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Abstract

Training adversarial agents to attack neural network policies has proven to be both effec-
tive and practical. However, we observe that existing methods can be further enhanced by
distinguishing between states leading to win or lose and encouraging the policy training by
reward engineering to prioritize winning states. In this paper, we introduce a novel adversar-
ial training method with reward engineering for two-player competitive games. Our method
extracts the historical evaluations for states from historical experiences with an episodic
memory, and then incorporating these evaluations into the rewards with our proposed re-
ward revision method to improve the adversarial policy optimization. We evaluate our
approach using two-player competitive games in MuJoCo simulation environments, demon-
strating that our method establishes the most promising attack performance and defense
difficulty against the victims among the existing adversarial policy training techniques.

1 Introduction

It has been proved that deep reinforcement learning (DRL) policies are vulnerable to adversarial at-
tacks Huang et al. (2017); Kos & Song (2017). Most existing attacks on DRL policies are executed by
searching the adversarial examples and manipulating the environment Huang et al. (2017); Kos & Song
(2017); Nguyen & Reddi (2019). However, such adversarial examples may not be applicable in the real
world Gleave et al. (2020). Recently, training adversarial agents as attackers to DRL policies in two-player
games has been proven effective and practical Gleave et al. (2020); Wu et al. (2021); Guo et al. (2021); Bui
et al. (2022). These kind of attacks first reduce the two-player environments to single-player environments
by fixing the victim agents, and then train the other agent to be an adversarial agent which can be trained
by conventional single-agent policy training method. Known as adversarial policy training, these attacks
generate natural observations that are adversarial to the victim agents, achieving significant results.

While the aforementioned adversarial policy training methods have proven effective, there is still room to
improve adversarial training by providing the training process with higher quality environmental rewards
to learn. Our insight is simple, which is utilizing the adversarial agent’s historical experiences to explore
how states influence game outcomes and distinguish between states that lead to win or lose to facilitate the
learning of winning states through reward adjustment. Based on this insight, we introduce a novel adversarial
policy training approach that leverages the analysis of information from past episodes to assess game states
and improve the environmental rewards with those assessments, thereby assisting the adversarial agent in
achieving better performance.

In this paper, we propose an adversarial policy training method with reward engineering mechanism for two-
player competitive games. Inspired by previous works on improving the rewards for policy learning using
episodic control Blundell et al. (2016); Pritzel et al. (2017); Li et al. (2023), our method develops a neural
network-based episodic memory to store historical experiences and generate state evaluations corresponding
to the game outcomes. We then design a conditional reward revision method to improve the environmental
rewards based on those evaluations. In our experiments, we evaluate our method on two-player competitive
games in MuJoCo domains Todorov et al. (2012) and compare it with state-of-the-art adversarial policy
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training approaches Gleave et al. (2020); Guo et al. (2021); Wu et al. (2021). Our experimental results show
that our method establishes the most promising attack performance and defense difficulty.

In summary, this paper makes three contributions. First, we propose a novel adversarial policy learning
framework with reward enhancement for two-player competitive games. Second, we introduce a neural
network-based episodic memory that leverages historical experiences to evaluate states, along with a reward
revision approach that incorporates these historical evaluations into environmental rewards. Third, our work
demonstrates that by identifying and highlighting the winning states based on historical experiences with
reward revision, adversarial agents can achieve higher winning rates against fixed victim agents and may
have the potential to possess the capability to explore a more effective strategy by integrating actions from
past successful strategies to defeat the victim, which is demonstrated in one Mujoco game environment in
our experiments.

2 Related Work

2.1 Adversarial Attacks on DRL Policies

Previous attacks against DRL policies mainly focus on manipulating the environment to fail the victim
agents. One type of attack focuses on perturbing the victim’s observations, forcing its policy network to
output sub-optimal actions, and thus failed the victim agent Russo & Proutiere (2019); Sun et al. (2020);
Zhang et al. (2021); Madry et al. (2018); Pattanaik et al. (2018); Pan et al. (2022); Zhao et al. (2020).
Another kind of attack directly perturbs the trajectory of the victim, specifically actions the victim agent
takes Lee et al. (2020); Pan et al. (2022) or the rewards it receives Ma et al. (2019); Yang et al. (2019);
Lykouris et al. (2021) to effectively attack the victim. However, the above attacks are argued to be unrealistic
since the real-world environment can not be manipulated Gleave et al. (2020); Guo et al. (2021); Wu et al.
(2021).

Unlike the above attacks, to simulate the real-world scenarios, Gleave et al. has successfully trained adversar-
ial agents by PPO algorithm Schulman et al. (2017) in two-player competitive games under a strict zero-sum
assumption and demonstrated the effectiveness of training adversarial agents against fixed black-box vic-
tims Gleave et al. (2020). Wu et al. further improved the attack performance by exploring the minimal
observation differences of the shared environment to maximize deviations of the victim actions Wu et al.
(2021). Guo et al. relaxed the zero-sum assumptions of previous works and demonstrated that such attack
could be achieved by maximizing the gap between the adversary and victim rewards which are approximated
by observations of the adversarial agent Guo et al. (2021). On the other hand, Bui et al. adopted imitators
of the victim policies learned by imitation learning algorithms (e.g., GAIL Ho & Ermon (2016)) to roll out
the victim actions for the attacker and reached better performances Bui et al. (2022). However, this attack
is based on the specification that the victim’s actions are visible and accessible to the imitators.

