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ABSTRACT

Finetuning large language models (LLMs) using contrastive learning objectives
has become the dominant approach for representation learning in general-purpose
text embedding tasks. Our work seeks to enable going beyond strictly positive (or
negative) pairs of text, to more fine-grained annotations that can capture the nuances
of complex language tasks. We propose training text encoders with a simple pair
classification loss that utilizes binary cross-entropy on relevance labels. When
compared to the standard softmax-based loss for multi-class classification against
multiple text alternatives, we find that training with our proposed loss improves the
average score across 56 English language tasks of the Massive Text Embedding
Benchmark (MTEB), while finetuning the same Meta-Llama-3-8B-Instruct model
on the same mix of open datasets. Furthermore, our models excel in the Pair
Classification and the Semantic Textual Similarity benchmarks, outperforming
many models that are trained on more extensive data. Finally, thorough experiments
using graded relevance data from TREC-DL 2023 during training demonstrate that
binary cross-entropy provides generalization improvements that the softmax-based
loss fails to achieve.

1 INTRODUCTION

Sentence embeddings form the foundation of many deep learning approaches to natural language
understanding and have been extensively studied in the literature Gao et al. (2021); Reimers &
Gurevych (2019). A well-designed text embedder is crucial for achieving high performance across
a range of downstream tasks such as machine translation, information retrieval, and sentiment
analysis Muennighoff et al. (2023). Ideally, it is desirable to have a single text encoder that maximizes
the performance across all such tasks, and hence developing robust and universal sentence embedders
has become a focal point in the field of natural language processing.

Designing universal sentence embedders that generalize well across diverse downstream tasks,
however, remains a significant challenge. In itself, natural language is not a clear and unambiguous
means of communication; it is shaped by context, speaker intention, and the specific task at hand. The
contextual dependencies in language vary significantly depending on the goal (i.e. downstream task).
For example, a sentence in a legal document might emphasize precision and formal terminology,
whereas the same sentence in a friendly email could rely on informal tone and inferred meaning.

Generally, text encoders trained with contrastive objectives have relied on CLIP-style (Radford et al.,
2021) softmax-based losses. That is, given two aligned batches of data of size n, a similarity matrix
with dimension n× n is created by scoring all against all points across the two batches. Each row
or column (or often both) is then treated as the parameters of a categorical random variable, and
maximum likelihood estimation can be performed by simply placing labels at the main diagonal.
While effective, this common approach is known to be highly sensitive to the choice of batch size.
This is due to the dimension of the categorical random variables described above — or analogously, to
the number of classes in a multi-class classification setting — being tied to the batch size. Alternative
training objectives were introduced as variations of CLIP, especially so for the case of discriminative
vision-language models such as SigLIP (Zhai et al., 2023). In that case, each entry in a similarity
matrix obtained for aligned batches of data is treated as the parameter of a Bernoulli random variable,
so maximum likelihood estimates are given by the minimizer of a binary cross-entropy (BCE) loss.
Unlike the softmax setting used in CLIP, losses that operate at each entry of the similarity matrix are
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less affected by the choice of the batch size, for instance, and have yielded state-of-the-art vision-text
encoders. Here, we not only leverage these advantages observed in the text-vision case to improve
training of text-only bi-encoders, but also take advantage of the fact that pair-wise losses offer the
opportunity to use more nuanced annotations. This is especially true in cases where different types of
negative or positive samples are available. For instance, if both easy and hard negative examples are
available, one can reflect that in the choice of labels and, for example, put more pressure towards
matching harder negatives than easier ones.

In this paper, we demonstrate the potential of using BCE loss for training universal sentence embed-
ders. When training the same models with the same training data which use binary relevance labels
(e.g. relevant, non-relevant), the BCE loss matches and even outperforms softmax-based contrastive
loss in downstream tasks. When applied to tasks with graded relevance labels (e.g. relevant, partially
relevant, non-relevant), BCE proves to be a much better training objective, significantly outperforming
the traditional softmax-based contrastive loss. The flexibility of the BCE loss to handle more nuanced
labels can more effectively tackle the ambiguity and contextual variability of natural language.

2 PRELIMINARIES

2.1 GENERALIST TEXT EMBEDDERS

The purpose of building a generalist embedder is to have a single model that can provide text em-
beddings for several downstream tasks including, but not limited to, retrieval, text classification, and
clustering Conneau et al. (2017); Reimers & Gurevych (2019); Karpukhin et al. (2020); Muennighoff
(2022). Initial approaches to train a generalist embedder relied on a multi-stage pipeline. The
first stage involved training BERT-based bidirectional encoders on large-scale self-supervised data
(typically comprising of 1B sentence pairs). This was then followed by fine-tuning the pretrained
model on smaller-scale supervised data (typically involving 1M sentence pairs) Ni et al. (2022); Wang
et al. (2022); Li et al. (2023a); Xiao et al. (2024); Su et al. (2023a); Asai et al. (2023).

More recently, many works have proposed converting decoder-only-LLMs into text-encoders using
architecture modifications (BehnamGhader et al., 2024), using prompting techniques Springer et al.
(2024), or by simply fine-tuning with task-specific supervised data Neelakantan et al. (2022). These
approaches demonstrate superior performance than bidirectional encoders and eliminate the need
for large-scale self-supervised training (Wang et al., 2023). Moreover, using LLMs for text encod-
ing allows us to leverage their instruction-following capabilities to distinguish between different
downstream tasks. Additionally, LLMs offer the flexibility to generalize to new tasks using natural
language instructions For example, given the input “Retrieve relevant documents for this user query: I
need a new laptop”, the model would generate the embedding suitable for document search, whereas,
for the same model, the input “Classify the product category: I need a new laptop” would generate
embedding suitable for product classification.

In this work, we focus on LLM2Vec (BehnamGhader et al., 2024) – a three-step approach to
converting any decoder-only LLM into a text encoder. Our choice is driven by LLM2Vec’s open-
source availability, use of only publicly available data for training, and its strong performance across
a wide variety of text-based tasks on the MTEB benchmark, making it both a versatile and accessible
solution for sentence embedding. LLM2Vec models are built on the hypothesis that the causal
attention mechanism of LLMs is sub-optimal for text encodings. Therefore, these models first remove
the causal mask of the LLM to enable better contextualization with bidirectional connections. The
model is then trained with a masked next-token prediction objective to adapt it to bidirectional
attention. Finally, the model can be fine-tuned with either SimCSE (Gao et al., 2021) in unsupervised
settings, or with typical contrastive learning in presence of supervised data.

2.2 TEXT EMBEDDING BENCHMARK

The most widely-used benchmark for evaluating generalist text embedders is the Massive Text Embed-
ding Benchmark (MTEB, Muennighoff et al. 2023), which contains several downstream embedding
tasks across multiple languages. Following BehnamGhader et al. (2024), we evaluate our approach on
the English MTEB benchmark, containing 56 tasks across seven task categories – retrieval, reranking,
clustering, pair classification, classification, sentence similarity, and summarization.
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Retrieval and reranking tasks are evaluated by encoding query and document separately using
the embedder, and scoring each query-document pair using cosine similarity of their respective
embeddings. This setup, typically referred to as bi-encoder Guu et al. (2020); Karpukhin et al. (2020);
Santhanam et al. (2022), allows scaling to extremely large document collections using efficient
indexing and search techniques (Johnson et al., 2019).

Clustering is evaluated by computing the v-measure score (Rosenberg & Hirschberg, 2007) on text
embeddings clustered using k-means. The pair classification task involves assigning a binary label
to a pair of sentences. To reformulate it as an embedding task, both sentences are first embedded,
and the label is determined by applying a threshold to their similarity score (e.g., cosine similarity).
Summarization and text similarity tasks follow a similar approach: for summarization, human and
machine-written summaries are treated as text pairs, and sentence similarity is determined by the use
of continuous labels instead of binary ones. Classification is assessed by training a logistic regression
classifier on training set embeddings and testing on the validation set, with classifier performance
serving as a proxy for embedding quality.

