
Published as a Tiny Paper at ICLR 2024

STACKING/ENSEMBLE MODEL FOR SMARTPHONE-
BASED HUMAN ACTIVITY RECOGNITION USING FEA-
TURE ENGINEERING

Pratik Pal∗, Priyanshu Kumar Rai∗
Department of Electrical Engineering and Computer Science
Indian Institute of Science Education and Research, Bhopal
{pratik20, priyanshu20}@iiserb.ac.in

ABSTRACT

Human activity recognition, commonly known as HAR, involves identifying nu-
merous physical activities individuals conduct across diverse situations. Examples
of such actions include walking, jogging, running, ascending stairs, descending
stairs, and more. Our work attempts to construct a model that accurately recog-
nizes human activity based on data obtained from cellphones. To achieve optimal
performance, we used an ensemble model in conjunction with feature engineering.

1 INTRODUCTION

In recent decades, a growing focus has been on leveraging wearable sensor technology to recognize
body activities. The intricacies and diversity inherent in body movements challenge the prompt, pre-
cise, and automated identification of such activities. Our work reframes the issue of body activity
recognition as a classification problem, utilizing data acquired through wearable sensors. Recent re-
search suggests many approaches for getting effective classification results for the problem. Chadha
et al. (2023) used T-SNE for dimensionality reduction, then trained the model using SVM, Logistic
Regression, CNN, and other models. Dhanraj et al. (2019) developed EHARS, a simple novel CNN
architecture for classification. San-Segundo et al. (2016) used Hidden Markov Models (HMMs), and
Hernández et al. (2019) designed a bidirectional LSTM model for classification. The limitations of
the existing work are that they struggle to generalize in terms of different contexts, environments,
and agents, and that some advanced models demand higher computational resources when trained on
large datasets. In our work, we have used the feature engineering technique of maximum relevance -
minimum redundancy (mRMR) (Peng et al. (2005)) followed by an ensemble model to perform the
task.

2 DATASET

We obtained the dataset used in this task from the UCI ML repository Anguita et al. (2013), which
includes data from 30 individuals with ages ranging from 19 to 48 years. The dataset contains
562 different features and 10299 data points. There are no missing values in the dataset. For our
problem, we use the mRMR feature engineering technique and different classification models to
accurately classify human activity into one of the six Activities of Daily Living (ADL), namely
walking, walking upstairs, walking downstairs, laying, sitting, and standing.

3 PROPOSED ALGORITHM

The study employs an ensemble/stack classifier to predict class labels from test data, stacking the
output of individual classifiers and using an estimator to compute the final prediction. The stack
includes k-NN, SVM, Random forest, and MLP as individual models, with Logistic Regression
as the final estimator. The proposed algorithm consists of two steps: (i) We use the feature engi-
neering technique known as Maximum Relevance - Minimum Redundancy (mRMR) Doewes et al.
(2017). mRMR is a feature selection method that assesses mutual information to determine both the
relevance and redundancy of features. To implement mRMR, we evaluate the untuned classifiers,

*These authors contributed equally to this work

1



Published as a Tiny Paper at ICLR 2024

Figure 1: Comparison of the ensemble classifier with the benchmark SOTAs and individual models.

Table 1: Confusion matrix of the proposed algorithm reflecting the potential in detecting different
defect classes.

True ↓
Predicted → Laying Sitting Standing Walking Walking downstairs Walking upstairs

Laying 389 0 0 0 0 0
Sitting 0 349 6 0 0 1
Standing 0 8 373 0 0 0
Walking 0 0 0 344 0 0
Walking downstairs 0 0 0 0 280 1
Walking upstairs 0 0 0 0 0 309

including the stack model, for different values of K, ranging from 1 to 562. The goal is to identify an
optimal subset of features that maximized the F1-score without sacrificing the model performance.
Using this method, we find an optimum value of K that maintains a high F1-score while keeping
relevant and non-redundant features. We plot the macro-averaged F1 score against the number of
selected features (K), as illustrated in Figure 2 in appendix A.2. Based on the recorded data, the op-
timal F1-score is achieved when selecting 422 features for the ensemble classifier. Consequently, for
the proposed framework, this subset of 422 features is chosen. (ii) After dimensionality reduction
using mRMR, we tune the hyperparameters for the classifiers before stacking them to get the most
optimized parameters for the individual classifiers using GridSearchCV employing macro-averaged
F1-score as the metric. The tuned parameters we obtained are shown in Appendix Table 3. We split
the dataset into training and validation sets using 80% as the training data and 20% as the test data
in a stratified fashion and trained the model using the best K features obtained from mRMR using
the best parameters we got by performing hyperparameter tuning.