This paper adopts the same setting as Gleave et al. (2020); Guo et al. (2021); Wu et al. (2021), wherein
we have control solely over the adversarial agent and treat the victim agent as a black box, rendering its
observations, actions, and rewards inaccessible. Meanwhile, unlike Gleave et al. (2020); Guo et al. (2021); Wu
et al. (2021), we concentrate on leveraging the historical experiences from adversarial agents to emphasize
the winning states to improve the adversarial policy training. Our experiments in Section 4.2 shows the
effectiveness of such improvement.

2.2 Reward Engineering

Reward design plays a pivotal role in reinforcement learning, where poorly structured rewards can stall
policy improvement. Consequently, various methods Andrychowicz et al. (2017); Schaul et al. (2015) have
been proposed to improve the reward signal. For example, Hindsight experience replay Andrychowicz et al.
(2017) sets an alternative goal for the state transitions of an episode to create a learning signal from failed
attempts, and then modifies the rewards based on whether the alternative goal is reached.

In recent researches, episodic control Lengyel & Dayan (2007) has been proved effective on modifying environ-
mental rewards to address sample inefficiency in various tasks, such as multi-agent tasks Zheng et al. (2021),
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model-based reinforcement learning Le et al. (2021), and continuous control Zhang et al. (2019); Kuznetsov
& Filchenkov (2021). Previous works primarily adopt a tabular episodic memory to save experiences of
past scenes, leveraging the information gained during exploration and retrieving past experiences of similar
scenes to expedite policy optimization Blundell et al. (2016). This memory uses the state as a key and a
measurement of that state (which can vary by method, e.g., a Q-value) as the value, storing these key-value
pairs. Then, a distance-based analysis (e.g., KNN) is adopted to retrieve a summary statistic of similar
states from the episodic memory, and the retrieved statistic can be used to guide the reward engineering to
improve the training process Hansen et al. (2018).

Since episodic control shares a similar empirical insight with our approach—adjusting rewards based on
analysis of historical experiences—we adopt it as the foundation for our method to differentiate states
leading to winning or losing. Unlike previous reward revision methods, which directly add statistical val-
ues from episodic memory into rewards, our approach introduces a conditional reward revision mechanism
specifically designed to align with the win-lose rule inherent in two-player competitive game environments.
Additionally, to reduce the extra computational cost associated with reward engineering during training, we
propose a neural network-based episodic memory. This memory predicts historical state evaluations based
on learned experiences, replacing the traditional tabular episodic memory structure. In Section 4.3, we com-
pare our method with a state-of-the-art episodic control approach NECSA Li et al. (2023). Experimental
results demonstrate that our method achieves higher effectiveness while incurring lower computational costs.
Moreover, the results suggest that existing episodic control methods may even hinder the training process
in two-player competitive games, indicating they might not be directly suitable for enhancing adversarial
training in such settings.

3 Methodology

In this work, we propose an adversarial training approach with reward engineering for training adversarial
agents. Our method utilizes the conventional adversarial policy training framework and improves the rewards
used for training. The workflow of our approach is shown in Figure 1. First, the adversarial agent interacts
with the environment and gathers information (states, actions, rewards) from the episodes. This information
is adjusted using our proposed reward revision method, and then saved in the experience storage (e.g., replay
buffer). We calculate the objective function based on the revised rewards sampled from the experience storage
and update the agent’s policy with the objective function. In the following, we mainly elaborate on our reward
engineering method based on historical experiences analysis.
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Figure 1: The workflow of our adversarial policy training.
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3.1 Adversary in Two-player Markov Game Environment

A two-player Markov game environment can be modeled as E = (S, (Aα, Aν), T, (Rα, Rν)). Here, we use α
and ν to represent the adversary and victim respectively. S represents a state set, and both Aα and Aν are
action sets. T denotes a joint state transition function T : S×Aα×Aν → ∆(S), where ∆(S) is a probability
distribution on S. The reward function Ri : S × Aα × Aν × S → R depends on the current state, actions
taken by both agents and the next state.

Gleave et al. discovered that by fixing the victim agents, the two-player competitive games can be reduced to
single-player games and one agent can be trained as an adversarial agent with conventional single-agent policy
training methods (e.g., PPO) to attack the victim Gleave et al. (2020). The training for the adversarial agent
to defeat the fixed victim agent is called adversarial policy training. Under this setting, the two-player
game can be regarded as a single-player MDP: Eα = (S, Aα, Tα, R′

α) as the victim policy can be treated as
a part of the environment. S becomes the state set of the adversary and the state transition function and
reward function change to Tα : S ×Aα × S → ∆(S) and R′

α : S ×Aα × S → R.

Our threat model We use the same setting as Gleave et al. and assumes that our threat model has control
over the adversarial agent and black-box access to the information of the victim agent. The adversarial agent
can only interact with the environment, which is the common practice in adversarial policy training.

3.2 Reward Revision Based on Historical Experiences

The environmental reward R′
α obtained by the adversarial agent only includes the evaluations from a single

game and does not contain evaluations from the historical experiences. To enhance the adversarial policy
training, our key insight is to integrate state evaluations from historical experiences into the rewards, thereby
providing the adversarial policy with more comprehensive rewards for learning.