2.3 GRADED RELEVANCE

Softmax-based contrastive learning has been the de-facto paradigm for training dense retrievers and
generalist embedders. The training loss formulation in this case relies on binary relevance, i.e. a
boolean assignment (relevant or non-relevant) for every text pair. However, relying only on binary
relevance misses out on the potentially rich supervision signal that comes from graded relevance,
which allows for a more nuanced assessment.

Graded relevance refers to the extent to which a text pair is relevant, often quantified using an ordinal
scale to capture varying levels of relevance (e.g., 0–3 or 0–5). Historically, evaluating the graded
relevance assignment has been the primary method for assessing the quality of a retrieval system
within the information retrieval community (Järvelin & Kekäläinen, 2000; 2002; Sakai, 2021). For
instance, in the Deep Learning track of the Text REtrieval Conference (TREC-DL) 2023 (Craswell
et al., 2024), models are evaluated based on how closely their scores align with human judgment
of graded relevance for query-document pairs. These graded relevance scores range from 0 to 3,
representing the following levels of increasing relevancy:

• 0 = Irrelevant,

• 1 = Relevant topic, but does not contain the answer,

• 2 = Highly relevant if it contains a partial answer or if the answer is unclear, or

• 3 = Perfectly relevant, containing the exact answer.

3 CONTRASTIVE REPRESENTATION LEARNING FOR TEXT EMBEDDINGS

In this section, we describe our approach for training generalist text embedders using binary cross-
entropy loss formulation, which is better suited to capture the nuanced assessment of graded relevance.

3.1 DATASET FORMAT AND SOFTMAX-BASED CONTRASTIVE LEARNING LOSS

We first introduce the standard supervised framework for training text encoders. In this setup, the
training data is typically provided to the learning algorithm as tuples of related texts. Each tuple
consists of an anchor text, a positively associated text, and possibly a hard negative text. These
associations are task-specific, with each tuple assigned to a particular task objective. The resulting
embeddings are often task-conditioned by combining a task description sentence with either the
anchor text, in the case of asymmetric tasks, or both the anchor and associated texts. Such a
combination can be as simple as text concatenation, formatted as “{task instruction}: {text}”.

For instance, for a symmetric task like semantic textual similarity (STS), both the anchor and
associated text are generic sentences, and are combined with the instruction “Retrieve semantically
similar text”. In contrast, for an asymmetric task like passage retrieval, where the anchor is a query
and the associated text is a passage, only the query is combined with the task instruction, “Given a
query, retrieve relevant passages that answer the query”. Details of what constitutes an anchor and
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Table 1: Composition of the public portion of the E5 training dataset (Wang et al., 2023), reconstructed
by Springer et al. (2024). In the task categories below, Natural Language Inference is denoted by
NLI and Question-Answering as QA. Details on the instructions used for each dataset can be found
at Table 5 of the Appendix.

Dataset Name Task Category Meaning of anchor/associated text

AllNLI (Gao et al., 2021) NLI premise/hypothesis
DuReader (He et al., 2018) Passage Retrieval query/passage
ELI5 (Fan et al., 2019) Popular Responses forum question/user response
FEVER (Thorne et al., 2018) Fact Checking claim/document
HotpotQA (Yang et al., 2018) Passage Retrieval for Multi-Hop QA query/passage
Miracl (Zhang et al., 2023) Passage Retrieval query/passage
MrTydi (Zhang et al., 2021) Passage Retrieval query/passage
MSMARCO (Bajaj et al., 2018) Passage Retrieval query/document or passage
Natural Questions (Kwiatkowski et al., 2019) Passage Retrieval query/Wikipedia article
Quora Duplicates (DataCanary et al., 2017) Duplicates Classification forum question/forum question
SQuAD (Rajpurkar et al., 2016) Passage Retrieval query/Wikipedia article
T2Ranking (Xie et al., 2023) Passage Retrieval query/web passage
TriviaQA (Joshi et al., 2017) Passage Retrieval query/Wikipedia article

an associated text for each task in our training dataset can be found at Table 1. The full set of task
instructions for each dataset is provided in Table 5 of the Appendix.

Typically, text encoders are trained with softmax-based contrastive learning loss. Let f be the text
encoder we would like to train, which, in general, is a neural network that takes text as input and
outputs a fixed-dimensional vector. During training, the encoder is presented with batches of text
tuples B = {(xk, y

+
k , y

−
k )}Bk=1. Let X = {xk}Bk=1 be the batch of anchor texts, and Y+ = {y+k }Bk=1

and Y− = {y−k }Bk=1 be the associated positive and (hard) negative text batches respectively. To train
with the softmax-based contrastive learning task, we first compute the normalized embeddings for the
anchor, x = f(x)

∥f(x)∥ , the positive examples, y+ = f(y+)
∥f(y+)∥ , and the negative examples, y− = f(y−)

∥f(y−)∥ .
The encoder is then trained by minimizing the following loss function, where s(x, y) = αx⊤y:

1

B

∑
xk∈X

− log
exp(s(xk, y

+
k ))∑

y∈Y+∪Y− exp(s(xk, y))
(1)

This loss function corresponds to the negative log-likelihood of classifying each anchor text xk into
one of 2B possible classes, where each class represents an associated text from the batch. Given
the normalized embedding xk for the anchor text, the 2B logits are computed by taking the dot
product between xk and the normalized embeddings y of all associated texts in the batch1. These dot
products are then multiplied by a scalar hyperparameter α > 0, which acts as an inverse temperature.

The target class for the anchor text xk is always determined by its positively associated text y+k .
In contrast, its own (hard) negative example, along with the associated texts and (hard) negative
examples from other anchors in the batch, define the alternate (negative) classes. Training with
in-batch negatives is essential for achieving strong performance on downstream tasks (Karpukhin
et al., 2020), particularly in the absence of hard negative texts. This approach provides the model with
additional data to effectively distinguish between relevant and irrelevant texts. In the self-supervised
learning literature, this loss is commonly referred to as the InfoNCE objective (Oord et al., 2018).

The difficulty of measuring relevance with Softmax-based contrastive learning. Using graded
relevance scores for text pairs using softmax-based contrastive learning presents significant challenges.
In this work, we explore how model training can be improved if we have access to a training set with
graded relevance scores, instead of just binary ones, for each pair of anchor x and associated text y.
We argue that this task is not straightforward under softmax-based contrastive learning because the
multi-class classification problem defined in Equation (1) targets a one-hot probability vector, where
the 1 is located at the index of the positive associated text.

To illustrate this challenge, consider a scenario where in-batch negatives consistently have a relevance
score of 0 (since they are random texts from the dataset). Naively renormalizing the relevance scores

1The dot product of L2-normalized vectors is also known as cosine similarity.
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Figure 1: Training text encoders with the binary cross-entropy (BCE) loss on pair relevance scores.
The dataset provides with anchor texts to be contrasted against a positively associated text and
potentially a hard negative one. Using in-batch negatives makes efficient use of the encoded texts
in a batch by assuming associated texts of other anchors as negatives. In this example, the label for
positively associated pairs of texts in the BCE loss is 1, while for negatives is 0.

of the 2B possible classes into a target probability vector fails to provide a more fine-grained training
score, because this would result in a one-hot target vector regardless of whether the relevance score
for the positive pair is 1 or 3. Therefore, we propose a solution that leverages graded relevance
scores with an alternative contrastive loss function. This approach focuses on directly classifying the
relevance of a pair of texts by minimizing the binary cross-entropy loss on the relevance labels, rather
than employing the cross-entropy loss on the possible associated texts.