4 EXPERIMENTAL ANALYSIS

We have summarized the performance of the classifiers used along with the ensemble model in
Figure 1 (left). Furthermore, we compare the performance of the proposed framework in terms
of accuracy with several existing state-of-the-arts such as Linear SVC (L-SVC) by Chadha et al.
(2023), CNN by Wan et al. (2020), Bidirectional LSTM (B-LSTM) by Yu & Qin (2018), PCA-C5.0
by Elmoudden et al. (2016), 3-Layer LSTM model by Tufek et al. (2020), LSTM CNN by Xia et al.
(2020), 1D CNN by Yen et al. (2020), Lightweight Transformers (LT) by EK et al. and Transformer
(TRN) by Saidani et al. (2023). We have summarized the comparison in Figure 1 (right). The com-
parison in figure 1 (left) reflects that the proposed ensemble classifier is successful in increasing the
performance of the standalone state-of-the-art machine learning models significantly. The compari-
son in figure 1 (right) suggests that our proposed ensemble classifier surpasses state-of-the-art deep
learning models.

5 CONCLUSION

The identification of ADLs is very essential for applications such as health tracking, disaster man-
agement, and sports. Using this model, we are able to save a significant amount of computational
time and resources using feature engineering, thereby reducing overfitting and boosting the model’s
performance. Our findings suggest the promising application of this approach to low-power edge
computing devices for the efficient classification of human activity.

2



Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
domain dataset for human activity recognition using smartphones. In Esann, volume 3, pp. 3,
2013.

Soumiya Chadha, Ishita Raj, and D. Saisanthiya. Human activity recognition for analysing fitness
dataset using a fitness tracker. In 2023 International Conference on Computer Communication
and Informatics (ICCCI), pp. 1–5, 2023. doi: 10.1109/ICCCI56745.2023.10128242.

Surya Dhanraj, Suddhasil De, and Dinesh Dash. Efficient smartphone-based human activity recog-
nition using convolutional neural network. In 2019 International Conference on Information
Technology (ICIT), pp. 307–312, 2019. doi: 10.1109/ICIT48102.2019.00061.

Afrizal Doewes, Sri Edi Swasono, and Bambang Harjito. Feature selection on human activity
recognition dataset using minimum redundancy maximum relevance. In 2017 IEEE Interna-
tional Conference on Consumer Electronics - Taiwan (ICCE-TW), pp. 171–172, 2017. doi:
10.1109/ICCE-China.2017.7991050.

Sannara EK, François Portet, and Philippe Lalanda. Lightweight transformers for human activity
recognition on mobile devices. URL http://arxiv.org/abs/2209.11750.

Ismail Elmoudden, Badreddine Benyacoub, Souad Elbernoussi, and Mounir Ouzir. Modeling human
behavior using feature extraction and class prediction. In 2016 IEEE Intl Conference on Compu-
tational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous
Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Busi-
ness Engineering (DCABES), pp. 476–479, 2016. doi: 10.1109/CSE-EUC-DCABES.2016.227.

Fabio Hernández, Luis F. Suárez, Javier Villamizar, and Miguel Altuve. Human activity recognition
on smartphones using a bidirectional lstm network. In 2019 XXII Symposium on Image, Signal
Processing and Artificial Vision (STSIVA), pp. 1–5, 2019. doi: 10.1109/STSIVA.2019.8730249.

Hanchuan Peng, Fuhui Long, and C. Ding. Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(8):1226–1238, aug 2005. doi: 10.1109/tpami.2005.159.

Oumaima Saidani, Majed Alsafyani, Roobaea Alroobaea, Nazik Alturki, Rashid Jahangir, and Leila
Jamel. An efficient human activity recognition using hybrid features and transformer model. IEEE
Access, 11:101373–101386, 2023. doi: 10.1109/ACCESS.2023.3314492.

Rubén San-Segundo, Julián David Echeverry-Correa, Christian Salamea, and José Manuel Pardo.
Human activity monitoring based on hidden markov models using a smartphone. IEEE Instru-
mentation Measurement Magazine, 19(6):27–31, 2016. doi: 10.1109/MIM.2016.7777649.

Nilay Tufek, Murat Yalcin, Mucahit Altintas, Fatma Kalaoglu, Yi Li, and Senem Kursun Bahadir.
Human action recognition using deep learning methods on limited sensory data. IEEE Sensors
Journal, 20(6):3101–3112, 2020. doi: 10.1109/JSEN.2019.2956901.

Shaohua Wan, Lianyong Qi, Xiaolong Xu, Chao Tong, and Zonghua Gu. Deep learning models for
real-time human activity recognition with smartphones. Mobile Networks and Applications, 25:
743–755, 2020.

Kun Xia, Jianguang Huang, and Hanyu Wang. Lstm-cnn architecture for human activity recognition.
IEEE Access, 8:56855–56866, 2020. doi: 10.1109/ACCESS.2020.2982225.