As a two-player Markov game is not deterministic, past episodes starting from the same state may include
different state sequences. Therefore, we use state sequences, referred to as patterns, as the basis for perfor-
mance evaluation in past episodes. Our choice of utilizing state sequence for performance evaluation aligns
with existing research Sutton & Barto (2018); Li et al. (2023), which has proved that failures in adversarial
games are often the result of a series of poor decisions rather than isolated states. Based on the qualification
of these patterns from historical experiences, we can assign higher rewards to states that lead to good pat-
terns and lower rewards to states that lead to bad patterns, thereby integrating evaluations from historical
experiences into the rewards.

3.2.1 Evaluation of Pattern Performance

As mentioned above, a pattern refers to a sequence of states within an episode. For a given episode e, a k-step
pattern starting from time step t, denoted as pt, refers to k consecutive states in e, i.e., pt = st, . . . , st+k−1.
For example, p1 = s1, . . . , sk exemplifies a k-step pattern from the first state s1. Notice that a state can be
considered a special case of a pattern, specifically a 1-step pattern.

To evaluate the past performance of the patterns, we propose that a pattern can be considered high-
performing if the past episodes containing this pattern result in more wins than losses. Conversely, a
pattern can be considered poor-performing if the past episodes containing it result in more losses than
wins. Based on this idea, we introduce a historical score for each pattern to quantify its past performance,
defined as the average cumulative reward received in past episodes that include that pattern. The cumulative
reward for an episode, which quantifies the adversarial agent’s performance, tends to be higher in episodes
where the agent wins than in those it loses. As the performance of adversarial agents improves, these
cumulative rewards increase. Therefore, taking the average cumulative reward across all episodes that
contain a particular pattern captures the pattern’s historical effectiveness. During training, we store each
pattern alongside the cumulative reward of its corresponding episodes in an episodic memory. The memory
then returns the average cumulative reward as the historical score for that pattern. The historical score
h_score(pt) can be calculated as:

h_score(pt) = M(pt), (1)
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where M is an episodic memory we proposed to collect and analyze patterns in past episodes. In Section 3.3.1,
we will further explain how we implement the episodic memory.

3.2.2 Conditional Reward Revision

Based on the historical scores of patterns, we incorporate the historical evaluations into rewards by reward
revision. However, if the historical score of a pattern falls below the average cumulative rewards of all past
episodes, we cannot consider such a pattern as a desirable one. Thus, we propose episodic feedback, which
is defined as the difference between the historical score of a pattern and the average cumulative reward of
all past episodes:

δ(pt) = h_score(pt)−R. (2)

where h_score(pt) is the historical score of pattern pt and R is the average cumulative reward of all past
episodes.

With the episodic feedback, we conditionally add the episodic feedback of a pattern to the reward of its
initial state. Specifically, for an episode e, depending on the outcome of e (whether the adversarial agent
wins), we revise the rewards of the initial states of patterns in e in two cases. Assume that st is the initial
state of pattern pt in episode e, whose reward is rt, and δ(pt) is the episodic feedback for pt, the conditional
reward revision can be formulated as:

r̂t =



rt + δ(pt)× ϵ, if the adversarial agent wins
and δ(pt) > 0,

rt + δ(pt)× ϵ, if the adversarial agent loses
and δ(pt) < 0,

rt, otherwise,

(3)

where r̂t is the revised reward and ϵ is a coefficient used to regulate the magnitude of encouragement and
punishment. After the revision, we update rt with r̂t.

The reason we only revise the reward in the two cases mentioned above is that the revision must adhere to
the win-loss rules of the two-player competitive game environment, even though this environment reduces
to a single-player game environment during the training process. In a competitive game, we believe only
states from a winning episode of the adversarial agents should be rewarded (δ(pt) > 0), while states from
the losing episode should be penalized (δ(pt) < 0). We will further analyze other cases in Section 4.4.3.

3.3 Reward Revision Improving Adversarial Policy Training

3.3.1 Neural Network-based Episodic Memory

As discussed in Section 3.2.1, we propose using an episodic memory to generate historical scores for patterns
based on past experiences. Since reward revision with episodic memory adds to the total training time, we
reduce its overhead by adopting a neural network-based architecture shown in Figure 1, where our episodic
memory consists of an LSTM followed by a multi-layer perceptron (MLP). The LSTM encodes patterns
into abstract vectors, and the MLP aggregates these encodings to produce historical scores. As reported in
Section 4.2, the effectiveness shown in our experiments indicates that this simple architecture is sufficient
for adversarial training in two-player competitive games.

During the training, new episodes are used to update the episodic memory. Assume a newly produced
episode e has a cumulative reward of R and contains the set of patterns P . The episodic memory M is
then trained to map all the patterns in P to the same cumulative reward R. Note that for a pattern in P ,
the learning target is the historical score of the pattern, which is not a fixed value and will change as new
episodes occur. Then, during the reward revision, M predicts historical scores for the patterns as Equation 1
to generate historical evaluations for reward revision. More details of our implementation of the episodic
memory can be found in Appendix A.2.
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Algorithm 1 Adversarial policy training with reward revision.
Input: A: Adversarial Agent, E: Environment, M : Our episodic memory, B: Experience Storage, O:
Objective Function
Parameter: k: Pattern Length, n: Group Size, ϵ: Revision Coefficient
Output: A: A Well-trained Adversarial Agent

1: while Training does not reach the maximum step do
2: A interacts with E and generate state s, action a, reward r.
3: S.add(s), A.add(a), R.add(r).
4: if An episode ends then
5: P ← Pattern(k, S)
6: Rcum ← Cumulative_reward(R)
7: M.update(P, Rcum)
8: H_Score(P )←M(P )
9: if The episode is the ith episode in Group m then