3.2 PREDICTING PAIR RELEVANCE SCORES AS A REPRESENTATION LEARNING TASK

Training an encoder f using binary cross-entropy loss requires access to labels z ∈ [0, 1] for
each pair of anchor and associated text (x, y). In its simplest form, this label is binary, indicating
whether the pair is positive (z = 1) or negative (z = 0). However, it can also take on intermediate
values, representing degrees of relevance. For generality, we define z as a function of a text pair,
z : (x, y) 7→ [0, 1]. Let σ denote the sigmoid (logistic) function, σ(t) = 1

1+exp(−t) . As before,
batches of text tuples B are presented to the encoder during training. Assuming that the labeling
function returns zero for in-batch negatives, that is z(xk, y) = 0 for all y ∈ Y+ ∪ Y− \ {y+k }, the
encoder f is trained to minimize the following function, where s(x, y) = αx⊤y + β:

− 1

B

∑
xk∈X

∑
y∈Y+∪Y−

z(xk, y) log σ
(
s(xk, y)

)
+

(
1− z(xk, y)

)
log σ

(
− s(xk, y)

)
(2)

Compared to Equation (1), the formula for the logits of the binary cross-entropy loss introduces an
additional logit bias term β, while the logit scale is controlled by a parameter α > 0. The behavior of
this loss function depends on the label z(xk, y). When z(xk, y) > 0.5, we want the sigmoid to output
a value closer to 1, implying that the normalized embeddings xk and y need to be more aligned.
Conversely, when z(xk, y) ≤ 0.5, the optimization process drives the sigmoid output towards zero,
encouraging the dot product between the embeddings to be negative. The overall behavior of this loss
over a batch B and the labels assigned in the case of binary z is summarized in Figure 1.

The role of logit bias β. When using in-batch negatives, the underlying binary classification problem
becomes label-imbalanced. This imbalance arises because the model encounters one positive instance
for every 2B − 1 negative instances at each training step. This can pose challenges, particularly with
large training batch sizes, as it becomes progressively easier for the encoder f to minimize the loss
by simply predicting the negative class for all pairs. Consistent with the observations made in SigLIP,
we also observe that the downstream task performance is influenced by the initialization value of the
additive logit bias β, which we analyze further in Section 5.

We understand the logit bias β in Equation (2) as a method for addressing the label-imbalance
problem. By carefully selecting β, we adjust the resulting logits to account for the spurious marginal
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statistics on the random label z, regardless of the input pair (x, y). This approach allows us to
initialize our optimization problem from a point where the only way for making progress is by
encoding information useful for predicting z in the dot product xTy, independent of the training
distribution of z. This idea aligns with the logit adjustment literature on long-tailed multi-class
classification (Menon et al., 2021), where a similar logit bias intervention is removed during inference
to unveil a more robust classifier. In particular, Menon et al. (2021) modify the unnormalized logits
of a K-class classifier by adding a fixed estimate for the log-likelihood of each one of the classes to
the corresponding class logit predicted by the network. By training this logit-adjusted classifier with
the regular cross-entropy loss and removing the logit bias at the end of training, they show that the
remaining trained classifier is robust to shifts in the label distribution.

Similarly, we would like our binary classifier to accurately assess the relevance of text pairs, regardless
of the training distribution of z, which is defined as pdata(z = 1) = 1

2B when we use in-batch
negatives. We thus propose the following formulation for the logits of the binary cross-entropy loss:

s(adjusted)(x, y) = αx⊤y + τ log
pdata(z = 1)

pdata(z = 0)
, (3)

where τ ≈ 1 corresponds to a scalar tuned to account for model calibration errors (Guo et al., 2017).
Notice that under our proposal, β = τ log pdata(z=1)

pdata(z=0) . As a numerical example, we see that the best
results for SigLIP are recorded for batch size 32, 768 (Zhai et al., 2023, see Figure 2). In this case,
pdata(z = 1) = 1

B = 1
32768 , as no hard negative examples are used. Substituting this value into our

formula for β, we obtain βSigLIP = log
1
B

1− 1
B

= − log(B − 1) = −10.397, which closely matches
the reported best hyperparameter value of −10 for β.

3.3 ENABLING TRAINING WITH GRADED PAIR RELEVANCE SCORES

Suppose we have access to a training set containing pairs of anchor and associated texts (x, y), along
with their respective relevance scores r. As introduced in Section 2.3, r values typically take ordinal
values ranging from 0 to some maximum preference value R. If we could effectively translate these
scores into probability targets in [0, 1], we could leverage the binary cross-entropy loss for training.
We propose using the following:

z(x, y) = c+ (1− c)
r(x, y)

R
, if r(x, y) > 0 otherwise 0, (4)

as a simple protocol for achieving this, where c ∈ (0, 1) serves as a cutoff value. To illustrate,
consider a numerical example for TREC-DL 2023 assuming c = 0.7. This transforms relevance r of
1 to z value of 0.8, 2 to 0.9 and 3 to 1.0. Then, given a batch Bgraded = {(xk, yk, zk)}Bk=1 with graded
labels we can use the following binary cross-entropy loss to learn this more fine-grained information:

− 1

B

∑
xk,yk,zk∈Bgraded

zk log σ
(
s(xk, yk)

)
+ (1− zk) log σ

(
− s(xk, yk)

)
, (5)

where we use the logit function from Equation (3) and binarized values for z in order to estimate
pdata(z = 1). Notice that under the formulation of Equation (5) we do not make use of in-batch
negatives. Instead, negatives are provided by the dataset whenever zk = 0.

4 TRAINING SETUP

We base our experiments mostly on LLM2Vec (BehnamGhader et al., 2024), which is a strong
open-source sentence embedder trained with publicly-available and permissive datasets. For fair
comparison, we use the same training data as LLM2Vec, which includes the public portion of the
E5 dataset (Wang et al., 2022) reconstructed by Springer et al. (2024). In Table 1 we describe the
composition of training sets and their corresponding tasks. In Table 5 of the Appendix, we provide
the list of instructions we used to augment the anchor texts, and also their associated text in the case
of symmetric tasks. We use the same task instructions as previous works Wang et al. (2023); Springer
et al. (2024); BehnamGhader et al. (2024). In addition to comprising public permissible datasets, this
training data mix has minimal overlap with MTEB tasks, enabling us to evaluate the robustness of
our models on domains beyond the training set.
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(a) Ablation on learnability of logit scale and bias.
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(b) Effect of logit bias value on performance.

Figure 2: Use of logit bias and determining its value correctly is essential for having good performance
with the binary cross-entropy loss. We perform experiments with batch size B = 256 and confirm
that Equation (3) provides with a good default value for the logit bias β = − log(2B − 1) ≈ −6.24.

The LLM2Vec approach for converting LLMs into encoders consists of three steps: (1) enabling
bidirectional connections, (2) using masked next token prediction (MNTP) to adapt these connections,
and (3) applying supervised contrastive learning. In our setup, we initialize models with the MNTP
checkpoint of LLM2Vec models to fairly compare the performance of softmax-based contrastive
loss against our proposed binary cross-entropy loss for supervised training. Specifically, we use
Meta-LLaMA-3-8B-Instruct (hereafter referred to as Meta-LLaMA-3), and Sheared-LLaMA-1.3B
(hereafter referred to as S-LLaMA) to evaluate performance across different model sizes.

We also provide experiments with Mistral-7B-Instruct (hereafter referred to as Mistral) and Qwen2-
7B-Instruct (hereafter referred to as Qwen2), for which we adopt a simpler conversion strategy than
LLM2Vec. In particular, we initialize from pretrained foundational models and we simply enable
bidirectional connections between tokens during finetuning with contrastive learning.

Training details. We employ the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.995.
We apply no weight decay. For the learning rate scheduler, we adopt a linear warmup over 300 steps,
followed by a linear decay until 10,000 steps. The logit scale is tuned. For the binary cross-entropy
loss, we find the optimal value to be 20, which corresponds to a temperature of 0.05. In our generalist
text encoder experiments, we make use of in-batch negatives and apply the loss function described
in Equation (2). We implement task-conditioned sampling for batching, in which all the samples
in a batch belong to the same task. Doing so improves the quality of in-batch negatives as all the
associated text belong to the same domain. We describe training in greater detail in Section 7 of the
Appendix, along with details about model selection where we define the validation score we use in
our studies, as well as for hyperparameter search.