Chih-Ta Yen, Jia-Xian Liao, and Yi-Kai Huang. Human daily activity recognition performed us-
ing wearable inertial sensors combined with deep learning algorithms. IEEE Access, 8:174105–
174114, 2020. doi: 10.1109/ACCESS.2020.3025938.

3

http://arxiv.org/abs/2209.11750


Published as a Tiny Paper at ICLR 2024

Shilong Yu and Long Qin. Human activity recognition with smartphone inertial sensors using bidir-
lstm networks. In 2018 3rd International Conference on Mechanical, Control and Computer
Engineering (ICMCCE), pp. 219–224, 2018. doi: 10.1109/ICMCCE.2018.00052.

A APPENDIX

A.1 HYPERPARAMETERS

The parameter ranges utilized for hyperparameter tuning across various classifiers are detailed in
Table 2, while the resulting tuned parameters obtained after executing Grid Search on the specified
ranges are presented in Table 5.

Table 2: Hyperparameters of various individual classifiers signifying their respective ranges

Model Hyperparameters

Decision Tree

max depth: [None, 5, 10, 20]
max features: [100, sqrt, log2]
ccp alpha: [0.1, 0.01, 0.001]
criterion: [gini, entropy, log loss]

Random Forest

max depth: [None, 5, 10, 20]
max features: [100, sqrt, log2]
ccp alpha: [0.1, .01, .001]
criterion: [gini, entropy, log loss]

SVM
C: [0.1, 0.5, 1, 5, 10, 50, 100]
gamma: [1, 0.1, 0.01, 0.001, 0.0001, scale, auto]
kernel: [linear, poly, rbf, sigmoid]

KNN n neighbors: n ∈ (1, 200)
weights: [uniform, distance]

MLP

max iter: [500]
hidden layer sizes: [(50, ), (100, ), (50, 50), (100, 100)]
alpha: [0.0001, 0.001, 0.01]
activation: [identity, logistic, tanh, relu]
solver: [lbfgs, sgd, adam]

Table 3: Tuned Parameters for the Classifiers
Model Best Parameters after Hyperparameter Tuning

k-NN n neighbors: 4, weights: distance

SVM C: 100, gamma: 0.1, kernel: rbf

MLP activation: tanh, alpha: 0.01, max iter: 500, solver: lbfgs, hidden layer sizes: [100]

DT ccp alpha: 0.001, criterion: entropy, max depth: 20, max features: 100

RF ccp alpha: 0.001, criterion: entropy, max depth: none, max features: sqrt

• k-NN (k-Nearest Neighbors):
– n neighbors: Number of neighbors to be be considered for queries.
– weights: Metric on which weights are assigned to neighbors.

• SVM (Support Vector Machine):

4



Published as a Tiny Paper at ICLR 2024

– C: Regularization parameter.
– gamma: Kernel coefficient for ‘rbf’ kernel.
– kernel: Specifies the kernel to be used.

• MLP (Multi-Layer Perceptron):
– activation: Activation function for the hidden layer.
– alpha: L2 penalty (regularization term) parameter.
– max iter: Maximum number of iterations. The solver iterates until this number of

iterations.
– solver: The solver for weight optimization.
– hidden layer size: The number of neurons in the hidden layers in form of a tuple.

• Decision Tree:
– ccp alpha: The complexity parameter for Minimal Cost-Complexity Pruning.
– criterion: The function to measure the quality of a split.
– max depth: The maximum depth of the tree.
– max features: The number of features to consider when looking for the best split.

• Random Forest: Same as for Decision Tree.

For MLP, we have used L-BFGS as the solver, which requires the learning rate to be set to auto
as it automatically decides the rate for the next iteration depending on the Jacobian matrix, which
computes the direction of steepest descent, and the Hessian matrix, which computes the descent
step, which repeats until convergence. Momentum is set to 500, max functions are 15000, and the
maximum number of iterations is set at 500. The initial learning rate is set at 0.0001. The L2 penalty
parameter is set at 0.01, and we have used Nesterov momentum for accelerated convergence.

A.2 PLOTS

Figure 2: Plot for F1 score vs the best K features for mRMR

The mRMR implementation involves a systematic evaluation of various K values, ranging from 1 to
562, and the F1-scores are computed for each iteration. A plot is generated to show the relationship
between the top K characteristics and their corresponding F1-scores. According to the recorded
data, the ensemble classifier achieves the highest F1-score when 422 characteristics are selected.
Therefore, a subset of 422 features is selected for the proposed framework.