10: Rm

i ← Average_Reward(i, m)
11: end if
12: ∆(P )← Episodic_Feedback(H_Score(P ),Rm

i )
13: R′ ← Reward_Revision(R, ∆(P ), ϵ)
14: B ← S, A, R′

15: Clear S, A, R
16: end if
17: if Check_Update() is true then
18: Experiences← Sample(B)
19: O(Experiences)
20: A.update(O)
21: end if
22: end while
23: return A

3.3.2 Group-based Episodic Feedback

In practice, we find that later-generated episodes exhibit higher winning rates than earlier-generated episodes
during the training process. To achieve better performance in finding the optimal policy, we compare the
historical score of a pattern with the average cumulative reward from recently generated episodes when
computing the episodic feedback. To achieve this, we divide the episodes into groups of size n, where n is
a hyper-parameter, and calculate the average reward of past episodes in the group. The average reward of
the first i episode in group m can be calculated by

Rm

i =
∑j=i

j=1Rm
j

i
, 1 ≤ i ≤ n. (4)

Thus, we compute the episodic feedback of pattern pt in the ith episode of group m by

δ(pt) = h_score(pt)−R
m

i , (5)

which is implemented in our experiments.

3.3.3 Adversarial Policy Training with Reward Revision

We implement our policy training as Algorithm 1. First, we have the adversarial agent interact with the
environment and generate states, actions and rewards (Line 2-3). When an episode is ended, we extract
patterns from the episode (In practice, we use sliding window) and calculate the cumulative reward of the
episode (Line 5-6). We then update the episodic memory with the patterns and the cumulative reward
(Line 7), and predict the historical score for each pattern with the episodic memory(Line 8). Subsequently,
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Our Guo et.al.Gleave et.al. Wu et.al.

(a) The comparison of winning rates.

(b) The comparison of non-loss rates.

Figure 2: The performance of our adversarial agents and baseline adversarial agents in each environment.
Dashed lines represent the highest rates of each agent and non-loss rate is winning rate plus tie rate. More
details are shown in Table 5 and Table 6 in Appendix A.6.

we calculate the average cumulative reward of the group with Equation 4 (line 9-11), and then utilize the
average cumulative reward to calculate the episodic feedback for each pattern following Equation 5 (Line
12). With the episodic feedbacks, the rewards of the states could be revised by Equation 3 (Line 13) under
the condition stated in Section 3.2.2. After the reward revision, we store the states, actions and the revised
rewards into the experience storage (Line 14). When the update condition is satisfied (e.g., storage is full),
we will sample some data from the storage and calculate the objective function from our selected policy
training method (Line 17-19). The adversarial agent will be updated with the objective function (Line 20).
Iteration will end when the maximum training step is reached.

4 Evaluation

In this section, we conduct a comprehensive evaluation of our approach. We compare the performances
of our approach with state-of-the-art adversarial policy training techniques and show its effectiveness and
efficiency in the context of two-player competitive games.

4.1 Main Experiment Setup

In our experiment, our method use PPO Schulman et al. (2017) as the basic single-agent policy training
method to train the adversarial agents to attack well-trained Zoo agents Bansal et al. (2018). We take three
state-of-the-art approaches Gleave et al. (2020); Wu et al. (2021); Guo et al. (2021) as baselines to show the
effectiveness of our method. It is important to note that Gleave et al. ’s method fundamentally incorporates
PPO for the adversarial policy training without modifying the training mechanisms of PPO. Therefore, when
we draw comparisons with the outcomes achieved by Gleave et al. ’s method, we are also comparing our
method against a PPO baseline. To maintain the fairness of the experiments, we use the same two-player
competitive games in the MuJoCo robotics simulator as our baselines, which are YouShallNotPassHumans,
KickAndDefend, SumoHumans and SumoAnts, and run 5 seeds on each environment to evaluate our proposed
adversarial training method. Hyper-parameters setting are shown in the Appendix A.1.
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4.2 Main Results

The comparison of the winning rates and non-loss rates between our approach and the baseline approaches
are summarized in Figure 2. We can observe that our proposed method reaches 88% and 89% winning rates
and outperforms the baseline methods significantly in YouShallNotPassHumans and KickAndDefend. In
SumoHumans, our method also surpasses all baselines. These results indicate that by leveraging historical
experiences to highlight the high-performing states, our agents demonstrate higher sample efficiency and
have more potential to discover effective adversarial policies to defeat victim agents. In SumoAnts, Since the
winning rates of all agents against the victim are far below 50%, we use the non-loss rates to measure the
effectiveness of our method. From Figure 2(b), we observe that in SumoAnts, the non-loss rate of our agent
is still able to surpass that of agent trained by Guo et al. (2021), which exhibits the second highest non-loss
rate.

We share the videos of agents trained by our approach and baseline approaches in Appendix A.5 and
compare their behaviors. In KickAndDefend and SumoHumans, all the adversarial agents perform similar
adversarial actions to trick the victim into performing abnormal behaviors. These results align with the
conclusion in Gleave et al. (2020) that adversarial agents win by confusing the victim, instead of becoming a
strong opponent. However, in YouShallNotPassHumans, while the three baseline agents attack the victim by
convulsing on the ground, our agent simultaneously performs the adversarial action and obstructs the victim
with a kicking. Kicking can be viewed as a non-adversarial action, illustrating that, by incorporating our
improved rewards, the agent is not limited to a single winning strategy. Instead, it can draw on past successes,
like a non-adversarial kicking action, to explore a different but more effective strategy. Additionally, in
SumoAnts, agents trained by our approach and Guo et al. (2021) both jump out of the arena at the beginning
since falling out of the arena without touching the opponent is considered a draw in this game, while agents
trained by Gleave et al. (2020) and Wu et al. (2021) still fight with the victim. This suggests that same as
Guo et al. (2021), our agent is also capable of discovering and exploiting game imbalances.