5 EXPERIMENTS ON MASSIVE TEXT EMBEDDING BENCHMARK

Effect of batch size. Training batch size is typically a sensitive hyperparameter when finetuning for
a generalist text encoder, as it implies the number of negatives used per anchor text at each training
step, in the case of in-batch negatives. As we observe in Figure 3a, we find that our proposed loss
performs well with smaller batch sizes. This is especially true for the Meta-LLaMA-3 model for
which the best model is found while training with batch size 256. As we analyze in Section 7, we
attribute this feature of BCE losses to the particular form of the gradients for the negative pairs which,
in contrast to the softmax-based loss, does not induce a competition among the negative pairs for
contributing to the total gradient.

Ablation of logit parameters. We conduct our ablation of logit scale α and the logit bias β of
Equation (2) on S-LLaMA models with batch size 256. Both CLIP (Radford et al., 2021) and
SigLIP (Zhai et al., 2023) utilize a learnable α, and at the same time SigLIP and our method introduce
an extra logit bias β. In Figure 2a, we perform an ablation experiment among the following 5 cases:
(1) constant α and no β which corresponds to the typical logit formulation used in softmax-based
contrastive losses, where only a scaled dot product of normalized embeddings is used. (2) learnable α
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Figure 3: Left: Various models trained with different batch sizes using our binary cross-entropy loss.
Right: Model performance after preprocessing training dataset by flipping positive pairs with hard
negatives according to a noise probability. On both graphs, we display the average performance on
the full 56-task English MTEB.

and no β corresponds to the setting of CLIP and we observe a slight improvement over case (1). The
benefits become significant, however, once we introduce β. Case (3) demonstrates the performance
of using constants α and β, which seems to achieve the maximum performance with respect to the
validation score over case (4) - where only α is learnable - and case (5) - where both α and β are
learnt like SigLIP.

Effect of logit bias. Using a constant logit scale and bias, we investigate the effect of the logit bias,
treated as a hyperparameter, by training S-LLaMA models with a batch size of 256. As shown in
Figure 2b, we observe that the performance on our validation score peaks at a logit bias value of
−12. The second-best score is achieved at −6.24, which is the value predicted by our proposal
in Equation (3), based on a batch size of 256 with hard negatives. The discrepancy between the
predicted and optimal hyperparameter values may be due to model calibration errors (Guo et al.,
2017). Another factor is that our model is not initialized to exactly predict according to the marginal
training distribution of labels, especially since we finetune a pre-trained model to create the general
text encoder. To conclude, while a small hyperparameter search around the predicted value is
recommended, the predicted value for the logit bias can serve as a competitive default.

Effect of weakly-supervised dataset noise. We perform an ablation study with respect to levels
of artificial noise introduced to the open-source E5 training dataset. In particular, we specify a
probability of flipping the label between a designated positive pair (x, y+) and a hard negative pair
(x, y−), and we sample the flip variable independently for every triplet (x, y+, y−) in the dataset
prior to training. Then, we train Meta-LLaMA-3 models with the BCE and softmax-based losses and
we report the average 56-task MTEB score of the best models found during training. In Figure 3b we
observe that BCE outperforms the softmax variant for all noise levels pnoise ∈ {0.05, 0.1, 0.2, 0.5}.
We hypothesize that BCE achieves better robustness to weakly-supervised dataset noise, because the
effect of noise is more diluted in the gradients of the BCE objective. Suppose the binary label case
with hard negatives. At each training step the model encounters a batch of size B, the BCE-loss then
is the average of losses from 2B2 binary classification predictions, while softmax-based loss is the
average of losses from B multi-class classification predictions. Assuming that the in-batch negatives
are indeed true negatives: If one pair of texts in the batch is mislabeled, then for the softmax-loss
this means that the 1

B predictions is optimized towards a false target, whereas for the BCE-loss 1
B2

predictions is optimized towards a false target.

Full MTEB results. We train the LLM2Vec models on the public E5 dataset with binary cross
entropy loss using the default values of the logit bias. After selecting the best models across a training
session based on their validation score, we evaluate them across the complete suite of 56 tasks from
the English MTEB. We contrast our approach with softmax-based contrastive finetuning and with
other methods that utilize publicly available and permissible data in Table 2. We also provide a
comparison with current top entries in the MTEB leaderboard (as of October 1, 2024) in Table 7.

First, we compare our approach to the softmax-based contrastive finetuning alternatives of the models
we consider. We find that our training method leads to improvements in 4 out of 7 task categories
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Table 2: Results on the 56 tasks of the English MTEB benchmark. Retrieval (Retr.) performance
is measure using NDCG@10. Reranking (Rerank.) performance uses Mean Average Precision.
Clustering (Clust.) uses the V-measure. Pair classification (Pair) uses Average Precision (AP) based
on the models similarity metric. Classification (Class.) uses accuracy. Semantic Textual Similarity
(STS) tasks and Summarization (Summ.) use the Spearman correlation based on the model’s similarity
metric. Finally, the average (Avg) is computed by averaging the scores of all individual tasks together.
⋆versions of models that were finetuned with public MEDI2BGE and E5 datasets.

Categories → Retr. Rerank. Clust. Pair Class. STS Summ. Avg
# of datasets → 15 4 11 3 12 10 1 56

INSTRUCTOR-XL [45] 49.26 57.29 44.74 86.62 73.12 83.06 32.32 61.79
BGE-LARGE-EN-V1.5 [49] 54.29 60.03 46.08 87.12 75.97 83.11 31.61 64.23
GRITLM-7B⋆ [31] 53.10 61.30 48.90 86.90 77.00 82.80 29.40 64.70
E5-MISTRAL-7B-INSTRUCT⋆ [48] 52.78 60.38 47.78 88.47 76.80 83.77 31.90 64.56
ECHO-MISTRAL-7B-INSTRUCT [43] 55.52 58.14 46.32 87.34 77.43 82.56 30.73 64.68

LLM2VEC SHEARED-LLAMA-1.3B
with softmax-based loss [3] 51.44 55.38 43.57 86.20 72.21 83.58 30.01 61.85
with BCE loss (ours) 52.28 54.16 43.59 86.61 70.56 83.10 30.79 61.58

LLM2VEC META-LLAMA-3-8B-INSTRUCT
with softmax-based loss [3] 56.63 59.68 46.45 87.80 75.92 83.58 30.94 65.01
with BCE loss (ours) 57.38 59.29 47.18 88.85 76.05 85.31 31.19 65.72

MISTRAL-7B-INSTRUCT
LLM2VEC with softmax-based loss [3] 55.99 58.42 45.54 87.99 76.63 84.09 29.96 64.80
with BCE loss (ours) 57.43 58.64 46.34 88.53 74.31 84.90 30.14 65.04

QWEN2-7B-INSTRUCT
with softmax-based loss 57.67 59.62 49.37 88.67 75.85 84.95 31.30 66.13
with BCE loss (ours) 57.84 59.59 48.67 88.76 76.84 84.67 31.73 66.22

for S-LLaMA 6 out of 7 categories for Meta-LLaMA-3, 6 out of 7 categories for Mistral, and 4 out
of 7 for Qwen2. In terms of average performance across the 56 tasks, only our S-LLaMA model
falls slightly short of the softmax-based baseline, with a relative performance difference of -0.44%.
In contrast, our Meta-LLaMA-3, Mistral and Qwen2 models surpass their corresponding baselines,
achieving a 1.10%, 0.37% and 0.14% improvement in relative performance respectively. Our results
hint that our training method scales better than the softmax-based baseline with the increase in
number of model parameters. We report the individual task scores for S-LLaMA and Meta-LLaMA-3
trained with binary cross-entropy in Table 9.

Overall, we find that training generalist text encoders with binary cross-entropy losses instead
of softmax-based ones leads to models that perform on-par or better across a broad spectrum of
downstream tasks, while being more resistant to weakly-supervised dataset noise and more robust to
the choice of batch size used during training.

