So we show the performance from Table 1 of the main text, which is the results
under their best settings. Figure 4 shows that LMSPS has advantages in both training efficiency and
performance. Our searched meta-paths are universal after searching once and can be applied to other
metapath-based HGNNs based on Table 4. Because other metapath-based HGNNs don’t include the
time for discovering manual meta-paths, we also exclude our search time for discovering meta-paths
in Figure 4. The search time is shown in Figure 3 (c) of the main text.

E.2 Comparison with Top Method Combinations

The OGBN-MAG benchmark dataset is associated with a public leaderboard. In Table 10, we
compare our method combination against top-performing approaches (method combinations) on
the leaderboard. These methods integrate several general techniques, such as Label Propagation

20

Table 11: The performance of LMSPS under different searching epochs.
Dataset 1 5 10 20 40 60 80 100 120 140 160 180 200
DBLP 38.32 68.75 71.20 72.03 71.05 70.56 73.12 73.70 73.56 73.85 73.84 74.36 74.04
IMDB 43.48 49.78 53.88 58.48 57.03 58.40 58.05 58.65 57.54 58.70 58.59 58.72 58.81
ACM 79.03 85.43 87.42 86.75 88.30 89.85 88.96 89.40 88.52 89.85 89.70 89.85 89.91
Freebase 18.37 29.55 39.62 39.58 44.43 46.57 47.52 48.33 54.59 55.81 55.52 55.66 55.79
OGBN-MAG 14.21 26.20 32.41 37.00 40.82 45.89 41.74 44.00 48.40 48.55 48.70 48.43 48.59

0 10 20 30 40 50
M

92

93

94

95

96

M
icr

o-
F1

 (%
)

(a) DBLP

0 10 20 30 40 50
M

60

62

64

66

68

70

M
icr

o-
F1

 (%
)

(b) IMDB

0 10 20 30 40 50 60 70 80
M

91

92

93

94

95

M
icr

o-
F1

 (%
)

(c) ACM

Figure 5: Micro-F1 with respect to different hyper-parameter M on DBLP, IMDB, and ACM.

1 2 3 4 5 6 7 8 9 10
Maximum hop

40

50

60

70

80

90

100

M
icr

o-
F1

 (%
)

DBLP
ACM
IMDB

Figure 6: Micro-F1 scores with respect to different maximum hops on DBLP, IMDB, and ACM.

(LP), Multi-Stage Training (MS), and pre-trained Embeddings (Emb). By integrating LP and MS,
LMSPS+LP+MS outperforms SeHGNN+LP+MS by a large margin. SeHGNN shows the results
with extra embeddings as an enhancement. Though we cannot conduct a fair comparison with this
trick due to the untouchability of its embedding file, LMSPS still outperforms their best result.

E.3 Convergence of the Search Stage

As the search stage of LMSPS relies on sampling, we conduct experiments to explore the convergence
of the search stage. Because the test set is unavailable in the search stage to avoid label leakage, we
show the Micro-F1 scores of the validation set of DBLP, IMDB, ACM, Freebase and test accuracy of
the validation set of OGBN-MAG under different searching epochs in Table 11. As we can see, LMSPS
coverages during 100 to 180 epochs for all datasets. The main reason is that the search space size
is progressively shrunk from K to 2M under the progressive sampling algorithm. Most negative
meta-paths have been removed from the search space in the second half of the search stage.

E.4 Hyperparameter Study

LMSPS randomly samples M meta-paths at each epoch in the search stage and selects the top-M
meta-paths in the training stage. Here, we perform analysis on hyper-parameter M on DBLP, IMDB,
and ACM. Freebase and OGBN-MAG are ignored because they are relatively large and the experiments
are time-consuming. As illustrated in Figure 5, the performance of LMSPS increases with the growth
of M when M is small. In addition, the performance on DBLP and ACM slightly decreases when M is
larger than a certain threshold, indicating excessive meta-paths don’t benefit performance for some
datasets. For unity, we set M = 30 for all datasets.