To validate whether our approach is difficult to defend against, we conduct retraining experiments on the
victim agents using the PPO algorithm. We report the results of our adversarial agent and baseline agents
against the victim agents during the retraining in Figure 3. In YouShallNotPassHumans, our agent maintains
a relatively high winning rate during the retraining of victim agents, unlike baseline agents whose winning
rate quickly drops to a low level. In KickAndDefend, the winning rates of our agent also decreases at a
slower rate compared to the baseline agents. This indicates that our approach is more difficult to defend
than baseline approaches.

Our Guo et.al.Gleave et.al. Wu et.al.

Figure 3: The comparison between our adversarial agent and baseline adversarial agents in each environ-
ment Gleave et al. (2020); Guo et al. (2021); Wu et al. (2021) during the retraining. Specifically, we show
winning rates of the agents in YouShallNotPassHumans, KickAndDefend, SumoHumans and non-loss rate in
SumoAnts. The lowest rate of each agent is depicted with a dashed line. More details are shown in Table 7
in Appendix A.6.

In order to gain a better understanding of the effectiveness of our method, following the approach in Gleave
et al. (2020), we have our adversarial agents play games against masked victim agents, whose observation
of the adversary’s position is set to a static value corresponding to a typical initial position so that the
adversarial actions may not be effective. We show the performances of our adversarial agents and baseline
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Table 1: The non-loss rate of our adversarial agent and baseline adversarial agents against masked victim
agents in 100 games. Each experiment has been done 4 times.‘Before’ and ‘After’ indicate before and after
masking the victim agent.

Environment Ours (%) Gleave et al. (%) Guo et al. (%) Wu et al. (%)
Before After Before After Before After Before After

YouShallNotPassHumans 96 ± 2 73 ± 4 66 ± 2 0 ± 0 72 ± 3 0 ± 0 50 ± 2 0 ± 0
KickAndDefend 93 ± 4 7 ± 1 65 ± 1 3 ± 1 63 ± 2 5 ± 1 69 ± 4 5 ± 1

SumoAnts 83 ± 2 81 ± 2 76 ± 2 69 ± 4 81 ± 3 78 ± 1 57 ± 5 53 ± 4
SumoHumans 92 ± 1 90 ± 1 92 ± 1 91 ± 1 92 ± 0 91 ± 1 94 ± 2 92 ± 1

agents against masked victims in Table 1. We observe a significant decline in the non-loss rates of the three
baseline agents, while our agent maintains a high non-loss rate against the masked victim in YouShallNot-
PassHumans. This could be attributed to the fact that our agent not only relies on adversarial actions to
attack the victim, but also incorporates non-adversarial actions like obstructing the victim with its body to
win the game. Based on this finding, we demonstrate that in YouShallNotPassHumans, our agent can defeat
the victim by performing adversarial and non-adversarial actions simultaneously.

4.3 Comparison with Existing Episodic Control Method

Since episodic control shares a similar insight with our approach and serves as the basis for our method, to
show the effectiveness of our method, we manually implement the state-of-the-art episodic control method
NECSA (Li et al., 2023), integrating it with PPO to train the agents to attack the victims. To facilitate a
fair comparison, we specifically adjust NECSA to also investigate how states contribute to winning or losing
outcomes. NECSA uses a grid-based tabular episodic memory and groups similar states into the same grid,
and then adds the average evaluation of that grid to the state’s reward.

Our NECSAPPO

Figure 4: The comparison of performances between our method and NECSA. We show winning rates of
the agents in YouShallNotPassHumans, KickAndDefend, SumoHumans and non-loss rate in SumoAnts. The
highest rate of each agent is depicted with a dashed line. More details are shown in Table 8 in Appendix A.6.

Figure 4 presents a performance comparison between our agents and the NECSA agents across four en-
vironments. The experimental results indicate that NECSA is less effective in all environments and even
hinders the training process in the KickAndDefend environment. During NECSA’s training, we observe that
it repeatedly rewards states from losing episodes, which contradicts the fundamental principle of reward
design in two-player competitive games. We believe this suboptimal reward engineering strategy diminishes
NECSA’s effectiveness, further underscoring the advantage of our conditional reward revision approach.

Both our method and NECSA require additional time for state evaluation and reward engineering, but
our approach leverages a neural-network-based memory to reduce this time cost. Table 2 compares training
times for PPO, our method, and NECSA. We observe that our method’s overhead is approximately two hours
which is generally acceptable in practice, and is shorter than NECSA’s training time across all environments.
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Table 2: The time cost for one training process with PPO, our method and NECSA.
Environment Methods (hours)

PPO Ours NECSA
YouShallNotPassHumans 10 12 13

KickAndDefend 22 24 26
SumoAnts 30 33 35

SumoHumans 24 26 29

Pattern State

Figure 5: The comparison of performances between agents guided by pattern-based and state-based historical
evaluation. We show winning rates of the agents in YouShallNotPassHumans, KickAndDefend, SumoHumans
and non-loss rate in SumoAnts. The highest rate of each agent is depicted with a dashed line. More details
are shown in Table 9 in Appendix A.6.