6 EXPERIMENTS ON GRADED RELEVANCE SCORES

In this section, we assess whether our proposed binary cross entropy loss function effectively improves
training for graded relevance tasks. To this end, we experiment with further finetuning of general
text encoders on TREC-DL Document Retrieval Challenge data (Craswell et al., 2024). We evaluate
the models on TREC-DL 2023, which contains graded relevance judgements of query-document
pairs from MSMARCOv2. In particular, we gather the validation and test set from TREC-DL 2023
and construct the training set from TREC-DL datasets from years preceding 2023. We make sure
that there is no overlap in either the queries or the documents between train and validation/test splits.
Further details about the dataset creation and its statistics, can be found in the Appendix.

All splits contain graded relevance scores for pairs, ranging from 0 to 3, as described in Section 2.3.
We convert the training dataset into targets z via the heuristic in Equation (4) and then train LLM2Vec
Meta-LLaMA-3 models using the objective in Equation (5). For all training trials, we initialize new
LORA adapters and use batch size 256. For all other training details, we follow the same training
configuration as in Section 4. We select the best model for each training trial according to the
maximum NDCG@100 on the validation set, and report results on the test set.

Beyond finetuning with BCE on graded relevancies, we also consider the following baselines:

9
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Table 3: Results on the test set of the TREC-DL dataset; mean ± std is computed over 5 seeds.

NDCG@10 NDCG@20 NDCG@50 NDCG@100

Pretrained with softmax loss [Equation (1)] 53.68 55.01 58.32 65.98
+ Softmax ft on binarized relevancies 55.70 56.76 61.27 68.28
+ IW Softmax ft on binarized relevancies 50.34 54.37 59.61 66.50
+ BCE ft on binarized relevancies 30.70 32.12 38.98 49.53
+ BCE ft on graded relevancies 31.34 33.14 39.29 50.10

Pretrained with BCE loss [Equation (2)] 55.60 56.55 61.45 68.47
+ Softmax ft on binarized relevancies 55.78 56.67 61.71 69.18
+ IW Softmax ft on binarized relevancies 56.79 57.00 61.92 69.14
+ BCE ft on binarized relevancies 57.56 57.77 63.03 69.48
+ BCE ft on graded relevancies 58.55±0.61 58.49±0.44 63.84±0.28 70.34±0.17

1. Softmax-based contrastive loss on binarized relevancies: This is a natural baseline, in which at
every training step we train on 128 positively associated query-document pairs, and 128 negative
pairs with the same queries. We train using in-batch negatives.

2. Importance-weighted (IW) softmax-based contrastive loss on binarized relevancies: We craft this
baseline as a way to highlight the difficulty of adapting softmax-based losses for graded relevance
scores. The only difference with case (1) is that we use importance weights for the negative
log-likelihoods, instead of simply averaging them across a batch. We compute the importance
weights by normalizing the targets for the graded relevancies, as computed by Equation (4).

3. Binary cross-entropy loss on binarized relevancies: In this case, we reduce the graded scores in
the training set binary scores of 0 and 1, with 1 assigned to all positive scores. This way, we aim
to emphasize the benefit of using more fine-grained training signals whenever they are available.

In Table 3, we report NDCG scores of finetuned models at 10, 20, 50, and 100 top-ranked documents in
the test set. For the BCE-pretrained model, we find that finetuning with graded relevance scores using
our proposed loss results in the best performing model out of all the options (70.34 NDCG@100).
In particular, finetuning with BCE on graded targets outperforms both the BCE baseline that uses
binarized targets (69.48 NDCG@100) and the softmax-based alternatives (69.14 NDCG@100 with
IW and 69.18 without).

While all the finetuning options improve upon the base model for BCE-pretrained model, the same
does not hold for softmax-pretrained model. In this case, we find that the standard softmax-based
contrastive recipe is the only finetuning strategy that improves upon the pretrained model (68.28
vs 65.98 NDCG@100). Trying to utilize importance-weighting to inform the model about graded
relevance scores shows varied performance across different NDCG cutoffs. Finally, using BCE
objectives to finetune the softmax-pretrained model significantly degrades the performance. Overall,
models trained with our proposed BCE loss demonstrates stronger generalization and adaptation to
graded relevance datasets compared to those trained with softmax contrastive loss.

7 CONCLUSION

In this work we explore training universal text encoders with binary cross-entropy loss. We show that
the resulting models match or outperform those trained with the typical softmax-based contrastive
loss (Section 5) on general text embedding downstream tasks. Furthermore, our proposal enables the
effective use of graded relevance scores, commonly used by the information retrieval community,
to provide more fine-grained training signal. This leads to significant improvements in nuanced
evaluations that go beyond a binary determination of query-document relevance (Section 6). In
contrast, training with softmax-based contrastive loss does not lead to similar advantages.

As models continue to advance on existing benchmarks, there is an increasing need for more nuanced
performance measures to capture differences in their capabilities. One approach is to introduce graded
relevance scores for text embedding tasks that can accommodate these distinctions. Our proposal will
prove useful to future generations of text encoders aiming to provide with a more detailed assessment
of textual relevance.
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REPRODUCIBILITY STATEMENT

In the spirit of ensuring reproducibility, we have provided clear and detailed instructions for replicating
the results presented in this paper. Our model selection process, hyperparameter search and the final
values are detailed in Section 4 and in the Appendix. The E5 dataset used in this paper is publicly
available. In addition, we provide the splits we have used for the TREC-DL dataset. Code is made
available at https://anonymous.4open.science/r/sigcse-0E2C/README.md.
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3), 2019.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Tom Kwiatkowski, Jennimaria Palomaki, Michael Redfield, Olivia andk Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7, 2019.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
arXiv preprint arXiv:2405.17428, 2024.

Chaofan Li, MingHao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Yingxia Shao, Defu Lian, and
Zheng Liu. Making text embedders few-shot learners. arXiv preprint arXiv:2409.15700, 2024.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023a.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023b.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the SDEs and scaling
rules for adaptive gradient algorithms. In Advances in Neural Information Processing Systems,
2022.

Rui* Meng, Ye* Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-
embedding-2: Advanced text embedding with multi-stage training, 2024. URL https://
huggingface.co/Salesforce/SFR-Embedding-2_R.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on Learning
Representations, 2021.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint
arXiv:2202.08904, 2022.

12

https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text embed-
ding benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association
for Computational Linguistics, 2023.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning. arXiv preprint arXiv:2402.09906,
2024.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam, Boris
Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Felipe Petroski
Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter
Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training. arXiv preprint
arXiv:2201.10005, 2022.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Zhao,
Yi Luan, Keith Hall, Ming-Wei Chang, and Yinfei Yang. Large dual encoders are generalizable
retrievers. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua
Wu, and Haifeng Wang. RocketQA: An optimized training approach to dense passage retrieval for
open-domain question answering. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Proceedings of the 38th
International Conference on Machine Learning, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, 2016.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Found. Trends Inf. Retr., 2009.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external cluster
evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007.

Tetsuya Sakai. Graded Relevance, chapter Graded Relevance, pp. 1–20. Springer Singapore, 2021.
ISBN 978-981-15-5554-1. doi: 10.1007/978-981-15-5554-1 1.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Col-
BERTv2: Effective and efficient retrieval via lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2022.

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried, Graham Neubig, and Aditi Raghunathan.
Repetition improves language model embeddings. arXiv preprint arXiv:2402.15449, 2024.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,
Noah A. Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned
text embeddings. In Findings of the Association for Computational Linguistics: ACL 2023, 2023a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,
Noah A. Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned
text embeddings. In Findings of the Association for Computational Linguistics: ACL 2023, 2023b.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-
scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 2018.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2024.