5



Published as a Tiny Paper at ICLR 2024

A.3 ABLATION STUDY

A.3.1 MODEL TIMING ANALYSIS

Table 4: Comparison of runtime of proposed model with existing works

Models Training Time (in minutes)
3-Layer LSTM 20
LSTM-CNN 31.38

Our Work 113 (for Hyperparameter Tuning) + 3 (for training) on the tuned parameters

Although the existing works have not quantitatively reported timing analysis, we have found few
mentions of timing analysis, such as in 3-Layer LSTM by Tufek et al. (2020), which takes 20
minutes for training, and LSTM-CNN by Xia et al. (2020), which takes 31.38 minutes judging from
the individual epoch timings. The hyperparameter tuning process of our proposed model requires
113 minutes, followed by an additional 3 minutes for training with validation and subsequent testing
using the tuned parameters. The inference time of our proposed model is 1.03 ms per test data point.
The ensemble model used in this work has a memory footprint of 27.1 MB.

Due to the hyperparameter tuning involved, with each classifier being tuned for a combination of
around 108 parameters, the running time for the hyperparameter is large. Nevertheless, parameter
adjustment is necessary only once for the dataset. After the initial tuning, further runs just need to
be performed using the optimized parameters. The reason for this is that the addition of additional
data points to the test set does not necessitate parameter adjustments.

A.3.2 EXPERIMENT ON DISJOINT DATASETS

As part of our experiment, we adjusted the criteria for dividing participants into disjoint sets for
training and validation and subsequently for testing as well, avoiding any overlap across sets. 26
subjects are included in the training set, 2 in the validation set, and the remaining 2 in the testing
set. Using this method, we achieve an accuracy of 97.2% and a macro-averaged F1-score of 97.7%,
which is still better than the state-of-the-arts in the literature considering the limited number of sub-
jects in the dataset. However, it suffers heavily due to model bias, and therefore it can be improved
for real-world applications by including more subjects in the training set so as to provide more di-
versity in the real-world dataset. The tuned parameters for this experiment are summarized in table
5.

Table 5: Tuned Parameters for the Classifiers for the disjoint set experiment

Model Best Parameters after Hyperparameter Tuning

k-NN n neighbors: 10, weights: distance

SVM C: 10, gamma: 1, kernel: linear

MLP activation: identity, alpha: 0.0001, max iter: 500, solver: lbfgs, hidden layer sizes: [100]

DT ccp alpha: 0.001, criterion: entropy, max depth: 20, max features: 100

RF ccp alpha: 0.001, criterion: entropy, max depth: 20, max features: log2

A.4 METRICS USED FOR EVALUATION

We summarize the metrics used for the evaluation of the models at different phases of our work.
For each possible value of K (the number of features), we ran every model and the ensemble model,
and for every iteration, we recorded its F1-score. Our goal is to identify an optimal subset of fea-
tures that would maximize the F1-score, a robust metric that considers both precision and recall.
While reducing the dimensionality of the data can simplify the model and improve computational

6



Published as a Tiny Paper at ICLR 2024

efficiency, it can also lead to a loss of performance if important features are excluded. To overcome
this, we adopted a similar approach to decrease the feature subset without losing the F1-score metric.
Through this rigorous process, we were able to identify an optimum value of K that maintains a high
F1-score while keeping features that were not only relevant but also non-redundant. For parameter
tuning, the F1-score metric is used for evaluating the performance of both the individual models and
the stack model. The performance of the final model using the classifiers with the tuned parameters
is measured using both accuracy and the macro-averaged F1-score on the test dataset.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

× 100 (1)

Precisioni =
True Positivesi

True Positivesi + False Positivesi
(2)

Recalli =
True Positivesi

True Positivesi + False Negativesi
(3)

F1-scorei = 2× Precisioni × Recalli
Precisioni + Recalli

(4)

Macro-averaged F1-score =
1

N

N∑
i=1

F1-scorei (5)

where i stands for the i-th class in the data.

A.5 SOURCE CODE AND DATASET

The source code for the above implementation has been made available by the
authors and can be accessed at https://anonymous.4open.science/r/stacking-model-
for-har-268D/. The dataset in the UCI ML repository can be accessed at
https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones.

A.6 ABBREVIATIONS

HAR Human Activity Recognition
CNN Convolutional Neural Network
SVM Support Vector Machine
MLP Multi-Layer Perceptron
SVC Support Vector Classifier
PCA Principal Component Analysis
EHARS Efficient Human Activity Recognition System
mRMR Maximum Relevance - Minimum Redundancy
T-SNE T-distributed Stochastic Neighbor Embedding
FCN-LSTM LSTM Fully Convolutional Networks

7

https://anonymous.4open.science/r/stacking-model-for-har-268D/
https://anonymous.4open.science/r/stacking-model-for-har-268D/
https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones

	Introduction
	Dataset
	Proposed Algorithm
	Experimental Analysis
	Conclusion
	Appendix
	Hyperparameters
	Plots
	Ablation Study
	Model Timing Analysis
	Experiment on Disjoint Datasets

	Metrics used for Evaluation
	Source Code and Dataset
	Abbreviations