4.4 Ablation Study

4.4.1 Patterns

As mentioned in Section 3.2.1, we use historical score of the pattern to represent historical evaluation. To
show the effectiveness of utilizing pattern as the basis, we calculate the episodic feedback with historical
scores of both states and 3-step patterns and then revise the rewards with two episodic feedbacks. In
Figure 5, we can see pattern-guided agents hold higher winning rates than state-guided agents, which proves
that patterns can provide a richer, more contextual basis for the historical evaluation.

Episodic Feedback Historical Score

Figure 6: The comparison of performances between proposed training approach guided by episodic feedbacks
and historical scores. We show winning rates of the agents in YouShallNotPassHumans, KickAndDefend,
SumoHumans and non-loss rate in SumoAnts. The highest rate of each agent is depicted with a dashed line.
More details are shown in Table 10 in Appendix A.6.

4.4.2 Episodic Feedback

In Section 3.2.2, we mention that the episodic feedback of a pattern is computed by the difference between the
historical score and the average cumulative reward of the group containing the episode. If episodic feedback
is greater than 0, the pattern can be considered a better pattern than patterns in recently generated episodes,
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thereby enabling the adversarial agent to search for an optimal strategy. To show the effectiveness of episodic
feedback, we use both episodic feedback and historical score to revise the reward. Based on the results shown
in Figure 6, agents trained with episodic feedback achieve approximately 10% higher winning rates than
those trained with historical scores across YouShallNotPassHumans, KickAndDefend, and SumoHumans.
This indicates that, compared to historical scores, using episodic feedback for reward revision enables the
agent with the ability of discovering a better policy.

Our_two_case Our_all_case

Figure 7: The comparison of performances between proposed training approach with different revision con-
ditions. We show winning rates of the agents in YouShallNotPassHumans, KickAndDefend, SumoHumans
and non-loss rate in SumoAnts. The highest rate of each agent is depicted with a dashed line. More details
are shown in Table 11 in Appendix A.6.

4.4.3 Revision Condition

As noted in Section 3.2.2, we do not revise rewards in certain scenarios, such as when a state from a winning
episode for the adversarial agent receives negative episodic feedback. If we were to extend reward revision
to these scenarios, some states leading to losses would be rewarded, while some states leading to wins would
be penalized, potentially causing the adversarial agent to learn a losing strategy. To demonstrate this effect,
we also applied reward revisions in these additional cases and present the results in Figure 7. We observe
that while the peak performance of the “our_two_case” agent is only about 3% higher than that of the
“our_all_case” agents, the average performance degrades substantially under full reward revision, especially
in KickAndDefend. Similar to the results of NECSA stated in Section 4.3, this drop likely arises because the
suboptimal reward engineering hinders the agent’s ability to learn a winning strategy, resulting in unstable
learning outcomes. In fact, We also find that states in losing episodes received positive rewards and states in
winning episodes received negative rewards in all four environments when we do full reward revision. This
finding further shows that reward engineering must adhere to the rules of two-player competitive games.

5 Discussion

As stated in Section 4.1, our method utilizes PPO algorithm as the fundamental training method to train
the adversarial agents. It is also important to note that our method is scalable and can be applied to various
DRL algorithms. In the Appendix, we demonstrate the performances of our approach applied to the baseline
algorithms Wu et al. (2021); Guo et al. (2021) and compare the results with those of the original baseline
algorithms in YouShallNotPassHumans and KickAndDefend. The results show that by leveraging historical
evaluations to revise the rewards, the performances of all baseline approaches get improved.

Additionally, to evaluate our method in a more complex environment, we conducted further experiments on
StarCraft II (see Appendix for details). In these experiments, we train two identical agents against each
other, designating one as the adversarial agent, which is trained using our method and PPO. The results
show that the agent trained with our method achieves much higher winning rates than the PPO-trained
agent, indicating that our approach remains effective in more sophisticated games.

In our main experiments, compared to PPO (Gleave et al.), our method achieves a 20%–30% increase in
winning or non-loss rates, which is a significant improvement. This gain is larger than expected, given that
previous episodic control studies typically report a 5%–10% performance boost in their respective tasks.
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Generally, reward engineering methods (Andrychowicz et al., 2017; Blundell et al., 2016; Hansen et al., 2018;
Li et al., 2023) rely heavily on empirical insights and experimental validation, as theoretical analysis of how
reward revisions influence the training process is inherently challenging. In this paper, we share our empirical
insights to explain our observed improvements, and we think that a thorough theoretical investigation of
why our method is particularly effective on adversarial training in two-player competitive games would be
both difficult and highly valuable for future research.