Xiaohui Xie, Qian Dong, Bingning Wang, Feiyang Lv, Ting Yao, Weinan Gan, Zhijing Wu, Xiang-
sheng Li, Haitao Li, Yiqun Liu, and Jin Ma. T2ranking: A large-scale chinese benchmark for
passage ranking. In Proceedings of the 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2023.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In International Conference on Learning Representations, 2021.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2023.

Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin. Mr. TyDi: A multi-lingual benchmark for
dense retrieval. In Proceedings of the 1st Workshop on Multilingual Representation Learning,
2021.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo, Xi-
aoguang Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. MIRACL: A Multilingual Retrieval
Dataset Covering 18 Diverse Languages. Transactions of the Association for Computational
Linguistics, 2023.

Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Shuaiqiang Wang, Daiting
Shi, Zhicong Cheng, and Dawei Yin. Pre-trained language model based ranking in baidu search.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

EXTENDED RELATED WORK

Past work on representation learning with binary cross-entropy losses. To our knowledge, binary
cross-entropy loss in self-supervised representation learning was first explored by Hjelm et al. (2019).
Their work introduces Deep InfoMax (DIM), a framework for representation learning that maximizes
mutual information between different views of the same image. In its Jensen-Shannon mutual
information formulation (Hjelm et al., 2019, See Equation 4, Section 3.1), the DIM loss functions as
a binary cross-entropy loss and the logits are computed from pairs of views: pairs derived from the
same image are labeled as positive, while pairs from different images are labeled as negative.

More recently, Zhai et al. (2023) introduced SigLIP, a framework that pretrains vision-language
encoders by aligning image embeddings with their corresponding caption embeddings. Compared
to its softmax-based anchor classification alternative (Radford et al., 2021, CLIP), pretraining with
binary cross-entropy loss in SigLIP has demonstrated better scaling of downstream task performance
as the number of in-batch negatives increases. In our work, we adapt the SigLIP objective to fine-tune
large language models (LLMs) (BehnamGhader et al., 2024) for general-purpose text embedding
tasks.

Pointwise regression-based ranking. While our focus is on general-purpose text embeddings, related
work can be found in training cross-encoding pointwise ranking models for information retrieval. Zou
et al. (2021) mobilize training objectives on graded relevance labels using regression-based losses,
however they do not prescribe a way to deal with the imbalances of the training relevance data. Our
work fills that gap by allowing pointwise training on imbalanced relevance data.

TRAINING AND EVALUATION DETAILS

Table 4: Selection of validation datasets from various tasks.

Task Category Datasets in Validation Score

Clustering BiorxivClusteringS2S, TwentyNewsgroupsClustering
Classification Banking77Classification, EmotionClassification
Pair Classification SprintDuplicateQuestions
Retrieval DBPedia, HotpotQA, FiQA2018, FEVER, QuoraRetrieval
Reranking StackOverflowDupQuestions
Sentence Textual Similarity STSBenchmark, SICK-R

Table 5: Instructions used for each of the E5 datasets.

Dataset Instruction(s)

NLI Given a premise, retrieve a hypothesis that is entailed by the premise
Retrieve semantically similar text

DuReader Given a Chinese search query, retrieve web passages that answer the question
ELI5 Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
FEVER Given a claim, retrieve documents that support or refute the claim
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MIRACL Given a question, retrieve Wikipedia passages that answer the question
MrTyDi Given a question, retrieve Wikipedia passages that answer the question
MSMARCO Passage Given a web search query, retrieve relevant passages that answer the query
MSMARCO Document Given a web search query, retrieve relevant documents that answer the query
NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraDuplicates Given a question, retrieve questions that are semantically equivalent to the given question

Find questions that have the same meaning as the input question
SQuAD Retrieve Wikipedia passages that answer the question
T2Ranking Given a Chinese search query, retrieve web passages that answer the question
TriviaQA Retrieve Wikipedia passages that answer the question

Further training details. The learning rate is initially set to a base batch size of 64 and then scaled
according to the square root of the ratio between the total batch size across devices and the base
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batch size (Malladi et al., 2022), expressed as
√

total batch size
64 . We apply gradient checkpointing and

Parameter-Efficient Fine-Tuning (PEFT), specifically using LORA (Hu et al., 2022) on the attention
module weights with r = 16 and α = 32, along with a dropout rate of 0.05. For our experiments, we
search for batch sizes among {256, 512, 1024, 2048} for S-LLaMA and we fit a batch size of 128 per
80GB NVIDIA H100 GPU, scaling the number of GPUs according to the experimental needs. For
the larger models (Meta-LLaMA-3, Mistral and Qwen2) we search among {256, 512, 1024, 2048,
4096} and we fit a batch size of 128 per GPU.

The reported generalist BCE models are trained with batch sizes 256 for Meta-LLaMA-3, 512 for
Qwen2, and 1024 for Mistral. For the Qwen2model we are also warming up the logit bias from -25
to the proposed value along with the learning rate. We also train a Qwen2 with a softmax-based loss
with batch size 1024.

Model Selection. For model selection, we derive a validation score by using 0-1 tasks from each task
category on MTEB, except for retrieval tasks where we subsample 256 queries and up to 131,072
passages from the development sets of DBPedia, HotpotQA, FiQA2018, FEVER, and QuoraRetrieval.
We do this because evaluating many retrieval tasks is time-consuming due to the large corpus size,
often in the millions of documents. To mitigate the variance in average validation scores from the
subsampled retrieval dev sets, we also increase the number of tasks measured during validation to
5. Finally, we stratify the average scores from each task category in the validation set according to
weights that reflect the distribution of tasks in the final benchmark and aggregate them into a single
score (see Table 4). This average validation score is used both for selecting the best model during
a single training run and for hyperparameter search and analysis, as presented in the experimental
results section.

Validation Score. First, we compute the average score per task category and then we weight the
means so that the aggregate simulates the distributions of tasks across the full MTEB. We hope that
this way we receive a score that is fast to compute and at the same time remains somewhat indicative
of the downstream performance on the full benchmark, without ‘overfitting’ to it. We do this by only
using 0-2 datasets from each task category and utilizing available validation and development splits.
The selection of dataset in the mix of the validation score can be found at Table 4.

E5 and MTEB instructions. As we have mentioned at Section 4, we use the public portion of the E5
dataset for training our generalist text encoders. We introduce it at Section 3.1 and we provide with
an overview of it at Table 1. Training however generalist encoders can leverage an extra conditioning
signal to improve generalization across tasks (Su et al., 2023a). This conditioning signals comes in
the form of a task-specific instruction, which can be combined with the anchor text, and potentially
with its associated texts. At Table 5, we enlist the instructions that we use during training with each
of the different dataset contained in the mix. At Table 6, we enlist the instructions that we use during
evaluation with each of the different tasks contained in MTEB.
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Table 6: Instructions used for evaluation on the MTEB benchmark. “STS*” refers to all the STS
tasks.

Task Name Instruction

AmazonCounterfactualClassif. Classify a given Amazon customer review text as either counterfactual or not-counterfactual
AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category
Banking77Classification Given a online banking query, find the corresponding intents
EmotionClassification Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear,

joy, love, sadness, and surprise
ImdbClassification Classify the sentiment expressed in the given movie review text from the IMDB dataset
MassiveIntentClassification Given a user utterance as query, find the user intents
MassiveScenarioClassification Given a user utterance as query, find the user scenarios
MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented conversation
MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation
ToxicConversationsClassif. Classify the given comments as either toxic or not toxic
TweetSentimentClassification Classify the sentiment of a given tweet as either positive, negative, or neutral
ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the titles and abstracts
ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles
RedditClustering Identify the topic or theme of Reddit posts based on the titles
RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and posts
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles
StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given paragraphs
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet
TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet
AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum
MindSmallReranking Retrieve relevant news articles based on user browsing history
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant papers
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum
ArguAna Given a claim, find documents that refute the claim
ClimateFEVER Given a claim about climate change, retrieve documents that support or refute the claim
CQADupstackRetrieval Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to

the given question
DBPedia Given a query, retrieve relevant entity descriptions from DBPedia
FEVER Given a claim, retrieve documents that support or refute the claim
FiQA2018 Given a financial question, retrieve user replies that best answer the question
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MSMARCO Given a web search query, retrieve relevant passages that answer the query
NFCorpus Given a question, retrieve relevant documents that best answer the question
NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraRetrieval Given a question, retrieve questions that are semantically equivalent to the given question
SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper
SciFact Given a scientific claim, retrieve documents that support or refute the claim
Touche2020 Given a question, retrieve detailed and persuasive arguments that answer the question
TRECCOVID Given a query on COVID-19, retrieve documents that answer the query
STS* Retrieve semantically similar text.
BUCC/Tatoeba Retrieve parallel sentences.
SummEval Given a news summary, retrieve other semantically similar summaries
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EXTENDED STUDY