To observe the impact of different maximum hop values, we show the Micro-F1 of LMSPS with
respect to different maximum hop values on DBLP, IMDB, and ACM in Figure 6. We can see LM-
SPS show the best performance when the maximum hop is 5 or 6. Additionally, the performance of

21

LMSPS does not always increase with the value of the maximum hop, and the best maximum hop
depends on the dataset.

F Reproducibility Statement

We have provided the details of datasets, tasks, baselines, and parameter settings in Appendix A
and B and conducted the hyperparameter study in Appendix E.4. All reported results are the average
of multiple experiments with standard deviations. We have included a pseudocode description of our
method in Appendix C. The source code has been provided through an anonymized URL with clear
commands on reproducing our results.

G Limitations

It is noteworthy that the performance of LMSPS does not always increase with the value of the
maximum hop. For instance, based on Figure 3 (a), LMSPS can effectively utilize 12-hop meta-paths
on DBLP with high performance and low cost. However, the optimal performance for LMSPS is
observed when the maximum hop is 6. It can be attributed to the constraint of maintaining constant
time complexity by setting the number of searched meta-paths to 30 for different maximum hop
values. When the maximum hop value is 12, the number of target-node-related meta-paths exceeds
1400 (Figure 3 (a)). Searching for 30 effective meta-paths from such an extensive search space
is notably challenging, despite LMSPS being the most effective method for meta-path search (as
indicated in Table 3). The benefits of using longer meta-paths are outweighed by the drawbacks of
the significantly more complex search space. So, the best maximum hop depends on the dataset and
task and cannot be determined automatically.

Nevertheless, based on Table 8, the time complexity of LMSPS does not increase with the maxi-
mum hop. Consequently, it provides an effective solution for utilizing long-range dependency on
heterogeneous graphs for possible applications on sparser real-world datasets. In Table 5, we conduct
experiments on four constructed datasets based on OGBN-MAG to demonstrate that the advantages of
utilizing long-range dependencies are more obvious for sparser large-scale heterogeneous graphs.
For the constructed datasets, we carefully avoid inappropriate preference seed settings of randomly
removing by limiting the maximum in-degree related to edge type. We expect sparser large-scale
real heterogeneous datasets or more suitable tasks requiring long-range dependency to emerge in the
future so we can fully explore our approach.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have provided cases, motivation, and also extensive experiments for
verification to support our claim.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have talked about the limitation of our work in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

23

Justification: We have provided a theoretical analysis of the reasonableness of the sampling
search in Appendix C.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided extensive experiments, results, descriptions, and also
provided the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in a URL in the Abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of datasets, tasks, baselines, and parameter settings are shown in
Appendix A and B. The hyperparameter study is shown in Appendix E.4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The mean and variance of the experimental results are reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided that the computation resource is one Tesla V100 GPU with
16GB GPU memory.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is specific to machine learning for heterogeneous graph node
classification; therefore, it has limited possibility for a wide societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Similarly, our work is specific to machine learning for heterogeneous graph
node classification.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the data can be found publicly, and the code we provided has no constraints.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The URL of our code provides a detailed README to reproduce our results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Preliminaries
	Related Works
	Motivation of Long-range Meta-path Search
	The Proposed Method
	Progressive Sampling Search
	Sampling Evaluation
	Discussion on Differences with Prior Works

	Experiments and Analysis
	Datasets and Baselines
	Performance Analysis
	Analysis on Large Maximum Hops
	Effectiveness of the Search Algorithm and Searched Meta-paths
	Necessity of Long-range Dependency
	Ablation Study

	Conclusion
	Dataset and Task
	Dataset Details
	Node Classification Tasks
	Searching and Training Objective

	Baselines and Parameter Settings
	Baselines
	Training Settings
	Parameter Settings for Baselines
	Parameter Settings for LMSPS
	Evaluation Metrics

	Algorithm
	The Search Algorithm
	Theoretical analysis of the reasonableness of sampling search
	Time Complexity Analysis

	Interpretability of Searched Meta-paths
	More Experiments
	Comparison on Training Efficiency
	Comparison with Top Method Combinations
	Convergence of the Search Stage
	Hyperparameter Study

	Reproducibility Statement
	Limitations