6 Conclusion

In this paper, we propose an adversarial policy training method with reward engineering to train an adversar-
ial agent more effectively and efficiently. Our method introduces an episodic memory to utilize the historical
experiences to generate historical evaluations for the states and consequently revise the rewards of the states
based on the evaluation, thereby integrating the historical evaluations into the rewards used for adversarial
training to emphasize the high-performing states. In our experiments, we demonstrate that agents trained
with our approach achieve the most promising attack performance and defense difficulty. Additionally, by
comparing the behaviors of adversarial agents, we discover that our attack method can explore different but
optimal strategies by integrating successful actions from historical experiences. We believe our exploration
of game states and use of historical experiences to improve the rewards advance adversarial policy training
methods.
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A Appendix

A.1 Hyper-parameter Analysis

Table 3: Hyper-parameters of episodic memory used in our experiments.
Hyper-parameter

Pattern Length k 3
Group Size n 100
Epsilon ϵ 0.1

For PPO hyper-parameter selections, we use the same parameters from Gleave et al. (2020). The hyper-
parameters for our episodic memory are listed in Table 3. As mentioned in Li et al. (2023), 0.1 for ϵ works
well for episodic control method in MuJuCo games, so we follow this setting in our experiments. We further
analyze the rest two hyper-parameters.

pattern-1 pattern-5pattern-3

Figure 8: The comparison of winning rate between our adversarial agent with different input pattern lengths
in YouShallNotPassHumans and KickAndDefend.
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A.1.1 Pattern Length

As stated in Section 3.2, we use state sequences, referred to as patterns, as the basis for performance
evaluation in past episodes. To find out the best parameter for the length of patterns, we conduct experiments
with different pattern lengths and show the results in Figure 8. We have selected three different pattern
lengths in our experiments. We can see from Figure 8 that the agents have the best average winning rates
when the pattern length is 3.

group-50 group-150group-100

Figure 9: The comparison of winning rate between our adversarial agent with group size in YouShallNot-
PassHumans and KickAndDefend.

A.1.2 Group Size

In Section 3.2.2, we compare the historical score of a pattern with an average cumulative reward of recently
generated past episodes to calculate episodic feedback. Group size n is introduced to control the number
of past episodes. If the group size is too large, some states that lead to bad patterns may be erroneously
rewarded, and the magnitude of rewards and penalties is reduced, thereby weakening the ability to find the
optimal policy. On the other hand, if the group size is too small, it is more likely to wrongly penalize good
states and reward bad states. Therefore, we conduct an analysis of 3 group sizes which are 50, 100 and 150.
With the result shown in Figure 9, we find that the agents have the best performances when the group size
is 100. Therefore, we use 100 as the group size in our experiments.

A.2 Episodic Memory

In this section we share more details about the implementation of the episodic memory introduced in Sec-
tion 3.3.1.

Table 4: The architecture of the episodic memory
Module shape

LSTM (64, 256, 1)
linear1 (256, 512)
Tanh
linear2 (512, 1)

In Table 4, we give the architecture of the episodic memory. The episodic memory consists of a LSTM and
a MLP (linear1, Tanh, linear2). 64 in the shape of LSTM refers to the length of the state from environment
and 256 refers to the hidden length of LSTM. The LSTM is used to encode a pattern into an abstract vector
so that the MLP can process. The MLP is used to output the historical score of the pattern, which evaluates
the average performance of the pattern in past episodes.

In the Algorithm 2, we show the forward process of the episodic memory. The LSTM receives a pattern p as
input and outputs an output sequence, the last hidden state vector and the last cell state vector of LSTM.
The last hidden state vector will be processed with MLP, under the order of linear1, Tanh, linear2 and the
MLP will output the historical score h_score of the input pattern.
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Algorithm 2 Forward process of the episodic memory.
Input: pattern p (shape:[3, 64])
Output: historical score h_score (shape:1)

1: output, hidden, cell = LSTM(p)
2: h_score = linear1(hidden[-1,])
3: h_score = Tanh(h_score)
4: h_score = linear2(h_score)

Algorithm 3 Update process of the episodic memory.
Input: episode e

1: P = Pattern(e)
2: R = Cumulative_Reward(e)
3: for p in P do
4: h_score = Memory(p)
5: loss = MSELoss(h_score, R)
6: loss.backpropagation()
7: end for

In the Algorithm 3, we show the update process of the episodic memory. After one episode is ended, we
extract patterns from the episode and calculate the cumulative reward of the episode. Then, we predict the
historical score for each pattern and calculate the MSELoss between the historical score and the cumulative
reward. The loss will be backpropagated to update the network.

A.3 Scalability Analysis

In Section 5, we state that our approach is scalable and can be applied to various DRL algorithms. Since
Gleave et al. can be seen as PPO, we adopt our approach on the other two baseline attacks Guo et al. (2021);
Wu et al. (2021) and compare the performances with them. The results are shown in Figure 10. We can see
the baselines adopting our episodic memory outperform the original baselines in YouShallNotPassHumans
and KickAndDefend.

A.4 Experiments on StarCraft II

To evaluate whether our method is effective in a more complex two-player competitive environment, we
conducted experiments in StarCraft II. We begin with two agents sharing the same initial policy: one serves
as the fixed victim agent, and the other is an adversarial agent trained using our method and PPO. As
shown in Figure 11, the agent trained with our method achieves a 10% higher winning rate than the agent
trained with PPO, demonstrating that our approach is still effective in more sophisticated environments.

However, the performance gain is smaller than what we observed in traditional MuJoCo game environments.
We suspect this is because StarCraft II has a much larger state vector, making it difficult for the LSTM
network to encode states into suitable abstract representations. Replacing the LSTM with a more powerful
architecture such as a Transformer may further enhance the effectiveness of our method in such complex
environments.

A.5 Videos Of Experiments

Due to the limited maximum file size for the supplementary materials, we have uploaded the videos mentioned
in Section 4.2 at https://drive.google.com/drive/folders/1lJmWA7y8-1nMs_kOwzGlIMkjkPh2QVF6?
usp=drive_link.
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Guo et.al. Guo_ep

(a) The performaces of adversarial agents trained by Guo et al. (2021) implementing
with and without our episodic memory.