Noise-robustness is important for dense text encoders. It is generally assumed that positively
paired documents (x, y+) in dense encoding datasets are correctly aligned, adhering to the rules of
some task instruction. However, this assumption is difficult to satisfy in real-world applications (Qu
et al., 2021; Wang et al., 2022). In practice, many training data pairs are collected automatically
without human inspection, and this inevitably leads to the inclusion of some mismatched pairs. For
example, in order to mine positive passages from QA datasets, Karpukhin et al. (2020) declare the
highest-ranked passage from BM25 (Robertson & Zaragoza, 2009) that contains the answer as the
positive passage. Although it is hard to measure the level of noise without explicitly asking for human
annotations, it is very possible that such a process generates false positives by returning passages that
do not answer the query at hand even if they have a high lexical match. Furthermore, it is increasingly
common to automatically infer a set of hard negatives for each x in the dataset. A standard recipe for
mining these is to sample from the top-k documents in a corpus using a retriever, like BM25 in the
case of DPR (Karpukhin et al., 2020), or one that is based on a dense encoder, as in the case of ANCE
(Xiong et al., 2021) and NV-Retriever (de Souza P. Moreira et al., 2024). While Wang et al. (2023)
has clearly demonstrated that the inclusion of hard negatives leads to downstream improvements,
these procedures inadvertently introduce false negatives. Qu et al. (2021) examine the top-retrieved
passages that were not labeled as positives in the original MSMARCO (Bajaj et al., 2018) dataset,
and they find that 70% of them are actually positives. We thus argue that utilizing training objectives
that are more robust to noise can lead to downstream improvements in text encoders.

Intuition for increased robustness to batch size. We can get intuition about the batch size
resilience of BCE losses by analyzing loss gradients. In softmax-based contrastive learning, the
denominator, in which the negative pairs appear, can be expressed as a log-sum-exp. This means that
each of the (xk, yn) pairs’ gradient contribution is weighted by each pair’s probability to have yn
classified from xn.

∂

∂yn
log

M∑
m=1

exp (s(xk, ym)) =
exp (s(xk, yn))∑M

m=1 exp (s(xk, ym))

∂

∂yn
s(xk, yn)

Combining this with large logit scales ∈ (10, 100), that are used in order to achieve good downstream
performance, we can see that the negative pair with the largest logit s(xk, ym∗) contributes almost
all of the gradient, while the rest of the negative pairs with smaller logits s(xk, ym) ≤ s(xk, ym∗)
have significantly smaller gradient contributions. In contrast, BCE loss weights all negative pairs
independently from one another.

∂

∂yn
− log σ (−s(xk, yn)) = σ (s(xk, yn))

∂

∂yn
s(xk, yk)

Combining this with large logit scales ∈ (10, 100) once more, we can see that only the negative pairs
that are perceived as positive by the model are going to be used and they will have approximately
equal weight (≈ 1) among themselves. We argue that this makes the BCE formulation use in-batch
negatives more efficiently than softmax-based formulations, as it utilizes simultaneously all erroneous
predictions about negative pairs instead of the most erroneous one at each training step.

COMPREHENSIVE RESULTS ON MTEB

Table 7 reports the results with an extra section containing top-5 ranking models in terms of average
(Avg) score as of October 1st, 2024. Basing off our study for training with our proposed loss on top
of any of these models is an impossible task, and thus comparing head-to-head just by ablating the
loss function used for finetuning these general text encoders. The reason is that either the training
data has not been made publically available, or the code, or the paper. We choose instead to use one
of the models that fulfill all of those open-source requirements. We note that during the time we were
developing our work, BGE-EN-ICL had not released a preprint, or their full training data.

Table 8 reports Spearman correlation of gold relevance scores against the predictions from the models
for the STS portion of the English MTEB benchmark.

We highlight the performance of our Meta-LLaMA-3 model in the Pair Classification and Semantic
Textual Similarity (STS) task categories, where it outperforms models even in the top 5 of the MTEB
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Table 7: Results on the 56 tasks of the English MTEB benchmark. Retrieval (Retr.) performance
is measure using NDCG@10. Reranking (Rerank.) performance uses Mean Average Precision.
Clustering (Clust.) uses the V-measure. Pair classification (Pair) uses Average Precision (AP) based
on the models similarity metric. Classification (Class.) uses accuracy. Semantic Textual Similarity
(STS) tasks and Summarization (Summ.) use the Spearman correlation based on the model’s similarity
metric. Finally, the average (Avg) is computed by averaging the scores of all individual tasks together.
⋆versions of models that were finetuned with public MEDI2BGE and E5 datasets.

Categories → Retr. Rerank. Clust. Pair Class. STS Summ. Avg
# of datasets → 15 4 11 3 12 10 1 56
Public? → Data Code Paper

Models trained with synthetic, private, or highly overlapping data with MTEB
NV-EMBED-V2 [22] ✓ ✗ ✓ 62.65 60.65 58.46 88.67 90.37 84.31 30.70 72.31
BGE-EN-ICL [23] ✗ ✓ ✗ 62.16 59.86 58.46 88.14 88.95 84.24 30.77 71.67
STELLA-EN-1.5B-V5 [link] ✗ ✗ ✗ 61.01 61.21 57.69 88.07 87.63 84.51 31.49 71.19
SFR-EMBEDDING-2-R [27] ✗ ✗ ✗ 60.18 60.14 56.17 88.07 89.05 81.26 30.71 70.31
GTE-QWEN2-7B-INSTRUCT [25] ✗ ✗ ✓ 60.25 61.42 56.92 85.79 86.58 83.04 31.35 70.24

INSTRUCTOR-XL [45] ✓ ✓ ✓ 49.26 57.29 44.74 86.62 73.12 83.06 32.32 61.79
BGE-LARGE-EN-V1.5 [49] ✓ ✓ ✓ 54.29 60.03 46.08 87.12 75.97 83.11 31.61 64.23
GRITLM-7B⋆ [31] ✗ ✓ ✓ 53.10 61.30 48.90 86.90 77.00 82.80 29.40 64.70
E5-MISTRAL-7B-INSTRUCT⋆ [48] ✗ ✓ ✓ 52.78 60.38 47.78 88.47 76.80 83.77 31.90 64.56
ECHO-MISTRAL-7B-INSTRUCT [43] ✓ ✓ ✓ 55.52 58.14 46.32 87.34 77.43 82.56 30.73 64.68

LLM2VEC SHEARED-LLAMA-1.3B
with softmax-based loss [3] ✓ ✓ ✓ 51.44 55.38 43.57 86.20 72.21 83.58 30.01 61.85
with BCE loss (ours) ✓ ✓ ✓ 52.28 54.16 43.59 86.61 70.56 83.10 30.79 61.58

LLM2VEC META-LLAMA-3-8B-INSTRUCT
with softmax-based loss [3] ✓ ✓ ✓ 56.63 59.68 46.45 87.80 75.92 83.58 30.94 65.01
with BCE loss (ours) ✓ ✓ ✓ 57.38 59.29 47.18 88.85 76.05 85.31 31.19 65.72

MISTRAL-7B-INSTRUCT
LLM2VEC with softmax-based loss [3] ✓ ✓ ✓ 55.99 58.42 45.54 87.99 76.63 84.09 29.96 64.80
with BCE loss (ours) ✓ ✓ ✓ 57.43 58.64 46.34 88.53 74.31 84.90 30.14 65.04

QWEN2-7B-INSTRUCT
with softmax-based loss ✓ ✓ ✓ 57.67 59.62 49.37 88.67 75.85 84.95 31.30 66.13
with BCE loss (ours) ✓ ✓ ✓ 57.84 59.59 48.67 88.76 76.84 84.67 31.73 66.22

Table 8: Results on the STS tasks of the English MTEB benchmark. Scores depict Spearman
correlation based on the model’s similarity metric (usually the cosine similarity).

Datasets BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STSBenchmark Avg

NV-EMBED-V2 [22] 87.42 82.15 77.89 88.30 84.30 89.04 86.77 90.67 68.12 88.41 84.31
BGE-EN-ICL [23] 86.47 83.87 78.14 86.59 82.83 87.77 87.04 91.25 70.07 88.42 84.24
STELLA-EN-1.5B-V5 [link] 83.11 82.89 80.09 89.68 85.07 89.39 87.15 91.35 68.10 88.23 84.51
SFR-EMBEDDING-2-R [27] 87.60 77.01 75.67 82.40 79.93 85.82 84.50 88.93 67.10 83.60 81.26
GTE-QWEN2-7B-INSTRUCT 81.37 79.28 79.55 88.83 83.87 88.54 86.49 88.73 66.88 86.85 83.04

INSTRUCTOR-XL [45] 84.15 81.70 75.32 87.44 81.87 88.94 85.38 90.54 68.65 86.56 83.06
BGE-LARGE-EN-V1.5 [49] 84.65 81.68 79.05 86.37 82.78 88.03 86.49 87.50 67.05 87.52 83.11
GRITLM-7B [31] 86.35 83.13 77.34 85.04 82.91 88.13 86.24 90.13 68.63 85.64 83.35
E5-MISTRAL-7B-INSTRUCT [48] 85.55 82.64 79.66 88.43 84.54 90.43 87.68 91.75 66.98 88.60 84.63
ECHO-MISTRAL-7B-INSTRUCT [43] 86.54 83.23 76.13 83.19 80.60 87.16 85.16 90.88 67.04 85.67 82.56

LLM2VEC META-LLAMA-3-8B-INSTRUCT
with softmax-based loss [3] 84.92 83.94 79.27 84.83 82.94 88.09 86.54 89.58 67.67 88.05 83.58
with BCE loss (ours) 86.94 83.73 81.39 87.96 85.58 89.78 87.89 92.02 69.01 88.83 85.31

leaderboard (as of October 1, 2024), even though those models have been trained on synthetic and/or
private data (Wang et al., 2023; Muennighoff et al., 2024; Meng et al., 2024), or training data that
highly overlaps with the benchmark (Lee et al., 2024; Li et al., 2024). We highlight that our model
outperforms all other methods without being exposed to data from these categories during training,
demonstrating increased robustness compared to models trained with softmax-based contrastive
learning. For instance, focusing on STS tasks in Table 8, we find that our model outperforms existing
models in 6 out of 10 tasks, leading the average average Spearman correlation of sentence similarities
across STS tasks, without compromising its performance in other task categories. We believe that
the observed advantages in the Pair Classification and STS tasks is due to the particular form of the
binary cross-entropy objective, which aligns more closely with the pairwise similarity objectives in
these downstream tasks. This alignment enhances generalization capabilities of models compared to
those trained with softmax-based loss.

For completeness of results, we provide in Table 9 the comprehensive list of results of all individual
56 task in the English MTEB for the LLM2Vec models finetuned with our proposed loss.
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Table 9: Individual task scores of models trained with BCE loss.

Task META-LLAMA-3-8B-INSTRUCT SHEARED-LLAMA-1.3B

Classification
AmazonCounterfactualClassification 80.42 79.04
AmazonPolarityClassification 91.38 82.24
AmazonReviewsClassification 51.53 44.91
Banking77Classification 84.83 82.21
EmotionClassification 53.45 46.78
ImdbClassification 87.50 74.87
MassiveIntentClassification 77.97 74.19
MassiveScenarioClassification 80.14 77.74
MTOPDomainClassification 95.40 91.84
MTOPIntentClassification 78.62 66.63
ToxicConversationsClassification 67.31 63.28
TweetSentimentExtractionClassification 64.03 63.01

Clustering
ArxivClusteringP2P 47.90 45.46
ArxivClusteringS2S 46.32 39.07
BiorxivClusteringP2P 36.93 35.41
BiorxivClusteringS2S 38.28 34.04
MedrxivClusteringP2P 32.52 31.92
MedrxivClusteringS2S 32.83 31.41
RedditClustering 64.31 57.44
RedditClusteringP2P 61.46 59.23
StackExchangeClustering 70.93 62.06
StackExchangeClusteringP2P 33.95 32.52
TwentyNewsgroupsClustering 53.52 50.97

Pair Classification
SprintDuplicateQuestions 96.54 95.98
TwitterSemEval2015 82.39 77.13
TwitterURLCorpus 87.61 86.71

Reranking
AskUbuntuDupQuestions 65.09 59.94
MindSmallReranking 32.32 32.17
SciDocsRR 86.15 77.21
StackOverflowDupQuestions 53.58 47.33

Retrieval
ArguAna 60.61 55.57
ClimateFEVER 36.96 29.05
CQADupstackRetrieval 43.98 39.19
DBPedia 47.16 43.48
FEVER 92.20 89.19
FiQA2018 55.85 43.56
HotpotQA 77.12 69.33
MSMARCO 42.83 40.91
NFCorpus 40.09 36.01
NQ 65.44 57.04
QuoraRetrieval 89.98 89.42
SCIDOCS 22.51 16.59
SciFact 77.96 69.70
Touche2020 24.70 24.57
TRECCOVID 82.47 80.57

STS
BIOSSES 86.94 83.85
SICK-R 83.73 82.50
STS12 81.39 77.04
STS13 87.96 84.56
STS15 89.78 88.14
STS14 85.58 82.12
STS16 87.89 86.38
STS17 92.02 91.49
STS22 69.01 68.45
STSBenchmark 88.83 86.51

Summarization
SummEval 31.19 30.79
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Table 10: Statistics on the TREC-DL dataset splits with graded relevancies

Training set

Number of relevances 398235
Number of queries 199

Number of documents per query
Min 25% 50% 75% Max
75 168.5 227 330.5 47649

Distribution of relevancies
Relevancy 0 1 2 3
Probability 0.731 0.143 0.119 0.007

Validation set

Number of relevances 6132
Number of queries 22

Number of documents per query
Min 25% 50% 75% Max
134 191.25 243 313.25 695

Distribution of relevancies
Relevancy 0 1 2 3
Probability 0.549 0.208 0.133 0.110

Test set

Number of relevances 17818
Number of queries 82

Number of documents per query
Min 25% 50% 75% Max
114 158.25 183.50 268.50 533

Distribution of relevancies
Relevancy 0 1 2 3
Probability 0.657 0.168 0.093 0.082

TREC-DL DATASET

We use the validation sets from the document retrieval challenge of TREC-DL 2023 competition
(Craswell et al., 2024) to define a population of query-document relevancy scores which we will
use to define the training and the validation set. In particular, we use 90% of the samples for the
training set and 10% for the validation set. Out of those 10%, we only keep those entries whose
queries and documents do not overlap with any queries or documents contained in the training set. To
create the test set, we use the provided test set from TREC-DL 2023. However, we find that the test
set contains some overlap with the set of queries and documents used in the validation sets of the
competition. We make sure that the test consists exclusively of held-out data, by removing the entries
which correspond to queries and documents found in either of our created training set or validation
set. After this procedure, we are left with a query-document dataset with graded relevance scores.
The statistics of the dataset are presented at Table 10.
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