Wu el.al. Wu_ep

(b) The performaces of adversarial agents trained by Wu et al. (2021) implementing
with and without our episodic memory.

Figure 10: The performance comparison of winning rate between agents trained by Wu et al. (2021); Guo
et al. (2021) implementing with and without our episodic memory in YouShallNotPassHumans and KickAnd-
Defend.

Our + PPO PPO

Figure 11: The comparison of the winning rates between our method and PPO on StarCraft II.

A.6 Main Results Supplementary

Supplementary tables of the figures in the main text are provided on the subsequent pages.

Table 5: The highest winning rates of our agents and agents attacks against zoo victim agents are shown in
Figure 2(a).

Environment Our (%) Gleave et al. (%) Guo et al. (%) Wu et al. (%)
YouShallNotPassHumans 87.62 ± 7.38 60.08 ± 6.22 65.77 ± 7.60 48.60 ± 8.99

KickAndDefend 89.06 ± 7.98 64.37 ± 8.61 65.32 ± 6.92 64.76 ± 8.55
SomoAnts 5.18 ± 1.27 5.19 ± 2.10 4.70 ± 1.43 8.14 ± 2.87

SumoHumans 76.35 ± 8.29 69.24 ± 12.16 64.49 ± 7.15 62.22 ± 16.86
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Table 6: The highest non-loss rates of our agents and baseline agents against zoo victim agents are shown
in Figure 2(b).

Environment Our (%) Gleave et al. (%) Guo et al. (%) Wu et al. (%)
YouShallNotPassHumans 87.62 ± 7.38 60.08 ± 6.22 65.77 ± 7.60 48.60 ± 8.99

KickAndDefend 90.01 ± 7.56 65.17 ± 8.87 66.56 ± 7.14 65.27 ± 8.45
SomoAnts 84.66 ± 3.92 74.94 ± 16.24 82.98 ± 3.73 40.97 ± 6.65

SumoHumans 91.68 ± 7.52 91.88 ± 12.18 90.49 ± 5.48 92.55 ± 14.40

Table 7: The performances of our agents and baseline agents against retrained victim agents are shown in
Figure 3. We show winning rates of the agents in YouShallNotPassHumans, KickAndDefend, SumoHumans
and non-loss rate in SumoAnts.

Environment Our (%) Gleave et al. (%) Guo et al. (%) Wu et al. (%)
YouShallNotPassHumans 50.27 ± 13.03 5.00 ± 2.50 6.22 ± 2.82 5.99 ± 2.99

KickAndDefend 51.82 ± 6.84 28.02 ± 7.33 29.33 ± 9.84 32.38 ± 9.54
SomoAnts 83.15 ± 2.98 79.78 ± 2.28 82.49 ± 2.77 90.13 ± 3.42

SumoHumans 6.17 ± 7.60 6.03 ± 5.35 7.61 ± 5.88 10.71 ± 6.95

Table 8: The comparison of performances between our method and NECSA.The performances of our agents
and NECSA against victim agents are shown in Figure 3. We show winning rates of the agents in YouShall-
NotPassHumans, KickAndDefend, SumoHumans and non-loss rate in SumoAnts.

Environment PPO (%) Our (%) NECSA (%)
YouShallNotPassHumans 60.08 ± 6.22 87.62 ± 7.38 71.71 ± 9.18

KickAndDefend 74.94 ± 16.24 89.06 ± 7.98 76.52 ± 16.31
SomoAnts 83.15 ± 2.98 84.66 ± 3.92 82.49 ± 2.77

SumoHumans 69.24 ± 12.15 76.34 ± 8.29 71.34 ± 7.38

Table 9: The performances of our agents guided by pattern-based and state-based historical evaluation
against zoo victim agents is shown in Figure 5. We show winning rates of the agents in YouShallNotPassHu-
mans, KickAndDefend, SumoHumans and non-loss rate in SumoAnts.

Environment Pattern (%) State (%)
YouShallNotPassHumans 87.62 ± 7.38 82.06 ± 6.77

KickAndDefend 89.06 ± 7.98 83.15 ± 11.29
SumoAnts 84.66 ± 3.92 83.73 ± 4.15

SumoHumans 76.35 ± 8.29 74.35 ± 6.71

Table 10: The performances of our agents trained with episodic feedback and historical score against zoo
victim agents shown in Figure 6. We show winning rates of the agents in YouShallNotPassHumans, KickAnd-
Defend, SumoHumans and non-loss rate in SumoAnts.

Environment Episodic Feedback (%) historical score (%)
YouShallNotPassHumans 87.62 ± 7.38 75.28 ± 8.25

KickAndDefend 89.06 ± 7.98 72.85 ± 11.48
SumoAnts 84.66 ± 3.92 83.66 ± 2.30

SumoHumans 76.35 ± 8.29 72.15 ± 6.90

Table 11: The performances of our agents with and without revision conditions against zoo victim agents
is shown in Figure 7. We show winning rates of the agents in YouShallNotPassHumans, KickAndDefend,
SumoHumans and non-loss rate in SumoAnts.

Environment Our_two_case (%) Our_all_case (%)
YouShallNotPassHumans 87.62 ± 7.38 78.39 ± 10.74

KickAndDefend 89.06 ± 7.98 60.45 ± 25.15
SumoAnts 84.66 ± 3.92 80.44 ± 3.73

SumoHumans 76.35 ± 8.29 68.40 ± 4.14
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